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Decay out of superdeformed bands
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A consistent theory of the decay out of superdeformed rotational levels is presented. It is based on exact
equations for Green’s functions, taking into account simultaneously both the residual and the electromagnetic
interactions. In the weak-coupling limit, we generalized the two-level model of Stafford and Barrett to the case
where the superdeformed level is coupled with an infinite equidistant spectrum of normal compound states. For
nonoverlapping levels, the general equations of Vigezziet al. are rederived. The possibility of the nonexpo-
nential decay law is discussed.
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I. INTRODUCTION

In recent years, the decay mechanism of superdefor
~SD! rotational bands has been intensively studied both th
retically @1–13# and experimentally@14–26#. There are nu-
merous observations ofg spectra, produced by deexcitatio
transitions within SD bands. At some small spinsI, the in-
tensity of such spectral lines is found to drop suddenly,
that the g spectrum quenches. This observation has b
explained by a statistical model@1–3#, based on the fact tha
the SD levelus& with small spin lies high above the norm
yrast line. As a result, the collective SD level is surround
by a dense spectrum of excited compound states of a
mally ~N! deformed nucleusua&, which decay, emitting
mainly E1 photons. The residual interactionV̂8 causes mix-
ing of the SD andN states. Then,E1 transitions begin com
peting withE2 transitions within the SD band, which lead
to a sudden reduction of their intensity. The statistical mo
describes the normal states in terms of the Gaussian orth
nal ensemble of random matrices. It has been developed
ther by Weidenmu¨ller and co-workers@9,11#, who repre-
sented the relative intensity of transitions within the SD ba
Īin as a sum,

Īin5Iav1Īf luc , ~1!

whereIav and Īf luc stand for the averaged and fluctuatin
parts of the intensity, respectively. Specifically,Iav is given
by

Iav5
Gs

Gs1G
, ~2!

whereGs is the radiative width of the SD level andG is the
spreading width of the SD level. The latter is determined
the average value of Fermi’s golden rule:

G52pv82/DN , ~3!

where DN is the average spacing of the statesua& and v8

5^auV̂8us&. But Fermi’s golden rule holds for continuou
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spectra. Therefore, the question remains open: at what
sities of normal levels their spectrum can be considered
quasicontinuum and Eq.~3! can be used?

The mixing of the SD level with a single close-lyingN
one has been accurately studied by Stafford and Barrett@8#,
who analyzed both mixing and electromagnetic decays on
equal footing. Special attention has been paid to the c
typical for the nuclei in mass-190 region, where

GN@Gs ,G↓. ~4!

Here,GN is the radiative width of the normal state and

G↓5
v82~Gs1GN!

@~Gs1GN!/2#21D2
~5!

is the decay-out width, depending on the differenceD5E0
2Es of the unperturbed energies of the normal (E0) and
superdeformed (Es) states. Combining Eqs.~4! and~5!, one
can rewrite inequality~4! as

GN@Gs , v8!AD21~GN/2!2. ~6!

The Hamiltonian of the nucleus can be represented
ĤN5ĤN

(0)1V̂8, where the unperturbed HamiltonianĤN
(0) is a

sum of the termsĤrot ,Ĥv ib(b,g), andĤ intr(b,g;j), which
describe the rotation, vibrations of the shape, and intrin
motion of the nucleons~treated in the framework of the she
model!, respectively. In the adiabatic approximation with r
spect to slow b and g vibrations, one can first omi
Ĥv ib(b,g) @27#. Then, we should solve the Schro¨dinger
equation with the reduced HamiltonianĤrot1Ĥ intr , depend-
ing on the parametersb and g. An eigenvalue of such re
duced operator, as a function of the deformation param
b, at a fixed value ofg plays the role of the potential energ
VI(b) in the one-dimensional Schro¨dinger equation for the
deformed nuclear shape motion. We are interested in nu
for which functionVI(b) has two minima, associated wit
the normal and superdeformed shapes. The Schro¨dinger
equation with such an asymmetric potential has been so
quasiclassically in a preceding paper@13# in full analogy
with the familiar symmetric case@28#. Its solutionw I(b) is
spread over both wells simultaneously. In other words, i
©2003 The American Physical Society11-1
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represented by a superposition of the wave functi
w (N)(b) andw (S)(b), which describe vibrations inN and SD
wells with frequenciesvN and vS , respectively. In the ab
sence of the barrier tunneling, there are separate harm
vibrations in the wells N and SD with energiese1
5\vN(n111/2) ande25\vS(n211/2), wheren1 and n2
are integers. The tunneling ensures shifting of these le
and the mixing of the wave functionsw (N)(b) andw (S)(b)
with the amplitudescN andcS , respectively. Recall that fo
nuclei with stable octupole deformations, the tunneling le
to mixing of the wave functions for the mirror octupo
shapes with equal weights~see, e.g., Ref.@29#!.

A typical spacingue12e2u of the vibrational levels greatly
exceeds the tunneling strength

v5~\v0/2p!exp~2A!, ~7!

where

v0
25vNvS , A5pWI /\vB , ~8!

while WI stands for the height of the barrier, approximat
by an inverse parabola with frequencyvB . In such a case
one of the amplitudescN or cS is much less than unity, i.e.
the wave function is concentrated mainly to one of the we
In particular, wave function

ws~b!5cN
s ws

(N)~b!1cS
sws

(S)~b!, ~9!

which describes the deformed motion in the SD state, is
cated almost completely in the SD well; it has only a we
tail in the normal well, allowing the coupling of the supe
deformed state with the compound statesua& @see also Fig.
1~b! of the paper by Vigezziet al. @3##. The amplitudes in Eq
~9! are @13#

cS
s'1, ucN

s u'
exp~2A!

2usinaNu
!1, ~10!

whereaN denotes the angle

aN5p~e12e2!/\vN . ~11!

When ue12e2u@v, the normal componentws
(N)(b) of the

wave functionws(b) is represented by a decomposition
terms of the harmonic oscillator wave functions, which d
scribe vibrations in theN well with different phonon num-
bersn1.

The eigenfunctions of the unperturbed nuclear Ham
tonian ĤN

(0) are superpositions, characterized by the defin
signature, of the products of the rotational wave funct
A(2I 11)/8p2DKM

I (u), depending on the Euler anglesu as
well as functions describing intrinsic motionF(b,g;j) and
motion of the deformed shapew(b). Specifically, the wave
function for the SD levelcs contains as a factor the functio
ws(b). Using expression~9!, we rewrite this wave function
as cs5cN

s uN&1cS
suS&, where the componentsuN& and uS&

describe pure normal and superdeformed shapes, res
tively. From the smallness ofcN

s it follows that Gs'GS ,
whereGS is the radiative width of the pure superdeform
02431
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stateuS&. Since wave functionsua& of the compound state
overlap only with the normal component of the wave fun
tion cs , the interaction strengthv8 factorizes:

v85cN
s ^auV̂8uN&. ~12!

In this paper, we shall generalize the approach of Staff
and Barrett@8# to the case where the SD level is coupled w
an arbitrary number ofN statesua&. We use the model of
equidistant compound statesua&, which allows an analytical
treatment.

II. GREEN’S FUNCTIONS

The total Hamiltonian of the system~nucleus plus electro-
magnetic field! may be written as

Ĥ5Ĥ01V̂, Ĥ05ĤN1Ĥrad , ~13!

whereĤN and Ĥrad denote the Hamiltonians of the nucleu
and electromagnetic field, respectively. The perturbation
erator is

V̂5V̂r1V̂8, ~14!

whereV̂r is the interaction operator of the nucleus with ele
tromagnetic field. The eigenfunctions of the unperturb
Hamiltonian Ĥ0 will be products of the functions for the
nucleus and the electromagnetic field. In particular, the ini
state of the system att50 is described by wave function

Cs~0!5us&5csu0&, ~15!

where u0& stands for the vacuum function of the field. Th
corresponding energy of the system equals energyEs of the
SD level. Stateus& is coupled to intermediate states of th
system ua&5cau0& with energiesEa . Below, the set of
statesus& and ua&, which may have in principle close-lying
energies, will be also labeled byua& or ua8&. The wave func-
tions of final statesub& are products of the functions for th
nucleus in theN or SD state and the field with one photon

Time evolution of the wave function att>0 is determined
by equation@30#

Cs~ t !52
1

2p i E2`

`

d«e2 i«t/\Ĝ1~«!Cs~0!, ~16!

where Green’s operator

Ĝ1~«!5~«1 ih2Ĥ !21, h→10. ~17!

The probability of finding the system at momentt in stateub&
or ua8& is given by

Pb(a8)~ t !5uGb(a8)~ t !u2, ~18!

where
1-2
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Gb(a8)~ t !52
1

2p i E2`

`

d«e2 i«t/\^b~a8!uĜ1~«!us&.

~19!

Following Ref. @30# we easily find that Green’s matrice
Gba

1 andGa8a
1 are related by~see also Ref.@31#!

Gba
1 ~«!5~«1 ih2Eb!21(

a8
Vba8Ga8a

1
~«!, ~20!

while Ga8a
1 is determined by the system of algebraic equ

tions @31#

(
a9

$~«2Ea!daa92Raa9
1

~«!%Ga9a8
1

~«!5daa8 , ~21!

where theR matrix is given by the expansion

Raa8
1

~«!5Vaa81 (
bÞa,a8

VabVba8
«1 ih2Eb

1•••. ~22!

We shall assume that all statesua& have common radiative
width GN and they are coupled to the SD state with eq
strengthv8, i.e.,

Rss
152 iGs/2, Raa

1 52 iGN/2, Rsa
1 5v8. ~23!

Inserting Eq.~23! into Eqs.~21!, one has their solution

Gss
1~«!5H «2Es1 i

Gs

2
2(

a

v82

«2Ea1 iGN/2J 21

~24!

and

Gas
1 ~«!5

v8

«2Ea1 iGN/2
Gss

1~«!. ~25!

SummingPb(`) over all possible states of emitted ph
tons and final SD nuclear states, one gets the probability
the nucleus will conserve superdeformed shape after de
~see also Ref.@8#!:

FS5
Gs

2pE2`

`

d«uGss
1~«!u2. ~26!

Here,FS has the same meaning asIin in Refs. @9,11#. It is
evident that the decay-out probability will beFN512FS .

Following Ref.@32#, we take an infinite equidistant spe
trum of normal statesEa5E01aDN , where a50,61,
62, . . . , andE0 stands for the energy nearest toEs . Then,
the sum overa in Eq. ~24! is easily calculated@32#, yielding

Gss
1~«!5

1

«2Es1 iGs/21 i ~G/2!F~«!
, ~27!

where the spreading widthG is defined by Eq.~3!, and

F~«!5
e2 iz1eiz

e2 iz2eiz
, z5p~«2E01 iGN/2!/DN . ~28!
02431
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Function F(«) tends to unity whene2 iz→`, i.e., when
GN/2DN→`. In this case, Green’s function~27! reduces to

Gss
1~«!5

1

«2Es1 i ~Gs1G!/2
. ~29!

On the other hand, atGN/2@DN we can replace the summa
tion overa in Eq. ~24! by an integral that provides the sam
result ~29!. For such a dense spectra of overlapping norm
levels, the decay becomes purely exponential with atten
tion Gs1G, being independent ofGN . Then, the branching
ratio FS is determined by the same equation~2! as Iav .
Thus, for nuclei with equidistant normal levels we can intr
duce the spreading width~3! when these levels greatly ove
lap. Such a statement is consistent with the conclusion of
papers@9,11# that, in nuclei with random spectra, the ter
Iav dominates overĪf luc at GN@DN . However, typical ex-
perimental data areDN;1 –103 eV and GN;1 –10 meV
~see, e.g., Ref.@8#!, i.e., in most casesGN/2DN!1.

From Eqs.~21! one sees thatGaa8(«) has an inverse ma
trix

Gaa8
21

~«!5«daa82Haa8 , ~30!

whereHaa8 is an effective non-Hermitian Hamiltonian ma
trix ~see also Ref.@33#!,

Haa85Eadaa81Raa8
1

~«!. ~31!

WhenGNÞGs , matrix Haa8 is not normal, since it does no
commute with its conjugate@34#. Therefore, its eigenvector
u i &, satisfying equation

Ĥu i &5m i u i &, ~32!

are not orthogonal to each other, i.e.,^ i u i 8&Þ0 wheniÞ i 8.
Moreover, its eigenvalues are complex numbers,m i5Ei

2 iG i /2. They determine the poles of functionGss
1(«) on the

complex plane«5«81 i«9. If the valuesm i are not degen-
erate, these poles are simple, andGss

1(«) is represented by
the following sum of resonant terms:

Gss
1~«!5(

i

Ai

«2m i
, ~33!

whereAi are the residues ofGss
1(«) at the polesm i . Substi-

tuting this expression into Eq.~19!, we obtain the nonexpo
nential decay law for the SD level:

Ps~ t !5U(
i

A ie
2 im i t/\U2

. ~34!

Thus, in the general case, the probabilities of finding
excited nucleus in one of the potential wells undergo atte
ating Rabi beats with several frequenciesuEi2Ei 8u/\ ~see
also Ref.@8#!.
1-3
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III. NONOVERLAPPING LEVELS

Calculations ofAi andm i simplify in the case of nonover
lapping resonant levels, whose spacings greatly exceed
attenuation, so thatuEi2Ei 8u@G i ,G i 8 if iÞ i 8. Then, it is
useful to rewrite the effective Hamiltonian matrix~31! as a
sum

Ĥ5Ĥ(0)1Ĥ8, ~35!

containing the unperturbed matrix

Haa8
(0)

5Eadaa81Vaa8
8 ~36!

and the perturbation

Haa8
8 52 i ~Ga/2!daa8 ~37!

responsible for the radiative decays. The symmetric ma
Ĥ(0) has an orthonormal set of eigenvectors

u i &5(
a

ca~ i !ua&, ~38!

where ca( i ) stands for an orthogonal matrix. The corr
sponding eigenvalue equation reads

Ĥ(0)u i &5E i
(0)u i &. ~39!

The corrections to energiesE i
(0) in the first order of the per-

turbation theory are

^ i uĤ8u i &52 iG i /2, ~40!

where the radiative widths of statesu i &, which are mixtures
of N and SD functions, are equal to

G i5cs
2~ i !Gs1@12cs

2~ i !#GN . ~41!

Ignoring small perturbation corrections to the wave fun
tions, one gets

Gss
1~«!5(

i

cs
2~ i !

«2E i
(0)1 iG i /2

. ~42!

Substituting Eq.~42! into Eq. ~26! gives branching ratios
derived previously in Ref.@2#:

FS5(
i

cs
4~ i !~Gs /G i !,

~43!

FN5(
i

cs
2~ i !@12cs

2~ i !#~GN /G i !,

whereG i are determined by Eq.~41!. In the case considered
periods 2p\/uE i

(0)2E i 8
(0)u of temporary beats ofPN(s)(t) are

much less than the attenuation times\/G i . Such swift Rabi
oscillations should be yet averaged within the time of obs
vation. Then, the averaged probabilities, to be measured
perimentally, will not represent oscillations:
02431
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P̄s~ t !5(
i

cs
4~ i !e2G i t/\. ~44!

IV. WEAK-COUPLING LIMIT

Another simplification of the Green’s function is achieve
when conditions~6! are fulfilled. Let us first analyze the
analytical behavior of functionGss

1(«) on the complex plane
«5«81 i«9 in such a weak-coupling limit. Its poles are d
termined by equation

«5Es2 i ~Gs/2!1~pv82/DN!ctgz, ~45!

where z is specified by Eq.~28!. The pole«0(s) near the
point «0

(0)(s)5Es2 iGs/2 may be found by iterating Eq.~45!.
In the first order, one has

Im«0~s!'2~Gs1G↓!/2. ~46!

where the decay-out widthG↓ is already determined by

G↓5
gv82

j2
2 1sin2~pD/DN!

, ~47!

and the following notations are used:

g52pj1j2 /DN , ~48!

j65
1

2
@exp~pGN/2DN!6exp~2pGN/2DN!#.

Usually,GN!DN . In this approximation, Eq.~47! becomes

G↓5
v82GN

~GN/2!21~DN /p!2sin2~pD/DN!
. ~49!

Note that the decay-out width~47! coincides with the spread
ing one only atGN@DN .

Other poles«0(a) of Gss
1(«) lie in the vicinity of points

«0
(0)(a)5Ea2 iGN/2. Substituting their shifts D«0(a)

5«0(a)2«0
(0)(a) into Eq. ~45!, we obtain the quadratic

equation

@D«0~a!#21~D1aDN2 iGN/2!D«0~a!2v8250.
~50!

Its small root is

D«0~a!'
v82

D1aDN2 iGN/2
. ~51!

Keeping in mind condition~6!, we see that

Im«0~a!'2GN/2. ~52!

Hence, poles«0(a) lie much farther from the real axis o
the « plane than pole«0(s). Moreover, the residues at thes
polesAa5resGss

1
„«0(a)… are small:

Aa5S v8

D1aDN2 iGN/2D
2

. ~53!
1-4
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Therefore, contribution from poles«0(a) to integrals~19! or
~26!, calculated by means of the contour integration, can
omitted compared to the contribution from«0(s). Similar
arguments are presented in Ref.@32# in connection with the
discussion of the exponential law of decay. So expans
~33! for the Green’s functionGss

1(«) can be replaced by th
single term

Gss
1~«!5

1

«2Es1 i ~Gs1G↓!/2
. ~54!

Then, the branching ratios become

FS5
Gs

Gs1G↓ , FN5
G↓

Gs1G↓ . ~55!

The usefulness of our formulas is illustrated in Figs. 1 a
2, showing the dependence ofFN on v8/D. Curve 1 repre-
sents direct numerical calculations, using exact Eqs.~24! and
~26!. Curves 2 and 3 exhibit model calculations based on
~54!, which uses forG↓, respectively, our Eqs.~49! and ~5!,
derived in Ref.@8#. The parameters are chosen as follow

0,

0 0 0,

3
21

v'/∆

F
N

0.40.20

0.5

1.0

FIG. 1. The branching ratioFN versusv8/D, calculated with the
aid of exact Eq.~25! ~curve 1! as well as approximate Eqs.~49! and
~5! ~curves 2 and 3, respectively! for D5DN/2.

0,

,2 0,

0,0 3
2

1

1.0

0.5

0.40.20 v'/∆

F
N

FIG. 2. As in Fig. 1, but forD5DN/4.
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DN5100 eV, Gs50.1 meV, andGN510 meV, while D
5DN/2 in Fig. 1 andD5DN/4 in Fig. 2. Our expression~49!
is seen to provide a better accuracy than Eq.~5! at largeD.

Usually, probabilitiesFN andFS are averaged over som
distribution of the energy differenceD ~see, e.g., Ref.@2#!.
For uniform distribution ofD, the mean value ofFN(D) is

F̄N5
1

DN
E

2DN/2

DN/2

FN~D!dD. ~56!

Substituting Eq.~47! into Eqs.~55! and ~56!, one finds

F̄N5
v82

A@j2
2 GS /g1v82#@~11j2

2 !GS /g1v82#
. ~57!

For GN!DN /p, Eq. ~57! simplifies to

F̄N'
v82

A@GNGs/41v82#@~DN /p!2~Gs /GN!1v82#
. ~58!

These expressions allow us to find the coupling strengthv8,
which hereafter will be referred to asv̄8. From Eq.~58! one
finds

v̄8'
DN

p
AGs

GN
S F̄N

2

12F̄N
2 D . ~59!

Then using this evaluation together with designation~3!, we
can rewrite expression~58! as

F̄N'A GGN

DNGs
S 2

p
1

GGN

DNGs
D 21/2

. ~60!

In reality, the energy differenceD takes some definite
value between2DN/2 andDN/2 ~see also Ref.@8#!. Accord-
ing to Eqs.~47! and ~55!, v8 may vary in the interval con-
fined by the values

vmin8 5 1
2 AFN /~12FN!AGsGN,

~61!
vmax8 5~2DN /pGN!vmin8 ,

where vmin8 and vmax8 correspond toD50 and uDu5DN/2,
respectively.

Using experimental data forFs and the parametersGN ,
GS , andDN , listed in Refs.@8,11,26#, we found with the aid
of Eq. ~59! the coupling constantsv̄8 for some SD levels of
Hg and Pb isotopes. All these parameters and constants
presented in the table together with the limiting quantit
vmin8 andvmax8 . Knowing the magnitude of the nuclear ma

trix element̂ auV̂uN&, we would be able to find by means o
Eqs. ~10! and ~12! action A and the barrier heightWI , re-
spectively. Following Ref.@35#, we accept thatu^auV̂uN&u
;1 MeV. In addition, takingaN5p/2 and \v05\vB
50.6 MeV, we estimated the barrier heightsWI , shown also
in the Table I.
1-5
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TABLE I. The parameters characterizing decay out of nuclei with mass;190.

I FS GS GN DN v̄8 vmin8 vmax8 W̄ Wmin Wmax

(\) ~meV! ~meV! ~eV! ~eV! ~meV! ~eV! ~MeV! ~MeV! ~MeV!

192Hg-1 @8# 121 0.87 0.116 10.3 34 0.16 0.21 0.45 2.86 2.65 4.1
192Hg-1 @8# 101 0.09 0.054 10.3 30 1.51 1.18 2.19 2.43 2.36 3.7
194Hg-1 @26# 121 0.60 0.108 21 344 3.41 0.62 6.41 2.27 2.15 3.9
194Hg-1 @26# 101 0.03 0.046 20 493 30.04 2.73 42.83 1.85 1.79 3.6
194Hg-3 @11# 151 0.90 0.230 4.0 26.5 0.20 0.16 0.68 2.81 2.57 4.1
194Hg-3 @11# 131 0.84 0.110 4.5 19.9 0.32 0.15 0.43 2.74 2.66 4.1
194Hg-3 @11# 111 ,0.07 0.048 6.4 7.2 0.41 1.02 0.72 2.78 2.57 3.8
194Pb-1 @11# 81 0.62 0.014 0.50 2200 64.12 0.01 95.79 1.73 1.62 4.4
194Pb-1 @11# 61 ,0.09 0.003 0.65 1400 66.45 0.04 106.21 1.74 1.63 4.3
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V. DISCUSSION

The radiative decay of the SD andN levels as well as their
mixing are simultaneously taken into account in exact eq
tions~21! and~22! for Green’s functions. In the general cas
their solution is rather cumbersome and the decay of the
level, described by Eq.~34!, is nonexponential due to Rab
oscillations between the SD level and the normal deform
states. The Green’s function reduces to one resonant
~29!, if GN/2@DN . Here, widthGN characterizes uncertaint
of the energy of statesua&. When such uncertainty largel
exceeds distanceDN between levelsua&, they behave like a
continuous spectrum and the rate of the decay out of the
level into such a quasicontinuous spectrum is provided
Fermi’s golden rule. The corresponding decay-out width
the SD level equals its spreading widthG @32#, while the
complete width of the SD levelG1Gs does not depend on
GN . Time dependence of the SD level decay is descri
now by the exponent in correspondence with the gen
theory@30#, which describes decay of any level to a contin
ous spectrum~for a discrete spectra of final states, there w
be temporary beats superimposed on the attenuating e
nent!.

As indicated in Ref.@32#, the spreading widthG can be
introduced also in the strong-coupling limit, whenv8@DN
and, respectively, the SD level is spread over a large num
of normal levels. But, for nuclei with mass;190, the oppo-
site limit of weak coupling,v8!DN , is realized. Then, one
cannot introduce the strength function@32#, characterized by
the width G, so thatG loses its physical sense, remainin
only a helpful designation. Nevertheless, one can employ
decay-out widthG↓ instead ofG, if GN@Gs , G↓. Then,
Gss

1(«) is again reduced to a simple resonant term~54!, as in
the case withG. It is worth noting that nowG↓ depends on
GN . Expression~49! for G↓ transforms to Eq.~5!, derived
previously in Ref. @8#, when uDu!DN and only a single
close-lying normal level is significant.

Although the energy differenceD has a definite value
between2DN/2 andDN/2 for all the nuclei, we derived the
02431
-
,
D

d
rm

D
y
f

d
al
-
l
o-

er

e

averaged decay-out probabilityF̄N . Expression~60! contains
an extra factor (2/p1GGN /DNGs)

21/2 compared to Eq.~13!
of Ref. @3#. Recall, that Vigezziet al. @3# considered mixing
of the SD level only with a single normal compound sta
ignoring their overlapping at smalluDu and the role of other
N states, whereas we took into account all these effects.

Formula~59! allows us to find the averaged values ofv8
or G from experimental data forFN , using estimations of
GN , Gs , and DN , made by other authors. Usually, th
spreading widthG is identified with the tunneling width
G tunn5(\v0/2p)exp(22A) in order to calculate actionA
and the barrier heightWI , respectively ~see, e.g. Ref.
@12,26#!. This expression for the tunneling width may b
applied when the SD state is coupled to the continuous s
trum of the deformed motion. This would be the case if w
considered the tunneling through an external potential b
rier. But we deal with the deformed motion only within tw
asymmetric potential wells separated by a barrier, disreg
ing the nuclear fission. The corresponding solutions~9! of
the Schro¨dinger equation describe bound states having d
crete energies. The quasicontinuous spectrum arises whe
include into consideration normal deformed statesua&, asso-
ciated with the excited intrinsic motion of the nucleons, i.
when we begin dealing with other degrees of freedom. Th
mixing of the superdeformed collective statecs with such
normal states is due to the residual interaction but not to
quantum-mechanical tunneling. To do this more formally,
substitute Eqs.~10! and~12! into Eq.~3!. Then, the spreading
width G transforms to the form

G5~pu^auV̂8uN&u2/2DNsin2aN!e22A, ~62!

explicitly showing its difference fromG tunn . Therefore,
when calculating the barrier heightsWI , we were forced to
adopt the above estimations for angleaN and for the matrix
element̂ auV̂8uN&.
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