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Decay out of superdeformed bands
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A consistent theory of the decay out of superdeformed rotational levels is presented. It is based on exact
equations for Green’s functions, taking into account simultaneously both the residual and the electromagnetic
interactions. In the weak-coupling limit, we generalized the two-level model of Stafford and Barrett to the case
where the superdeformed level is coupled with an infinite equidistant spectrum of normal compound states. For
nonoverlapping levels, the general equations of Vigezzl. are rederived. The possibility of the nonexpo-
nential decay law is discussed.
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[. INTRODUCTION spectra. Therefore, the question remains open: at what den-
sities of normal levels their spectrum can be considered as
In recent years, the decay mechanism of superdeformeguasicontinuum and E@3) can be used?

(SD) rotational bands has been intensively studied both theo- The mixing of the SD level with a single close-lying
retically [1-13] and experimentalljf14—26. There are nu- one has been accurately studied by Stafford and BdBgtt
merous observations of spectra, produced by deexcitation who analyzed both mixing and electromagnetic decays on an
transitions within SD bands. At some small spinghe in-  equal footing. Special attention has been paid to the case,
tensity of such spectral lines is found to drop suddenly, sdypical for the nuclei in mass-190 region, where
that the y spectrum quenches. This observation has been
explained by a statistical modgl—3], based on the fact that =T, T (4)
the SD level|s) with small spin lies high above the normal ) . )
yrast line. As a result, the collective SD level is surroundedere,I'y is the radiative width of the normal state and
by a dense spectrum of excited compound states of a nor- 5
mally (N) deformed nucleuga), which decay, emitting rie v S(Is+I'y) 5
mainly E1 photons. The residual interactidf causes mix- [(Ts+T\)/2]%+ A%
ing of the SD andN states. Thenk1 transitions begin com-
peting with E2 transitions within the SD band, which leads is the decay-out width, depending on the differedce E
to a sudden reduction of their intensity. The statistical model- Es of the unperturbed energies of the norm&,) and
describes the normal states in terms of the Gaussian orthogsuperdeformedH,) states. Combining Eq$4) and(5), one
nal ensemble of random matrices. It has been developed fugan rewrite inequality4) as
ther by Weidenmiler and co-workers[9,11], who repre-
sented the relative intensity of transitions within the SD band Iy>Ts, v/ <JA2+ (/2% (6)

Tin, @s a sum,

The Hamiltonian of the nucleus can be represented as
Tin=ZTa+ Liiuc (1)  Hy=H®+V’, where the unperturbed HamiltoniaH? is a
_ sum of the terms,o;,H,i5(3,7), andHn.(B,7;£), which
whereZ,, and Iy, stand for the averaged and fluctuating gescribe the rotation, vibrations of the shape, and intrinsic
parts of the intensity, respectively. Specifically, is given  mgtion of the nucleonéreated in the framework of the shell
by mode), respectively. In the adiabatic approximation with re-
I s:pect to slowB and y vibrations, one can first omit
ﬁ, (2 H,iv(B,7) [27]. Then, we should §olve Ehe Schlinger
s equation with the reduced Hamiltoni&h o+ H; , depend-

whereT ', is the radiative width of the SD level afdlis the ~ Ing on the parameterg and y. An eigenvalue of such re-
spreading width of the SD level. The latter is determined byduced operator, as a function of the deformation parameter

Ty =

the average value of Fermi’s golden rule: B, at a fixed value ofy plays the role of the potential energy
V,(B) in the one-dimensional Schdimger equation for the
I'=27v'?/Dy, (3) deformed nuclear shape motion. We are interested in nuclei,
) ) for which functionV,(B) has two minima, associated with
where Dy is the average spacing of the state$ andv’  the normal and superdeformed shapes. The "Smger

=(a|V'|s). But Fermi’s golden rule holds for continuous equation with such an asymmetric potential has been solved
guasiclassically in a preceding papdr3] in full analogy
with the familiar symmetric casg28]. Its solutione(B) is

*Email address: dzyublik@kinr.kiev.ua spread over both wells simultaneously. In other words, it is
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represented by a superposition of the wave functionstate|S). Since wave functionsa) of the compound states
oMN(B) and ¢ (B), which describe vibrations iNand SD  overlap only with the normal component of the wave func-
wells with frequenciesvy and wg, respectively. In the ab- tion i, the interaction strength’ factorizes:

sence of the barrier tunneling, there are separate harmonic

vibrations in the wellsN and SD with energiese; v’=c,‘°{,<a|\A/’|N>. (12
=hwy(n;+1/2) ande,=hwg(n,+1/2), wheren; andn,

are integers. The tunneling ensures (sJ;ifting of trgg)se levels |n this paper, we shall generalize the approach of Stafford
and the mixing of the wave functions'™(B8) and¢™(B)  and Barretf8] to the case where the SD level is coupled with
with the amplitudesy andcs, respectively. Recall that for  an arbitrary number oN states|e). We use the model of

nuclei with stable octupole deformations, the tunneling leadgquidistant compound statps), which allows an analytical
to mixing of the wave functions for the mirror octupole treatment.

shapes with equal weightsee, e.g., Ref.29]).
Atypical spacing e;— €,| of the vibrational levels greatly

exceeds the tunneling strength Il. GREEN'S FUNCTIONS

The total Hamiltonian of the systefnucleus plus electro-

v=(hwol2m)exp —A), @) magnetic fielgd may be written as

where

H=Hg+V, Ho=Hy+Haq, (13)
wi=wyws, A=W, /g, (8)
whereHy andH,,4 denote the Hamiltonians of the nucleus

while W, stands for the height of the barrier, approximatedyng electromagnetic field, respectively. The perturbation op-
by an inverse parabola with frequeney. In such a case, grator is

one of the amplitudesy or cg is much less than unity, i.e.,
the wave function is conpentrated mainly to one of the wells. \A/=\A/r+\7’, (14)
In particular, wave function
e B)=cReM(B)+celd(B), (9)  whereV, is the interaction operator of the nucleus with elec-
tromagnetic field. The eigenfunctions of the unperturbed
cated almost completely in the SD well; it has only a weaknycleus and the electromagnetic field. In particular, the initial

deformed state with the compound state$ [see also Fig.

1(b) of the paper by Vigezzt al.[3]]. The amplitudes in Eq. W (0)=|s)=1|0), (15)
(9) are[13]
where|0) stands for the vacuum function of the field. The
1, (10) corresponding energy of the system equals enérggf the
SD level. Statds) is coupled to intermediate states of the
system|a)=,|0) with energiesE,. Below, the set of
states|s) and|a), which may have in principle close-lying
an=(e1— &)lhwy. (11) energies, will be also labeled &) or |a’). The wave func-
tions of final state$b) are products of the functions for the
When |e;— €,/>v, the normal componen:pgN)(ﬁ) of the  nucleus in theN or SD state and the field with one photon.
wave function('os(ﬁ) is represented by a decomposition in Time e-VO|Uti0n of the wave function &0 is determined
terms of the harmonic oscillator wave functions, which de-by equation30]
scribe vibrations in theN well with different phonon num-
bersn;.
The eigenfunctions of the unperturbed nuclear Hamil-

tonian H{®) are superpositions, characterized by the definite

signature, of the products of the rotational wave functionwhere Green’s operator

V(21 +1)/8772D:(M(0), depending on the Euler anglésas A A

well as functions describing intrinsic motieh(g, y;¢£) and G'(e)=(e+in—H)"Y, n—+0. (17
motion of the deformed shapg(B). Specifically, the wave

function for the SD leveljs contains as a factor the function The probability of finding the system at momeii state|b)
@s(B). Using expression9), we rewrite this wave function or [a’) is given by

as ys=Ccy|N)+cgS), where the componentdN) and |S)

describe pure normal and superdeformed shapes, respec- Ppary(t) = |gb(ar)(t)|2, (18
tively. From the smallness ofy, it follows that I'¢~T'g,

wherel'g is the radiative width of the pure superdeformedwhere

exp —A)

S__ S|l Y
cs~1. [l 2|sinaN|<

where a, denotes the angle

V()= % f :dse*“’ﬁé*w)\lfs(ox (16
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1 (= ) N
Gpary(t) =— Z—ﬂfiwdse_'“/h(b(a’)|G+(8)|S).

19

Following Ref.[30] we easily find that Green’s matrices

Gg, and G;,a are related bysee also Ref.31])

Gpa(e)=(e+i7-Ep) ' 2 VoaGog(e),  (20)
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Function ®(&) tends to unity whene '?—, i.e., when
I'y/2Dy—<e. In this case, Green’s functiaf27) reduces to

1
e—Eti(Lg+1)/2

Gade)= (29)

On the other hand, dt\/2>D we can replace the summa-
tion overa in Eq. (24) by an integral that provides the same
result(29). For such a dense spectra of overlapping normal
levels, the decay becomes purely exponential with attenua-

while Ga 1, IS determined by the system of algebraic equa-tion I';+ T, being independent df . Then, the branching

tions[31]
2 {(e-

where theR matrix is given by the expansion

Ea) Sazr— Ryar(8)}G g (£) =60z, (21)

VapVbar
Ri(8)=Vaw+ X ""—ab+ (22)

We shall assume that all stafesy have common radiative
width I'y and they are coupled to the SD state with equal

strengthv’, i.e.,

=—il'y2, Rl =—i\/2, R,=v". (23

Inserting Eq.(23) into Egs.(21), one has their solution

U/2 -1
2 —Eaira @

a €

r
Gade)= s—ES+i§—

and

!

v +
e E, T2 054 8) @9

G;S(S):

ratio FS is determined by the same equati® as Z,, .
Thus, for nuclei with equidistant normal levels we can intro-
duce the spreading widit3) when these levels greatly over-
lap. Such a statement is consistent with the conclusion of the
papers[9,11] that, in nuclei with random spectra, the term
Z,, dominates ovef;,,. at I'y>Dy. However, typical ex-
perimental data ar®y~1-1C eV and I'y~1-10 meV
(see, e.g., Ref8)), i.e., in most caseF\/2Dy<1.

From Egs.(21) one sees thab,, () has an inverse ma-

G;al,(s) =&840 — Haa » (30)
whereH, . is an effective non-Hermitian Hamiltonian ma-
trix (see also Ref.33)),

Haa=E 5aa,+Raa,( ). (31
WhenI'y#1's, matrix Ha, is not normal, since it does not
commute with its conjugatE84]. Therefore, its eigenvectors
li), satisfying equation

Hliy=wmili), (32)

SummingP,(«) over all possible states of emitted pho- are not orthogonal to each other, i.6}i’)#0 wheni#i’.

tons and final SD nuclear states, one gets the probability thafloreover,

its eigenvalues are complex numbetiss= &

the nucleus will conserve superdeformed shape after decayil';/2. They determine the poles of functi@i () on the

(see also Ref8]):
Fs=o— f de|Gi(e)|?. (26)

Here, F5 has the same meaning 4g in Refs.[9,11]. It is
evident that the decay-out probability will bgy=1—Fg.

Following Ref.[32], we take an infinite equidistant spec-

trum of normal statesE,=Ey+aDy, where a=0,+1,
+2,..., andg, stands for the energy nearestEg. Then,
the sum ovew in Eq. (24) is easily calculate@32], yielding

1
+ —
Csd®)= BT 24 (T2 D(e)

(27)

where the spreading width is defined by Eq(3), and

efiz_'_eiz

efiz_ eiz ’

z=m(e—Eg+il\/2)/Dy. (29

complex planes=¢’'+ig”. If the valuesu; are not degen-
erate, these poles are simple, aBde) is represented by
the following sum of resonant terms:

(33

Gife)= 2

e— i

where.4; are the residues @.(¢) at the polesu; . Substi-
tuting this expression into Eq19), we obtain the nonexpo-
nential decay law for the SD level:

2

:‘Z Aiefip.it/ﬁ (34)

Thus, in the general case, the probabilities of finding the
excited nucleus in one of the potential wells undergo attenu-
ating Rabi beats with several frequencigs—&;/|/% (see
also Ref.[8]).
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IIl. NONOVERLAPPING LEVELS

Calculations of4; andu; simplify in the case of nonover-
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Pg(t)=2, ci(i)e Tivh,

(44)

lapping resonant levels, whose spacings greatly exceed their

attenuation, so that&;—&/|>T;,I;, if i#i’. Then, it is
useful to rewrite the effective Hamiltonian matri81) as a
sum

H=HO+7H', (35
containing the unperturbed matrix
H, =Ea8aa + VL, (36)
and the perturbation
H, o= —1(Ta/2) S (37

responsible for the radiative decays. The symmetric matrix

H© has an orthonormal set of eigenvectors

|i>=§ ca(i)a), (39)

where c,(i) stands for an orthogonal matrix. The corre-

sponding eigenvalue equation reads

HOi)=£i). (39)

The corrections to energied® in the first order of the per-

turbation theory are

(|H'|iy=—iT}/2, (40)

where the radiative widths of statéi$, which are mixtures

of N and SD functions, are equal to

I'i=c2(i)e+[1—c2(i)]Ty. (41)

Ignoring small perturbation corrections to the wave func-

tions, one gets

ci(i)

=2 o oo (42)
T e—EO+in2

Substituting Eq.(42) into Eq. (26) gives branching ratios,

derived previously in Ref.2]:

Fs=2, ca(i)(Te/T)),

(43)
Fn=2> c2()[1-c2()I(Ty/Ty),

wherel’; are determined by E@41). In the case considered,

periods 277i/|£(9— €| of temporary beats dPy)(t) are
much less than the attenuation timed"; . Such swift Rabi

IV. WEAK-COUPLING LIMIT

Another simplification of the Green'’s function is achieved
when conditions(6) are fulfilled. Let us first analyze the
analytical behavior of functio®/{(e) on the complex plane
e=¢'+ig" in such a weak-coupling limit. Its poles are de-
termined by equation

e=E—i(I'y2)+ (mv'%/Dy)ctgz, (45)

where z is specified by Eq(28). The polegy(s) near the
pointsgo)(s) =Es—iI'¢/2 may be found by iterating E¢45).
In the first order, one has

Imeo(s)~—(Ts+TH)/2. (46)

where the decay-out width' is already determined by

gv'?
P s maiDy’ 0
and the following notations are used:
g=27§. & /Dy, (48)

1

Usually,I'y<<Dy . In this approximation, Eq47) becomes

ri- o (49)
(T n/2)%+ (D /) 2sink(wAIDy)

Note that the decay-out widild7) coincides with the spread-
ing one only atl’\>Dy.

Other poleseq(a@) of G () lie in the vicinity of points
e(a)=E,—il'\/2. Substituting their shifts Aeq(a)
=go(a)—eP(a) into Eq. (45), we obtain the quadratic
equation

[Aeg(a) ]2+ (A+aDy—iTy/2)Aeg(a)—v'2=0.

(50)
Its small root is
Agg(a)= L (51
A+aDy—iT\/2
Keeping in mind conditior(6), we see that
Imeg(a)~—T"\/2. (52

Hence, polegy(«) lie much farther from the real axis on

the e plane than poley(s). Moreover, the residues at these

poles A, =resG (eo()) are small:

oscillations should be yet averaged within the time of obser-

vation. Then, the averaged probabilities, to be measured ex-

perimentally, will not represent oscillations:

vl

2
A+aDN—IFN/2> ’

A= (53
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1.0 Dy=100 eV, I'c=0.1 meV, andIl'y=10 meV, while A

T e =D\/2 in Fig. 1 andA =Dy/4 in Fig. 2. Our expressiof#9)

FN 1 2 is seen to provide a better accuracy than &g .at largeA.
I - /"3 Usually, probabilitied=y andF g are averaged over some

distribution of the energy differencé (see, e.g., Ref.2)).
For uniform distribution ofA, the mean value of \(A) is

05 1 oy
DnJ -py2
Substituting Eq(47) into Egs.(55) and(56), one finds
V . 1 R 1 R — v 12
0 0.2 0.4 VIA Fn= . (57
V[T slg+o 1+ E)Tslg+v'?]
FIG. 1. The branching ratiB versusv’/A, calculated with the . .
aid of exact Eq(25) (curve ) as well as approximate Eqggl9) and ForI'y<Dy/m, Eq.(57) simplifies to
(5) (curves 2 and 3, respectivelfor A=D,/2. )
— v !
(58)

Therefore, contribution from poles)(«) to integrals(19) or Fn~ JTnCda+0 A[(Dy/m) AT Ty +0' 2]
(26), calculated by means of the contour integration, can be s s
omitted compared to the contribution froey(s). Similar  These expressions allow us to find the coupling strength

arguments are presented in Rg2] in connection with the which hereafter will be referred to as. From Eq.(58) one
discussion of the exponential law of decay. So expansiotﬁnds

(33) for the Green’s functiorG /(&) can be replaced by the

single term _ b, [T, E,%,
'\ —=. (59
G.Je)= (54)

— i N3
e—BsHi(Is 1)/ Then using this evaluation together with designaii®n we

Then, the branching ratios become can rewrite expressiofb8) as

_ [TTy(2 TIT
F Ls F r (55) PN~V P( D 12l
= , = . T
s r+rt N re+rt N N

-1/2

(60)

In reality, the energy differencA takes some definite
The usefulness of our formulas is illustrated in Figs. 1 and/alue between-D,/2 andD /2 (see also Ref8]). Accord-

2, showing the dependence Bf, onv'/A. Curve 1 repre- ing to Egs.(47) and (55), v’ may vary in the interval con-
sents direct numerical calculations, using exact E28.and  fined by the values

(26). Curves 2 and 3 exhibit model calculations based on Eq.
(54), which uses fol™!, respectively, our Eqg49) and(5), Ur'nm:%\/FN/(l_FN)\/rer,
derived in Ref[8]. The parameters are chosen as follows: (61)

vr,naxz(ZDN/WFN)vr,ninv

wherev/,i, and v/, correspond tAA=0 and|A|=Dy/2,
respectively.

Using experimental data fdfg and the parametersy,
I's, andDy, listed in Refs[8,11,2€, we found with the aid
of Eq. (59 the coupling constants’ for some SD levels of
Hg and Pb isotopes. All these parameters and constants are
presented in the table together with the limiting quantities
Umin @ndu .. Knowing the magnitude of the nuclear ma-

trix element(«|V|N), we would be able to find by means of
Egs. (10) and (12) action A and the barrier heightV, , re-

. , . , . spectively. Following Ref[35], we accept that(a|V|N)|
0 0.2 0.4 V/A ~1 MeV. In addition, takingay=m/2 and hwg=%wg
=0.6 MeV, we estimated the barrier heights, shown also
FIG. 2. As in Fig. 1, but forA=D /4. in the Table I.
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TABLE |. The parameters characterizing decay out of nuclei with ma$80.

I FS 1-‘S 1—‘N D N V Vr,nin Vr,nax W Wmin Wmax

(h) (meV) (meV) (eV) (eV) (meV) (eV) (MeV) (MeV) (MeV)
192Hg-1 8] 12" 0.87 0.116 10.3 34 0.16 0.21 0.45 2.86 2.65 4.12
192Hg-1 8] 10" 0.09 0.054 10.3 30 1.51 1.18 2.19 2.43 2.36 3.79
1944g-1 [26] 12" 0.60 0.108 21 344 3.41 0.62 6.41 2.27 2.15 3.92
1944g-1 [26] 10" 0.03 0.046 20 493 30.04 2.73 42.83 1.85 1.79 3.64
1944g-3 [11] 15" 0.90 0.230 4.0 26.5 0.20 0.16 0.68 2.81 2.57 417
1994g-3 [11] 13" 0.84 0.110 4.5 19.9 0.32 0.15 0.43 2.74 2.66 4.18
1994g-3 [11] 11" <0.07 0.048 6.4 7.2 0.41 1.02 0.72 2.78 2.57 3.83
199ph-1[11] 8+ 0.62 0.014 0.50 2200 64.12 0.01 95.79 1.73 1.62 4.46
199ph-1[11] 6" <0.09 0.003 0.65 1400 66.45 0.04 106.21 1.74 1.63 4.33

V. DISCUSSION averaged decay-out probabiliy, . Expressior(60) contains

The radiative decay of the SD antlevels as well as their - an extra factor (2#+I'T'y/DnTI's) 12 compared to Eq(13)
mixing are simultaneously taken into account in exact equa®f Ref.[3]. Recall, that Vigezzet al. [3] considered mixing
tions (21) and(22) for Green’s functions. In the general case, ©f the SD level only with a single normal compound state,
their solution is rather cumbersome and the decay of the SEgINOring their overlapping at smalh| and the role of other
level, described by Eq34), is nonexponential due to Rabi N states, whereas we took into account all these effects.
oscillations between the SD level and the normal deformed Formula(59) allows us to find the averaged valuesudf
states. The Green’s function reduces to one resonant terRf I' from experimental data foFy, using estimations of
(29), if T'y/2>Dy. Here, widthI"y characterizes uncertainty I'n, I's; and Dy, made by other authors. Usually, the
of the energy of stateky). When such uncertainty largely spreading widthI" is |dent_|f|ed with the tunneling ywdth
exceeds distand®y between levelsa), they behave like a 'tunn=(hwo/2m)exp(=2A) in order to calculate actiom
continuous spectrum and the rate of the decay out of the SBNd the barrier height,, respectively (see, e.g. Ref.
level into such a quasicontinuous spectrum is provided by12,26)). This expression for the tunneling width may be
Fermi's golden rule. The corresponding decay-out width of2Pplied when the SD state is coupled to the continuous spec-
the SD level equals its spreading width[32], while the  trum of the deformed motion. This would be the case if we
complete width of the SD level + I, does not depend on considered the tunneling through an external potential bar-
T'y. Time dependence of the SD level decay is describedi€r- But we deal with the deformed motion only within two
now by the exponent in correspondence with the genergiSymmetric potential wells separated by a barrier, disregard-
theory[30], which describes decay of any level to a continu-INg the nuclear fission. The corresponding solutiédsof
ous spectruntfor a discrete spectra of final states, there will the Schrainger equation describe bound states having dis-
be temporary beats superimposed on the attenuating expBtete energies. The quasicontinuous spectrum arises when we
neny. mclude into conS|d_erat|9n .nor.mal de_:formed states asso-

As indicated in Ref[32], the spreading widti" can be ciated with th_e exmt_ed intrinsic motion of the nucleons, i.e.,
introduced also in the strong-coupling limit, whensD,, whgn we begin dealing with other degrees of fregdom. Then,
and, respectively, the SD level is spread over a large numbépixing of the superdeformed collective stafg with such
of normal levels. But, for nuclei with mass 190, the oppo- normal states is d_ue to the reS|duaI interaction but not to the
site limit of weak couplingp’ <Dy, is realized. Then, one quant_um-mechamcal tunn\_ellng. To do this more formall_y, we
cannot introduce the strength functif8®], characterized by Substitute Eqs10) and(12) into Eq.(3). Then, the spreading
the widthT, so thatT" loses its physical sense, remaining Width I' transforms to the form
only a helpful designation. Nevertheless, one can employ the
decay-out widthI'! instead ofI’, if T'y>TIg, I''. Then, .

G.{(e) is again reduced to a simple resonant t¢&#, as in I'=(m|(alV'[N)|?/2DysirPay)e” A, (62
the case withl". It is worth noting that now! depends on

I'y. Expression(49) for I'! transforms to Eq(5), derived o S

previously in Ref.[8], when|A|<Dy and only a single explicitly showing its difference froml',,,. Therefore,
close-lying normal level is significant. when calculating the barrier heightg,, we were forced to

A|though the energy differencA has a definite value adopt the above estimations for anglﬁ and for the matrix
between—Dy/2 andD,/2 for all the nuclei, we derived the element(a|V’|N).
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