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Neutron matter at zero temperature with an auxiliary field diffusion Monte Carlo method
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The recently developed auxiliary field diffusion Monte Carlo method is applied to compute the equation of
state and the compressibility of neutron matter. By combining diffusion Monte Carlo method for the spatial
degrees of freedom and auxiliary field Monte Carlo method to separate the spin-isospin operators, quantum
Monte Carlo can be used to simulate the ground state of many-nucleon sy#em®9(Q). We use a path
constraint to control the fermion sign problem. We have made simulations for realistic interactions, which
include tensor and spin-orbit two-body potentials as well as three-nucleon forces. The Argdpand vy
two-nucleon potentials plus the Urbana or lllinois three-nucleon potentials have been used in our calculations.
We compare with fermion hypernetted chain results. We report on the results of a periodic box fermi hyper-
netted chain calculation, which is also used to estimate the finite size corrections to our quantum Monte Carlo
simulations. Our auxiliary field diffusion Monte Carf@FDMC) results forvg models of pure neutron matter
are in reasonably good agreement with equivalent correlated basis furi@gf) calculations, providing
energies per particle which are slightly lower than the CBF ones. However, the inclusion of the spin-orbit force
leads to quite different results particularly at relatively high densities. The resulting equation of state from
AFDMC calculations is harder than the one from previous Fermi hypernetted chain studies commonly used to
determine the neutron star structure.
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I. INTRODUCTION lations, and particularly of those induced by the tensor force,
on the structure and the evolution of compact astrophysical

The important role played by nucleon-nucledt+i) cor-  objects[2—6].
relations on several properties of dense and cold hadronic In this paper we limit ourselves to nonrelativistic model
matter is a well-established fa€l]. Less established are Hamiltonians. Modern two-body potentialg—9| fit the
guantitative studies performed with realistic nuclear interacNijmegen N-N data[10] below 350 MeV at a confidence
tions derived fromN-N data and the spectra of light nuclei. level of x?/Ngaa~1, and to a large extent give equivalent
The strong repulsion at short range accompanied with theesults for several nuclear and neutron matter propdrigs
strong spin-isospin dependence, makeinitio calculations However, it has become evident that a two-body potential
of the nuclear matter equation of state one of the most chaklone is not sufficient to reproduce the experimental data of
lenging problems in strongly correlated many-body theory. nuclei other than the deuteroA€ 2). In the past few years,

A theoretical calculation of the nuclear matter energy petthe Urbana—Argonne collaboration has produced three-body
particle, as a function of the number densitythe tempera- force models which, when added to the two-body potential,
ture T, and the neutron-proton asymmetay=(N—2Z)/(N provide a satisfactory fit to the binding energies and the low-
+Z), with an uncertainty of less than an MeV has become dying states of light nuclei wittA<10[12-14].
fundamental issue. On one hand, one would like to use the It would be desirable to have microscopic calculations of
observational data from neutron stars and supernovae, #ise equation of state of nuclear matter with an accuracy com-
well as from heavy-ion collisions, to get information on the parable to that of light nuclei or, at least, on the order of the
many-body nature of the nucleon interaction. On the otheexperimental uncertainties of the equilibrium density,
hand, it is of interest to understand the effectNoN corre-  binding energy per particle at,, and compressibility. This

can be considered as the minimal requirement to attempt the
study of hadronic matter at densities larger thgh and/or
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tion theories[11,15, or correlated basis function theories, tually, results obtained with larger systert& or 114 neu-
based on Fermi hypernetted chain technigl$—-18. In  tron9 show that the equation of state of neutron matter can-
spite of the important advances made in recent years in theot be simulated starting from 14 neutrons in a box,
above theories, the required accuracy for the equation ddarticularly in the high density region. Finite size effects for
state has not yet been reached. the larger systems considered here can be fairly well esti-
Quantum Monte Carlo methods have been very successfiifated by the recently developed periodic box fermi hyper-
in calculating the properties of strongly interacting systemd?etted chaitPBFHNQ theory[29]. We have also performed
in condensed matter physics. They are substantially exactFPMC calculations of the binding energy of symmetric
apart from statistical errors, finite size effects, and the well-2nd asymmetric nuclear matter. A few results obtained with
known sign problenfil9] for Fermi systems. They have been semlrgallstlc spin-dependent central potentials are presented
recently used to perform quantum simulations of light nuclei@nd discussed. _ _ o
[20,21,14 with modern nonrelativistic Hamiltonians of the ~ The plan of the paper is the following. The Hamiltonian
type discussed above. However, the exponential growth iiysed in this work is shown in the following section. In Sec.

the number of spin-isospin states with the number of nuclel!! the problem of the spin degrees of freedom in quantum
ons A, has kept this method from being applied to IargerMO”te Carlo simulations is discussed. Section |V is devoted

nuclear systems. to the description of the AFDMC method, including the cal-

Auxiliary field diffusion Monte Carlo[22] (AFDMC)  culation of the spin-orbit and the three-body terms of the
method has been especially developed to tackle the problefi@miltonian. A discussion of the finite size effects along with
of computing the binding energy of a relatively large nuclearth® periodic box FHNC method is given in Sec. V. The re-
system at the required accuracy. In this approach the particRHlts for the neutron matter equation of state are presented
coordinates are propagated as in standard diffusion Mont@nd discussed in Sec. VI_. The conclusions and perspectives
Carlo. Auxiliary fields are introduced to uncouple the spin-for the present work are in Sec. VII.
dependent interaction between particles by means of a
Hubbard-Stratonovich transformation. The particle spins [l. THE HAMILTONIAN
only interact with the auxiliary fields which, when inte-

grated, produce the original interaction. The method consists We use a nonrelativistic Hamiltonian of the form

of calculating the auxiliary field integrations by Monte Carlo 22

sampling and then propagating the spin variables. This H=T+V,+Vy=—=— >, VJ.2+E vkt > Vid
propagation results in a rotation of each particle’s spinor 2m <IN <k j<k<l
governed by the sampled values of the auxiliary variables. @

The result is a sampling of the spin variables, which should 8ntaining the Kinetic term. where we have used2m

fr;%\gee:je;ss variance than a direct approach where the spins ai 20.73554 MeV frd (which corresponds to tha—p re-

The tensor force couples the spin configurations with th uced mas); and two- and three-body potentials. The two-
orbital angular momentum so that the wave function be- ody potential belongs to the Urbana-Argonnetype,
comes complex. The resulting fermion phase problem is ¢
handled by applying a path-constraint approximation analo- _ o e ()1
gous to the fixed-node approximation. The AFDMC method ve jgk Uik jgk pzl op(1ik) OF(1 k), @
for the spin-isospin calculations can be viewed as a generali-
zation of the method of Zhangt al. [23,24] used in con- Wwherej andk label the two nucleons;, is the distance
densed matter lattice systems to the spin-isospin states separating the two nucleons, and the spin-isospin—dependent
nucleon systems, while retaining standard diffusion MonteoperatorsOP(i,j) for p=1,8 are given by
Carlo method for the spatial degrees of freedom. The ) ) )

AFDMC method has proved to be efficient in dealing with OP=Y8(j k)= (1,0} oy, Sik . Ljx S ® (1,7 7), (3
large nucleon systems interacting via semirealistic potentials
[22,25,26 and spin-polarized neutron systef2§]. where S;=3(f - ;) (Tjx- ) — 0} 0y is the two-nucleon

The aim of this paper is to give a detailed description ofi 50r operator, anﬁjk andéjk are the relative angular mo-
t_he AFDMC method and to report on the res_ults for the equas,entum and the total spin, given by
tion of state of pure neutron mattes€ 1) with a fully re-
alistic nuclear interaction, at zero temperature. It presents R .
results of AFDMC simulations of 14, 38, 66, and 114 neu- ij=z(rj—rk)><(Vj—Vk), (4)
trons in a periodic box, interacting via a realistic potential
that includes two-body tensor and spin-orbit components, as 5
well as three-body forces. Particular attention is paid to the Si==(a.+0). (5)
14-neutron system, which may serve as a homework problem e2n
for different many-body techniques. It is small enough to be
handled by traditional quantum Monte Carlo meth§ag]. The full Argonnev ;g potential consists of =18 compo-
However, it will be shown that the finite size effects of 14 nents. Besides the eight components given in @j.it in-
neutron systems are hard to estimate in a realistic way. Aceludes the siXL2, L2 o;- oy, (L-S)?] ®(1,7;-7) charge
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independent ones, as well as four other charge-symmetrgpin-isospin states with particle numb&r This exponential

breaking and charge-dependent terms. behavior can be removed by sampling rather than summing
We use a simplified isoscalar version of thg potential, the spin-isospin degrees of freedom.
the so-calledvg two-body potentia[20,30. This potential We define a walker to be theA3coordinates of theA

contains only the first eight spin-dependent operators in Ecparticles andA spinors each giving the four amplitudes for a
(3), and equals the isoscalar partwaf in all SandP waves  particle to be in the proton-up, proton-down, neutron-up, and
as well as in the’D; wave and its coupling to th&S,;. Ithas  neutron-down states. For the special case where walkers are
been used in a number of Green’s function Monte Carlcsampled from the usual neutron-proton up-down basis, the
(GFMC) calculations in light nucle[20], as well as fermi spinors would be one of (1,0,0,0), (0,1,0,0), (0,0,1,0), and
hypernetted chain at the single operator chain approximatiot0,0,0,1) for each particle. Our auxiliary field method re-
(FHNC/SOQ calculations in nuclear mattgt 7]; differences  quires the more general definition as shown below.

with the v, potential give small contributions that can be As usual, the overlap of the walker bra with the trial ket is
safely estimated perturbatively or from FHNC/SOC calcula-the wave function amplitude,

tions. In the case of pure neutron mattBNM), the isospin

exchange operators are replaced by the identity. (R, ¥)=¥(R,S). 9)
We denote by the two-body potential model obtained
by restricting thevg potential to the first sixthree for neu- Direct sampling of the spin-isospin in the usual spin-up/-

tron mattey components. Note that this truncation of the Ar- down basis requires a good trial function that can be evalu-

gonnevg should not be confused with the recently producedated efficiently. This can be most easily seen for the varia-

ArgonneAV6' potential[31]. tional formalism, but the same analysis applies to Green’s
The three-body interaction used in our calculations of thefunction or diffusion Monte Carlo formalism. A variational

equation of state is the Urbana IX potentid0]. For neu- Monte Carlo calculation can be formulated by minimizing

trons, the Urbana-IX interaction is given by the sum of athe expectation value of the Hamiltonian,

spin-independent and a spin-dependent part,

Via=Via+Vid. (6) deZ ¥#(R,S')Hg s¥1(R,S)
(W|H| V) S8
where (HY= = ,
<\PT|\PT> 2
si dRY [¥+(R.S)|
Viki=Uo > T2(m,, ,C3;r)T2(M,,Cai ), (10
cyclic

SD_ T o where for avg interaction we would have
Viki = Bzwc%ic {Xi1 Xiih (7 6

. h?
and the operatoXj is given by Hs s=(S'|S)| — > > V2|+(RS|VIRS, (11
n

Xﬁ(:Y(mwvc3;rjk)5'j'&k+T(mw,CS;rjk)Sjk- (8
with a straightforward generalization for spin-orbit terms.

Notice that in_some 9f2 our eailier AFI??/IC cal_culat!ons Variational Monte Carlo calculation can be implemented
we have used3;=2.0 fm < and x=0.7 fm™-, as given in | .t aither spin sum§33—39,

the original papers proposing the Urbana-IX poten{t&d]
and thevg model interactiorf12]. Changingcz from 2.0 to
2.1 leads to a-10% additional increase of the three-body <H>:f dRE (R)P(R),
force contribution in neutron matter. In the following, we
will denote with AU8’ the vg plus Urbana-IX interaction,
with AU6' thev plus Urbana-IX interaction.
We have also considered the recently developed lllinois
three-body potentials, which include twa intermediate P(R)= ,
state diagram§13], and denoted with ILL . . ,IL4. j dRY |¥(R,S)|?
S

g | H(R,9)|?

Ill. SPIN DEGREES OF FREEDOM

Standard Green's function or diffusion Monte Carlo meth- > V*(R,S')Hg s¥1(R,S)
ods for central potentials sample only the particle positions s.s
since the spin or isospin of the particles can be fixed. The EL(R)= : (12)
Green’s function Monte Carlo method used in light nuclei > PH(R,9)|?
also samples the particle positions, but a complete descrip- S
tion of the spin degrees of freedom is kept for each sample
position leading to an exponential growth of the number ofor spin sample§36],
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ficiently at a single many-particle space position and spin-
<H>:f dRY EL(RS)P(R,S), isospin state, straightforward generalizations of standard
S central potential Monte Carlo methods, both variational and
Green’s function, with spin-state sampling will solve the

2
P(R,S)= V(RS , nuclear many-particle Hamiltonian.
2
f dRES |\IIT(R'S)| IV. THE AFDMC METHOD

Since direct evaluation of the pair product wave function

E P*(R,S)Hg sP1(R,S) is not computationally feasible for large numbers of par-
] ' ticles, and so far we have no good methods of sampling these

EL(R,S)= - (13 wave functions, we instead drop the operator terms alto-

2
[¥+(R.S) gether and sample the spin-isospin variables using a rather
In these equationsP is the probability density to be POOT: but easy to evalu_ate, wave function. Sl_nce this wave
sampled ancE, is the local energy. A typical variational function does not contain amplitudes of the spin states of the
calculation would use the Metropolis algorithm to sampleCOITect solution, we cannot use it to sample the spins. In-

eitherR or RandSfrom P, and average the value of the local Stéad, we rewrite the propagator as an integral over auxiliary
energy over these samples. fields using the Hubbard-Stratonovich transformation,

Notice that for an eigenstate d¢d, both E, (R,S) and
E_(R) are constant. So, as for central potentials, the variance e~ (U2NO%At_ L j ” dxefx2/2ex\s‘TA_tO, (15)
will be low if the trial function is accurate. Also note that the T
spin sumS’ in the definition of E, (R,S) is polynomial
rather than exponential iA. For example, a pair potential where O can be a one-body operator. To make use of this
will have only orderA? terms where two particles have dif- transformation we write our propagator as the left-hand side
ferent spin-isospins. of Eqg. (15), so that the integrand of the right-hand side is a

The variance per sample for complete spin sums will beproduct of one-body terms. The integrand has a form such
lower than for spin samples. However, since the spin sumthat propagating a walker @R,S) results in another walker
grow exponentially with particle number, spin sampling of the same form &R’,S").
should be more efficient for large particle number if the trial  For N neutrons, thevg two-body interaction can be split
function can be evaluated efficiently for a single many-into two parts,
particle spin stat&

Unfortunately, all of the good trial wave functions cur- 2
rently used for large numbers of particles cannot be evalu- i<k
ated efficiently for a single many-particle spin st&eFor
example light nuclei variational Monte Carlo calculations arewhere roman subscripts and k are particle labels while
typically done using a pair produ¢br more complicated greek subscripte and g are cartesian components. The ma-

—0o0

1
vik=B+ 2 j,gvﬁ 0joPj aikp Tkp (16)

wave function, trix A and the scalaB are functions of the particle positions,
(wey=SIl fi1+2 ufof|le), (19 B=2, [va(rj) +va(r 0],
i<k p
whereS symmetrizes the operator products, add is the A akp=3(r) Tva(rj) 16as+[vs(rj) +ve(rjn ]
antisymmetric model state. While the symmetrizer produces N ma A
all possible orderings of the operators and therefore gives X[3r i Xl jk- Xg= Sapl- (17)

O(A?) terms, normally the commutator terms are fairly . . .

small and the ordering of the operators is sampled. Howevef)].aik.p IS taken (0 be zero whey=k. A can be viewed as a
even within a fixed ordering, each operator in the productg'\I by 3N rea] symmetric matrix. It therefore has real eigen-
term when operating on a single many-particle spin-isospiﬁ’alues and eigenvectors defined by

state will produce four or eight new states depending on

whether isospin exchange gives a new stétgd) operators E Aj‘a;kﬁlpr‘jﬁ:)\nip{;’. (19
out of the(A?) total acting on a single state are enough to k.8

populate all the states. Therefore a straightforward evaluation . .

of (R§Wp) for this wave function will have the same com- The potential can be written as

putational complexity as evaluating a complete set of spin-

isospin states at the posmdm Since computing all the states 2 vjk=B+ 5 2 Uja%a?\nﬁkﬁ'/fﬁ'g
have the same cost as a single state, full spin sums are used <k j.ak.B.n
for these calculations. 3A
. . - . . 1
If good trial functions for spin-isospin—dependent interac- _ - 2 2
. . . B+ (On)"\q, (19
tions can be devised which can be evaluated or sampled ef- 2 4=
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2
dxnefxn/2exn\/f>\n3t0n,
N2 —=
On=2 ojadl". (20 } B B
Ja — dx ef(xnfxn)zlzexnV*)\nZtOnefzxnxrﬁ;ﬁ/Z
2md- " '

Each of theO,, is a sum of one-body operators as required
above. Y =
Xn=Reg V=N At (Op)],
After applying the Hubbard-Stratonovich transformation, =R At (On]
the short time approximation for the propagator can be writ-
ten as (0,)=

m 3A2 m/R—R'|2
exp ————|e
272 At 2% %At

1 o 2
x| —==| dx,e *n2exn/" al10n (22)
n

V2m) =

(V4{0nIRS) o0
(¥+IR,S)

-B(R)AT and sample the shifted Gaussian; the last correction term is
included in the weight. With this real shift and the compen-
sating weight, only the efficiency of the algorithm is
changed. We have tried other schemes using a discretized
Gaussian integration with altered probabilities and compen-
sating weights with very little difference in the overall effi-
ciency. In Ref[37] a complex drift rather than the real drift

The O, do not commute, so we need to keep the timein Eq. (24) has been used. Unlike our real drift above, this
steps small so that the commutator terms can be ignored. can change based on how the path constraint is applied.

We sample a value of for each of the & auxiliary field
variables. Once these values are known, the propagation re-
duces to a rotation in the spin space, and, therefore, to mul-
tiplying the current spinor value for each particle by the set For a neutron system, the spin-dependent part of
of matrices given by the transformation above. For a giverrbana-IX potential, given in Eqs6) and(7), reduces to a
eigenvaluex ;<0 in Eq. (19), the spin states of particle ~ Sum of terms containing only two-body spin operators but
|ney=a,|1)+bi|]), will be rotated to the new ongsp,) with a for'm and stn_angth that depends on 'the positions of
having the following components: three particles. As will be seen below, for a fixed position of

the particles, the inclusion of three-body potentials of the
, ] , Urbana-IX type in the Hamiltonian does not add any addi-
ax=ay[ costiap) +sinh(ap) ¥ (K) ] tional complications. It simply changes the strength of the
' i XLy Y coefficients of the terms in the potential and can be trivially
bisinhlan)[yrn(k) = 1p(k)], incorporated in the AFDMC calculations.
The anticommutator in Eq7) can be written as

A. Three-body potential

b,=b,[cos —sin Z(Kk
k k[ h:a'n) I’(an)wn( )] {Xﬁ,xm}ZZ Xﬁ('fo']utff(}, (25)
+aysinh(an) [¢n(k) +144(K)], (22)
where
Where 14 14 14 ayavy
X = Yt Yik O+ Yith Tt Y+t ti” (26)
an= AN X LYK P[0 P+ T% (23 and

and x,, is the sampled Hubbard—Stratonovich value. For yji=Y(m,,C3,r)—T(m,,C3,rj),
positive values of\,, one has a similar set of equations, in
which sinhg,) is substituted with sin(—a,). tﬁ”=3T(m7,Ca,f1|)FﬁFﬁ _ (27

Finally, it is worth mentioning here that importance sam-
pling has been used for the integral in the Hubbard-
Stratonovich(HS) variables. The value of the overlap of the
walker with the trial function will not be peaked aroumd
=0, but will be shifted. Rather than sampling from the
gaussian we preferentially sample values where we predict
the trial function will be larger. One way is to shift the Ajakp—Aakpst 2> qufxfk‘i- (28)
sampled Gaussian, values with a drift term analogous to the [
drift term in diffusion Monte Carlo one by replacing tle
operators by their expectation value at the curi®/8 value Similarly, the new terms in the lllinois potentials can be
and taking the real part. That is, we write included into this matrix.

The spin-dependen(SD) part of the three-body interac-
tion V§D can then be easily incorporated in the matrix
Aj ok Of EQ. (17), by the following substitution:
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B. The spin-orbit propagator which is the spin-orbit contribution to the Hamiltonian mul-

A first-order approximatioi21] to the spin-orbit contri-  tiPlied by —At. _ _
bution to the propagator can be obtained by operating the Ho]:/vaer, theP,_Sdproigagz}rtr?r mcludes% otherhterms&/vhl_ch
derivative appearing in thdfjkéjk operator on the free are o the same order _t' ey come from the quadratic
propagatoiGy, Ar terms of the expansion @?, g,

(Vi=Vi0Go(R,R")=—

N N m
(Arj—Ar)Go(R,R"), At(Vo+Va)=At— > > > v o(rp)ues(Tjp)
327 &7 b7
(29)

f2At

X (ZpXF i) (2pXp)
and substituting this expression back into the propagator. As
a result, the spin-orbit paR, g of the propagator is factored =Atl E E vLs(ri)vLs(Tip)
out and is finally written as 3242 °T k7 p7 . P
mo s(fj) - . X TipZik Zip=Zjp TS M. (34
PLSZeX Ek W[erX(Ar)]k]U]
17 : The terms withk=p give rise to a two-body additional
: ; add_ __
moLs(r ) ) A effective potentiaV5™"= —V,,
=eX ;k W(Eier]‘k)'Ari , (30)
yadi_ mrives(ric)
- - - - - 2 T T & T o2
where Ar);=Ar;—Ar, andS = o+ 0y i<k 8h?
However, a careful analysis of the above expressions (39
show that they include some spurious contributions linear in
At. In order to see this the wave function is expanded, as The terms withk+# p lead to a three-body additional ef-
usual, in the integral form of the imaginary time Safirger ~ fective potentiaV3%%= — V3, given by
equation keeping only linear terms,

[2+0'j'0'k_0'j'rjk0'k‘rjk].

Ml v Ls(Mves(rip)
ngd:_ z ik'jp j ip

¥ (R)=At V(R) j<k<p cyclic 1642

1EV2 V+E
2m <4V 0

X{Tj Tipl2+ 0 0+ 0 0+ 0 ]

— 0 kO Tjp= 0p T kT Tjp = 0p T Oy Tjp}-
- (31) (36)

+f dR'Go(R,R")P_4

W(R)— 2, Ary-V,W(R)
p

At this point, P g is expanded by using the second form  Therefore in the actual propagation it is necessary to in-
of this propagator given in E430) keeping both linear and clude explicitly these terms with opposite sign if one is using
quadratic terms imr. The integral inR’ can be done by P.s as given by Eq(30).
taking into account th&f) the Gaussian factor integrates to 1 An alternative method that we have also used comes from
if there are no powers akr, (ii) terms containing only one realizing that the counterterms are produced by the next or-

- . . der term in the series expansion of the exponential. These
power of aAr integrate to zerd(iii ) quadratic terms contain- P P

! ¢ diff " s AR’ int te 1 terms either average to zero, or are higher order in the time
Ing powers ot dilleren ,czornponen S |2n egrate to zero, step or give incorrect contributions. Subtracting them gives
and (iv) terms like Ax;)“ integrate toAt#“/m.

i . . , . the propagator,
We first consider the part coming from the linear terms in

Ar in both the wave function an® s. These terms after Mo s(r )
: ; : Lstlj) - - -
integration give exp(]#k Thzj[rij(Ar),-k]-oj)
A z ves(rj) - - . = 2
- t]_#k 2 Lo T o Xrd-Vi¥(R). (32 % ex 1 D mv'-_S(rik)[F. X (AT ] o
2|7« MkK? Ik k)
The expression above can be further simplified by inter- (37)

changing the dummy indicgsandk,

with the second exponential giving the required counter
_Atjgk ULS(rjk)[E' §]jk‘1’(R), (33 ;[ﬁr?ts to include. The two forms are equivalent to first order
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C. Trial wave function bound to the ground-state energy although it appears to do so
In our calculations we use the simple trial function givenfor the_ calculations we have done to date. It seems Iikely that
by a Slater determinant of one-body space-spin orbitals muffl€re is not an upper bound theorem for the mixed estimate
tiplied by a central Jastrow correlation, qf the energy. A'3|m|lar constraint used in QFMC calcula-
tions with full spin sumdg41] was found to give an energy
less than the ground-state value. While the operation of the
A[H b 1Sj>, (38)  constraint is somewhat different in the auxiliary field
. method, this further suggests that constraints of this sort do

whereA is the antisymmetrizer oA particles. The overlap of 1Ot give strict upper bounds. If forward walking or a path
a walker with this wave function is the determinant of theNtégral ground-state techniqyée2,43 is used, the method

space-spin orbitals, evaluated at the walker position an imply produces a better trial function, and the energy must
spinor for each particléfor nuclear matter the spinor also € @n upper bound.
includes the isospin and multiplied by a central Jastrow _ . In the ]‘|xeq-node m_ethoﬂlg] the nodal structure of the .
product. trial function is determl_neq by the Slater _determmant. Simi-
For unpolarized neutron matter in a box of sidethe &y, our path constraint is fully determined by the space
orbitals are plane waves that fit in the box times up andPin Slater determinant of E38). The Jastrow function
down spinors. The usual closed shells are 2, 14, 38, 5zﬁherefore affgcts only the variance gnd not our final results.
66, 114, ... for neutrons and 4, 28, 76, ... for nucleons, !f Perfect importance sampling with the correct propaga-
The Jastrow correlation functiof(r) has been taken as tor for our constraint were used, the walkers would never

the first component of the FHNC/SOC correlation operatorcrOSS mto aregon W'th negative weight. However, W'?[h our
- . o . . short time approximations, we do get a small fraction of
Fij » which minimizes the energy per particle of either neu-

| he desired denit | walkers that become negative and violate the constraint.
tSrce)z c\); nuclear matter at the desired dengitg] (see also These walkers are discarded as described below in Sec. IVF.

. . . . . The mistake made by discarding these walkers contributes to
As noted in Sec. lll, a trial function with spin exchange

. . : ; ~ the time step error, and goes to zero as the time step error
and tensor correlations requires exponentially increasin

tational K as th ber of particles i Th oes to zero. For a sample run, we found that for times
computational work as the number of particles increases. eps of X105 MeV~l, 2x10°°5Mev-l, and 4

advantages of our trial function is that it is totally antisym-

. . . 3 .
metlr 'C't ang forA paTt“g'es reqturesto_rdeé\ oper?:[uodns ©  of the discarded walkers to the total weight is (£33)
evaluate. However, it does not contain any amplitude geners ;s (4+1)x10°%, and (10-1)x10 ° Controlling

ated by the tensor force where spins are flipped with a COMhe time step error therefore automatically controls this error.

girE)sha}ltlcr]gr]n ?Lb'éalt an%ulfrt r?rc])men::]Jim.inlt |smleftn tﬁt theIt should also be possible to modify the propagator in the
€thod 1o generate Iese missing components. vicinity of the constraint to properly go to zero as is often

Other fprms .Of a tr_|al wave fu_nct|_on can be used. Fo.rdone in fixed-node calculations, but we have not done that
example, including a linear combination of Slater determl-here
nants is possible as is modifying the orbitals to include spin '
correlations of backflow formi38]. Both of these avoid the

exponential computational complexity, but may not capture

W)=

H f(rjk)
<k

X 10~° MeV 1! the absolute value of the ratio of the weight

E. Tail corrections

the essential physics of the tensor fof88]. Monte Carlo calculations are generally performed within
the sphere of radiuk/2, whereL is the length of the box
D. Path constraint side. Usually, tail corrections are estimated by integrating out

. . e the spin-independent part of the two-body potential flot?
As in standard fermion diffusion Monte Carlo method, the ,, 1 infinity. We have made our calculations within the full

AFDMC method has a fermion sign problem. The overlap 0fsimulation box, and, in order to also include the contribution

our walkers with the trial function will be complex in gen- ¢om the neighboring cells, we have tabulated the Jastrow
eral, so the usual fermion sign problem becomes a phasiﬁctorf(r) and the components,(r) of the two-body po-

problem. tential in the following form:
To deal with this problem, we constrain the path of the g

walkers to regions where the real part of the overlap with our - - -
trial function is positive as in the original AFDMC paper F(x.y.2)=11 f(l(x+mLyX+(y+nLy)y+(z+oL,)z),
[22]. We have also tried constraining the phase to that of the mne

trial function as in the fixed phase approximatiei®]. Both

give about the same results, within error bars, and we report . R .
on the values where the real part is positive. For spinVp(X,¥,2)= > v,(|(x+mL)X+(y+nL,)y+(z+0L,)z|).
independent time reversal invariant potentials, both reduce to mne (39)
the fixed-node approximation. It is straightforward to show
that if the sign of the real part is that of the correct ground
state, we will get the correct answer, and small deviationsg-or the calculations shown, we found it adequate to include
give second-order corrections to the energy. We have nainly the 26 additional neighbor cells correspondingrton,
been able to prove that this constraint always gives an uppemndo taking the values-1, 0, and 1.
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Our results are therefore already tail corrected. We found TABLE I. Variational parameters used in our FHNC/SOC and
that the standard way of treating tail corrections leads td®BFHNC calculations for theAU6’ and AU’ potentials.rq
results very close to ours, except when we consider modet[3/(4mp)]"* is the average distance between the neutrogs.
interactions which contain tensor forces, which are relativelydc . andd; are given in fm. The reference densjty=0.16 fm"° is
long range forces. the equilibrium density of nuclear matter.

The three-body potential is not treated as the two-body
one. Here we have estimated the tail corrections to the thred/Po  To  do(6)  di(6) ay(6) de(8) di(8) ay(8)
body potential from the PBFHC variational results describech 75 1258 1.761 4.695 09 2264 4528 0.8
in Sec. V. This analysis shows that such corrections are al 6o 1143 1714 4571 09 2285 4571 08

ready very small for systems with 66 nucleons. 125 1061 1485 4752 09 2228 3.960 08
_ 2.0 0.907 1723 4595 0.8 2267 4535 0.7
F. The algorithm 25 0842 1768 4715 08 2189 5004 0.7

Finally, in this section we give the schematic structure of
the AFDMC algorithm.

(1) Sample|R,S) initial walkers from|({W{|R,S)|?> using FHNC has been recently reformulated to deal with a finite
Metropolis Monte Carlo method. number of fermions in a periodic box, as those used for the
(2) Propagate the spatial degrees of freedom in the usuéflonte Carlo calculation$29]. Such a theory, denoted as
diffusion Monte Carlo way with a drifted Gaussian for half a PBFHNC, is based upon the fundamental property of the

time step. FHNC cluster expansion to be valid at allALbrders[44—
(3) For each walker, diagonalize the potential matrix47], and it has been developed for Jastrow-correlated wave
(two- and three-body terms functions. In the cases of a nucleonic system interacting

(4) Loop over the eigenvectors, sampling the correspondvia a central potential, it has been shown that finite size
ing Hubbard-Stratonovich variable, and update the spinorsffects are(i) not limited to the kinetic energy expectation
for half a time step. Introduce approximate importance samvalue, and (ii) rather accurately estimated by PBFHNC
pling of the Hubbard-Stratonovich variables, as discussed atalculationg25].

the beginning of Sec. IV. However, realistic correlation§(ij) are spin dependent
(5) Propagate the spin orbit, using importance sampling.and have an operational structure similar to that of the two-
(6) Repeat step&2) —(4) in the opposite order to produce hody potential, as in Eq(2) (where the componernp=1
a reversible propagator to lower the time step error. corresponds to the Jastrow correlajiofiherefore the PBF-
(7) Combine all weight factors and evaluate the new valueqNC developed in Ref.29] cannot be used as such, but has
of (¥1|R,S). If the real part is less than 0, include the to be generalized to treat spin-dependent correlations. The
walker in the evaluation of the mixed and the growth enermain problem is that the spin operators involved do not com-

gies, and then enforce constrained path by dropping th?nute, namely[ E(ij),E(ik)]#0. This feature makes a full

walker. In general, the importance sampling makes the nuMepNc summation impossible, and one has to resort to rea-

ber of dropped walkers small. sonable approximations for the spin-dependent correlations.
(8) Evaluate the averages o¥+|R,S) and(¥+|H|R,S) Such approximations are characterized by the fact that,

to calculate the mixed energy. whereas the cluster diagrams containing scalar correlations
(9) Repeat as necessary. only are summed up with FHNC technique, only a limited

Note that with our choices for importance sampling andsey” of cluster diagrams containing spin-dependent correla-
the auxiliary field breakup, we need to diagonalize the po-
tential matrix and calculate the derivatives at each step. The .
additional computations to give the energy cost very little. Tothe?‘gé‘?igéef:cﬁgé Sgtcvgzglriy dpeer:spi)sé%d?so{hr:ael;:?r:inll(ie;ntfaetircfor
calculate error bars, block averages are calculated and the ' F

- . . . energy, andT) is the kinetic energy expectation value, correspond-
results combined over different block sizes until the blocks to the average of the JF and PB kinetic energiels) and(Vs)

. n
become uncorrelated and the error bars become mdependea[pi the expectation values of the two-body and three-body poten-

of block size within statistics. tials, respectivelyAE, is the second-order perturbative correction
[49]. AEgem is the contribution from the lowest order elementary
V. FHNC AND PBFHNC CALCULATIONS diagram(see text In the last columnEg,y, is the sum ofEgync,

In this section we present the method that we have used Aif/’ andAEgen- Al the quantities, excep/po, are expressed in

estimate the finite size effects in AFDMC simulations. Such___

a method is made necessary by the fact that simulations with

more than 100 nucleons ari. c)gmputationally very deman ! e (M Vo (Vo) Ernc 4Bz ABeen Esm
ing. A many-body theory, such as FHNC, based on integrab.75 28.969 35.33—22.67 2.58 15.2 —-0.9 0.6 14.9
equation techniques, in which the number of particles in thel.00 35.094 43.82—-28.58 5.17 204 —-0.9 09 204
simulation box has no practical limitation seems to be the1.25 40.722 52.27-34.11 8.53 26.7 —-15 12 26.4
best candidate to do this. 2.0 55708 74.40—46.93 27.29 548 —44 28 532

FHNC theory was originally developdd4—44 to treat 25 64.643 88.85-53.36 44.72 80.2 —6.1 3.8 77.9
fermionic systems in the thermodynamic limit. However,
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TABLE IIl. Comparison of the FHNC/SOC results for the TABLE V. PBFHNCI/L results for theAU6' interaction at den-
AUS8’ interaction, obtained with correlation operator of the tyge  sity p=0.16 fm 3. The Fermi kinetic energif, the expectation
or of the typefg. In the first case the contribution of the spin-orbit values of the kinetic energ§T), the two-body potentia{V), and
potential is calculated perturbatively from t#¢J6’ Hamiltonian.  the three-body potenti@V); are displayed together with the energy
For comparison, in the third column the results for &6’ inter- per particleE in MeV units.
action are also reported. In all cases the contribution from elemen=

tary diagrams has been added. N Te (T) (V), (V)3 E

olpg T, AUG’ AUS'(f,) AUS'(f5) 14 35600 4447 —29.41 4.31 19.37
38  33.703 4241 —29.43 4.70 17.68

0.75 28.969 15.8 16.1 133 66 34.917 4364  —29.07 4.82 19.39

1.00 35.094 21.3 21.8 17.6 114 35.646 4440 —28.87 4.87 20.40

1.25 40.722 27.9 28.8 23.0 1030 35.139 43.88 —28.95 4.86 19.79

2.0 55.708 57.6 59.0 475

25 64.643 84.0 86.2 71.7

of AEemindicates that the effect from elementary diagrams
) ] ) . is larger than has been assumed in all the past FHNC/SOC
tions are mglude_d in the calculation. The most teste_d an_‘ci,alculations of the nuclear matter equation of sf&%,2§.
used approximation is the SO called FHNC/SOC, descrlbe_d ifh recent FHNC/SOC calculations of the equation of sym-
Ref. [48]: In our c_alculatlons we have use_d the versionmetric nuclear matter and pure neutron maf&®,18 extra
adopted in Ref{16] in order to compute the different corre- ¢|,ster diagrams with respect to the approximation used here
lation functionsF(i,j) at the various densities considered. have been included. Differences between the various FHNC/
We have considered only the three variational parametersOC calculations are within the predictive accuracy of the
corresponding to healing distanck of central p=1-4)  approximation.
and spin-orbit correlationsp=7,8), the healing distana In Table Il we compare the results of two different
of tensor correlations=5,6), and the quencher; of the ~ FHNC/SOC calculations of the equation of state of neutron
spin-isospin—dependent correlation. The other variational pamatter, carried out for thé U8’ potential. In the first one
rameters, such as the spin-independent potential quenchiphU8’(f5)] the spin-orbit correlation is set equal to zero,
and the correlation quenchers, have been kept fixed at unitwhereas, in the second opAU8’(fg)], it is included. One
The optimal values of such variational parameters for purecan see that the introduction of the spin-orbit correlation
neutron matter are shown in Table I. They have been obleads to a large lowering in the energy. As it will be shown,
tained by minimizing the average ener@y,=(1/2)(E;z  we do not find such a lowering when the spin-orbit interac-
+Epg), Where the two energy expectation valleég- and  tion is included in the AFDMC simulations. In the FHNC/
Epg refer to the Jackson-Feenberg and Pandharipande-BetlsOC approximation the cluster contributions from spin-orbit
kinetic energy expressions, respectived]. The usual con- correlations are correctly included only at the lowest order
straint|E;z— Epg|/E4,=0.005 has been imposed in order to level. The many-body cluster contributions are essentially
limit the range of variability of the free parameters in a re-neglected. The large and attractive spin-orbit contribution
gion of reliability of the FHNC/SOC approximation. We found in theAU8'(fg) calculation may be due to this inac-
have verified that in such region the normalization conditioncuracy. On the other hand it might be possible that nodal
is fulfilled within a few percent. surface induced by the spin-orbit part of the interaction is not

The variational energies for the case of th&J6’ inter-  accurately described by our trial function.

action are reported in Table 1. The table also reports on the In order to compute the finite size effects in a realistic
second-order CBF perturbative correctiahn&, [49] and the ~ way, one should first generalize the PBFHNC theory to in-
contribution from the lowest order elementary diagramclude SOC diagrams like in FHNC/SOC approximation.
AEgiem: as discussed in Reff25]. The non-negligible value Work in this direction is in progresgs1]. In this paper we
limit ourselves to including only the two-body cluster dia-
grams for the two-body potential and the kinetic energy and

TABLE IV. Comparison of the energlz, at the second order of the leading three-body cluster diagrams for the three-body

the FHNC cluster expansion with the full FHNC enef§ygeync-
The calculation has been performed for themodel interaction at

p=0.16 fm 2 and Jastrow correlation factor. TABLE VI. As in Table V at densityp=0.32 frm 3.
N TF EZ EPBFHNC N TF <T> <V>2 <V>3 <E>
14 35.600 19.36 17.60 14 56.512 74.33 —48.04 17.18 43.47
38 33.703 17.51 15.91 38 53.500 71.64 —50.25 19.36 40.75
66 34.917 19.11 17.63 66 55.428 73.41 —4951 20.30 44.20
114 35.646 20.09 18.71 114 56.584 7456 —48.94 20.78 46.40
1030 35.139 19.46 18.04 1030 55.779 73.75 —49.08 20.84 45.51
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50 T T T T T T T T TABLE VII. AFDMC energies per particle in MeV of 14 neu-
mixed trons in a periodic box for interaction models at various densities.

pryn M i Error bars for the last digit are shown in parentheses.
st ] p(fm~2) ve vh
§ %{ 0.12 12.414) 12.325)
Tt - 0.16 15.124) 14.986)
= ] 0.20 17.865) 17.657)
M6l i 0.32 27.846) 27.31)

0.40 36.01) 35.31)
45 1 1 1 1 1 1 1 1
66-05 0.0001 0.00014 0.00018
At (MeV™) VI. RESULTS

FIG. 1. Mixed and growth energies versus the time step for 14 A. AFDMC results for neutron matter

neutrons ap=0.32 fm 3 with the AU8’ interaction. Extensive neutron matter calculations have been carried
out for theAU6’ andAUS8' interactions by considering 14,

potential[51] in the PBFHNC scheme. Such leading termsS8: 66, and 114 neutrons in a periodic box at various densi-
correspond to include up to two correlation operators in thdes ranging from 0.75 up to 2.5

three-body cluster diagrams. We will show that this approxi- In Fig. 1 we show a typical behavior of the mixed and

mation, hereafter denoted as PBFHNC/L, can already bgrowth energy as a function}?g time s'gep fqr 14 neutrons in
used to roughly estimate the finite size effects. a periodic box alp=0.32 fm " interacting viaAU8'. At

The performance of the two-body cluster a roximationA =5x10"° MeV' I, we have found that the statistical er-
P o -body clus PP ror is smaller than the extrapolation ones, irrespective of the
to account for finite size effects is studied in Table IV. There

) . 'density and number of particles. All the calculations reported
for a purely central correlation without three-body force, hore have been obtained by using that value for the time step.
PBFHNC/}S and PBFHNC energies are compared pat The 14-neutron system is interesting because it is small
=0.16 fm * for the range of partlcle numbers used in OUr enough to be studied by using other many-body methods
quantum Monte Carlo simulations. which become inefficient for larger systems. In order to pro-

Tables V and VI give the PBFHNCI/L results for the vide a full set of results for this system in Table VII, we
AU6’ interaction at two different densities for a number of report on the energies at several densities calculated with the
neutron systems. Note that the energy differences betweeqy}, andvy interactions.
the cases with 66 and 114 neutrons are very close to those Diffusion Monte Carlo calculations using a pair-product
obtained in the AFDMC simulations, given in Tables VIII wave function for 14-neutron systems have just been re-
and IX. Previous worK29] has shown that the PBFHNC ported[28]. They, however, set the potential discontinuously
results with 1030 particles are equal to the infinite systento zero at distances greater thaf2, while we use either the
results to the accuracy shown. Systems with 14 and 38 neurearest image convention or a lattice sum giving a continu-
trons are too small to be included easily in our simple finiteous potential. We expect better extrapolation to large system
size effects analysis. It may be possible to extrapolate fronsizes with the continuous potential as well as smaller time
these very small simulations if sufficient care is taken. Forstep errors. The time step errors will affect our AFDMC cal-
example, the potentials may need to be more carefully cut offulations more because we currently use the primitive ap-
or summed, and the use of alternative boundary conditions igroximation rather than building the Green’s function from a
likely to be helpful[52]. Since larger system sizes are readily product of exact two-body Green’s functions. In principle,
calculated with AFDMC, we simply increased the number ofwe could use the Hubbard-Stratonovich breakup for the pair-
particles until the extrapolation became easier. product Green’s function. In any case, we have carried out a

TABLE VIIl. AFDMC energies per particle in MeV for thé U6’ interaction obtained with systems
with 14, 38, 66, and 114 neutrons at various densities. Error bars for the last digit of the Monte Carlo
calculations are shown in parentheses. The last column gives the extrapolated values from the PBFHNC/L
calculation[51].

p(fm=3) AFDMC(14)  AFDMC(38)  AFDMC(66) AFDMC(114) AFDMC(%)

0.12 14.966) 13.769) 14.934) 15.629) 15.0
0.16 19.785) 18.569) 20.075) 20.999) 20.4
0.20 25.296) 24.41) 26.516) 27.61) 26.9
0.32 48.279) 49.91) 53.149) 55.32) 54.4
0.40 69.91) 74.52) 79.42) 82.22) 81.3
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TABLE IX. AFDMC energies per particle in MeV for thaU8’ TABLE X. AFDMC energies per particle in MeV for theg
interaction obtained with systems with 14, 38, and 66 neutrons at-IL potentials calculated with 66 particles. For the casev§f
various densities. Error bars for the last digit of the Monte Carlo+ IL2 interaction, afp=0.32 fm 2 the energies per particle with 38
calculations are shown in parentheses. The last column gives thend 54 neutrons are 122 and 10.03) MeV, respectively.
extrapolated values from the PBFHNC/L calculat{&i].

p(fm=3)  AU6’ IL1 IL2 IL3 IL4

p(fm~3) AFDMC(14) AFDMC(38) AFDMC(66) AFDMC(x)

0.16 20.075) 11.21) 11.398) 12.04) 10.52)
0.12 14.809) 13.965) 15.285) 155 0.32 53.119) 8.04) 11.13) 14.73) 4703
0.16 19.766) 18.676) 20.239) 20.6
0.20 25.288) 24.71) 27.1(2) 27.6
0.32 48.41) 46.92) 54.46) 55.6 This difference in the effect of the spin-orbit potential in
0.40 70.32) 76.32) 81.43) 83.5 FHNC methods and AFDMC is quite different for the two

techniques. We have tried including orbitals with spin-orbit
correlations of a backflow forri39] which, while giving a
calculation atp=0.16 fm 3 using the same discontinuous lowering in the energy, does not resolve the discrepancy.
potential, and obtained 20.6% MeV and 20.326) MeV for Neither transient estimates nor these spin-backflow orbitals
the vg andvg potentials, respectively, compared with their reduce the energy by more than roughly 5%. However, there
values of 19.91(11) and 17.00(27). The larger differencds still a possibility that our constraining wave functions do
when the spin-orbit term is included in the Hamiltonian maynot contain enough overlap with the correct spin-orbit in-
be due to the different trial wave functions used. duced states, and the transient estimates may not have been
In Tables VIII and IX we report on the results obtained run for sufficient time to buildup the correct state. Like all
with the AFDMC method of this work for neutron matter at transient methods, they are limited by the exponential
the different densities considered for various system sizedwildup of noise.
The extrapolation to infinite number of particles is carried The three-body potential gives a large contribution to the
out by using the PBFHNCI/L results for a given number ofenergy per particle at high densities. Therefore the search for
neutrons and for the infinite system. a realistic three-body potential is a very fundamental prob-
The spin-orbit contribution is rather small at all of the lem for the study of dense and cold hadronic matter. A con-
densities considered. This contrasts with previous FHNCsiderable amount of work has been done to find, in a semi-
SOC calculations. In Fig. 2, we plot the AFDMC results phenomenological way, three-body potentials to describe
together with the variational FHNC/SOC results for g ~ ordinary matter. However, whether such potentials are also
interaction obtained by using correlation operators offige  Vvalid in the high density regime is still an open and debated
and Fg forms, with the extrapolated unconstrained pathissue. In Table X we report on AFDMC results performed
Green’s function Monte CarltGGFMC-UP) of Ref.[28] from  Wwith the two bodyvg interaction and five different three-
14-neutron simulations with they interaction, and the body potentials including the Urbana-I{2,2Q (UIX) and
Brueckner-Hartree-FockBHF) results for thev ;5 potential  the recent lllinois 1 through fouf13] three-body interac-
[53]. One can see that SOE6) and SOCES8) in the figure ~ tions. One can see that _alre_ady at twice the nuclear matter
give quite different equations of state, particularly at highdensity, the energy contributions from the three-body poten-
densities.

90 T T T T T T T
50 T T T T T T T T T L AFDMC ]
AFDMC(v}) —o— 80
45+ R o MPR, --+--
10 L FHNC/SOC (Fy) ~—+-- A - w APR —¢-- X
35 LFHNC/SOC (F) —-%-- 4 o o
N © 50 // -
= 30 | BHF (v1s) --%-- —
< 40 -
25 - . ~—
= GFMCUC - A - .
N - < - -
20 - - 30
< - =
~L15 4 S 4
AT
= 10 | AR . 10 - .
5L A7 - 0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0 005 01 015 02 025 03 035 04 045 0.5 p (fmf?’)

p (fm™?)
FIG. 3. Extrapolated AFDMC equation of state of pure neutron

FIG. 2. AFDMC energy per particle for neutron matter from matter with theAU8' potential(solid line). The variational results
simulations with 66 neutrons and the, potential. Variational of Refs.[50] (APR, dotted-dashed lineand [18] (MPR, dashed
FHNC/SOC results obtained with correlation functions of typgs  line) corresponding to the Argonne;g two-body plus Urbana-1X
and Fg along with the the extrapolated unconstrained paththree-body potential are also plotted. The lines are for guiding the
GFMC-UP of Ref.[28] and the BHF results of Ref53]. The sta-  eyes. The statistical errors of the AFDMC estimates are smaller than
tistical errors in the AFDMC results are smaller than the symbols.the symbols.

024308-11



A. SARSA, S. FANTONI, K. E. SCHMIDT, AND F. PEDERIVA PHYSICAL REVIEW @8, 024308 (2003

T T
N AFDMC —o—
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FIG. 4. Compressibility ratidC/ Cr for neutron matter obtained FIG. 5. AFDMC and FHNC/SOC energy per particle of nuclear

from the extrapolated AFDMC energy per particle with the/8’ matter for several values of the asymmetry paramg2ét. The

potential(solid ling). The compressibility obtained from the varia- lines correspond to polynomial fits of the calculated energies.
tional results of Refs[50] (APR, dotted-dashed lineand [18]

(MPR, dashed lingis also plotted. The lines are for guiding the 4. They are compared with the compressibility calculated
eyes. The statistical errors of the AFDMC estimates are smaller thaffom the variational energies of Refd.8,50.
the symbols.
tials are large and very different from each other, in spite of B. AFDMC results for nuclear matter
the fact that all of them provide a satisfactory fit to the ~The AFDMC can deal witiN+Z systems, and we have
ground state and the low energy spectrum of nuclei with applied it to compute the asymmetry coefficient of the mass
<8. formula for the semirealistic two-body potential MS3 which
In Fig. 3 we show the AFDMC equation of state for pure iS spin-isospin dependent but has no tensor f¢fe&55.
neutron matter with thé\U8' interaction corresponding to The resulting values oE/A at p, for symmetrical nuclear
the extrapolated values for infinite matter. We compare witimatter are given in Table XI, where they are also compared
the variational results of Ref50] and the more recent ones With the FHNC/SOC and PBFHNC results. The finite size
of Ref.[18]; both of them are obtained with the Argonng, ~ correction is estimated from the corresponding PBFHNC
two- and Urbana-IX three-nucleon interactions. One can sekesults.
that there is a surprising accidental agreement between In Fig. 5 we plot the AFDMC energy per particle as a
our AFDMC results and the latest variational calculationfunction of the asymmetry parameter=(N—2)/(N+2),

of Ref.[18]. of nuclear matter. The FHNC/SOC curve corresponds to a
The compressibilityC, given by quadratic fit of nuclear matterd=0) and pure neutron mat-
ter (a=1).
1 3(72E0(p) ,Eo(p) FHNC/SOC can only be used to stuty=Z or N=A _
P 902 +2p ap (40) matter. The symmetry energy obtained from FHNC/SOC is
p 41.59 MeV. The functiorE/A(«) provided by the AFDMC

results is not fully quadratic i, and corresponds to a sym-

can be estimated from the equation of state by takigg metry energy of-36.4 MeV

=E/A. For a Fermi gas the compressibility &g
=97°m/(k?%?). The AFDMC results fork/Ky obtained

from the extrapolated energies witlJ8' are shown in Fig. VII. OUTLOOK AND CONCLUSIONS

We have described a quantum Monte Carlo method spe-
TABLE XI. Finite size corrections for symmetrical nuclear mat- cially suited to perform calculations on nucleon systems with
ter [25]. PBFHNC results for the MS3 potential at=0.16 fm °.  honcentral interactions. It has been applied here to calculate
The PBFHNC calcula_tlons have been performed with a Jastrowg,gq equation of state of pure neutron matter with fully real-
correlated wave function, whereas the FHNC/SOC result has beqgyic jnteractions by approximating it with up to 114 neutrons
obtained with a correlation operator of the tyg. PBFHNC and 1 ginjlation box. Finite size effects have been estimated
FHNC/SOC calculations include the basic four-point elementaryby performing two- plus three-body cluster diagrams calcu-

diagrame,. lations based on PBFHNC method with spin-dependent cor-
A PB-FHNC FHNC/SOC AEDMC re]ations. The results obtained show.an overalll agreement
with Brueckner—Hartree-Fock calculations and with a recent

28 -136 —16.17(6) two- plus three-body cluster diagram variational calculation

76 -15.6 —18.08(3) [18] with the exception of the spin-orbit effects in these latter
2060 -14.0 calculations. Our results indicate that there is a very small

o ~14.0 —14.9 —-16.5(1) contribution coming from the spin-orbit component of the

two-body interaction while the effect from the three-body
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potential is quite large, particularly at high densities. Thewhile using standard diffusion Monte Carlo for the spatial
large differences obtained for the equation of state for differdegrees of freedom. A pressing need is simulating nuclear
ent phenomenological three-body potentials point out anatter with fully realistic interactions as already done for
three-body potential problem in the study of dense and colghure neutron matter, calculating the properties of light nuclei
hadronic matter. to compare with exact GFMC calculations, and investigating

Work in progress is to validate the present results usingion condensation. In addition, including explicit meson de-
trial wave functions, other than the simple Slater determinangrees of freedom can also be attempted. In the language of
given in Eq.(38), which can also be calculated efficiently this paper, each meson field mode corresponds to an auxil-
[39]. This will allow us to both lower the variance of our iary field [22].
calculations, as is usual when better guiding functions are
used in th(_e importance sampling Qf the random walk, as well ACKNOWLEDGMENTS
as to obtain a better path constraint.
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