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Neutron matter at zero temperature with an auxiliary field diffusion Monte Carlo method
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The recently developed auxiliary field diffusion Monte Carlo method is applied to compute the equation of
state and the compressibility of neutron matter. By combining diffusion Monte Carlo method for the spatial
degrees of freedom and auxiliary field Monte Carlo method to separate the spin-isospin operators, quantum
Monte Carlo can be used to simulate the ground state of many-nucleon systems (A&100). We use a path
constraint to control the fermion sign problem. We have made simulations for realistic interactions, which
include tensor and spin-orbit two-body potentials as well as three-nucleon forces. The Argonnev88 and v68
two-nucleon potentials plus the Urbana or Illinois three-nucleon potentials have been used in our calculations.
We compare with fermion hypernetted chain results. We report on the results of a periodic box fermi hyper-
netted chain calculation, which is also used to estimate the finite size corrections to our quantum Monte Carlo
simulations. Our auxiliary field diffusion Monte Carlo~AFDMC! results forv6 models of pure neutron matter
are in reasonably good agreement with equivalent correlated basis function~CBF! calculations, providing
energies per particle which are slightly lower than the CBF ones. However, the inclusion of the spin-orbit force
leads to quite different results particularly at relatively high densities. The resulting equation of state from
AFDMC calculations is harder than the one from previous Fermi hypernetted chain studies commonly used to
determine the neutron star structure.

DOI: 10.1103/PhysRevC.68.024308 PACS number~s!: 26.60.1c, 21.65.1f, 21.30.Fe, 05.10.Ln
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I. INTRODUCTION

The important role played by nucleon-nucleon (N-N) cor-
relations on several properties of dense and cold hadr
matter is a well-established fact@1#. Less established ar
quantitative studies performed with realistic nuclear inter
tions derived fromN-N data and the spectra of light nucle
The strong repulsion at short range accompanied with
strong spin-isospin dependence, makeab initio calculations
of the nuclear matter equation of state one of the most c
lenging problems in strongly correlated many-body theor

A theoretical calculation of the nuclear matter energy
particle, as a function of the number densityr, the tempera-
ture T, and the neutron-proton asymmetrya5(N2Z)/(N
1Z), with an uncertainty of less than an MeV has becom
fundamental issue. On one hand, one would like to use
observational data from neutron stars and supernovae
well as from heavy-ion collisions, to get information on th
many-body nature of the nucleon interaction. On the ot
hand, it is of interest to understand the effect ofN-N corre-
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lations, and particularly of those induced by the tensor for
on the structure and the evolution of compact astrophys
objects@2–6#.

In this paper we limit ourselves to nonrelativistic mod
Hamiltonians. Modern two-body potentials@7–9# fit the
Nijmegen N-N data @10# below 350 MeV at a confidence
level of x2/Ndata;1, and to a large extent give equivale
results for several nuclear and neutron matter properties@11#.
However, it has become evident that a two-body poten
alone is not sufficient to reproduce the experimental data
nuclei other than the deuteron (A52). In the past few years
the Urbana–Argonne collaboration has produced three-b
force models which, when added to the two-body potent
provide a satisfactory fit to the binding energies and the lo
lying states of light nuclei withA<10 @12–14#.

It would be desirable to have microscopic calculations
the equation of state of nuclear matter with an accuracy c
parable to that of light nuclei or, at least, on the order of
experimental uncertainties of the equilibrium densityr0,
binding energy per particle atr0, and compressibility. This
can be considered as the minimal requirement to attempt
study of hadronic matter at densities larger thanr0, and/or
with large asymmetries (a close to 1) in a realistic way
Such calculations have to deal necessarily with potent
which are strongly spin-isospin dependent and which inclu
a three-body force.

Most of the microscopic calculations of the nuclear mat
equation of state carried out in the past decades have
performed by using perturbation theories based either on
der diagram summation, such as Brueckner or Green’s fu
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tion theories@11,15#, or correlated basis function theorie
based on Fermi hypernetted chain techniques@16–18#. In
spite of the important advances made in recent years in
above theories, the required accuracy for the equation
state has not yet been reached.

Quantum Monte Carlo methods have been very succes
in calculating the properties of strongly interacting syste
in condensed matter physics. They are substantially ex
apart from statistical errors, finite size effects, and the w
known sign problem@19# for Fermi systems. They have bee
recently used to perform quantum simulations of light nuc
@20,21,14# with modern nonrelativistic Hamiltonians of th
type discussed above. However, the exponential growth
the number of spin-isospin states with the number of nu
ons A, has kept this method from being applied to larg
nuclear systems.

Auxiliary field diffusion Monte Carlo @22# ~AFDMC!
method has been especially developed to tackle the prob
of computing the binding energy of a relatively large nucle
system at the required accuracy. In this approach the par
coordinates are propagated as in standard diffusion Mo
Carlo. Auxiliary fields are introduced to uncouple the sp
dependent interaction between particles by means o
Hubbard-Stratonovich transformation. The particle sp
only interact with the auxiliary fields which, when inte
grated, produce the original interaction. The method cons
of calculating the auxiliary field integrations by Monte Car
sampling and then propagating the spin variables. T
propagation results in a rotation of each particle’s spi
governed by the sampled values of the auxiliary variab
The result is a sampling of the spin variables, which sho
have less variance than a direct approach where the spin
flipped.

The tensor force couples the spin configurations with
orbital angular momentum so that the wave function
comes complex. The resulting fermion phase problem
handled by applying a path-constraint approximation ana
gous to the fixed-node approximation. The AFDMC meth
for the spin-isospin calculations can be viewed as a gene
zation of the method of Zhanget al. @23,24# used in con-
densed matter lattice systems to the spin-isospin state
nucleon systems, while retaining standard diffusion Mo
Carlo method for the spatial degrees of freedom. T
AFDMC method has proved to be efficient in dealing w
large nucleon systems interacting via semirealistic poten
@22,25,26# and spin-polarized neutron systems@27#.

The aim of this paper is to give a detailed description
the AFDMC method and to report on the results for the eq
tion of state of pure neutron matter (a51) with a fully re-
alistic nuclear interaction, at zero temperature. It prese
results of AFDMC simulations of 14, 38, 66, and 114 ne
trons in a periodic box, interacting via a realistic potent
that includes two-body tensor and spin-orbit components
well as three-body forces. Particular attention is paid to
14-neutron system, which may serve as a homework prob
for different many-body techniques. It is small enough to
handled by traditional quantum Monte Carlo methods@28#.
However, it will be shown that the finite size effects of 1
neutron systems are hard to estimate in a realistic way.
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tually, results obtained with larger systems~66 or 114 neu-
trons! show that the equation of state of neutron matter c
not be simulated starting from 14 neutrons in a bo
particularly in the high density region. Finite size effects f
the larger systems considered here can be fairly well e
mated by the recently developed periodic box fermi hyp
netted chain~PBFHNC! theory@29#. We have also performed
AFDMC calculations of the binding energy of symmetr
and asymmetric nuclear matter. A few results obtained w
semirealistic spin-dependent central potentials are prese
and discussed.

The plan of the paper is the following. The Hamiltonia
used in this work is shown in the following section. In Se
III the problem of the spin degrees of freedom in quantu
Monte Carlo simulations is discussed. Section IV is devo
to the description of the AFDMC method, including the ca
culation of the spin-orbit and the three-body terms of t
Hamiltonian. A discussion of the finite size effects along w
the periodic box FHNC method is given in Sec. V. The r
sults for the neutron matter equation of state are prese
and discussed in Sec. VI. The conclusions and perspec
for the present work are in Sec. VII.

II. THE HAMILTONIAN

We use a nonrelativistic Hamiltonian of the form

H5T1V21V352
\2

2m (
j 51,N

¹ j
21(

j ,k
v jk1 (

j ,k, l
Vjkl ,

~1!

containing the kinetic term, where we have used\2/2m
520.735 54 MeV fm2 ~which corresponds to then2p re-
duced mass!, and two- and three-body potentials. The tw
body potential belongs to the Urbana-Argonnev, type,

v,5(
j ,k

v jk5(
j ,k

(
p51

,

vp~r jk!O(p)~ j ,k!, ~2!

where j and k label the two nucleons,r jk is the distance
separating the two nucleons, and the spin-isospin–depen
operatorsOp( i , j ) for p51,8 are given by

Op51,8~ j ,k!5~1,sW j•sW k ,Sjk ,LW jk•SW jk! ^ ~1,tW j•tW k!, ~3!

where Sjk53(r̂ jk•sW j )( r̂ jk•sW k)2sW j•sW k is the two-nucleon
tensor operator, andLW jk andSW jk are the relative angular mo
mentum and the total spin, given by

LW jk5
\

2ı
~rW j2rWk!3~¹W j2¹Wk!, ~4!

SW jk5
\

2
~sW j1sW k!. ~5!

The full Argonnev18 potential consists of,518 compo-
nents. Besides the eight components given in Eq.~3!, it in-
cludes the six@L2, L2 sW j•sW k , (LW •SW )2] ^ (1,tW j•tW k) charge
8-2
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NEUTRON MATTER AT ZERO TEMPERATURE WITH AN . . . PHYSICAL REVIEW C68, 024308 ~2003!
independent ones, as well as four other charge-symme
breaking and charge-dependent terms.

We use a simplified isoscalar version of thev18 potential,
the so-calledv88 two-body potential@20,30#. This potential
contains only the first eight spin-dependent operators in
~3!, and equals the isoscalar part ofv18 in all SandP waves
as well as in the3D1 wave and its coupling to the3S1. It has
been used in a number of Green’s function Monte Ca
~GFMC! calculations in light nuclei@20#, as well as fermi
hypernetted chain at the single operator chain approxima
~FHNC/SOC! calculations in nuclear matter@17#; differences
with the v18 potential give small contributions that can b
safely estimated perturbatively or from FHNC/SOC calcu
tions. In the case of pure neutron matter~PNM!, the isospin
exchange operators are replaced by the identity.

We denote byv68 the two-body potential model obtaine
by restricting thev88 potential to the first six~three for neu-
tron matter! components. Note that this truncation of the A
gonnev88 should not be confused with the recently produc
ArgonneAV68 potential@31#.

The three-body interaction used in our calculations of
equation of state is the Urbana IX potential@20#. For neu-
trons, the Urbana-IX interaction is given by the sum of
spin-independent and a spin-dependent part,

Vjkl5Vjkl
SI 1Vjkl

SD , ~6!

where

Vjkl
SI 5U0 (

cyclic
T2~mp ,c3 ;r j l !T

2~mp ,c3 ;r lk!,

Vjkl
SD5B2p (

cyclic
$Xjl

p ,Xlk
p %, ~7!

and the operatorXjk
p is given by

Xjk
p 5Y~mp ,c3 ;r jk!sW j•sW k1T~mp ,c3 ;r jk!Sjk . ~8!

Notice that in some of our earlier AFDMC calculation
we have usedc352.0 fm22 and m50.7 fm21, as given in
the original papers proposing the Urbana-IX potential@32#
and thev88 model interaction@12#. Changingc3 from 2.0 to
2.1 leads to a;10% additional increase of the three-bo
force contribution in neutron matter. In the following, w
will denote with AU88 the v88 plus Urbana-IX interaction,
with AU68 the v68 plus Urbana-IX interaction.

We have also considered the recently developed Illin
three-body potentials, which include twoD intermediate
state diagrams@13#, and denoted with IL1, . . . ,IL4.

III. SPIN DEGREES OF FREEDOM

Standard Green’s function or diffusion Monte Carlo me
ods for central potentials sample only the particle positio
since the spin or isospin of the particles can be fixed. T
Green’s function Monte Carlo method used in light nuc
also samples the particle positions, but a complete desc
tion of the spin degrees of freedom is kept for each sam
position leading to an exponential growth of the number
02430
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spin-isospin states with particle numberA. This exponential
behavior can be removed by sampling rather than summ
the spin-isospin degrees of freedom.

We define a walker to be the 3A coordinates of theA
particles andA spinors each giving the four amplitudes for
particle to be in the proton-up, proton-down, neutron-up, a
neutron-down states. For the special case where walkers
sampled from the usual neutron-proton up-down basis,
spinors would be one of (1,0,0,0), (0,1,0,0), (0,0,1,0), a
(0,0,0,1) for each particle. Our auxiliary field method r
quires the more general definition as shown below.

As usual, the overlap of the walker bra with the trial ket
the wave function amplitude,

^R,SuCT&[CT~R,S!. ~9!

Direct sampling of the spin-isospin in the usual spin-u
down basis requires a good trial function that can be eva
ated efficiently. This can be most easily seen for the va
tional formalism, but the same analysis applies to Gree
function or diffusion Monte Carlo formalism. A variationa
Monte Carlo calculation can be formulated by minimizin
the expectation value of the Hamiltonian,

^H&5
^CTuHuCT&

^CTuCT&
5

E dR(
S,S8

CT* ~R,S8!HS8,SCT~R,S!

E dR(
S

uCT~R,S!u2

,

~10!

where for av6 interaction we would have

HS8,S5^S8uS&F2
\2

2m (
n

¹n
2G1^RS8uVuRS&, ~11!

with a straightforward generalization for spin-orbit terms.
Variational Monte Carlo calculation can be implement

with either spin sums@33–35#,

^H&5E dREL~R!P~R!,

P~R!5

(
S

uCT~R,S!u2

E dR(
S

uCT~R,S!u2

,

EL~R!5

(
S,S8

CT* ~R,S8!HS8,SCT~R,S!

(
S

uCT~R,S!u2

, ~12!

or spin samples@36#,
8-3
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A. SARSA, S. FANTONI, K. E. SCHMIDT, AND F. PEDERIVA PHYSICAL REVIEW C68, 024308 ~2003!
^H&5E dR(
S

EL~R,S!P~R,S!,

P~R,S!5
uCT~R,S!u2

E dR(
S

uCT~R,S!u2

,

EL~R,S!5

(
S8

CT* ~R,S8!HS8,SCT~R,S!

uCT~R,S!u2
. ~13!

In these equations,P is the probability density to be
sampled andEL is the local energy. A typical variationa
calculation would use the Metropolis algorithm to samp
eitherR or R andS from P, and average the value of the loc
energy over these samples.

Notice that for an eigenstate ofH, both EL(R,S) and
EL(R) are constant. So, as for central potentials, the varia
will be low if the trial function is accurate. Also note that th
spin sum S8 in the definition of EL(R,S) is polynomial
rather than exponential inA. For example, a pair potentia
will have only orderA2 terms where two particles have di
ferent spin-isospins.

The variance per sample for complete spin sums will
lower than for spin samples. However, since the spin su
grow exponentially with particle number, spin samplin
should be more efficient for large particle number if the tr
function can be evaluated efficiently for a single man
particle spin stateS.

Unfortunately, all of the good trial wave functions cu
rently used for large numbers of particles cannot be ev
ated efficiently for a single many-particle spin stateS. For
example light nuclei variational Monte Carlo calculations a
typically done using a pair product~or more complicated!
wave function,

uCP&5S)
j ,k

f jk
c F11(

p
ujk

p Ojk
p G uF&, ~14!

whereS symmetrizes the operator products, anduF& is the
antisymmetric model state. While the symmetrizer produ
all possible orderings of the operators and therefore g
O(A2!) terms, normally the commutator terms are fair
small and the ordering of the operators is sampled. Howe
even within a fixed ordering, each operator in the prod
term when operating on a single many-particle spin-isos
state will produce four or eight new states depending
whether isospin exchange gives a new state.O(A) operators
out of theO(A2) total acting on a single state are enough
populate all the states. Therefore a straightforward evalua
of ^RSuCP& for this wave function will have the same com
putational complexity as evaluating a complete set of sp
isospin states at the positionR. Since computing all the state
have the same cost as a single state, full spin sums are
for these calculations.

If good trial functions for spin-isospin–dependent intera
tions can be devised which can be evaluated or sampled
02430
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ficiently at a single many-particle space position and sp
isospin state, straightforward generalizations of stand
central potential Monte Carlo methods, both variational a
Green’s function, with spin-state sampling will solve th
nuclear many-particle Hamiltonian.

IV. THE AFDMC METHOD

Since direct evaluation of the pair product wave functi
is not computationally feasible for large numbers of p
ticles, and so far we have no good methods of sampling th
wave functions, we instead drop the operator terms a
gether and sample the spin-isospin variables using a ra
poor, but easy to evaluate, wave function. Since this w
function does not contain amplitudes of the spin states of
correct solution, we cannot use it to sample the spins.
stead, we rewrite the propagator as an integral over auxil
fields using the Hubbard-Stratonovich transformation,

e2(1/2)lO2Dt5
1

A2p
E

2`

`

dxe2x2/2exA2lDtO, ~15!

whereO can be a one-body operator. To make use of t
transformation we write our propagator as the left-hand s
of Eq. ~15!, so that the integrand of the right-hand side is
product of one-body terms. The integrand has a form s
that propagating a walker atuR,S& results in another walke
of the same form atuR8,S8&.

For N neutrons, thev6 two-body interaction can be spli
into two parts,

(
j ,k

v jk5B1
1

2 (
j ,a,k,b

s j ,aAj ,a;k,b sk,b , ~16!

where roman subscriptsj and k are particle labels while
greek subscriptsa andb are cartesian components. The m
trix A and the scalarB are functions of the particle positions

B5(
j ,k

@v1~r jk!1v2~r jk!#,

Aj ,a;k,b5@v3~r jk!1v4~r jk!#dab1@v5~r jk!1v6~r jk!#

3@3r̂ jk• x̂a r̂ jk• x̂b2dab#. ~17!

Aj ,a;k,b is taken to be zero whenj 5k. A can be viewed as a
3N by 3N real symmetric matrix. It therefore has real eige
values and eigenvectors defined by

(
k,b

Aj ,a;k,bcn
kb5lncn

j a . ~18!

The potential can be written as

(
j ,k

v jk5B1
1

2 (
j ,a,k,b,n

s j acn
j alnskbcn

kb

5B1
1

2 (
n51

3A

~On!2ln , ~19!
8-4
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with

On5(
j a

s j acn
j a . ~20!

Each of theOn is a sum of one-body operators as requir
above.

After applying the Hubbard-Stratonovich transformatio
the short time approximation for the propagator can be w
ten as

S m

2p\2Dt
D 3A/2

expS 2
muR2R8u2

2\2Dt
D e2B(R)Dt

3)
n

1

A2p
E

2`

`

dxne2xn
2/2exnA2lnDtOn. ~21!

The On do not commute, so we need to keep the tim
steps small so that the commutator terms can be ignore

We sample a value ofx for each of the 3A auxiliary field
variables. Once these values are known, the propagatio
duces to a rotation in the spin space, and, therefore, to m
tiplying the current spinor value for each particle by the
of matrices given by the transformation above. For a giv
eigenvalueln<0 in Eq. ~19!, the spin states of particlek,
uhk8&5ak8u↑&1bk8u↓&, will be rotated to the new oneuhk&
having the following components:

ak5ak8@cosh~an!1sinh~an!cn
z~k!#

1bk8sinh~an!@cn
x~k!2ıcn

y~k!#,

bk5bk8@cosh~an!2sinh~an!cn
z~k!#

1ak8sinh~an!@cn
x~k!1ıcn

y~k!#, ~22!

where

an5DtulnuxnA@cn
x~k!#21@cn

y~k!#21@cn
z~k!#2, ~23!

and xn is the sampled Hubbard–Stratonovich value. F
positive values ofln , one has a similar set of equations,
which sinh(an) is substituted withı sin(2an).

Finally, it is worth mentioning here that importance sa
pling has been used for the integral in the Hubba
Stratonovich~HS! variables. The value of the overlap of th
walker with the trial function will not be peaked aroundxn
50, but will be shifted. Rather than sampling from th
gaussian we preferentially sample values where we pre
the trial function will be larger. One way is to shift th
sampled Gaussian, values with a drift term analogous to
drift term in diffusion Monte Carlo one by replacing thes
operators by their expectation value at the currentR,S value
and taking the real part. That is, we write
02430
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A2p
E

2`

`

dxne2xn
2/2exnA2lnDtOn,

5
1

A2p
E

2`

`

dxne2(xn2 x̄n)2/2exnA2lnDtOne22x̄nxn1 x̄n
2/2,

x̄n5Re@A2lnDt ^On&#,

^On&5
^CTuOnuR,S&

^CTuR,S&
, ~24!

and sample the shifted Gaussian; the last correction term
included in the weight. With this real shift and the compe
sating weight, only the efficiency of the algorithm
changed. We have tried other schemes using a discret
Gaussian integration with altered probabilities and comp
sating weights with very little difference in the overall effi
ciency. In Ref.@37# a complex drift rather than the real dri
in Eq. ~24! has been used. Unlike our real drift above, th
can change based on how the path constraint is applied

A. Three-body potential

For a neutron system, the spin-dependent part
Urbana-IX potential, given in Eqs.~6! and ~7!, reduces to a
sum of terms containing only two-body spin operators b
with a form and strength that depends on the positions
three particles. As will be seen below, for a fixed position
the particles, the inclusion of three-body potentials of t
Urbana-IX type in the Hamiltonian does not add any ad
tional complications. It simply changes the strength of t
coefficients of the terms in the potential and can be trivia
incorporated in the AFDMC calculations.

The anticommutator in Eq.~7! can be written as

$Xjl
p ,Xlk

p %52 xjkl
mns j

msk
n , ~25!

where

xjkl
mn5yjl ylkdmn1yjl t lk

mn1t j l
mnylk1t j l

mat lk
an , ~26!

and

yjl 5Y~mp ,c3 ,r j l !2T~mp ,c3 ,r j l !,

t j l
mn53T~mp ,c3 ,r j l ! r̂ j l

m r̂ j l
n . ~27!

The spin-dependent~SD! part of the three-body interac
tion V3

SD can then be easily incorporated in the mat
Aj ,a,k,b of Eq. ~17!, by the following substitution:

Aj ,a;k,b→Aj ,a;k,b12(
l

B2pxjkl
ab . ~28!

Similarly, the new terms in the Illinois potentials can b
included into this matrix.
8-5
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B. The spin-orbit propagator

A first-order approximation@21# to the spin-orbit contri-
bution to the propagator can be obtained by operating
derivative appearing in theLW jk•SW jk operator on the free
propagatorG0,

~¹W j2¹Wk!G0~R,R8!52
m

\2Dt
~DrW j2DrWk!G0~R,R8!,

~29!

and substituting this expression back into the propagator
a result, the spin-orbit partPLS of the propagator is factore
out and is finally written as

PLS5expS (
j Þk

mvLS~r jk!

4ı\2
@rW jk3~DrW ! jk#•sW j D

5expS (
j Þk

mvLS~r jk!

4ı\2
~SW jk3rW jk!•DrW j D , ~30!

where (DrW) jk5DrW j2DrWk andSW jk5sW j1sW k .
However, a careful analysis of the above expressi

show that they include some spurious contributions linea
Dt. In order to see this the wave function is expanded,
usual, in the integral form of the imaginary time Schro¨dinger
equation keeping only linear terms,

C~R!5DtF 1

2m (
j

¹ j
22V1E0GC~R!

1E dR8G0~R,R8!PLSFC~R!2(
p

DrWp•¹WpC~R!G
1••• . ~31!

At this point, PLS is expanded by using the second for
of this propagator given in Eq.~30! keeping both linear and
quadratic terms inDrW. The integral inR8 can be done by
taking into account that~i! the Gaussian factor integrates to
if there are no powers ofDrW, ~ii ! terms containing only one
power of aDrW integrate to zero,~iii ! quadratic terms contain
ing powers of different components ofDR8 integrate to zero,
and ~iv! terms like (Dxj8)

2 integrate toDt\2/m.
We first consider the part coming from the linear terms

DrW in both the wave function andPLS . These terms afte
integration give

2Dt(
j Þk

vLS~r jk!

4ı
@~sW j1sW k!3rW jk#•¹W jC~R!. ~32!

The expression above can be further simplified by int
changing the dummy indicesj andk,

2Dt(
j ,k

vLS~r jk!@LW •SW # jkC~R!, ~33!
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which is the spin-orbit contribution to the Hamiltonian mu
tiplied by 2Dt.

However, thePLS propagator includes other terms whic
are of the same order inDt. They come from the quadrati
DrW terms of the expansion ofPLS ,

Dt~V21V3!5Dt
m

32 (
j

(
kÞ j

(
pÞ j

vLS~r jk!vLS~r jp!

3~SW jk3rW jk!•~SW jp3rW jp!

5Dt
m

32\2 (
j

(
kÞ j

(
pÞ j

vLS~r jk!vLS~r jp!

3$rW jk•rW jpSW jk•SW jp2SW jp•rW jkSW jk•rW jp%. ~34!

The terms withk5p give rise to a two-body additiona
effective potentialV2

add52V2,

V2
add52(

j ,k

mrjk
2 vLS

2 ~r jk!

8\2
@21sW j•sW k2sW j• r̂ jksW k• r̂ jk#.

~35!

The terms withkÞp lead to a three-body additional e
fective potentialV3

add52V3, given by

V3
add52 (

j ,k,p
(

cyclic

mrjkr jpvLS~r jk!vLS~r jp!

16\2

3$ r̂ jk• r̂ jp@21sW k•sW j1sW p•sW j1sW k•sW p#

2sW j• r̂ jksW k• r̂ jp2sW p• r̂ jksW j• r̂ jp2sW p• r̂ jksW k• r̂ jp%.

~36!

Therefore in the actual propagation it is necessary to
clude explicitly these terms with opposite sign if one is usi
PLS as given by Eq.~30!.

An alternative method that we have also used comes f
realizing that the counterterms are produced by the next
der term in the series expansion of the exponential. Th
terms either average to zero, or are higher order in the t
step or give incorrect contributions. Subtracting them giv
the propagator,

expS (
j Þk

mvLS~r jk!

4ı\2
@rW jk3~DrW ! jk#•sW j D

3expS 2
1

2 F(
j Þk

mvLS~r jk!

4ı\2
@rW jk3~DrW ! jk#•sW j G 2D ,

~37!

with the second exponential giving the required coun
terms to include. The two forms are equivalent to first ord
in Dt.
8-6
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NEUTRON MATTER AT ZERO TEMPERATURE WITH AN . . . PHYSICAL REVIEW C68, 024308 ~2003!
C. Trial wave function

In our calculations we use the simple trial function giv
by a Slater determinant of one-body space-spin orbitals m
tiplied by a central Jastrow correlation,

uCT&5F)
j ,k

f ~r jk!GAF)
j
Uf j ,sj L , ~38!

whereA is the antisymmetrizer ofA particles. The overlap o
a walker with this wave function is the determinant of t
space-spin orbitals, evaluated at the walker position
spinor for each particle~for nuclear matter the spinor als
includes the isospin!, and multiplied by a central Jastrow
product.

For unpolarized neutron matter in a box of sideL, the
orbitals are plane waves that fit in the box times up a
down spinors. The usual closed shells are 2, 14, 38,
66, 114, . . . for neutrons and 4, 28, 76, . . . for nucleon

The Jastrow correlation functionf (r ) has been taken a
the first component of the FHNC/SOC correlation opera
F̂ i j , which minimizes the energy per particle of either ne
tron or nuclear matter at the desired density@16# ~see also
Sec. V!.

As noted in Sec. III, a trial function with spin exchang
and tensor correlations requires exponentially increas
computational work as the number of particles increases.
advantages of our trial function is that it is totally antisym
metric, and forA particles requires orderA3 operations to
evaluate. However, it does not contain any amplitude ge
ated by the tensor force where spins are flipped with a c
pensating orbital angular momentum. It is left to t
AFDMC method to generate these missing components.

Other forms of a trial wave function can be used. F
example, including a linear combination of Slater determ
nants is possible as is modifying the orbitals to include s
correlations of backflow form@38#. Both of these avoid the
exponential computational complexity, but may not capt
the essential physics of the tensor force@39#.

D. Path constraint

As in standard fermion diffusion Monte Carlo method, t
AFDMC method has a fermion sign problem. The overlap
our walkers with the trial function will be complex in gen
eral, so the usual fermion sign problem becomes a ph
problem.

To deal with this problem, we constrain the path of t
walkers to regions where the real part of the overlap with
trial function is positive as in the original AFDMC pape
@22#. We have also tried constraining the phase to that of
trial function as in the fixed phase approximation@40#. Both
give about the same results, within error bars, and we re
on the values where the real part is positive. For sp
independent time reversal invariant potentials, both reduc
the fixed-node approximation. It is straightforward to sho
that if the sign of the real part is that of the correct grou
state, we will get the correct answer, and small deviati
give second-order corrections to the energy. We have
been able to prove that this constraint always gives an up
02430
l-

d

d
4,
.

r
-

g
he

r-
-

r
-
n

e

f

se

r

e

rt
-
to

s
ot
er

bound to the ground-state energy although it appears to d
for the calculations we have done to date. It seems likely t
there is not an upper bound theorem for the mixed estim
of the energy. A similar constraint used in GFMC calcu
tions with full spin sums@41# was found to give an energ
less than the ground-state value. While the operation of
constraint is somewhat different in the auxiliary fie
method, this further suggests that constraints of this sor
not give strict upper bounds. If forward walking or a pa
integral ground-state technique@42,43# is used, the method
simply produces a better trial function, and the energy m
be an upper bound.

In the fixed-node method@19# the nodal structure of the
trial function is determined by the Slater determinant. Sim
larly, our path constraint is fully determined by the spa
spin Slater determinant of Eq.~38!. The Jastrow function
therefore affects only the variance and not our final resu

If perfect importance sampling with the correct propag
tor for our constraint were used, the walkers would ne
cross into a region with negative weight. However, with o
short time approximations, we do get a small fraction
walkers that become negative and violate the constra
These walkers are discarded as described below in Sec.
The mistake made by discarding these walkers contribute
the time step error, and goes to zero as the time step e
goes to zero. For a sample run, we found that for tim
steps of 131025 MeV21, 231025 MeV21, and 4
31025 MeV21 the absolute value of the ratio of the weig
of the discarded walkers to the total weight is (1.360.3)
31025, (461)31025, and (1061)31025. Controlling
the time step error therefore automatically controls this er
It should also be possible to modify the propagator in
vicinity of the constraint to properly go to zero as is ofte
done in fixed-node calculations, but we have not done t
here.

E. Tail corrections

Monte Carlo calculations are generally performed with
the sphere of radiusL/2, whereL is the length of the box
side. Usually, tail corrections are estimated by integrating
the spin-independent part of the two-body potential fromL/2
up to infinity. We have made our calculations within the fu
simulation box, and, in order to also include the contributi
from the neighboring cells, we have tabulated the Jast
factor f (r ) and the componentsvp(r ) of the two-body po-
tential in the following form:

F~x,y,z!5)
mno

f „u~x1mLx!x̂1~y1nLy!ŷ1~z1oLz!ẑu…,

Vp~x,y,z!5(
mno

vp„u~x1mLx!x̂1~y1nLy!ŷ1~z1oLz!ẑu….

~39!

For the calculations shown, we found it adequate to inclu
only the 26 additional neighbor cells corresponding tom, n,
ando taking the values21, 0, and 1.
8-7
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Our results are therefore already tail corrected. We fou
that the standard way of treating tail corrections leads
results very close to ours, except when we consider mo
interactions which contain tensor forces, which are relativ
long range forces.

The three-body potential is not treated as the two-bo
one. Here we have estimated the tail corrections to the th
body potential from the PBFHC variational results describ
in Sec. V. This analysis shows that such corrections are
ready very small for systems with 66 nucleons.

F. The algorithm

Finally, in this section we give the schematic structure
the AFDMC algorithm.

~1! SampleuR,S& initial walkers fromu^CTuR,S&u2 using
Metropolis Monte Carlo method.

~2! Propagate the spatial degrees of freedom in the u
diffusion Monte Carlo way with a drifted Gaussian for half
time step.

~3! For each walker, diagonalize the potential mat
~two- and three-body terms!.

~4! Loop over the eigenvectors, sampling the correspo
ing Hubbard-Stratonovich variable, and update the spin
for half a time step. Introduce approximate importance sa
pling of the Hubbard-Stratonovich variables, as discusse
the beginning of Sec. IV.

~5! Propagate the spin orbit, using importance samplin
~6! Repeat steps~2! –~4! in the opposite order to produc

a reversible propagator to lower the time step error.
~7! Combine all weight factors and evaluate the new va

of ^CTuR,S&. If the real part is less than 0, include th
walker in the evaluation of the mixed and the growth en
gies, and then enforce constrained path by dropping
walker. In general, the importance sampling makes the n
ber of dropped walkers small.

~8! Evaluate the averages of^CTuR,S& and ^CTuHuR,S&
to calculate the mixed energy.

~9! Repeat as necessary.
Note that with our choices for importance sampling a

the auxiliary field breakup, we need to diagonalize the
tential matrix and calculate the derivatives at each step.
additional computations to give the energy cost very little.
calculate error bars, block averages are calculated and
results combined over different block sizes until the bloc
become uncorrelated and the error bars become indepen
of block size within statistics.

V. FHNC AND PBFHNC CALCULATIONS

In this section we present the method that we have use
estimate the finite size effects in AFDMC simulations. Su
a method is made necessary by the fact that simulations
more than 100 nucleons are computationally very dema
ing. A many-body theory, such as FHNC, based on integ
equation techniques, in which the number of particles in
simulation box has no practical limitation seems to be
best candidate to do this.

FHNC theory was originally developed@44–46# to treat
fermionic systems in the thermodynamic limit. Howeve
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FHNC has been recently reformulated to deal with a fin
number of fermions in a periodic box, as those used for
Monte Carlo calculations@29#. Such a theory, denoted a
PBFHNC, is based upon the fundamental property of
FHNC cluster expansion to be valid at all 1/A orders@44–
47#, and it has been developed for Jastrow-correlated w
functions. In the cases of a nucleonic system interact
via a central potential, it has been shown that finite s
effects are~i! not limited to the kinetic energy expectatio
value, and ~ii ! rather accurately estimated by PBFHN
calculations@25#.

However, realistic correlationsF̂( i j ) are spin dependen
and have an operational structure similar to that of the tw
body potential, as in Eq.~2! ~where the componentp51
corresponds to the Jastrow correlation!. Therefore the PBF-
HNC developed in Ref.@29# cannot be used as such, but h
to be generalized to treat spin-dependent correlations.
main problem is that the spin operators involved do not co
mute, namely,@ F̂( i j ),F̂( ik)#Þ0. This feature makes a ful
FHNC summation impossible, and one has to resort to r
sonable approximations for the spin-dependent correlatio

Such approximations are characterized by the fact t
whereas the cluster diagrams containing scalar correlat
only are summed up with FHNC technique, only a limite
set of cluster diagrams containing spin-dependent corr

TABLE I. Variational parameters used in our FHNC/SOC a
PBFHNC calculations for theAU68 and AU88 potentials. r 0

5@3/(4pr)#1/3 is the average distance between the neutrons.r 0 ,
dc , anddt are given in fm. The reference densityr050.16 fm23 is
the equilibrium density of nuclear matter.

r/r0 r 0 dc(6) dt(6) as(6) dc(8) dt(8) as(8)

0.75 1.258 1.761 4.695 0.9 2.264 4.528 0.8
1.00 1.143 1.714 4.571 0.9 2.285 4.571 0.8
1.25 1.061 1.485 4.752 0.9 2.228 3.960 0.8
2.0 0.907 1.723 4.595 0.8 2.267 4.535 0.7
2.5 0.842 1.768 4.715 0.8 2.189 5.004 0.7

TABLE II. FHNC/SOC energy per particle of neutron matter f
the AU68 interaction, at various densities.TF is the Fermi kinetic
energy, and̂T& is the kinetic energy expectation value, correspon
ing to the average of the JF and PB kinetic energies.^V2& and^V3&
are the expectation values of the two-body and three-body po
tials, respectively.DE2 is the second-order perturbative correctio
@49#. DEelem is the contribution from the lowest order elementa
diagram~see text!. In the last column,Esum is the sum ofEFHNC,
DE2, andDEelem. All the quantities, exceptr/r0, are expressed in
MeV.

r/r0 TF ^T& ^V2& ^V3& EFHNC DE2 DEelem Esum

0.75 28.969 35.33222.67 2.58 15.2 20.9 0.6 14.9
1.00 35.094 43.82228.58 5.17 20.4 20.9 0.9 20.4
1.25 40.722 52.27234.11 8.53 26.7 21.5 1.2 26.4
2.0 55.708 74.40246.93 27.29 54.8 24.4 2.8 53.2
2.5 64.643 88.85253.36 44.72 80.2 26.1 3.8 77.9
8-8
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NEUTRON MATTER AT ZERO TEMPERATURE WITH AN . . . PHYSICAL REVIEW C68, 024308 ~2003!
tions are included in the calculation. The most tested
used approximation is the so called FHNC/SOC, describe
Ref. @48#. In our calculations we have used the versi
adopted in Ref.@16# in order to compute the different corre

lation functionsF̂( i , j ) at the various densities considere
We have considered only the three variational parame
corresponding to healing distancedc of central (p51 –4)
and spin-orbit correlations (p57,8), the healing distancedt

of tensor correlations (p55,6), and the quencheras of the
spin-isospin–dependent correlation. The other variational
rameters, such as the spin-independent potential quen
and the correlation quenchers, have been kept fixed at u
The optimal values of such variational parameters for pu
neutron matter are shown in Table I. They have been
tained by minimizing the average energyEav5(1/2)(EJF
1EPB), where the two energy expectation valuesEJF and
EPB refer to the Jackson-Feenberg and Pandharipande-B
kinetic energy expressions, respectively@48#. The usual con-
straintuEJF2EPBu/Eav&0.005 has been imposed in order
limit the range of variability of the free parameters in a r
gion of reliability of the FHNC/SOC approximation. W
have verified that in such region the normalization condit
is fulfilled within a few percent.

The variational energies for the case of theAU68 inter-
action are reported in Table II. The table also reports on
second-order CBF perturbative correctionsDE2 @49# and the
contribution from the lowest order elementary diagra
DEelem, as discussed in Ref.@25#. The non-negligible value

TABLE III. Comparison of the FHNC/SOC results for th
AU88 interaction, obtained with correlation operator of the typef 6

or of the typef 8. In the first case the contribution of the spin-orb
potential is calculated perturbatively from theAU68 Hamiltonian.
For comparison, in the third column the results for theAU68 inter-
action are also reported. In all cases the contribution from elem
tary diagrams has been added.

r/r0 TF AU68 AU88( f 6) AU88( f 8)

0.75 28.969 15.8 16.1 13.3
1.00 35.094 21.3 21.8 17.6
1.25 40.722 27.9 28.8 23.0
2.0 55.708 57.6 59.0 47.5
2.5 64.643 84.0 86.2 71.7

TABLE IV. Comparison of the energyE2 at the second order o
the FHNC cluster expansion with the full FHNC energyEPBFHNC.
The calculation has been performed for thev68 model interaction at
r50.16 fm23 and Jastrow correlation factor.

N TF E2 EPBFHNC

14 35.600 19.36 17.60
38 33.703 17.51 15.91
66 34.917 19.11 17.63

114 35.646 20.09 18.71
1030 35.139 19.46 18.04
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of DEelem indicates that the effect from elementary diagra
is larger than has been assumed in all the past FHNC/S
calculations of the nuclear matter equation of state@25,28#.
In recent FHNC/SOC calculations of the equation of sy
metric nuclear matter and pure neutron matter@50,18# extra
cluster diagrams with respect to the approximation used h
have been included. Differences between the various FH
SOC calculations are within the predictive accuracy of
approximation.

In Table III we compare the results of two differen
FHNC/SOC calculations of the equation of state of neut
matter, carried out for theAU88 potential. In the first one
@AU88( f 6)# the spin-orbit correlation is set equal to zer
whereas, in the second one@AU88( f 8)#, it is included. One
can see that the introduction of the spin-orbit correlat
leads to a large lowering in the energy. As it will be show
we do not find such a lowering when the spin-orbit intera
tion is included in the AFDMC simulations. In the FHNC
SOC approximation the cluster contributions from spin-or
correlations are correctly included only at the lowest ord
level. The many-body cluster contributions are essentia
neglected. The large and attractive spin-orbit contribut
found in theAU88( f 8) calculation may be due to this inac
curacy. On the other hand it might be possible that no
surface induced by the spin-orbit part of the interaction is
accurately described by our trial function.

In order to compute the finite size effects in a realis
way, one should first generalize the PBFHNC theory to
clude SOC diagrams like in FHNC/SOC approximatio
Work in this direction is in progress@51#. In this paper we
limit ourselves to including only the two-body cluster di
grams for the two-body potential and the kinetic energy a
the leading three-body cluster diagrams for the three-b

n-

TABLE V. PBFHNC/L results for theAU68 interaction at den-
sity r50.16 fm23. The Fermi kinetic energyTF , the expectation
values of the kinetic energŷT&, the two-body potential̂V&2 and
the three-body potential^V&3 are displayed together with the energ
per particleE in MeV units.

N TF ^T& ^V&2 ^V&3 E

14 35.600 44.47 229.41 4.31 19.37
38 33.703 42.41 229.43 4.70 17.68
66 34.917 43.64 229.07 4.82 19.39

114 35.646 44.40 228.87 4.87 20.40
1030 35.139 43.88 228.95 4.86 19.79

TABLE VI. As in Table V at densityr50.32 fm23.

N TF ^T& ^V&2 ^V&3 ^E&

14 56.512 74.33 248.04 17.18 43.47
38 53.500 71.64 250.25 19.36 40.75
66 55.428 73.41 249.51 20.30 44.20

114 56.584 74.56 248.94 20.78 46.40
1030 55.779 73.75 249.08 20.84 45.51
8-9
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potential @51# in the PBFHNC scheme. Such leading term
correspond to include up to two correlation operators in
three-body cluster diagrams. We will show that this appro
mation, hereafter denoted as PBFHNC/L, can already
used to roughly estimate the finite size effects.

The performance of the two-body cluster approximat
to account for finite size effects is studied in Table IV. The
for a purely central correlation without three-body forc
PBFHNC/L and PBFHNC energies are compared atr
50.16 fm23 for the range of particle numbers used in o
quantum Monte Carlo simulations.

Tables V and VI give the PBFHNC/L results for th
AU68 interaction at two different densities for a number
neutron systems. Note that the energy differences betw
the cases with 66 and 114 neutrons are very close to th
obtained in the AFDMC simulations, given in Tables VI
and IX. Previous work@29# has shown that the PBFHNC
results with 1030 particles are equal to the infinite syst
results to the accuracy shown. Systems with 14 and 38 n
trons are too small to be included easily in our simple fin
size effects analysis. It may be possible to extrapolate fr
these very small simulations if sufficient care is taken. F
example, the potentials may need to be more carefully cu
or summed, and the use of alternative boundary condition
likely to be helpful@52#. Since larger system sizes are read
calculated with AFDMC, we simply increased the number
particles until the extrapolation became easier.

FIG. 1. Mixed and growth energies versus the time step for
neutrons atr50.32 fm23 with the AU88 interaction.
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VI. RESULTS

A. AFDMC results for neutron matter

Extensive neutron matter calculations have been car
out for theAU68 andAU88 interactions by considering 14
38, 66, and 114 neutrons in a periodic box at various de
ties ranging from 0.75r0 up to 2.5r0.

In Fig. 1 we show a typical behavior of the mixed an
growth energy as a function the time step for 14 neutrons
a periodic box atr50.32 fm21 interacting viaAU88. At
Dt5531025 MeV21, we have found that the statistical e
ror is smaller than the extrapolation ones, irrespective of
density and number of particles. All the calculations repor
here have been obtained by using that value for the time s

The 14-neutron system is interesting because it is sm
enough to be studied by using other many-body meth
which become inefficient for larger systems. In order to p
vide a full set of results for this system in Table VII, w
report on the energies at several densities calculated with
v68 andv88 interactions.

Diffusion Monte Carlo calculations using a pair-produ
wave function for 14-neutron systems have just been
ported@28#. They, however, set the potential discontinuous
to zero at distances greater thanL/2, while we use either the
nearest image convention or a lattice sum giving a conti
ous potential. We expect better extrapolation to large sys
sizes with the continuous potential as well as smaller ti
step errors. The time step errors will affect our AFDMC ca
culations more because we currently use the primitive
proximation rather than building the Green’s function from
product of exact two-body Green’s functions. In princip
we could use the Hubbard-Stratonovich breakup for the p
product Green’s function. In any case, we have carried o

4

TABLE VII. AFDMC energies per particle in MeV of 14 neu
trons in a periodic box for interaction models at various densit
Error bars for the last digit are shown in parentheses.

r(fm23) v68 v88

0.12 12.41~4! 12.32~5!

0.16 15.12~4! 14.98~6!

0.20 17.86~5! 17.65~7!

0.32 27.84~6! 27.3~1!

0.40 36.0~1! 35.3~1!
s
Carlo
HNC/L
TABLE VIII. AFDMC energies per particle in MeV for theAU68 interaction obtained with system
with 14, 38, 66, and 114 neutrons at various densities. Error bars for the last digit of the Monte
calculations are shown in parentheses. The last column gives the extrapolated values from the PBF
calculation@51#.

r(fm23) AFDMC~14! AFDMC~38! AFDMC~66! AFDMC~114! AFDMC(`)

0.12 14.96~6! 13.76~9! 14.93~4! 15.62~8! 15.0
0.16 19.73~5! 18.56~8! 20.07~5! 20.99~9! 20.4
0.20 25.29~6! 24.4~1! 26.51~6! 27.6~1! 26.9
0.32 48.27~9! 49.8~1! 53.11~9! 55.3~2! 54.4
0.40 69.9~1! 74.5~2! 79.4~2! 82.2~2! 81.3
8-10
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calculation atr50.16 fm23 using the same discontinuou
potential, and obtained 20.64~2! MeV and 20.32~6! MeV for
the v68 and v88 potentials, respectively, compared with the
values of 19.91(11) and 17.00(27). The larger differen
when the spin-orbit term is included in the Hamiltonian m
be due to the different trial wave functions used.

In Tables VIII and IX we report on the results obtaine
with the AFDMC method of this work for neutron matter
the different densities considered for various system si
The extrapolation to infinite number of particles is carri
out by using the PBFHNC/L results for a given number
neutrons and for the infinite system.

The spin-orbit contribution is rather small at all of th
densities considered. This contrasts with previous FHN
SOC calculations. In Fig. 2, we plot the AFDMC resu
together with the variational FHNC/SOC results for thev88
interaction obtained by using correlation operators of theF6
and F8 forms, with the extrapolated unconstrained pa
Green’s function Monte Carlo~GFMC-UP! of Ref. @28# from
14-neutron simulations with thev88 interaction, and the
Brueckner-Hartree-Fock~BHF! results for thev18 potential
@53#. One can see that SOC(F6) and SOC(F8) in the figure
give quite different equations of state, particularly at hi
densities.

TABLE IX. AFDMC energies per particle in MeV for theAU88
interaction obtained with systems with 14, 38, and 66 neutron
various densities. Error bars for the last digit of the Monte Ca
calculations are shown in parentheses. The last column gives
extrapolated values from the PBFHNC/L calculation@51#.

r(fm23) AFDMC~14! AFDMC~38! AFDMC~66! AFDMC(`)

0.12 14.80~9! 13.96~5! 15.26~5! 15.5
0.16 19.76~6! 18.67~6! 20.23~9! 20.6
0.20 25.23~8! 24.7~1! 27.1~1! 27.6
0.32 48.4~1! 46.8~2! 54.4~6! 55.6
0.40 70.3~2! 76.3~2! 81.4~3! 83.5

FIG. 2. AFDMC energy per particle for neutron matter fro
simulations with 66 neutrons and thev88 potential. Variational
FHNC/SOC results obtained with correlation functions of typesF6

and F8 along with the the extrapolated unconstrained p
GFMC-UP of Ref.@28# and the BHF results of Ref.@53#. The sta-
tistical errors in the AFDMC results are smaller than the symbo
02430
e

s.

f

/

This difference in the effect of the spin-orbit potential
FHNC methods and AFDMC is quite different for the tw
techniques. We have tried including orbitals with spin-or
correlations of a backflow form@39# which, while giving a
lowering in the energy, does not resolve the discrepan
Neither transient estimates nor these spin-backflow orbi
reduce the energy by more than roughly 5%. However, th
is still a possibility that our constraining wave functions d
not contain enough overlap with the correct spin-orbit
duced states, and the transient estimates may not have
run for sufficient time to buildup the correct state. Like a
transient methods, they are limited by the exponen
buildup of noise.

The three-body potential gives a large contribution to
energy per particle at high densities. Therefore the search
a realistic three-body potential is a very fundamental pr
lem for the study of dense and cold hadronic matter. A c
siderable amount of work has been done to find, in a se
phenomenological way, three-body potentials to descr
ordinary matter. However, whether such potentials are a
valid in the high density regime is still an open and deba
issue. In Table X we report on AFDMC results perform
with the two bodyv68 interaction and five different three
body potentials including the Urbana-IX@12,20# ~UIX ! and
the recent Illinois 1 through four@13# three-body interac-
tions. One can see that already at twice the nuclear ma
density, the energy contributions from the three-body pot

at

he

h

.

TABLE X. AFDMC energies per particle in MeV for thev68
1IL potentials calculated with 66 particles. For the case ofv68
1IL2 interaction, atr50.32 fm23 the energies per particle with 3
and 54 neutrons are 12.6~2! and 10.0~3! MeV, respectively.

r(fm23) AU68 IL1 IL2 IL3 IL4

0.16 20.07~5! 11.2~1! 11.39~8! 12.0~4! 10.5~2!

0.32 53.11~9! 8.0~4! 11.1~3! 14.7~3! 4.7~3!

FIG. 3. Extrapolated AFDMC equation of state of pure neutr
matter with theAU88 potential~solid line!. The variational results
of Refs. @50# ~APR, dotted-dashed line! and @18# ~MPR, dashed
line! corresponding to the Argonnev18 two-body plus Urbana-IX
three-body potential are also plotted. The lines are for guiding
eyes. The statistical errors of the AFDMC estimates are smaller
the symbols.
8-11
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tials are large and very different from each other, in spite
the fact that all of them provide a satisfactory fit to t
ground state and the low energy spectrum of nuclei withA
<8.

In Fig. 3 we show the AFDMC equation of state for pu
neutron matter with theAU88 interaction corresponding to
the extrapolated values for infinite matter. We compare w
the variational results of Ref.@50# and the more recent one
of Ref. @18#; both of them are obtained with the Argonnev18
two- and Urbana-IX three-nucleon interactions. One can
that there is a surprising accidental agreement betw
our AFDMC results and the latest variational calculati
of Ref. @18#.

The compressibilityK, given by

1

K 5r3
]2E0~r!

]r2
12r2

]E0~r!

]r
, ~40!

can be estimated from the equation of state by takingE0
5E/A. For a Fermi gas the compressibility isKF

59p2m/(kf
5\2). The AFDMC results forK/KF obtained

from the extrapolated energies withAU88 are shown in Fig.

FIG. 4. Compressibility ratioK/KF for neutron matter obtained
from the extrapolated AFDMC energy per particle with theAU88
potential~solid line!. The compressibility obtained from the varia
tional results of Refs.@50# ~APR, dotted-dashed line! and @18#
~MPR, dashed line! is also plotted. The lines are for guiding th
eyes. The statistical errors of the AFDMC estimates are smaller
the symbols.

TABLE XI. Finite size corrections for symmetrical nuclear ma
ter @25#. PBFHNC results for the MS3 potential atr50.16 fm23.
The PBFHNC calculations have been performed with a Jastr
correlated wave function, whereas the FHNC/SOC result has b
obtained with a correlation operator of the typeF4. PBFHNC and
FHNC/SOC calculations include the basic four-point element
diagramE4.

A PB-FHNC FHNC/SOC AFDMC

28 213.6 216.17(6)
76 215.6 218.08(3)

2060 214.0
` 214.0 214.9 216.5(1)
02430
f
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4. They are compared with the compressibility calcula
from the variational energies of Refs.@18,50#.

B. AFDMC results for nuclear matter

The AFDMC can deal withNÞZ systems, and we hav
applied it to compute the asymmetry coefficient of the m
formula for the semirealistic two-body potential MS3 whic
is spin-isospin dependent but has no tensor force@54,55#.
The resulting values ofE/A at r0 for symmetrical nuclear
matter are given in Table XI, where they are also compa
with the FHNC/SOC and PBFHNC results. The finite si
correction is estimated from the corresponding PBFHN
results.

In Fig. 5 we plot the AFDMC energy per particle as
function of the asymmetry parameter,a5(N2Z)/(N1Z),
of nuclear matter. The FHNC/SOC curve corresponds t
quadratic fit of nuclear matter (a50) and pure neutron mat
ter (a51).

FHNC/SOC can only be used to studyN5Z or N5A
matter. The symmetry energy obtained from FHNC/SOC
41.59 MeV. The functionE/A(a) provided by the AFDMC
results is not fully quadratic ina, and corresponds to a sym
metry energy of;36.4 MeV.

VII. OUTLOOK AND CONCLUSIONS

We have described a quantum Monte Carlo method s
cially suited to perform calculations on nucleon systems w
noncentral interactions. It has been applied here to calcu
the equation of state of pure neutron matter with fully re
istic interactions by approximating it with up to 114 neutro
in a simulation box. Finite size effects have been estima
by performing two- plus three-body cluster diagrams cal
lations based on PBFHNC method with spin-dependent c
relations. The results obtained show an overall agreem
with Brueckner–Hartree-Fock calculations and with a rec
two- plus three-body cluster diagram variational calculat
@18# with the exception of the spin-orbit effects in these lat
calculations. Our results indicate that there is a very sm
contribution coming from the spin-orbit component of th
two-body interaction while the effect from the three-bo

an

-
en

y

FIG. 5. AFDMC and FHNC/SOC energy per particle of nucle
matter for several values of the asymmetry parameter@25#. The
lines correspond to polynomial fits of the calculated energies.
8-12
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potential is quite large, particularly at high densities. T
large differences obtained for the equation of state for diff
ent phenomenological three-body potentials point ou
three-body potential problem in the study of dense and c
hadronic matter.

Work in progress is to validate the present results us
trial wave functions, other than the simple Slater determin
given in Eq. ~38!, which can also be calculated efficient
@39#. This will allow us to both lower the variance of ou
calculations, as is usual when better guiding functions
used in the importance sampling of the random walk, as w
as to obtain a better path constraint.

We believe that our method should be able to prod
accurate Monte Carlo calculations of a wide variety
nuclear systems. While previous Monte Carlo calculatio
have been severely restricted on the particle number by
spin-isospin sum, this restriction is lifted by using the aux
iary field breakup of the spin-isospin part of the Hamiltonia
ev

s

e

d

d

i

so

hy

a
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while using standard diffusion Monte Carlo for the spat
degrees of freedom. A pressing need is simulating nuc
matter with fully realistic interactions as already done f
pure neutron matter, calculating the properties of light nuc
to compare with exact GFMC calculations, and investigat
pion condensation. In addition, including explicit meson d
grees of freedom can also be attempted. In the languag
this paper, each meson field mode corresponds to an a
iary field @22#.
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