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Quadrupole correlation energy by the generator coordinate method
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We investigate the accuracy of several schemes to calculate ground-state correlation energies using the
generator coordinate technique. Our test bed for the study is thesd-interacting boson model, equivalent to a
six-level Lipkin-type model. We find that the simplified projection of a triaxial generator coordinate state using
theS3 subgroup of the rotation group is not very accurate in the parameter space of the Hamiltonian of interest.
On the other hand, a full rotational projection of an axial generator coordinate state gives remarkable accuracy.
We also discuss the validity of the simplified treatment using the extended Gaussian overlap approximation,
and show that it works reasonably well when the number of boson is 4 or larger.
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I. INTRODUCTION

The self-consistent mean-field theories with a pheno
enological nucleon-nucleon interaction have enjoyed a s
cess in describing ground-state properties of a wide rang
atomic nuclei with only a few adjustable parameters~see
Ref. @1# for a recent review!. They are now at a stage whe
the ground-state correlations beyond the mean-field appr
mation have to be taken into account seriously. This is pa
due to the fact that much more accurate calculations h
been increasingly required in recent years because of
experimental progress in the production of nuclei far fro
the stability line, where the ground-state correlation beyo
the mean-field approximation may play an important ro
The major part of the correlations produces effects wh
have smooth trends with proton and neutron number. Th
are already incorporated into the energy functionals of eff
tive mean-field models as, e.g., Skyrme-Hartree-Fock or
relativistic mean-field model. However, the correlations
sociated with low-energy modes show strong variations w
shell structure, and cannot be contained in a smooth ene
density functional. This concerns the low-energy quadrup
vibrations and all zero-energy modes associated with s
metry restoration. In fact, the correlation effects appear m
dramatically for these symmetry modes as there are the
ter of mass localization, the rotational symmetry, and
particle number conservation. Those correlation effects m
be taken into account explicitly in order to develop a glob
theory which can be extrapolated to the drip-line regions

There are many ways in which correlation energies can
calculated. In Ref.@2#, we investigated a method which us
the random phase approximation~RPA!. We found that the
RPA provides a useful correlation around spherical as we
for well deformed configurations, but it fails badly aroun
the phase transition point between spherical and deform
Because of this defect, the RPA approach does not seem
best method for a global theory. Recently, we have de
oped an alternative method, called the extended Gaus
overlap approximation~top-GOA!, to calculate the ground
state correlation energies based on the generator coord
0556-2813/2003/68~2!/024306~8!/$20.00 68 0243
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method@3#. This is a generalization of the Gaussian overl
approximation by taking into account properly the topolo
of the generator coordinate@4#. This method can be easil
applied to the variation after projection~VAP! scheme,
where the energy is minimized after the mean-field wa
function is projected on to the eigenstates of the symme
@5#. We have tested this method on the three-level Lip
model, which consists of one vibrational degree of freed
and one rotational@3#, and have confirmed that the metho
provides an efficient computational means to calcul
ground-state correlation energies for the full range of c
pling strengths.

In this paper, we continue our study on the correlati
energies using a model which contains the full degrees
freedom of quadrupole motion. To this end, we use
sd-interacting boson model~IBM ! @6,7#, which may be
viewed as a six-level extension of the Lipkin model@8#. The
IBM is particularly tailored for the description of the low
lying collective modes, thus providing a good testing grou
for the present studies of correlations. In realistic syste
treating all the five quadrupole degrees of freedom is a
ficult task in many aspects. Even if one restricts onesel
the rotational degrees of freedom, one in general has to
with integrals over the three Euler anglesf, u, andx. The
full triaxial projection is still too costly, since a number o
rotated wave functions may be required in order to ge
converged result. Also, the top-GOA scheme for triaxial n
clei is not as simple as in the three-level Lipkin model, b
cause one has to take into account properly the coup
among the three Euler angles. How can one overcome th
difficulties? We shall study here two approximate projecti
methods. One is the approximate angular momentum pro
tion proposed by Boncheet al. @9#, which uses theS3 sub-
group of the rotation group. With this approximation, o
needs only five rotated wave functions. The other sche
which we consider is the axially symmetric approximatio
where the energy is minimized with respect to deformationb
only, setting the triaxialityg equal to zero. With this approxi
mation, the integrations for thef andx angles become un
necessary, reducing the projection to a one-dimensional i
©2003 The American Physical Society06-1
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gral overu. The axially symmetric approximation has be
widely used in the mean-field calculations@10,11#, where the
approximation seems reasonable given that most nucle
not have a static triaxial ground state. However, it is n
obvious whether the approximation remains valid when
fluctuations around the mean-field configuration are
cluded, especially when the deformation is small.

The paper is organized as follows. In Sec. II, we set up
model Hamiltonian and discuss several approaches. T
include the mean-field approximation, the full triaxial ang
lar momentum projection and its approximation, the axia
symmetric approximation, and the top-GOA for the ax
projection. In Sec. III, we compare these schemes with
exact solutions of the Hamltonian obtained from the ma
diagonalization. We especially focus on the feasibility
each method in realistic systems. We then summarize
paper in Sec. IV.

II. sd-BOSON HAMILTONIAN

Consider anN-boson system whose Hamiltonian is give
by

H5H01V5e(
m

dm
† dm2

1

2 (
m

Qm
† Qm . ~1!

The first term expresses the single-particle HamiltonianH0,
while the second term is the residual quadrupole-quadru
interaction. The quadrupole operatorQm is defined as

Qm5l1~s†d̃m1dm
† s!1l2@d†d̃# (2m), ~2!

where d̃m5(2)md2m . When l15l250 and e.0, the
ground state is thes-boson condensed state, whose wa
function is given by (s†)N/AN! u&. For a finite value ofl1
andl2, the Hamiltonian may be diagonalized using the nu
ber basis given by

u$n%&5unsnd22
nd21

nd0
nd1

nd2
&, ~3!

taking only the configurations satisfying

ns1nd22
1nd21

1nd0
1nd1

1nd2
5N, ~4!

22nd22
2nd21

1nd1
12nd2

50. ~5!

The first condition, Eq.~4!, constrains the boson numbe
while the second equation, Eq.~5!, is the condition that thez
component of the angular momentum is zero. With th
constraints, the basis has a dimenion of 5 forN52, 18 for
N54, and 203 forN510. We are going to compare th
exact solutions obtained in this way with results of the c
lective treatment based on the mean-field approximation
angular momentum projection.

A. Mean-field approximation

We first solve the Hamiltonian in the mean-field appro
mation. To this end, we consider an intrinsic deformed me
field state given by@7#
02430
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ubg&5
1

AN!
~b†!Nu&, ~6!

where the deformed boson operator is defined as

b†5
1

A11b2 S s†1bcosgd0
†1

b

A2
sing~d2

†1d22
† !D . ~7!

The parameterb accounts for the global deformation andg
for triaxiality. The deformation energy surface then reads@7#

EMF~b,g!5^bguHubg&, ~8!

5e
Nb2

11b2
2

1

2

N

~11b2!2
l1

2H ~11b2!F5

1S 11
l2

2

l1
2D b2G1~N21!S 4b2

2A32

7

l2

l1
b3cos 3g1

2

7

l2
2

l1
2
b4D J . ~9!

One finds that the energy minimum appears on the pro
side (b.0,g50) whenl2 /l1,0, while it is on the oblate
side (b.0,g5p/3) for l2 /l1.0. When l2 is zero, the
energy surface is independent ofg, corresponding to the
g-unstable case.

B. Triaxial angular momentum projection

Whenb is nonzero, the intrinsic wave function~6! is not
an eigenstate of the total angular momentumJ. One can
project this state onto theJ50 state as@5#

ubg,J50&}E dVR̂~V!ubg&

5E
0

2p

dfE
0

2p

dxE
0

p

sinuduR̂~f,u,x!ubg&,

~10!

whereR̂(V) is the rotation operator. The corresponding e
ergy is given by

Eproj~b,g!5

E dV^bguHR̂~V!ubg&

E dV^bguR̂~V!ubg&

. ~11!

Notice that the rotated wave function can be expressed
terms of the rotated boson operator as

ubgV&[R̂~V!ubg&5
1

AN!
~bR

† !Nu&, ~12!

with
6-2
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bR
†[R̂~V!b†R̂21~V!

5
1

A11b2 S s†1b cosg(
m

Dm0
2 ~V!dm

†

1
b

A2
sing(

m
@Dm2

2 ~V!1Dm22
2 ~V!#dm

† D , ~13!

whereDmm8
2 (V) is the Wigner’sD function. The overlaps in

the projected energy~11! can be expressed in terms of com
mutators such as

@b,bR
† #5

1

11b2
$11b2cos2gd00

2 ~u!

1b2sin2g@d22
2 ~u!cos~2f12x!1d222

2 ~u!cos~2f

22x!#1A2b2sing cosg d20
2 ~u!@cos~2x!

1cos~2f!#%. ~14!

The results are

I ~V![^bguR̂~V!ubg&5@b,bR
† #N, ~15!

H0~V!

I ~V!
[

^bguH0R̂~V!ubg&

^bguR̂~V!ubg&
5eNS 12

1

@b,bR
† #

D , ~16!

V~V!

I ~V!
[

^bguVR̂~V!ubg&

^bguR̂~V!ubg&

52
N

2

1

@b,bR
† #

(
m

†@b,Qm
† #,@Qm ,bR

† #‡

2
N~N21!

2@b,bR
† #2 (

m
†b,@Qm ,bR

† #‡†@b,Qm
† #,bR

†
‡.

~17!

Here, we have used the relation

@Â,B̂N#5NB̂N21@Â,B̂#1
1

2
N~N21!B̂N22

†@Â,B̂#,B̂‡1•••,

~18!

for arbitrary operatorsÂ andB̂. We give an explicit expres
sion for the quadrupole commutators@Qm ,bR

† # and@Qm ,b†#
in the Appendix.

In practice, one can evaluate the integrals in Eq.~11! as
follows. First notice that the integration intervals for thex
andf angles can be reduced from (0,2p) to (0,p), since the
K quantum number is even for the intrinsic state~6! @12#.
Next, because of the reflection symmetry of the intrin
wave function~6! with respect to thez plane, the integration
range for theu angle can be reduced to (0,p/2). One can
then apply the Gauss-Legendre quadrature formula to thu
02430
c

integral, and the Gauss-Chebyschev formula to thex andf
integrals@12,13#. One may also try the simpler Simpson fo
mula. We will check the convergence of these formulas
the following section.

C. Approximate triaxial projection with octahedral group

Boncheet al. have considered an approximation to t
triaxial angular momentum projection~10! based on the oc-
tahedral rotation group, that is, a group formed from perm
tations of the principal axes of inertia@9#. With this repre-
sentation, the projected wave function~10! is approximated
as

ubg,J50&'(
i 51

24

Ŝi ubg&, ~19!

whereŜi are the 24 elements of the octahedral group. In
case with states even under parity, the octahedral grou
reduced toS3, the group of permutations of three objects~the
x,y,z axes!. The six rotations to be treated are@9#

Ŝ15R̂~0,0,0!51,

Ŝ25R̂~p,p/2,0!,

Ŝ35R̂~2p/2,2p/2,0!,
~20!

Ŝ45R̂~p/2,2p/2,p/2!,

Ŝ55R̂~0,p,p/2!,

Ŝ65R̂~0,p,2p/2!.

D. Axial projection

When the triaxialityg is zero, thef andx integrals in Eq.
~10! become trivial. The triple integral is then reduced to
much simpler single integral with respect to the angleu.
This simplifies the projected energy~11! to

Eproj~b!5

E
21

1

d~cosu!@H0~u!1V~u!#

E
21

1

d~cosu!I ~u!

, ~21!

where the overlaps in this axial approximation read

I ~u!5
1

~11b2!N S 11
b2

2
~223 sin2u! D N

, ~22!

H0~u!

I ~u!
5eN

b2~12 3
2 sin2u!

11b2~12 3
2 sin2u!

, ~23!
6-3
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V~u!

I ~u!
52

N

2

1

@11b2~12 3
2 sin2u!#2 H F11b2S 12

3

2
sin2u D G

3F5l1
21~l1

21l2
2!b2S 12

3

2
sin2u D G

1~N21!b2S l1
2~113 cos2u!1

4

A14
l1l2

3b~123 cos2u!1
l2

2

14
b2~429 sin2u cos2u!D J .

~24!

The axiallay projected energy~21! depends, of course, onl
on the global deformationb. The VAP means then to mini
mize the projected energy with respect to the deforma
parameterb.

E. Top-GOA for axial projection

A further simplification may be achieved using a secon
order approach, the top-GOA. In this scheme, the overl
are expanded up to second-order derivatives with respe
the generator coordinate while retaining its topology. For
axial projection considered in the preceding section, the p
cedure is very similar as in Ref.@3# for the three-level Lipkin
model. From Eqs.~22!–~24!, it is clear that a natural choic
for the expansion variable is sinu. Expanding the overlaps
with respect to sinu, one obtains

I ~u!'expS 2
3

2

Nb2

11b2
sin2u D , ~25!

H0~u!1V~u!

I ~u!
'EMF~b!1

H2~b!

2
sin2u, ~26!

where EMF(b) is the mean-field energy given by Eq.~9!
~with g50), andH2(b) is defined as

H2~b!5
d2

du2

H0~u!1V~u!

I ~u!
U

u50

. ~27!

Note that we have exponentiated the normalization ove
I (u) following the idea of the Gaussian overlap approxim
tion @14#.

III. NUMERICAL RESULTS

A. Comparison of projection schemes

The exact ground state for the model Hamiltonian~1! and
the various integrals needed for the projection schemes
solved numerically by standard methods. Figure 1 compa
the exact solution of the Hamiltonian with the several a
proximations to the triaxial angular momentum projecti
for N54 ande51. The interaction strengthl2 is set to be
l2 /l152A7/4 for eachl1, that is, a half the SU~3! value,
(l2 /l1)SU(3)52A7/2 @15,16#. The top panel of the figure
shows the ground-state correlation energy, i.e., a differe
02430
n
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between the ground-state and the mean-field energies,
function of the interaction strengthl1. The mean-field en-
ergy is obtained by minimizing the energy surface~9!. The
optimum deformation parameterb thus obtained is shown by
the thin solid line in the middle panel. One sees the ph
transition between the spherical and the deformed config
tions atl150.47. The results of full triaxial angular momen
tum projection, obtained by minimizing the projected ener
surface~11!, are shown by the solid circles in the top pan
These results reproduce well the exact results, indicating
the vibrational contribution is not large in this model. Th
optimum deformationsb andg are shown by the thick solid
line in the middle and the bottom panels, respectively.
contrast to the mean-field approximation, the optimum de
mationb is finite for all the values ofl1, showing no phase
transition @3#. This is a well-known feature of the VAP
scheme@5#. The dotted line in the figure denotes the resu
of the approximate triaxial angular momentum projection
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Mean Field
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Triaxial Projection
Triaxial Proj. (Approx.)

λ2 / λ1 = −(7)
1/2

/4

FIG. 1. The ground-state correlation energy obtained by the s
eral methods~the top panel!. The parameters of the Hamiltonian a
taken to beN54,e51, andl2 /l152A7/4. The solid line is the
exact solution of the Hamiltonian obtained by the matrix diagon
ization. The dots are the results of the full triaxial angular mom
tum projection, while the dashed line is obtained by restricting
intrinsic state to the axially symmetric shape in minimizing t
projected energy surface. The dotted line denotes the results o
approximate triaxial angular momentum projection which uses
S3 subgroup of the octahedral group. The middle and the bot
panels show the optimum value of the deformation parameterb
andg, for the angular momentum projections. The meaning of
thick solid, the dashed, and the dotted lines is the same as in th
panel, while the thin solid line is the result of the mean-field a
proximation.
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theS3 subgroup of the rotation group. This method does
seem to provide enough correlation energy, and the ag
ment with the exact results is poor for all the region ofl1.

What is the role played by the triaxialityg in these cal-
culations? In order to study this, we show the results of
axial projection by the dashed line in the figure. These
obtained by minimizing the energy function~21!, which is
equivalent to minimizing Eq.~11! while keepingg50. We
find that this approximation reproduces the exact solut
remarkably well. The result might appear surprising, sin
the axially symmetric approximation is not expected to wo
near spherical, where all the five quadrupole degrees of f
dom should contribute in a similar way. However, as
have already discussed, the VAP scheme always leads
well developed deformation even when the mean-field c
figuration is spherical~see the middle panel!, and such ‘‘dan-
gerous’’ region can be avoided. Moreover, even though
optimum deformation can be small when the interact
strength is very small, this is an irrelevant case since
correlation effect is small there. Figure 2 shows the projec
energy surfaceEproj(b,g), measured with respect to the e
ergy of the pure configuration,s4, at l150.5 andb50.741
as a function of triaxialityg. One sees that the energy ga
due to the triaxial deformation is indeed small, being cons
tent with the performance of the axially symmetric appro
mation shown in Fig. 1. We summarize the results forl1
50.5 in Table I.

As a further test of the axially symmetric approximatio
we repeat the calculations forl2 /l150, that is, the

-60 -40 -20 0 20 40 60

γ   (deg)

-0.8

-0.7

-0.6

-0.5

E
pr

oj
 (

β pr
oj
 , 

γ)
 −

 E
(s

4 )
N = 4, λ1 = 0.5, λ2/λ2 = −(7)

1/2
/4

FIG. 2. The projected energy surfaceEproj(b,g), measured with
respect to the energy of the pure configuration,s4, along theg
direction for b50.741. The parameters of the Hamiltonian a
taken to beN54,e51, l150.5, andl2 /l152A7/4.

TABLE I. Comparison of the ground-state energyE and the
optimum deformation parametersb and g obtained with severa
methods. The parameters of the Hamiltonian are taken to bN
54, e51, l150.5, andl2 /l152A7/4. The energy is measure
with respect to that of the pure configuration,s4.

Scheme E2E(s4) b g ~deg!

Exact 20.8193
Triaxial projection 20.8189 0.741 17.64
Axial projection 20.8017 0.723 0.0
02430
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,

g-unstable case. The results are shown in Fig. 3, where
meaning of each line is the same as in Fig. 1. Note that
optimum triaxiality parameterg in the triaxial angular mo-
mentum projection is 30° for all the values ofl1, reflecting
the g-unstable nature of the mean-field approximation.
this case, the performance of the axial approximation is
as good as in Fig. 1~see the dashed line!. However, it still
provides about 80% of correlation energy atl151, and
slightly larger at smaller values ofl1, which may be accept-
able even in realistic systems.

We notice here that the axially symmetric approximati
is sufficient forN52 irrespective of the values ofl1 andl2.
From Eqs.~10! and~12!, the~normalized! wave function for
J50 state reads

ubg,J50&5
1

A21 2
5 b4

FA2
s†s†

A2
1

b2

5 S 2d2
†d22

† 22d1
†d21

†

1A2
d0

†d0
†

A2
D G u&, ~28!

for any value ofg. The projected wave function is thu
independent ofg, and so is the projected energy surface. W
also note that the axially symmetric approximation becom
exact in the limit ofN→`, as was argued by Kuyucak an
Morrison using the 1/N expansion technique@17#. For N
52, the wave function~28! is in fact exact, whenb is mini-
mized. This follows from the observation that there are o
two J50 states in the (sd)4 configuration space, and the
relative amplitudes can be set by a suitable choice ofb, in
case of attractive interactions. We have checked the tren
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λ2 / λ1 = 0

FIG. 3. Same as Fig. 1, but forl2 /l150.
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between the two limits,N52 and largeN. The influence of
triaxiality is found strongest aroundN54, where the corre-
lation effects are also largest. The effect of triaxiality th
decreases slowly as the boson numberN increases.

B. Efficient angular momentum projection

We next discuss the feasibility of the angular moment
projection. From a computational point of view, it is a cos
operation to apply the rotation operator to a mean-field c
figuration and take overlaps with it. Thus one wants to mi
mize the number of points in the angular integration me
Figure 4 shows the convergence of the angular integral
the projected energy surface~11! with respect to the numbe
of rotated wave functionsNrot , for the same parameter set
in Fig. 2. Notice that the relations@H,PJ#50 and (PJ)

2

5PJ are used in deriving Eq.~11!, wherePJ is the projec-
tion operator. For a finite value ofNrot , these relations may
be violated, and consequently, the numerical formula d
not give an upper bound of the energy. The open circles
the results of the Simpson method, while the closed circ
are obtained with the Gaussian quadrature formulas~see Sec.
II C!. These are for fixed values of deformation parameterb
andg, as indicated in the inset of the figure. The upper pa
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FIG. 4. Influence of the generator coordinate truncation on
ground-state energy. The upper and the lower panels are for
axial and the triaxial projections, respectively. The former plots
energy as a function of the number of rotated wave functionsNrot ,
while the latter plots as a function of (Nrot)

1/3, for the optimum
values of the deformation parametersb andg indicated in the in-
sets. The open and the closed circles are the results of the Sim
method and the Gaussian quadrature formula, respectively. Th
angles denote the result of the top-GOA approximation~in the up-
per panel! and that of the approximate projection with theS3 sub-
group ~in the lower panel!. The parameters of the Hamiltonian a
the same as in Fig. 2.
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is for the axial projection, while the lower panel for the tr
axial projection. Note that the former is plotted as a functi
of Nrot , while the latter involves the three integrals and
plotted as a function of (Nrot)

1/3. For the Simpson method
we exclude the (f,u,x)5(0,0,0) point in counting the num
ber of stateNrot in the horizontal axis. This state correspon
to the unrotated state from which the rotated wave functi
are constructed, regardless of which quadrature formula
uses. The figure also shows the result of top-GOA and
approximate triaxial projection with theS3 group as a com-
parison, which correspond toNrot51 and 5, respectively
From the figure, one observes that the convergence for
axial projection is quick if one uses the Gauss-Legen
quadrature formula. The energy is almost converged atNrot
53. The Simpson method, on the other hand, requires m
terms to achieve the convergence. For the triaxial project
a similar convergence is seen for each of the three integ
However, the required number of rotated wave functions
as large as 27 in total, making the triaxial angular moment
projection with the VAP minimization impractical. The situ
ation is even worse for a larger value ofN. To demonstrate
this, Fig. 5 shows the results forN510. The convergence is
somewhat slower in this system compared with theN54
case. Note that theNrot points-Gauss-Legendre formula
exact when the maximum spin in the intrinsic state isJmax
52Nrot22 @12,18#. In the presentsd model, the maximum
spin Jmax is given by 2N, and therefore more points ar
needed in order to get a convergence for the larger valu
N.

Finally, we discuss the applicability of the top-GOA a
proach to axial projection~see Sec. II E!. This approach re-
quires only one slightly rotated wave function in order
evaluate the second derivatives. Figure 6 shows the corr
tion energy forN54 obtained with the top-GOA approxima
tion ~the dotted line!, and with the full axial projection~the
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FIG. 5. Same as Fig. 4, but forN510.
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dashed line!. The figure also contains the exact solutions a
comparison. The upper panel is forl2 /l152A7/4, while
the lower panel is forl2 /l150. We see that the top-GOA
approximation reproduces the full projection reasona
well. The performance is somewhat better forl2 /l15

2A7/4. As was discussed in Ref.@3#, the applicability of the
top-GOA approaches increases quickly for a larger value
boson numberN. Indeed, the upper panel of Figs. 4 and
indicates that the agreement between the top-GOA and
exact projection significantly improves whenN510.

IV. SUMMARY

We have used thesd-interacting boson model to invest
gate projections in a generator coordinate approach to ca
late the ground-state correlation energy associated with
quadrupole motion. Our conclusions about the efficiency
various approximations are clear. The full angular mom
tum projection of a triaxial intrinsic state requires a lar
number of rotated wave functions, and it is too costly
realistic calculations. On the other hand, we found that
angular momentum projection of an axial intrinsic state p
vides a useful ground-state correlation energy. The axi
symmetric approximation is exact forN52 andN5`. The
number of rotated wave functions needed there is of the
der of 4 if one uses the Gauss-Legendre quadrature form
to compute the angle integral. The approximate triaxial p
jection using theS3 group requires five rotated wave fun
tions and still performs rather poorly. We thus conclude t
the axial projection provides the most promising method

-3

-2.5

-2

-1.5

-1

-0.5

0

Exact
Exact Axial Proj.
TopGOA Axial Proj.

0 0.5 1

λ1
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-2

-1

0E
 -

 E
M

F

λ2 / λ1 = −(7)
1/2

/4

λ2 / λ1 = 0

Ν = 4

FIG. 6. The correlation energy obtained in the axially symme
approximation as a function ofl1 for N54. The upper and the
lower panels are forl2 /l152A7/4 andl250, respectively. The
dashed line is the result of the full axial projection, while the dot
line is obtained in the top-GOA approximation to the axial proje
tion. The exact solution of the Hamiltonian is denoted by the so
line.
02430
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compute systematically the ground-state correlation ene
for deformation.

In applying any projection or generator coordinate exp
sion, however, one has to bear in mind that up to now
energy-density functional is defined for a single Slater de
minant state. It is not designed for a multideterminantal wa
function such as the projected state, and there are amb
ities in calculating the density-dependent interaction ene
using the energy functional. Although several recipes h
been proposed, they are all subject to a conceptional p
lem. This difficulty can be avoided in either of the followin
ways. One is to use the top-GOA approximation, which c
be formulated in terms of the expectation values in the me
field wave function@3#. We have studied the applicability o
the top-GOA with the present model, and have shown tha
already gives a reasonable result forN54 and the perfor-
mance improves for larger values ofN. Alternatively, one
may also specify the density dependence in more deta
remove ambiguities. Along these lines, a new form of t
Skyrme interaction was recently proposed by Duguet a
Bonche@19#. In either way, the axially symmetric approx
mation leads to a substantial simplification to perform t
angular momentum projection with only a few Slater det
minants, providing a useful means to construct a microsco
global theory for the nuclear binding energy systematics.
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APPENDIX: QUADRUPOLE COMMUTATORS

In this appendix, we give an explicit expression for t
quadrupole commutators@Qm ,bR

† # and@Qm ,b†# in Eq. ~17!.
For this purpose, it is convenient to use a compact nota
for the boson operatorblm , where b005s and b2m5dm .
Using this notation, we express the quadrupole operatorQm

and the rotated boson operatorbR
† as

Qm5 (
l 1 ,m1

(
l 2 ,m2

ql 1m1 ,l 2m2

(m) bl 1m1

† bl 2m2
, ~A1!

and

bR
†5(

l ,m
Blm~V!blm

† , ~A2!

respectively. Here, the coefficientsql 1m1 ,l 2m2

(m) andBlm(V) are

given by

c

-
d
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q00,2m1

(m) 5~2 !ml1dm1 ,2m , ~A3!

q2m1,00
(m) 5l1dm1 ,m , ~A4!

q2m1,2m2

(m) 5~2 !m2^2m122m2u2m&l2 , ~A5!

B00~V!5
1

A11b2
, ~A6!

B2m~V!5
1

A11b2 S b cosgDm0
2 ~V!1

b

A2
sing@Dm2

2 ~V!

1Dm22
2 ~V!# D . ~A7!

From Eqs.~A1! and ~A2!, one finds
hy

e

02430
@Qm ,bR
† #5 (

l 1 ,m1
(

l 2 ,m2

ql 1m1 ,l 2m2

(m) Bl 2m2
~V!bl 1m1

† . ~A8!

The commutator@Qm ,b†# can be obtained by settingV50
in Eq. ~A8!. This yields

†@b,Qm
† #,@Qm ,bR

† #‡5 (
l 1 ,m1

(
l 2 ,m2

(
l 3 ,m3

ql 1m1 ,l 2m2

(m) ql 1m1 ,l 3m3

(m)

3Bl 2m2
~V!Bl 3m3

~0!, ~A9!

†b,@Qm ,bR
† #‡5 (

l 1 ,m1
(

l 2 ,m2

ql 1m1 ,l 2m2

(m) Bl 2m2
~V!Bl 1m1

~0!,

~A10!

†@b,Qm
† #,bR

†
‡5 (

l 1 ,m1
(

l 2 ,m2

ql 1m1 ,l 2m2

(m) Bl 1m1
~V!Bl 2m2

~0!.

~A11!
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