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Quadrupole correlation energy by the generator coordinate method
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We investigate the accuracy of several schemes to calculate ground-state correlation energies using the
generator coordinate technique. Our test bed for the study isdfieteracting boson model, equivalent to a
six-level Lipkin-type model. We find that the simplified projection of a triaxial generator coordinate state using
the S; subgroup of the rotation group is not very accurate in the parameter space of the Hamiltonian of interest.
On the other hand, a full rotational projection of an axial generator coordinate state gives remarkable accuracy.
We also discuss the validity of the simplified treatment using the extended Gaussian overlap approximation,
and show that it works reasonably well when the number of boson is 4 or larger.
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I. INTRODUCTION method[3]. This is a generalization of the Gaussian overlap
approximation by taking into account properly the topology
The self-consistent mean-field theories with a phenomef the generator coordinafé]. This method can be easily
enological nucleon-nucleon interaction have enjoyed a sucapplied to the variation after projectiofVAP) scheme,
cess in describing ground-state properties of a wide range ofhere the energy is minimized after the mean-field wave
atomic nuclei with only a few adjustable parametégsse function is projected on to the eigenstates of the symmetry
Ref.[1] for a recent review They are now at a stage where [5]. We have tested this method on the three-level Lipkin
the ground-state correlations beyond the mean-field approxmodel, which consists of one vibrational degree of freedom
mation have to be taken into account seriously. This is partlyand one rotational3], and have confirmed that the method
due to the fact that much more accurate calculations haverovides an efficient computational means to calculate
been increasingly required in recent years because of thground-state correlation energies for the full range of cou-
experimental progress in the production of nuclei far frompling strengths.
the stability line, where the ground-state correlation beyond In this paper, we continue our study on the correlation
the mean-field approximation may play an important role.energies using a model which contains the full degrees of
The major part of the correlations produces effects whictfreedom of quadrupole motion. To this end, we use a
have smooth trends with proton and neutron number. Thesgd-interacting boson mode{IBM) [6,7], which may be
are already incorporated into the energy functionals of effecviewed as a six-level extension of the Lipkin mofi@]. The
tive mean-field models as, e.g., Skyrme-Hartree-Fock or thé8M is particularly tailored for the description of the low-
relativistic mean-field model. However, the correlations asdying collective modes, thus providing a good testing ground
sociated with low-energy modes show strong variations witHor the present studies of correlations. In realistic systems,
shell structure, and cannot be contained in a smooth energyreating all the five quadrupole degrees of freedom is a dif-
density functional. This concerns the low-energy quadrupoldicult task in many aspects. Even if one restricts oneself to
vibrations and all zero-energy modes associated with synthe rotational degrees of freedom, one in general has to deal
metry restoration. In fact, the correlation effects appear moswith integrals over the three Euler anglés ¢, andy. The
dramatically for these symmetry modes as there are the cefull triaxial projection is still too costly, since a number of
ter of mass localization, the rotational symmetry, and thgotated wave functions may be required in order to get a
particle number conservation. Those correlation effects mustonverged result. Also, the top-GOA scheme for triaxial nu-
be taken into account explicitly in order to develop a globalclei is not as simple as in the three-level Lipkin model, be-
theory which can be extrapolated to the drip-line regions. cause one has to take into account properly the coupling
There are many ways in which correlation energies can bamong the three Euler angles. How can one overcome these
calculated. In Ref[2], we investigated a method which uses difficulties? We shall study here two approximate projection
the random phase approximatiéRPA). We found that the methods. One is the approximate angular momentum projec-
RPA provides a useful correlation around spherical as well agon proposed by Bonchet al. [9], which uses the5; sub-
for well deformed configurations, but it fails badly around group of the rotation group. With this approximation, one
the phase transition point between spherical and deformedieeds only five rotated wave functions. The other scheme
Because of this defect, the RPA approach does not seem théhich we consider is the axially symmetric approximation,
best method for a global theory. Recently, we have develwhere the energy is minimized with respect to deformafion
oped an alternative method, called the extended Gaussiamly, setting the triaxialityy equal to zero. With this approxi-
overlap approximatioritop-GOA), to calculate the ground- mation, the integrations for thé and y angles become un-
state correlation energies based on the generator coordinatecessary, reducing the projection to a one-dimensional inte-
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gral overd. The axially symmetric approximation has been 1

widely used in the mean-field calculatiofi®,11], where the |By)=—=(b"HN]), (6)

approximation seems reasonable given that most nuclei do VNI

not have a static triaxial ground state. However, it is not ) i

obvious whether the approximation remains valid when thdVhere the deformed boson operator is defined as

fluctuations around the mean-field configuration are in- 8

cluded, especially when the deformation is small. t_ + 1, P t At
The paper is organized as follows. In Sec. II, we set up the J1+ B2 s'+ Beosydg \/ESInY(dZerZ))' "

model Hamiltonian and discuss several approaches. These

include the mean-field approximation, the full triaxial angu- The parameteB accounts for the global deformation and

lar momentum projection and its approximation, the axiallyfor triaxiality. The deformation energy surface then regtls

symmetric approximation, and the top-GOA for the axial

projection. In Sec. Ill, we compare these schemes with th&ye(8,7)=(B87v|H|BY), (8
exact solutions of the Hamltonian obtained from the matrix
diagonalization. We especially focus on the feasibility of NBZ 1
each method in realistic systems. We then summarize the =€ ) 5 2)@ (1+8%)|5
paper in Sec. IV. 1+8 (1+p89)
)\2
Il. sd-BOSON HAMILTONIAN + 1+_§ B2|+(N—-1)| 432
Consider arN-boson system whose Hamiltonian is given !
by \sz 2 \2
_[25E2 53 Y
. 7)\1[3 COS37+7)\§'B . 9

H=Ho+V=€2, d;d#—z > QlQ,. (1)

a a One finds that the energy minimum appears on the prolate
The first term expresses the single-particle Hamiltoign ~ Side (8>0,y=0) wheni;/\,<0, while it is on the oblate
while the second term is the residual quadrupole-quadrupof@ide (8=>0,y=m/3) for A/x,>0. When; is zero, the
interaction. The quadrupole operafy, is defined as energy surface is independent ¢f corresponding to the

vy-unstable case.
Q. =My(s"d,+d]s)+x [d"d]®), 2
B. Triaxial angular momentum projection

where d,=(—)*d_,. When \;=),=0 and >0, the When g is nonzero, the intrinsic wave functig8) is not
ground state is thesrbo?\lon condensed state, whose waveyn gjgenstate of the total angular momentdmOne can
function is given by ¢")"/N!]). For a finite value of\;  project this state onto the=0 state ag5]

and\ ,, the Hamiltonian may be diagonalized using the num-

ber basis given by |ﬁ%J=0>°<f dQﬁQ(Q)LB?’)

{nb)=Insha_,na_,Na,Na,Ng,) ) . )
i iqurati isfyi =] d f d f sin#doR(¢, 0, :
taking only the configurations satisfying fo ¢ 0 X 0 (¢.0.0187)
Ns+Ng ,+Ng  +Nng +ng +ng =N, 4 (10
—2ng_,—ng_ +ng +2ng,=0. (5) whereR(Q) is the rotation operator. The corresponding en-

ergy is given by
The first condition, Eq.(4), constrains the boson number,

while the second equation, E@), is the condition that the f do HRO

component of the angular momentum is zero. With these E _ (ByHRID)|B) (11)
constraints, the basis has a dimenion of 5Nor 2, 18 for prof( B, 7) = .

N=4, and 203 forN=10. We are going to compare the Jd9<,37|R(Q)|,37>

exact solutions obtained in this way with results of the col-
lective treatment based on the mean-field approximation plusiotice that the rotated wave function can be expressed in
angular momentum projection. terms of the rotated boson operator as

A. Mean-field approximation

R 1
IEVQ)ER(Q)IMFW(bE)NI% (12)

We first solve the Hamiltonian in the mean-field approxi-
mation. To this end, we consider an intrinsic deformed mean-
field state given by7] with
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bL=R(Q)b'R™(Q)

1
= sW,Bcos;zE D2,(Q)d!

J1+ 832

+ZsinyS [D3(0)+D3_o(0)])d} .

V2

(Q) is the Wigner’sD function. The overlaps in

13

WhereDmm,

the projected energgll) can be expressed in terms of com-

mutators such as

[b,bk]= %{1+B20052yd o0)

+ B2siry[ d3,( #)cod 2+ 2x) +d5_,(0)cog2¢

—2x) ]+ \282siny cosy d3( 6)[ cos 2)
+cog2¢)]}. (14

The results are

1(Q)=(BYIR(Q)|By)=[b,bEN (15)
HIO;Q)E(BVIHE)R(Q)IIH):EN(l 1 ) 16

Q) (BY|RQ)|BY) [b,bL]

V(Q) (BYIVRQ)|BY)

Q) </ay|ﬁ<<m|ﬁy>

B z[bb 2 [[b,Qn] [Qm.bi]]
_N(N-1) , -
2[b,bH 4 [b,[Qum,brIIl[b,Qpl.brl.

7

Here, we have used the relation

[A,BN]= NBN—l[A,l“s]+%N(N— 1)BN-9[A,B],B]+ - -,
(19

for arbitrary operatoré andB. We give an explicit expres-
sion for the quadrupole commutatdi@,, ,b,L] and[Q,,b"]
in the Appendix.

In practice, one can evaluate the integrals in 8d) as
follows. First notice that the integration intervals for tle
and ¢ angles can be reduced from (&Rto (0,7), since the
K quantum number is even for the intrinsic st& [12].
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integral, and the Gauss-Chebyschev formula toxtrend ¢
integrals[12,13. One may also try the simpler Simpson for-
mula. We will check the convergence of these formulas in
the following section.

C. Approximate triaxial projection with octahedral group

Boncheet al. have considered an approximation to the
triaxial angular momentum projectidi0) based on the oc-
tahedral rotation group, that is, a group formed from permu-
tations of the principal axes of inert{®]. With this repre-
sentation, the projected wave functi@tD) is approximated
as

24

lﬂw=0>~i§1 S18v), (19

whereS are the 24 elements of the octahedral group. In our
case with states even under parity, the octahedral group is
reduced tdS;, the group of permutations of three objefitse
X,Y,Z axes. The six rotations to be treated di%

$,=R(0,0,0=1,
S,=R(,7/2,0),
S;=R(—m/2,— /2,0),

(20)
é4= IEZ( wl2,— wl2,7/2),

S.=R(0,7,7/2),

Ss=R(0,m,— 7/2).

D. Axial projection

When the triaxialityy is zero, thep andy integrals in Eq.
(10) become trivial. The triple integral is then reduced to a
much simpler single integral with respect to the angle
This simplifies the projected energ¥l) to

' d(cosO)[Ho(6)+V(6)]
-1

Eproj(,B) = ) (21

f_lld(cosa)l (6)

where the overlaps in this axial approximation read

Next, because of the reflection symmetry of the intrinsic

wave function(6) with respect to the plane, the integration
range for thed angle can be reduced to 02). One can

then apply the Gauss-Legendre quadrature formula t@the

B 1 BZ ' N
|(¢9)—(1 BZ)N( 7(2—3s|rF9) , (22
Ho(6) B2(1— 3sirf)
=¢eN , 23
o ¢ 1+ B%(1— $sirfg) 23

024306-3



K. HAGINO, G. F. BERTSCH, AND P.-G. REINHARD PHYSICAL REVIEW 68, 024306 (2003

V(6 N 1 3 b PR
(_):__ [l_FBZ(l__SInZe)} 07 )‘2/)‘1 (714 ]
I(e) 2 [1+B2(1— %Slnza)]z 2 _05? .................... i
18 -1+ —
3 uf L i
X 5xi+(>\§+x§)/32(1— Esin29” LS ]
-2 [ — Exact _
4 L e Triaxial Projection i
2|y 2 -2.5— —— Axial Projection —
+(N=-1)B ( A7(1+3 cos)+ E)\l)\z sl Triaxial Proj. (Approx.) )
1.6~ — Mean Field N
)\2 1.4 —— Triaxial Projection ]
_ T2 204 . [ —— Axial Projection ]
XpB(1-3 CO§0) + 14:8 (4-9 sirf 6 cos 9)) } : 15; ..... Triaxial Proj. (Approx.) _
@ og- -
2 06l -
The axiallay projected energ21) depends, of course, only 0.4 7
on the global deformatio. The VAP means then to mini- 0.2 oo E
mize the projected energy with respect to the deformation # : — e .
parametep. BN e
E. Top-GOA for axial projection -§ 25 7]
Z 20+
A further simplification may be achieved using a second- > I e

order approach, the top-GOA. In this scheme, the overlaps 10k | ]
are expanded up to second-order derivatives with respect to 0.5 1

the generator coordinate while retaining its topology. For the A

axial projection considered in the preceding section, the pro-

cedure is very similar as in R€f3] for the three-level Lipkin FIG. 1. The ground-state correlation energy obtained by the sev-
model. From Eqs(22)—(24), it is clear that a natural choice eral methodsthe top paneél The parameters of the Hamiltonian are
for the expansion variable is st Expanding the overlaps taken to beN=4,e=1, and\,/\,=—\7/4. The solid line is the

with respect to sim, one obtains

2
|(a)~exp( - g 1l\l+—'8ﬁzsin20), (25
Ho(6)+V(0) Ho(B) .
O(I(—e)(%EMF(ﬁ)'F 2218 S|r120, (26)

where E\=(B) is the mean-field energy given by E()
(with y=0), andH,(B) is defined as

d? Ho(0)+V(6)

Hz(ﬁ):@T 0:0. (27

exact solution of the Hamiltonian obtained by the matrix diagonal-
ization. The dots are the results of the full triaxial angular momen-
tum projection, while the dashed line is obtained by restricting the
intrinsic state to the axially symmetric shape in minimizing the
projected energy surface. The dotted line denotes the results of the
approximate triaxial angular momentum projection which uses the
S; subgroup of the octahedral group. The middle and the bottom
panels show the optimum value of the deformation paramegers,
and vy, for the angular momentum projections. The meaning of the
thick solid, the dashed, and the dotted lines is the same as in the top
panel, while the thin solid line is the result of the mean-field ap-
proximation.

between the ground-state and the mean-field energies, as a
function of the interaction strength,. The mean-field en-

Note that we have exponentiated the normalization overlagrgy is obtained by minimizing the energy surfd®. The
1(6) following the idea of the Gaussian overlap approxima-optimum deformation parametgrthus obtained is shown by

tion [14].

IIl. NUMERICAL RESULTS
A. Comparison of projection schemes

The exact ground state for the model Hamiltonf&nand

the thin solid line in the middle panel. One sees the phase
transition between the spherical and the deformed configura-
tions ath ;=0.47. The results of full triaxial angular momen-
tum projection, obtained by minimizing the projected energy
surface(11), are shown by the solid circles in the top panel.
These results reproduce well the exact results, indicating that

the various integrals needed for the projection schemes ar@e vibrational contribution is not large in this model. The
solved numerically by standard methods. Figure 1 comparegptimum deformationg andy are shown by the thick solid
the exact solution of the Hamiltonian with the several ap-ine in the middle and the bottom panels, respectively. In
proximations to the triaxial angular momentum projectioncontrast to the mean-field approximation, the optimum defor-
for N=4 ande=1. The interaction strength, is set to be mationg is finite for all the values of,, showing no phase
No/N,=—\[7/4 for each\,, that is, a half the S(8) value, transition [3]. This is a well-known feature of the VAP
(N 2/N1)su@)y=— J7/2[15,16. The top panel of the figure schemd5]. The dotted line in the figure denotes the results
shows the ground-state correlation energy, i.e., a differencef the approximate triaxial angular momentum projection by
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L\‘ﬁ/ -0.6 N w _1, e
o | | u® -15- 7
= . C i
g o7 _ W2 Evact N
Q 2.5 e Triaxial Projection N
g s 1 _3[L —— Axial Projection A
u Lo Triaxial Proj. (Approx.)
0.8 - -3.5F ‘ ‘ ‘ .
! ! ! ! ! 14— ¥ear_1 Tigld- " 7]
- - - r — raxial Projection 1
60 40 20 0 20 40 &0 120 __ Axial Projection ]
y (deg) ... Triaxial Proj. (Approx.) -
o8- = ——=
FIG. 2. The projected energy surfagg(8,y), measured with b 06l emm e
respect to the energy of the pure configuratieh, along they 0'4; -
direction for 8=0.741. The parameters of the Hamiltonian are S
taken to beN=4,e=1, \;=0.5, and\,/\;= — \7/4. 0'55
40 : } :
the S; subgroup of the rotation group. This method does not 350 —— Triaxial Projection |
: : = L Triaxial Proj. (Approx.)
seem to provide enough correlation energy, and the agree- g 3l : A
ment with the exact results is poor for all the region\gf N L i
What is the role played by the triaxiality in these cal- 251 7]
culations? In order to study this, we show the results of full 20 \
axial projection by the dashed line in the figure. These are 0 0.5 1
obtained by minimizing the energy functid@1), which is A
equivalent to minimizing Eq(11) while keepingy=0. We )
find that this approximation reproduces the exact solution FIG. 3. Same as Fig. 1, but for, /A, =0.

remarkably well. The result might appear surprising, since, _nstable case. The results are shown in Fig. 3, where the

the axially symmetric approximation is not expected to Workmeaning of each line is the same as in Fig. 1. Note that the
near spherical, where all the five quadrupole degrees of fregsptimum triaxiality parametey in the triaxial angular mo-
dom should contribute in a similar way. However, as Wementum projection is 30° for all the values »f, reflecting
have already discussed, the VAP scheme always leads totRe y-unstable nature of the mean-field approximation. In
well developed deformation even when the mean-field conthjs case, the performance of the axial approximation is not
figuration is sphericalsee the middle paneland such “dan-  as good as in Fig. Isee the dashed lineHowever, it still
gerous” region can be avoided. Moreover, even though theyrovides about 80% of correlation energy Xf=1, and
optimum deformation can be small when the interactionsnghﬂy larger at smaller values af;, which may be accept-
strength is very small, this is an irrelevant case since th@ple even in realistic systems.

correlation effect is small there. Figure 2 shows the projected e notice here that the axially symmetric approximation
energy surfac&,(3,y), measured with respect to the en- js sufficient forN= 2 irrespective of the values af, andX .

ergy of the pure configuratioss’, at\;=0.5 andB3=0.741  From Eqs(10) and(12), the (normalized wave function for
as a function of triaxialityy. One sees that the energy gain j=0 state reads

due to the triaxial deformation is indeed small, being consis-
tent with the performance of the axially symmetric approxi- 1
mation shown in Fig. 1. We summarize the results Xqr |By,J=0)=——=—=
=0.5in Table I. \V2+ 24
As a further test of the axially symmetric approximation,
we repeat the calculations fok,/\;=0, that is, the dgdg) ]|
)

STST 2
V2—+ —
\2 5

( 2d}d" ,—2dld",

+V2——

TABLE I. Comparison of the ground-state enerfyand the \/E

optimum deformation parametey® and y obtained with several

methods. The parameters of the Hamiltonian are taken tdN be

=4, e=1, \;=0.5, and\,/\;=— \7/4. The energy is measured
with respect to that of the pure configuratia,

(28)

for any value ofy. The projected wave function is thus
independent ofy, and so is the projected energy surface. We
also note that the axially symmetric approximation becomes
exact in the limit ofN—o0, as was argued by Kuyucak and
Morrison using the M expansion techniqugl?7]. For N

4
Scheme E-EE) B v (deg =2, the wave functiorf28) is in fact exact, wherB is mini-
Exact —0.8193 mized. This follows from the observation that there are only
Triaxial projection —0.8189 0.741 17.64 two J=0 states in thegd)* configuration space, and their
Axial projection —0.8017 0.723 0.0 relative amplitudes can be set by a suitable choic@,oin

case of attractive interactions. We have checked the trend in
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13
(Nro)

FIG. 4. Influence of the generator coordinate truncation on the
ground-state energy. The upper and the lower panels are for the
axial and the triaxial projections, respectively. The former plots theis for the axial projection, while the lower panel for the tri-
energy as a function of the number of rotated wave functidgs axial projection. Note that the former is plotted as a function
while the latter plots as a function 0N, for the optimum  of N, while the latter involves the three integrals and is
values of the deformation parametggsand y indicated in the in-  plotted as a function ofN,,)Y%. For the Simpson method,
sets. The open and the closed circles are the results of the Simps@fe exclude the ¢, 6, y)=(0,0,0) point in counting the num-
method and the Gaussian quadrature formula, respectively. The tier of stateN,, in the horizontal axis. This state corresponds
angles denote the result of the top-GOA approximatiarthe up- 5 the unrotated state from which the rotated wave functions
per panel and that of the approximate projection with tBgsub- 5.6 constructed, regardiess of which quadrature formula one
group (in the lower panel The parameters of the Hamiltonian are \,qo The figure also shows the result of top-GOA and the
the same as in Fig. 2. approximate triaxial projection with th8; group as a com-

parison, which correspond thl,;=1 and 5, respectively.
between the two limitsN=2 and largeN. The influence of From the figure, one observes that the convergence for the
triaxiality is found strongest arounld=4, where the corre- axial projection is quick if one uses the Gauss-Legendre
lation effects are also largest. The effect of triaxiality thenquadrature formula. The energy is almost converge gt
decreases slowly as the boson numiNencreases. =3. The Simpson method, on the other hand, requires more
terms to achieve the convergence. For the triaxial projection,
a similar convergence is seen for each of the three integrals.
However, the required number of rotated wave functions is

We next discuss the feasibility of the angular momentumas large as 27 in total, making the triaxial angular momentum
projection. From a computational point of view, it is a costly projection with the VAP minimization impractical. The situ-
operation to apply the rotation operator to a mean-field conation is even worse for a larger value Nf To demonstrate
figuration and take overlaps with it. Thus one wants to mini-this, Fig. 5 shows the results fof=10. The convergence is
mize the number of points in the angular integration meshsomewhat slower in this system compared with bhe 4
Figure 4 shows the convergence of the angular integrals itase. Note that th&,; points-Gauss-Legendre formula is
the projected energy surfa¢gl) with respect to the number exact when the maximum spin in the intrinsic statel g
of rotated wave functionbl,, for the same parameter set as =2N,,,—2 [12,18. In the presensd model, the maximum
in Fig. 2. Notice that the relationgH,P;]=0 and P;)?  spin Jy. is given by N, and therefore more points are
=P, are used in deriving Eq11), whereP; is the projec- needed in order to get a convergence for the larger value of
tion operator. For a finite value ™,,, these relations may N.
be violated, and consequently, the numerical formula does Finally, we discuss the applicability of the top-GOA ap-
not give an upper bound of the energy. The open circles arproach to axial projectioisee Sec. Il E This approach re-
the results of the Simpson method, while the closed circlegjuires only one slightly rotated wave function in order to
are obtained with the Gaussian quadrature form(dae Sec. evaluate the second derivatives. Figure 6 shows the correla-
[ C). These are for fixed values of deformation paramegers tion energy folN =4 obtained with the top-GOA approxima-
andvy, as indicated in the inset of the figure. The upper panetion (the dotted ling and with the full axial projectiorithe

FIG. 5. Same as Fig. 4, but fof=10.

B. Efficient angular momentum projection
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N =_‘(7)1/2/4 ] compute systematically the ground-state correlation energy
2t 1 for deformation.

In applying any projection or generator coordinate expan-

- sion, however, one has to bear in mind that up to now the

energy-density functional is defined for a single Slater deter-

L N=4 A minant state. It is not designed for a multideterminantal wave
2 — Exac:A l Pro B function such as the projected state, and there are ambigu-
[ - Xact Axial Proj. e H H H H H
25— TopGOA Axial Proj. ities in calculating the density-dependent interaction energy

using the energy functional. Although several recipes have
been proposed, they are all subject to a conceptional prob-
lem. This difficulty can be avoided in either of the following
ways. One is to use the top-GOA approximation, which can
be formulated in terms of the expectation values in the mean-
field wave function3]. We have studied the applicability of
the top-GOA with the present model, and have shown that it
already gives a reasonable result fo=4 and the perfor-
mance improves for larger values bf Alternatively, one

E-Bur

a4 ‘ ! ‘ may also specify the density dependence in more detail to
0 0.5 1 remove ambiguities. Along these lines, a new form of the
A Skyrme interaction was recently proposed by Duguet and

Bonche[19]. In either way, the axially symmetric approxi-
FIG. 6. The correlation energy obtained in the axially symmetricmation leads to a substantial simplification to perform the
approximation as a function of, for N=4. The upper and the gngular momentum projection with only a few Slater deter-
lower panels are fok,/\;=—7/4 and\,=0, respectively. The minants, providing a useful means to construct a microscopic

Qashed Iine_ is th_e result of the full axial _projfection, while _the do_ttedg|oba| theory for the nuclear binding energy systematics.
line is obtained in the top-GOA approximation to the axial projec-

tion. The exact solution of the Hamiltonian is denoted by the solid
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indicates that the agreement between the top-GOA and therOJect o '

exact projection significantly improves whéh= 10.
APPENDIX: QUADRUPOLE COMMUTATORS

IV. SUMMARY In this appendix, we give an explicit expression for the

We have used thed-interacting boson model to investi- duadrupole Commvt?tof@m’b_ﬁ] and[Qp,b'] in Eq. (17). ,
gate projections in a generator coordinate approach to calcor this purpose, it is convenient to use a compact notation
late the ground-state correlation energy associated with th" the boson operatob,, where bg=s and bon=dp.
quadrupole motion. Our conclusions about the efficiency ofJSing this notation, we express the quadrupole oper@tor
various approximations are clear. The full angular momenand the rotated boson operatuj as
tum projection of a triaxial intrinsic state requires a large
number of rotated wave functions, and it is too costly for 0,=35 3 ¢m
realistic calculations. On the other hand, we found that the m— Ai;my 1om,
angular momentum projection of an axial intrinsic state pro-
vides a useful ground-state correlation energy. The axiallyng
symmetric approximation is exact fof=2 andN=o. The
number of rotated wave functions needed there is of the or-
der of 4 if one uses the Gauss-Legendre quadrature formula bJFr{:E B|m(Q)b|Tm, (A2)
to compute the angle integral. The approximate triaxial pro- hm
jection using theS; group requires five rotated wave func- ] o
tions and still performs rather poorly. We thus conclude thaf€Spectively. Here, the coefﬁuerqgl“n)h,,zmz andB,(2) are
the axial projection provides the most promising method tagiven by

bl b

l1my

, Al
|1,m1 I2,m2 2M2 ( )
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"\ 16m. —m A3
6am, = (=) 13, (A9 [Qn b= 2 S ol 0, Brn (Db, (A8)
M =N18m m, A4 e
A2m, 00= }10m,, N The commutatp[Q_m,bT] can be obtained by setting=0
A, am, = (—)H2M2—mo|2mN,,  (a5) " B (AD) This yields
1 [[b,QR].[Qm.bRII= 2 IE .E A oA 1,
Bo(Q)= —, (AB) l1,my Io,my I3,mg
vitB X By, (1) m,(0), (A9)
1 B .
Bzm<9>=—m(ﬂcosvD%o<ﬂ>+Es'ny[Dﬁm@) [b,[Qum.bi]1= Em Em AT 1m,Bi,my(2)By m (0),
(A10)
+D2_ (Q)]). (A7)
’ [0.QN10R1= 3 3 aff, 1m,Bm, (LB, (O)
From Egs.(Al) and(A2), one finds 2 (A11)
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