Configuration of ¹³B(g.s.)

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

R. Sherr

Department of Physics, Princeton University, Princeton, New Jersey 08544, USA (Received 3 March 2003; published 8 August 2003)

We use recent results of β -delayed neutron emission from ¹⁴Be to estimate the configuration of the ground state of ¹³B. We also discuss consequences for ¹⁴Be and ¹⁴B.

DOI: 10.1103/PhysRevC.68.024301

PACS number(s): 21.10.Jx, 27.20.+n, 21.60.Cs

Aoi *et al.* [1] observed the Gamow-Teller β decay of ¹⁴Be(g.s.) to a 1⁺ level at 1.28 MeV in ¹⁴B, followed by emission of a neutron to the $\frac{3}{2}^{-13}$ B(g.s.). From the measured neutron width of the ¹⁴B level, they were able to estimate the ¹³B(g.s.) configuration mixing, and hence the $s_{1/2}$ - $p_{1/2}$ energy splitting in that nucleus.

Here, we investigate their findings in our model of these nuclei. In what follows, we couple 1–4 nucleons to a ¹⁰Be core to make the nuclei from ¹¹Be to ¹⁴Be, ¹⁴B. But to keep the nomenclature simple, we refer everything to a "¹²C" core—nominally a closed $p_{3/2}$ subshell—though in reality, of course, some $p_{1/2}$ - $p_{3/2}$ mixing is present. Hence, ¹⁰Be(g.s.) is $\pi(p_{3/2})^{-2} nd$ ¹²Be(g.s.) is $\pi(p_{3/2})^{-2} \nu[\alpha(sd)^2 + \beta(1p)^2]$.

In Ref. [2], we estimated the fraction of s^2 in the 12 Be(g.s.) to be 0.53 \pm 0.02. With single-particle energies from ¹¹Be and two-body matrix elements from this mass region [3], we suggested that $(sd)^2$ contained $22\% d^2$ and 78% s², giving $\alpha^2 = 0.67$, $\beta^2 = 0.33$ for ¹²Be(g.s.). In the reaction ⁹Be(¹²Be, ¹¹Be), Navin et al., [4] measured spectroscopic factors of 0.53 ± 0.13 for $2s_{1/2}$ and 0.45 ± 0.12 for $1p_{1/2}$, with 1d unobservable in their experiment. Of course, as the sum of the relevant spectroscopic factors has a maximum value of 2.0, significant strength is missing. It is unlikely that most of it resides in the missing d wave. The authors stated that the ratio of spectroscopic factors is well determined by their experiment. They concluded that matching the ratio of spectroscopic factors requires an admixture of about $32\%(1p)^8$ and $68\%(1p)^6(2s,1d)^2$, in remarkable agreement with our earlier paper.

We expect the neutron configuration of ¹³B to be similar, but with only one $p_{3/2}$ proton hole, i.e., ¹³B(g.s.) is $\pi(p_{3/2})^{-1}[A(sd)^2 + B(1p)^2]$. Weak-coupling considerations would suggest $A \approx \alpha$, $B \approx \beta$, but we know that the $s_{1/2}-p_{1/2}$ energy splitting in ¹²B is much different from what it is in ¹¹Be. This shifting of *sp* energies will affect the mixing somewhat. Our present aim is to estimate A, B for ¹³B(g.s.).

In ¹⁴B, the low-lying 1⁻, 2⁻ states are presumably predominantly $\pi(p_{3/2})^{-1}\nu[(1p)^2s]$. Guimarães *et al.* [5] estimated the ¹⁴B(g.s.) to be $89\pm 3\% s$, $11\pm 3\% d$. The 1⁺ (and missing 2⁺) levels should be dominantly $\pi(p_{3/2})^{-1}\nu$ $[(sd)^21p]$. Hence, the decay ¹⁴B(1⁺) \rightarrow ¹³B(g.s.) is proportional to A^2 . The factor A^2 multiplies a spectroscopic factor that should be similar to that for ${}^{12}B(1^+) \rightarrow {}^{11}B(g.s.)$, with $\pi(p_{3/2})^{-1}\nu(sd)^2$ acting as spectators, i.e.,

$$S[^{14}B(1^+) \rightarrow ^{13}B(g.s.) + n] \cong A^2 S[^{12}B(1^+) \rightarrow ^{11}B(g.s.) + n].$$

This ¹²B spectroscopic factor has been measured [6] to be 0.69, and calculated by Cohen and Kurath [7] to be 0.826, of which 0.708 is $p_{1/2}$.

Thus, we expect the ¹⁴B(1⁺) decay spectroscopic factor to be (0.7–0.8) A^2 . The measured neutron width [1] for this $\ell = 1$ decay is 49 keV, and the center-of-mass neutron energy is 310 keV. We will compute *S* from $S = \Gamma_n/\Gamma_{sp}$, where Γ_{sp} is calculated in a potential well with $r_0=1.25$ fm, a= 0.65 fm, and whose depth is adjusted to fit the observed neutron energy. The neutron energy of 310 keV is sufficiently unbound such that various definitions of *sp* width provide somewhat different values. For present purposes, we define the resonant energy to have a phase shift δ of $\pi/2$ and the *sp* width to be obtained from the equation $2/\Gamma_{sp}$ = $d\delta/dE$. With this definition, we get $\Gamma_{sp}=216$ keV—giving S=0.23. Hence, $A^2 \approx 0.28-0.32$. A similar argument in Ref. [1] gave $A^2 \approx 0.33$, but they used an *R*-matrix *sp* width of 160 keV, and they did not use the ${}^{12}B \rightarrow {}^{11}B$ reduction factor.

The nature of ¹⁴Be(g.s.) is also of interest. We expect $\pi(p_{3/2})^{-2}\nu [A'(sd)^4 + B'(sd)^2p^2]$. In order for the β decay from ¹⁴Be(g.s.) to ¹⁴B(1⁺) to be as strong as observed [1] (log*ft*=3.68±0.05), the second term should be greater than the first. The fact that ¹²Be \rightarrow ¹²B β decay is slower than that calculated was used [8] as evidence for $(sd)^2$ configurations in ¹²Be(g.s.). In ¹²Be, the experimental log*ft* [6] is 3.834±0.017, whereas *p*-shell calculations [8,9] provide values of 3.4–3.5. Suzuki and Otsuka conclude that "65% breaking of the neutron *p*-shell closure" is necessary to explain the decay rate. Their value of 35% is to be compared to our β^2 =0.33 in Ref. [2].

We can also compute the spectroscopic factor for proton stripping on 12 Be to produce 13 B(g.s.) [or proton knockout from 13 B(g.s.) to form 12 Be]:

$$S[^{12}\text{Be}+p \rightarrow ^{13}\text{B}(g.s.)] = (A \alpha + B \beta)^2 [^{10}\text{Be}+p \rightarrow ^{11}\text{B}(g.s.)].$$

The latter factor is calculated [7] to be 0.645. With our wave functions, the first factor is 0.86. Hence, we expect S for

PHYSICAL REVIEW C 68, 024301 (2003)

 ${}^{12}\text{Be} \rightarrow {}^{13}\text{B}$ to be 0.56. Millener [10] estimated this quantity to be 0.52. This prediction should be testable with radioactive beams.

The experimental width of 49 ± 2 keV in Ref. [1] was extracted from a modified Gaussian fit to their time-of-flight spectrum. We estimate that a fit of the energy spectrum to a Breit-Wigner shape appropriate to an unbound state with natural width, folded with the experimental resolution, would produce $\Gamma = 34\pm3$ keV. If we use this width in our calculations, our value of A^2 changes from 0.28–0.32 (with Γ =49 keV) to 0.20–0.22, and our predicted ${}^{12}\text{Be} \rightarrow {}^{13}\text{BS}$ becomes 0.51, rather than 0.56.

As mentioned above, the ground state (g.s.) of ¹²Be appears to contain about 67% $(sd)^2$ [2,4]. In ¹⁴C, the ratio of ¹²C(*t*,*p*) cross sections leading to the g.s. and first-excited 0⁺ state provided an estimate [11] of $(12\pm2)\%$ for the amount of $(sd)^2$ in ¹⁴C(g.s.). Our result above for ¹³B(g.s.) lies between the values for ¹⁴C and ¹²Be. Hence, in these N=8 nuclei, the amount of $(sd)^2$ in the g.s. increases dramatically as *A* decreases.

- [1] N. Aoi et al., Phys. Rev. C 66, 014301 (2002).
- [2] R. Sherr and H.T. Fortune, Phys. Rev. C 60, 064323 (1999).
- [3] H.T. Fortune, M.E. Cobern, S. Mordechai, G.E. Moore, S. La
- France, and R. Middleton, Phys. Rev. Lett. 40, 1236 (1978).
- [4] A. Navin et al., Phys. Rev. Lett. 85, 266 (2000).
- [5] V. Guimarães et al., Phys. Rev. C 61, 064609 (2000).
- [6] F. Ajzenberg-Selove, Nucl. Phys. A506, 1 (1990).
- [7] S. Cohen and D. Kurath, Nucl. Phys. A101, 1 (1967).
- [8] T. Suzuki and T. Otsuka, Phys. Rev. C 56, 847 (1997).
- [9] S. Cohen and D. Kurath, Nucl. Phys. A73, 1 (1965).
- [10] D.J. Millener, Nucl. Phys. A693, 394 (2001).
- [11] H.T. Fortune and G.S. Stephans, Phys. Rev. C 25, 1 (1982).