Configuration of $^{13}B(g.s.)$

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

R. Sherr

Department of Physics, Princeton University, Princeton, New Jersey 08544, USA (Received 3 March 2003; published 8 August 2003)

We use recent results of β -delayed neutron emission from ¹⁴Be to estimate the configuration of the ground state of 13 B. We also discuss consequences for 14 Be and 14 B.

DOI: 10.1103/PhysRevC.68.024301 PACS number(s): 21.10.Jx, 27.20.+n, 21.60.Cs

Aoi *et al.* [1] observed the Gamow-Teller β decay of $14Be(g.s.)$ to a 1⁺ level at 1.28 MeV in $14B$, followed by emission of a neutron to the $\frac{3}{2}$ ⁻¹³B(g.s.). From the measured neutron width of the $14B$ level, they were able to estimate the ¹³B(g.s.) configuration mixing, and hence the $s_{1/2}$ - $p_{1/2}$ energy splitting in that nucleus.

Here, we investigate their findings in our model of these nuclei. In what follows, we couple $1-4$ nucleons to a 10 Be core to make the nuclei from $\frac{11}{18}$ e to $\frac{14}{18}$. But to keep the nomenclature simple, we refer everything to a \cdot 12 C" core—nominally a closed $p_{3/2}$ subshell—though in reality, of course, some $p_{1/2}$ - $p_{3/2}$ mixing is present. Hence, ¹⁰Be(g.s.) is $\pi(p_{3/2})^{-2}$ and ¹²Be(g.s.) is $\pi(p_{3/2})^{-2}\nu[\alpha(st)^2+\beta(1p)^2]$.

In Ref. $[2]$, we estimated the fraction of s^2 in the ¹²Be(g.s.) to be 0.53 ± 0.02 . With single-particle energies from $11Be$ and two-body matrix elements from this mass region [3], we suggested that $(sd)^2$ contained 22% d^2 and 78% s², giving α^2 =0.67, β^2 =0.33 for ¹²Be(g.s.). In the reaction ${}^{9}Be({}^{12}Be, {}^{11}Be)$, Navin *et al.*, [4] measured spectroscopic factors of 0.53 ± 0.13 for $2s_{1/2}$ and 0.45 ± 0.12 for $1p_{1/2}$, with $1d$ unobservable in their experiment. Of course, as the sum of the relevant spectroscopic factors has a maximum value of 2.0, significant strength is missing. It is unlikely that most of it resides in the missing *d* wave. The authors stated that the ratio of spectroscopic factors is well determined by their experiment. They concluded that matching the ratio of spectroscopic factors requires an admixture of about $32\% (1p)^8$ and $68\% (1p)^6 (2s,1d)^2$, in remarkable agreement with our earlier paper.

We expect the neutron configuration of ^{13}B to be similar, but with only one $p_{3/2}$ proton hole, i.e., ¹³B(g.s.) is $\pi(p_{3/2})^{-1}[A(sd)^2 + B(1p)^2]$. Weak-coupling considerations would suggest $A \approx \alpha$, $B \approx \beta$, but we know that the $s_{1/2}$ - $p_{1/2}$ energy splitting in ^{12}B is much different from what it is in 11 Be. This shifting of *sp* energies will affect the mixing somewhat. Our present aim is to estimate A , B for ¹³B(g.s.).

In ^{14}B , the low-lying 1^{-} , 2^{-} states are presumably predominantly $\pi(p_{3/2})^{-1}\nu[(1p)^2s]$. Guimarães *et al.* [5] estimated the ¹⁴B(g.s.) to be $89 \pm 3\%$ *s*, $11 \pm 3\%$ *d*. The 1⁺ (and missing 2⁺) levels should be dominantly $\pi(p_{3/2})^{-1}\nu$ $[(sd)^{2}]$ *p*. Hence, the decay ¹⁴B(1⁺)→¹³B(g.s.) is proportional to A^2 . The factor A^2 multiplies a spectroscopic factor that should be similar to that for ${}^{12}B(1^+) \rightarrow {}^{11}B(g.s.)$, with $\pi(p_{3/2})^{-1}\nu({sd})^2$ acting as spectators, i.e.,

$$
S[^{14}B(1^+) \rightarrow {}^{13}B(g.s.) + n] \cong A^2 S[^{12}B(1^+) \rightarrow {}^{11}B(g.s.) + n].
$$

This ^{12}B spectroscopic factor has been measured [6] to be 0.69, and calculated by Cohen and Kurath $[7]$ to be 0.826, of which 0.708 is $p_{1/2}$.

Thus, we expect the $^{14}B(1^+)$ decay spectroscopic factor to be $(0.7-0.8)$ A^2 . The measured neutron width [1] for this $\ell=1$ decay is 49 keV, and the center-of-mass neutron energy is 310 keV. We will compute *S* from $S = \Gamma_n / \Gamma_{\text{sp}}$, where Γ_{sp} is calculated in a potential well with $r_0=1.25$ fm, *a* $=0.65$ fm, and whose depth is adjusted to fit the observed neutron energy. The neutron energy of 310 keV is sufficiently unbound such that various definitions of *sp* width provide somewhat different values. For present purposes, we define the resonant energy to have a phase shift δ of $\pi/2$ and the *sp* width to be obtained from the equation $2/\Gamma_{\rm sn}$ $= d\delta/dE$. With this definition, we get $\Gamma_{\text{sp}} = 216 \text{ keV}$ —giving $S=0.23$. Hence, $A^2 \approx 0.28-0.32$. A similar argument in Ref. [1] gave $A^2 \approx 0.33$, but they used an *R*-matrix *sp* width of 160 keV, and they did not use the ${}^{12}B \rightarrow {}^{11}B$ reduction factor.

The nature of 14 Be(g.s.) is also of interest. We expect $\pi(p_{3/2})^{-2}\nu[A'(sd)^4 + B'(sd)^2p^2]$. In order for the β decay from 14 Be(g.s.) to 14 B(1⁺) to be as strong as observed $[1]$ (log*ft*=3.68 \pm 0.05), the second term should be greater than the first. The fact that ${}^{12}Be \rightarrow {}^{12}B \beta$ decay is slower than that calculated was used [8] as evidence for $(sd)^2$ configurations in ¹²Be(g.s.). In ¹²Be, the experimental logft [6] is 3.834 \pm 0.017, whereas *p*-shell calculations [8,9] provide values of 3.4–3.5. Suzuki and Otsuka conclude that ''65% breaking of the neutron *p*-shell closure'' is necessary to explain the decay rate. Their value of 35% is to be compared to our β^2 =0.33 in Ref. [2].

We can also compute the spectroscopic factor for proton stripping on ¹²Be to produce ¹³B(g.s.) [or proton knockout from $^{13}B(g.s.)$ to form ^{12}Be]:

$$
S[^{12}Be+p\rightarrow {^{13}B(g.s.)}]= (A\alpha+B\beta)^{2}[{}^{10}Be+p\rightarrow {^{11}B(g.s.)}].
$$

The latter factor is calculated $[7]$ to be 0.645. With our wave functions, the first factor is 0.86. Hence, we expect *S* for H. T. FORTUNE AND R. SHERR **PHYSICAL REVIEW C 68**, 024301 (2003)

 $^{12}Be \rightarrow ^{13}B$ to be 0.56. Millener [10] estimated this quantity to be 0.52. This prediction should be testable with radioactive beams.

The experimental width of 49 ± 2 keV in Ref. [1] was extracted from a modified Gaussian fit to their time-of-flight spectrum. We estimate that a fit of the energy spectrum to a Breit-Wigner shape appropriate to an unbound state with natural width, folded with the experimental resolution, would produce $\Gamma = 34 \pm 3$ keV. If we use this width in our calculations, our value of A^2 changes from 0.28–0.32 (with Γ

=49 keV) to 0.20–0.22, and our predicted $^{12}Be \rightarrow ^{13}BS$ becomes 0.51, rather than 0.56.

As mentioned above, the ground state $(g.s.)$ of ^{12}Be appears to contain about 67% $\left(\frac{sd}{r}\right)^2$ [2,4]. In ¹⁴C, the ratio of ${}^{12}C(t,p)$ cross sections leading to the g.s. and first-excited 0^+ state provided an estimate [11] of (12±2)% for the amount of $(sd)^2$ in ¹⁴C(g.s.). Our result above for ¹³B(g.s.) lies between the values for 14 C and 12 Be. Hence, in these $N=8$ nuclei, the amount of $(sd)^2$ in the g.s. increases dramatically as *A* decreases.

- $[1]$ N. Aoi *et al.*, Phys. Rev. C 66, 014301 (2002).
- [2] R. Sherr and H.T. Fortune, Phys. Rev. C 60, 064323 (1999).
- [3] H.T. Fortune, M.E. Cobern, S. Mordechai, G.E. Moore, S. La
- France, and R. Middleton, Phys. Rev. Lett. **40**, 1236 (1978).
- [4] A. Navin *et al.*, Phys. Rev. Lett. **85**, 266 (2000).
- [5] V. Guimaraes et al., Phys. Rev. C 61, 064609 (2000).
- [6] F. Ajzenberg-Selove, Nucl. Phys. **A506**, 1 (1990).
- [7] S. Cohen and D. Kurath, Nucl. Phys. **A101**, 1 (1967).
- [8] T. Suzuki and T. Otsuka, Phys. Rev. C 56, 847 (1997).
- [9] S. Cohen and D. Kurath, Nucl. Phys. A73, 1 (1965).
- [10] D.J. Millener, Nucl. Phys. **A693**, 394 (2001).
- [11] H.T. Fortune and G.S. Stephans, Phys. Rev. C 25, 1 (1982).