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Two-pion exchange nucleon-nucleon potential:O„q4
… relativistic chiral expansion
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We present a relativistic procedure for the chiral expansion of the two-pion exchange component of theNN
potential, which emphasizes the role of intermediatepN subamplitudes. The relationship between power
counting in pN and NN processes is discussed and results are expressed directly in terms of observable
subthreshold coefficients. Interactions are determined by one- and two-loop diagrams, involving pions, nucle-
ons, and other degrees of freedom, frozen into empirical subthreshold coefficients. The full evaluation of these
diagrams produces amplitudes containing many different loop integrals. Their simplification by means of
relations among these integrals leads to a set of intermediate results. Subsequent truncation toO(q4) yields the
relativistic potential, which depends on six loop integrals, representing bubble, triangle, crossed box, and box
diagrams. The bubble and triangle integrals are the same as inpN scattering and we have shown that they also
determine the chiral structures of box and crossed box integrals. Relativistic threshold effects make our results
to be not equivalent with those of the heavy baryon approach. Performing a formal expansion of our results in
inverse powers of the nucleon mass, even in regions where this expansion is not valid, we recover most of the
standard heavy baryon results. The main differences are due to the Goldberger-Treiman discrepancy and terms
of O(q3), possibly associated with the iteration of the one-pion exchange potential.
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I. INTRODUCTION

A considerable refinement in the description of nucle
interactions has occurred in the last decade, due to the
tematic use of chiral symmetry. As the non-Abelian charac
of QCD prevents low-energy calculations, one works w
effective theories that mimic, as much as possible, the b
theory. In the case of nuclear processes, where interac
are dominated by the quarksu and d, these theories are re
quired to be Poincare´ invariant and to have approximat
SU(2)3SU(2) symmetry. The latter is broken by the sm
quark masses, which give rise to the pion mass at the e
tive level.

In the 1960s, it became well established that the one-p
exchange potential~OPEP! provides a good description o
NN interactions at large distances. When one moves inw
the next class of contributions corresponds to exchange
two uncorrelated pions@1# and, until recently, there was n
consensus in the literature as how to treat this componen
the force. An important feature of the two-pion exchan
potential ~TPEP! is that it is closely related to the pion
nucleon (pN) amplitude, a point stressed more than thir
five years ago by Cottingham and Vinh Mau@2#. This idea
allowed one to overcome the early difficulties associa
with perturbation theory@3# and led to the construction of th
successful Paris potential@4#, where the intermediate part o
the interaction is obtained by means of dispersion relatio
This has the advantages of minimizing the number of unn
essary hypotheses and yielding model independent res
but it does not help in clarifying the role of different dynam
cal processes, which are always treated in bulk.

Field theory provides an alternative framework for t
evaluation of the TPEP. In this case, one uses a Lagrang
involving the degrees of freedom one considers to be
evant, and calculates amplitudes using Feynman diagra
which are subsequently transformed into a potential. An
0556-2813/2003/68~2!/024004~30!/$20.00 68 0240
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portant contribution along this line was given in the ea
1970s by Partovi and Lomon, who considered box a
crossed box diagrams, using a Lagrangian containing
pions and nucleons with pseudoscalar~PS! coupling @5#. A
study of the same diagrams using a pseudovector~PV! cou-
pling was performed later by Zuilhof and Tjon@6#. The de-
velopment of this line of research led to the Bonn model
the NN interaction, which included many important degre
of freedom and proved to be effective in reproducing emp
cal data@7#. On the phenomenological side, accurate pot
tials also exist, which can reproduce low-energy observab
employing parametrized forms of the two-pion exchan
component@8#.

Nowadays, it is widely acknowledged that chiral symm
try provides the best conceptual framework for the constr
tion of nuclear potentials. The importance of this symme
was pointed out in the 1970s by Brown and Durso@9# and by
Chemtob, Durso, and Riska@10#, who stressed that it con
strains the form of the intermediatepN amplitude present in
the TPEP.

In the early 1990s, the works by Weinberg restating
role of chiral symmetry in nuclear interactions@11# were
followed by an effort by Ordo´ñez and van Kolck@12# and
other authors@13,14# to construct the TPEP in that frame
work. The symmetry was then realized by means of non
ear Lagrangians containing only pions and nucleons. T
minimal chiral TPEP is consistent with the requirements
chiral symmetry and reproduces, at the nuclear level,
well known cancellations present in the intermediatepN am-
plitude @15#. On the other hand, a Lagrangian containing ju
pions and nucleons could not describe experimentalpN data
@16# and the corresponding potential missed even the sca
isoscalar medium range attraction@14#.

One needed other degrees of freedom. TheD contribu-
tions were shown to improve predictions by Ordo´ñez, Ray,
and van Kolck@17# and other authors@18#. Empirical infor-
©2003 The American Physical Society04-1
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mation about the low-energypN amplitude is normally sum-
marized by means of subthreshold coefficients@16,19#,
which can be used either directly in the construction of
TPEP or to determine unknown coupling constants~LECs! in
chiral Lagrangians. The inclusion of this information allow
satisfactory descriptions of the asymptoticNN data to be
produced, with no need of free parameters@20–23#.

As far as techniques for implementing the symme
are concerned, recent calculations of the TPEP were
formed using both heavy baryon chiral perturbati
theory ~HBChPT! and covariant Lagrangians. In the form
case @12,17,21–24#, one uses nonrelativistic effectiv
Lagrangians, which include unknown counterterms, and
plitudes are derived in which loop and counterterm contri
tions are organized in well defined powers of a typical lo
energy scale. In this approach, relativistic correctio
required by precision have to be added separately@25#.

QCD is a theory without formal ambiguities and the sa
should happen with effective theories designed to be use
the hadron level. In the case of nuclear interactions, this
lows one to expect that the chiral TPEP should be uniq
except for the iteration of the OPEP, which depends on
dynamical equation employed.

In the meson sector, chiral perturbation is indeed uniq
and predictions at a given order are unambiguous. Howe
the problem becomes much more difficult for systems c
taining baryons. At present, the uniqueness problem is un
scrutiny and two competing calculation procedures are av
able based on either heavy baryon~HBChPT! or relativistic
~RBChPT! techniques. If both approaches are correct, th
should produce fully equivalent predictions for a given p
cess. Descriptions of single nucleon properties were foun
be consistent, provided the nucleon mass is used as th
mensional regularization scale@26#. In the case ofpN scat-
tering, comparison of predictions became possible only
cently, through the works of Fettes, Meißner, and Steinin
@27# ~HBChPT! and Becher and Leutwyler@28,29#
~RBChPT!. Differences were found, associated with the fa
that some classes of diagrams cannot be fully represente
the heavy baryon series. Discussions of the pros and con
these techniques may be found in Refs.@30,31#.

In theNN problem, all perturbative calculations produc
so far were based on HBChPT@12,17,18,21–25#. On the
other hand, an indication exists thatNN results are approac
dependent, for the large distance properties of the cen
potential were shown to be dominated by diagrams that c
not be expanded in the HB series@32#. The main motivation
of the present work is to extend the discussion of the uniq
ness of chiral predictions to theB52 sector. We do this by
calculating covariantly the TPEP to orderO(q4) and com-
paring our results with the HB potential at the same orde

Our presentation is organized as follows. In Sec. II
give the formal relations between the relativistic TPEP a
the intermediatepN amplitude, whose chiral structure
analyzed in Sec. III. We discuss how power counting inpN
is transferred to the TPEP in Sec. IV and how it is reflec
into subthreshold coefficients in Sec. V. The problem of
triangle diagram, in which heavy baryon and relativistic d
scriptions disagree, is briefly reviewed in Sec. VI. In Sec. V
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we discuss the dynamical content of the potential and
properties of important loop integrals used to express it. O
TPEP is suited to Lippmann-Schwinger dynamics and,
Appendix C, we review the subtraction of the OPEP ite
tion, needed to avoid double counting. The full TPEP, wh
represents an extension of our earlier work@14,20#, is de-
rived in Appendix D. This potential is transformed usin
relations among integrals given in Appendix E and a n
form is given in Appendix F, which is simpler by the negle
of short range contributions. The truncation of these res
gives rise to ourO(q4) invariant amplitudes and potentia
components, displayed in Secs. VIII and IX. In Sec. X w
compare our TPEP with the standard heavy baryon vers
using expansions for loop integrals derived in Appendix
Conclusions are presented in Sec. XI, whereas Appendix
and B deal with kinematics and relativistic loop integrals.

II. TPEP FORMALISM

The TPEP is obtained from theT matrix TTP , which de-
scribes the on-shell processN(p1)N(p2)→N(p18)N(p28) and
contains two intermediate pions, as represented in Fig. 1
order to derive the corresponding potential, one goes to
center of mass frame and subtracts the iterated OPEP, s
to avoid double counting. TheNN interaction is thus closely
associated with the off-shellpN amplitude.

The coupling of the two-pion system to a nucleon is d
scribed by T, the amplitude for the processpa(k)N(p)
→pb(k8)N(p8). It has the isospin structure

Tba5dabT
11 i ebactcT

2 ~1!

and the evaluation of Fig. 1 yields

TTP5@3T 112t(1)
•t(2)T 2# ~2!

with

T 652
i

2!E d4Q

~2p!4

@T6# (1)@T6# (2)

@k22m2#@k822m2#
, ~3!

wherem is the pion mass and the factor 1/2! accounts for
exchange symmetry of the intermediate pions. The integ
tion variable isQ5(k81k)/2 and we also defineq5(k8
2k), t5q2, andn i5(pi81pi)•Q/2m. Our kinematical vari-
ables are fully displayed in Appendix A.

For on-shell nucleons, the subamplitudesT6 may be writ-
ten as

T65ū~p8!@A61Q” B6#u~p! ~4!

FIG. 1. Two-pion exchange amplitude.
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and the functionsA6 and B6 are determined dynamically
An alternative possibility is

T65ū~p8!FD62
i

2m
smn~p82p!mQnB6Gu~p! ~5!

with D65A61nB6. This second form tends to be mo
convenient when one is interested in the chiral content of
amplitudes. The information needed about the pion-nucl
subamplitudesA6, B6, andD6 may be found in the com
prehensive review by Ho¨hler @16# and in the recent chira
analysis by Becher and Leutwyler@29#.

The intermediatepN subamplitudesA6, B6, and D6

depend on the variablesk2, k82, n, andt. For physical pro-
cesses one hask825k25m2, n>m, and t<0. On the other
hand, the conditions of integration in Eq.~2! are such that the
pions are off-shell and the main contributions come from
region n'0. Physical amplitudes cannot be directly em
ployed in the evaluation of the TPEP and must be contin
analytically to the region below threshold, by means of eit
dispersion relations or field theory. In both cases one sho
preserve the analytic structure of thepN amplitude, which
plays an important role in the TPEP.

The relativistic spin structure of the TPEP is obtained
using Eq.~5! into Eq.~3! and one has, for each isospin cha
nel,

T5@ ūu# (1)@ ūu# (2)IDD2
i

2m
@ ūu# (1)@ ūsml~p82p!mu# (2)

3I DB
l 2

i

2m
@ ūsml~p82p!mu# (1)@ ūu# (2)I BD

l

2
1

4m2
@ ūsml~p82p!mu# (1)@ ūsnr~p82p!nu# (2)I BB

lr ,

~6!

where

IDD52 i /2E @•••#@D# (1)@D# (2), ~7!

I DB
l 52 i /2E @•••#@D# (1)@QlB# (2), ~8!

I BD
l 52 i /2E @•••#@QlB# (1)@D# (2), ~9!

I BB
lr 52 i /2E @•••#@QlB# (1)@QrB# (2), ~10!

and

E @•••#5E d4Q

~2p!4

1

@k22m2#@k822m2#
. ~11!
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The Lorentz structure of the integralsI is realized in terms
of the external quantitiesq, z, W, andgmn, defined in Appen-
dix A. Terms proportional toq do not contribute and we
write

I DB
l 5

Wl

2m
I DB

(w)1
zl

2m
I DB

(z) , ~12!

I BD
l 5

Wl

2m
I DB

(w)2
zl

2m
I DB

(z) , ~13!

I BB
lr 5glrI BB

(g)1
WlWr

4m2
I BB

(w)1
zlzr

4m2
I BB

(z) . ~14!

These expressions and the spinor identities~A20! and~A22!
yield

T5@ ūu# (1)@ ūu# (2)FIDD1
q2

2m2
I DB

(w)1
q4

16m4
I BB

(w)G
2

i

2m
$@ ūu# (1)@ ūsml~p82p!mu# (2)

2@ ūsml~p82p!mu# (1)@ ūu# (2)%

3
zl

2mFI DB
(w)1I DB

(z) 1
q2

4m2
I BB

(w)G
2

1

4m2
@ ūsml~p82p!mu# (1)@ ūsnr~p82p!nu# (2)

3FglrI BB
(g)1

zlzr

4m2
~2I BB

(w)1I BB
(z) !G . ~15!

In order to display the ordinary spin content of this amp
tude, we go to the center of mass frame and use ident
~A32!–~A35!, which allow one to rewriteTTP , without ap-
proximations, in terms of the (232) identity matrix and the
operators1

VSS5q2s(1)
•s(2), VT52q2~3s(1)

•q̂s(2)
•q̂2s(1)

•s(2)!,

VLS5 i ~s(1)1s(2)!•q3z/4, VQ5s(1)
•q3zs(2)

•q3z.

The two-component momentum space amplitude in
center of mass~c.m.! is derived by dividingT by the factor
(4Em), present in the relativistic normalization, and intr
ducing back the isospin coefficients as in Eq.~2!. We then
have the decomposition

tc.m.
6 [t6

T c.m.
6

4Em
5tC

61
VSS

m2
tSS

6 1
VT

m2
tT

61
VLS

m2
tLS

6 1
VQ

m4
tQ

6

~16!

1We use here the notation and results from Partovi and Lomon@5#,
Eqs.~4.26!–~4.28!.
4-3
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R. HIGA AND M. R. ROBILOTTA PHYSICAL REVIEW C68, 024004 ~2003!
with t153 andt252. Finally, the momentum space pote
tial, denoted byt̂6, is obtained by subtracting the iterate
OPEP from this expression, so as to avoid double count

III. INTERMEDIATE pN AMPLITUDE

The theoretical soundness of the TPEP relies heavily
the description adopted for the intermediatepN amplitude.
In this work we employ the relativistic chiral representati
produced by the Bern group and collaborators@28,29,33#,
which incorporates the correct analytic structure. For
sake of completeness, in this section we summarize som
their results.

At low and intermediate energies, thepN amplitude is
given by the nucleon pole contribution, superimposed t
smooth background. Chiral symmetry is realized differen
in these two sectors and it is useful to disentangle
pseudovector Born term (pv) from a remainder (R). We
then write

T65Tpv
6 1TR

6 . ~17!

The pv contribution involves two observables, namely, t
nucleon massm and thepN coupling constantg, as pre-
scribed by the Ward-Takahashi identity@34#. In chiral pertur-
bation theory, depending on the order one is working w
the calculation of these quantities may involve differe
numbers of loops and several coupling constants.2 Neverthe-
less, at the end, results must be organized in such a way
reproduce the physical values of bothm and g in Tpv

6 @35#.
Following Höhler @16# and the Bern group,@33,29# in their
treatments of the Born term, we use the constantg in these
equations, instead of (gA / f p). The motivation for this choice
is that thepN coupling constant is indeed the observab
determined by the residue of the nucleon pole. We write

Dpv
1 5

g2

2m S k8k

s2m2
1

k8k

u2m2D→O~q2!, ~18!

Bpv
1 52g2S 1

s2m2
2

1

u2m2D→O~q21!, ~19!

Dpv
2 5

g2

2m S kk8

s2m2
2

kk8

u2m2
2

n

mD→O~q!, ~20!

Bpv
2 52g2S 1

s2m2
1

1

u2m2
1

1

2m2D→O~q0!, ~21!

where s5(p1k)25(p81k8)2 and u5(p2k8)25(p8
2k)2. The arrows after the equations indicate their chi
orders, estimated by usings2m2;W•Q and u2m2

;2W•Q, with W5p11p25p181p28 . When the relative

2For instance, up toO(q4) Tpv
6 receives contributions from tre

graphs ofL (1)
•••L (4) and one-loop graphs fromL (1) and L (2),

expressed in terms of its bare coupling constants.
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sign between thes and u poles is negative, these contribu
tions add up and we have@1/(s2m2)21/(u2m2)#
→O(q). On the other hand, when the relative sign is po
tive, the leading contributions cancel out and we obt
@1/(s2m2)11/(u2m2)#→O(q2).

In ChPT, the structure of the amplitudesTR
6 involves both

tree and loop contributions. The former can be read dire
from the basic Lagrangians and correspond to polynomial
n and t, with coefficients given by the renormalized LEC
The calculation of the latter is more complex and results m
be expressed in terms of Feynman integrals. In the desc
tion of pN processes below threshold, it is useful to appro
mate these contributions by polynomials, using

XR5( xmnn
2mtn, ~22!

whereXR stands forDR
1 , BR

1/n, DR
2/n, or BR

2 . The values
of the coefficientsxmn can be determined empirically, b
using dispersion relations in order to extrapolate phys
scattering data to the subthreshold region@16,19#. As such,
they acquire the status of observables and become a ra
important source of information about the values of t
LECs.

The isospin odd subthreshold coefficients include lead
order contributions, which yield the predictions made
Weinberg@36# and Tomozawa@37# ~WT! for pN scattering
lengths, given by

DWT
2 5

n

2 f p
2

→O~q!, ~23!

BWT
2 5

1

2 f p
2

→O~q0!. ~24!

Some time ago, we developed a chiral description of
TPEP based on the empirical values of the subthreshold
efficients, which could reproduce asymptoticNN data@20#.
As we discuss in the sequence, that description has to
improved when one goes beyondO(q3). In nuclear interac-
tions, the ranges of the various processes are associated
the variablet and must be accurately described. In particul
the pion cloud of the nucleon gives rise to scalar and vec
form factors@33#, which correspond, in configuration spac
to structures that extend well beyond 1 fm@32#. On the other
hand, the representation of an amplitude by means o
power series, as in Eq.~22!, amounts to a zero-range expa
sion, for its Fourier transform yields onlyd functions and its
derivatives. So, this kind of representation is suited for la
distances only. At shorter distances, the extension of the
jects begins to appear.

In the work of Becher and Leutwyler@29# we can check
that the only sources ofNN medium range effects are the
diagramsk and l, reproduced in Fig. 2, which contain tw
pions propagating in thet channel. Here we consider explic
itly their full contributions and our amplitudesAR

6 and BR
6

are written as
4-4
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DR
15Dmr

1 ~ t !1@ d̄00
1 1d10

1 n21d̄01
1 t# (2)

1@d20
1 n41d11

1 n2t1d̄02
1 t2# (3) , ~25!

BR
15Bmr

1 ~ t !1@b00
1 n# (1) , ~26!

DR
25Dmr

2 ~ t !1@n/~2 f p
2 !# (1)1@ d̄00

2 n1d10
2 n31d̄01

2 nt# (3) ,
~27!

BR
25Bmr

2 ~ t !1@1/~2 f p
2 !1b̄00

2 # (0)1@b10
2 n21b̄01

2 t# (1) .
~28!

In these expressions, the labels~n! outside the brackets indi
cate the presence of leading terms ofO(qn), whereas the
label mr denotes the contribution from the medium ran
diagrams of Fig. 2. This decomposition implies the redefi
tion of some subthreshold coefficients, indicated by a
over the appropriate symbol. Their explicit forms will b
displayed in the sequence.

The dynamical content of theO(q4) TpN amplitude de-
rived in Ref.@29# is shown in Fig. 3 and our approximatio
in Fig. 4. In the latter, the first two diagrams correspond
the direct and crossed PV Born amplitudes, with physi
masses and coupling constants. The third one represent
contact interaction associated with the Weinberg-Tomoza
vertex, whereas the next two describe the medium range
fects associated with the scalar and vector form factors.
nally, the last diagram summarizes the terms within squ
brackets in Eqs.~25!–~28!.

IV. POWER COUNTING

One begins the expansion of the TPEP to a given ch
order by recasting the explicitly covariantTTP into the two-
component form of Eq.~16!. This procedure involves no
approximations and one finds, in the c.m. frame,

tC
65t6

m

E
F ~11q2/l2!2I DD

6 2
q2

2m2
~11q2/l2!

3~11q2/l21z2/l2!I DB
(w)6

1
q4

16m4
~11q2/l21z2/l2!2I BB

(w)6

.. .
FIG. 2. Long range contributions to the scalar and vector fo

factors.
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1
q4

16m4
~114m2z2/l4!I BB

(g)6

2
q2z2

2m2l2
~11q2/l2!I DB

(z)62
q4z4

16m4l4
I BB

(z)6G , ~29!

tSS
6 5t6

m

E
F2

1

6
I BB

(g)6G , ~30!

tT
65t6

m

E
F2

1

12
I BB

(g)6G , ~31!

tLS
6 5t6

m

E
F2

4m2

l2
~11q2/l2!I DD

6 1~112q2/l2!

3~11q2/l21z2/l2!I DB
(w)6

2
q2

4m2
~11q2/l21z2/l2!2I BB

(w)6

2
q2

4m2
~114m2/l214m2z2/l4!I BB

(g)6

1~11q2/l21z2/l212q2z2/l4!I DB
(z)6

1
q2z2

4m2l2
~11z2/l2!I BB

(z)6G , ~32!

tQ
65t6

m

E
F2

m4

l4
I DD

6 1
m2

2l2
~11q2/l21z2/l2!I DB

(w)6

2
1

16
~11q2/l21z2/l2!2I BB

(w)6

2
1

16
~118m2/l214m2z2/l4!I BB

(g)6

1
m2

2l2
~11z2/l2!I DB

(z)61
1

16
~11z2/l2!2I BB

(z)6G
~33!

with q5p82p, z5p81p, andl254m(E1m).
The potential to orderO(qn) is determined by tC

6

→O(qn), $tSS
6 ,tT

6 ,tLS
6 %→O(qn22), andtQ

6→O(qn24). This
means that one needsI DD

6 →O(qn), $I DB
(w)6 ,I DB

(z)6 ,I BB
(g)6%

→O(qn22), and $I (w)6 ,I (z)6%→O(qn24). We now dis-
g

πNT loop1= + + +

FIG. 3. Dynamical structure of
the O(q4) pN amplitude; the
blobs represent terms comin
directly from the effective
Lagrangians.
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..πNT + +. ..

+ + +. . .

FIG. 4. Dynamical content of
the approximatepN amplitude.
a

b
ce
r
e

ld

to
those in the basicpN amplitude. This relationship involves
subtlety, associated with the fact thatDpv

1 and Bpv
2 contain

chiral cancellations.
A generic subamplitudeI XY

6 is given by the product of the
correspondingpN contributions and we have

I XY
6 5E @•••#$@Xpv

6 # (1)@Ypv
6 # (2)1@Xpv

6 # (1)@YR
6# (2)

1@XR
6# (1)@Ypv

6 # (2)1@XR
6# (1)@YR

6# (2)%. ~34!

The loop integral and the two pion propagators, as given
Eq. ~11!, do not interfere with the counting of powers, sin
*@•••#→O(q0). The loop integration is symmetric unde
the operationQ→2Q, which gives rise to the exchang
s↔u in the Born terms. In the case of@Xpv

6 # (1)@Ypv
6 # (2), one

is allowed to use

S 1

s2m2
6

1

u2m2D ( i )S 1

s2m2
6

1

u2m2D ( j )

→2S 1

s2m2D ( i )S 1

s2m2
6

1

u2m2D ( j )

~35!

within the integrand. For the specific components this yie

@Dpv
1 # ( i )@Dpv

1 # ( j )→O~q3!, @Dpv
2 # ( i )@Dpv

2 # ( j )→O~q2!,

@Dpv
1 # ( i )@QBpv

1 # ( j )→O~q!, @Dpv
2 # ( i )@QBpv

2 # ( j )→O~q!,

@QBpv
1 # ( i )@QBpv

1 # ( j )→O~q0!,

@QBpv
2 # ( i )@QBpv

2 # ( j )→O~q!.

These results show that, inside the integral,Dpv
1 andBpv

2

cannot be always counted asO(q2) and O(q21), respec-
tively. For the products@Xpv

6 # ( i )@YR
6# ( j ) and@XR

6# ( i )@Ypv
6 # ( j ),

one uses

S 1

s2m2
6

1

u2m2D ( i )

→2S 1

s2m2D ( i )

~36!

and has Dpv
6 →O(q) and Bpv

6 →O(q21). Assuming
@XR

6# ( i ),@YR
6# ( j )→O(qr), one gets

@Dpv
6 # ( i )@DR

6# ( j )→O~q11r !, @Dpv
6 # ( i )@QBR

6# ( j )→O~q21r !,
02400
y

s

@DR
6# ( i )@QBpv

6 # ( j )→O~qr !,

@QBpv
6 # ( i )@QBR

6# ( j )→O~q11r !.

Finally, in the case of@XR
6# ( i )@YR

6# ( j ), one just adds the
corresponding powers.

In this work we consider the expansion of the potential
O(q4) and need I DD

6 →O(q4), $I DB
(w)6 ,I DB

(z)6 ,I BB
(g)6%

→O(q2), and $I BB
(w)6 ,I BB

(z)6%→O(q0). This means that, in
the intermediatepN amplitude, we must considerDR

6 to
O(q3) andBR

6 to O(q).

V. SUBTHRESHOLD COEFFICIENTS

The polynomial parts of the amplitudesTR
6 to order

O(q3), as given by Eqs.~23!–~26!, are determined by the
subthreshold coefficients of Ref.@29#, which we reproduce
below

d00
1 52

2~2c12c3!m2

f p
2

1
8gA

4m3

64p f p
4

1F3gA
2m3

64p f p
4 G

mr

, ~37!

d10
1 5

2c2

f p
2

2
~415gA

4 !m

32p f p
4

, ~38!

d01
1 52

c3

f p
2

2
48gA

4m

768p f p
4

2F 77gA
2m

768p f p
4 G

mr

, ~39!

d20
1 5

1215gA
4

192p f p
4 m

, ~40!

d11
1 5

gA
4

64p f p
4 m

, ~41!

d02
1 5F 193gA

2

15 360p f p
4 m

G
mr

, ~42!

b00
1 5

4m~ d̃142d̃15!

f p
2

2
gA

4m

8p2f p
4

, ~43!
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TABLE I. Experimental values for the subthreshold coefficients and medium range~mr! contributions in
m2n units; experimental results are taken from Ref.@16#.

d00
1 d10

1 d01
1 d20

1 d11
1 d02

1

Expt. 21.4660.10 1.1260.02 1.1460.02 0.20060.005 0.1760.01 0.03660.003
mr 0.12 20.25 0.032

b00
1

Expt. 23.5460.06
d00

2 d10
2 d01

2

Expt. 1.5360.02 20.16760.005 20.13460.005
WT1mr 1.18 20.032

b00
2 b10

2 b01
2

Expt. 10.3660.10 1.0860.05 0.2460.01
WT1mr 20.99 0.18
d
n

a-
iu

ed,

ed,

ec.

ned

ters
se
hold
ter-
the
ble

b-

b-

e-
us
e
.

-
ly
is a
of

its

ust
d00
2 5F 1

2 f p
2 G

WT

1
4~ d̃11d̃212d̃5!m2

f p
2

1
gA

2~231gA
2 !m2

48p2f p
4

1F 3gA
2m2

48p2f p
4 G

mr

, ~44!

d10
2 5

4d̃3

f p
2

2
1517gA

4

240p2f p
4

, ~45!

d01
2 52

2~ d̃11d̃2!

f p
2

2
2gA

4

192p2f p
4

2F 117gA
2

192p2f p
4 G

mr

, ~46!

b00
2 5F 1

2 f p
2 G

WT

1
2c4m

f p
2

2
gA

4mm

8p f p
4

2FgA
2mm

8p f p
4 G

mr

, ~47!

b10
2 5

gA
4m

32p f p
4 m

, ~48!

b01
2 5F gA

2m

96p f p
4 m

G
mr

, ~49!

where the parametersci and d̃i are the usual renormalize
coupling constants of the chiral Lagrangians of order 2 a
3, respectively@26#. The terms within square brackets l
beled mr in some of these results are due to the med

TABLE II. Dimensionless subthreshold coefficients.

d̄00
1 d10

1
d̄01

1 b00
1

Definition m fp
2 d00

1 /m2 m fp
2 d10

1 m fp
2 d01

1 m fp
2 b00

1

Value 24.72 3.34 4.15 210.57

d̄00
2 d10

2
d̄01

2 b̄00
2

Definition m2f p
2 d̄00

2 /m2 m2f p
2 d10

2
m2f p

2 d̄01
2 f p

2 b̄00
2

Value 7.02 23.35 22.05 5.04
02400
d

m

range diagrams shown in Fig. 2 and must be neglect3

because we already include their contributions inDmr
6 and

Bmr
6 . The terms bearing the WT label must also be exclud

for they were explicitly considered in Eqs.~25!–~28!. This
corresponds to the redefinition mentioned at the end of S
III.

The values of the subthreshold coefficients are determi
from pN scattering data and, in a chiral expansion toO(q3),
they are used to fix the otherwise undetermined parame
ci andd̃i . In our formulation of the TPEP, we bypass the u
of these unknown parameters, for the redefined subthres
coefficients are already the dynamical ingredients that de
mine the strength of the various interactions. This allows
potential to be expressed directly in terms of observa
quantities.

In Table I we show the experimental values of the su
threshold coefficients determined in Ref.@16# and the sum of
~WT! and ~mr! contributions. The redefined values are o
tained by just subtracting the latter from the former.4 It is
worth noting that the values ofd̄02

1 and b̄01
2 are compatible

with zero.
When writing the results for the TPEP, it is very conv

nient to display explicitly the chiral scales of the vario
contributions. With this purpose in mind, we will employ th
dimensionless subthreshold constants defined in Table II

VI. RELATIVISTIC AND HEAVY BARYON
FORMULATIONS

In this section we review briefly the relativistic formula
tion of baryon ChPT and its relationship with the wide
used heavy baryon techniques. Chiral perturbation theory
systematic expansion of low-energy amplitudes in powers
momenta and quark masses, generically denoted byq. The
chiral Lagrangian consists of a string of terms, labeled by

3In Ref. @29# the contribution of the triangle diagram tod00
1 in-

cludes both short and medium range terms and only the latter m
be excluded.

4We use gA51.25, f p593 MeV, m5139.57 MeV, and m
5938.28 MeV.
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power in q. To a given order, one builds the most gene
Lagrangian, consistent with Poincare´ invariance and othe
symmetries of QCD~parity, time reversal, and approxima
chiral symmetry!. A Lagrangian of ordern produces tree
graphs of the same order, while loop graphs are expecte
contribute at higher orders, following a power counti
scheme. This is indeed what happens in the mesonic se
where loop graphs are two orders higher than tree graph
one uses dimensional regularization.

In relativistic baryon ChPT, dimensional regularization
longer leads to a well defined power counting@33#, loops
start at the same order as tree graphs and the conne
between loop and momentum expansion is lost. A sim
phenomenon is observed in the mesonic sector if one
another regularization scheme, such as Pauli-Villars.

In HBChPT, this problem is overcome by means of t
expansion of the original Lagrangian around the infin
nucleon mass limit@38#. One integrates out the heavy d
grees of freedom of the nucleon field, eliminates its masm
from the propagator, and expands the resulting vertice
powers of 1/m. This formulation gives rise to a power coun
ing scheme, but Lorentz invariance is no longer explicit
can still be recovered, but only after a resummation of
terms in this expansion.

The HB approach also has a more serious probl
pointed out recently by Becher and Leutwyler@28#, namely,
that it fails to converge in part of the low-energy region.
order to avoid this, they proposed a new regularizat
scheme, the so called infrared regularization, which is ma
festly Lorentz invariant and gives rise to a power countin
The method is based on a previous work by Ellis and Ta
@31#, where a loop integralH was separated into ‘‘soft,’’ in-
frared~I! and ‘‘hard,’’ regular~R! pieces. The former satisfie
a power counting rule and has the same analytic structur
H in the low-energy domain. The latter may contain sing
larities only at high energies—in the low-energy region, it
well behaved and can be expanded in a Taylor series, re
ing in polynomials of the generic momentumq. Therefore
the hard pieces, which are the power counting violat
terms, can be absorbed in the appropriate coupling cons
of the Lagrangian and one considers onlyI, the infrared-
regularized part ofH.5

Ellis and Tang have shown that the chiral expansion of
infrared regularized one-loop integralI, with the ratioq/m
fixed, reproduces formally the corresponding terms in
HBChPT approach@31#, even in the cases where such
expansion is not permitted. This allows one to assess
domain of validity of the HB series.

For the sake of completeness, in the sequence, we re
duce some of the results derived by Becher and Leutwy
They have analyzed in detail the triangle graph of Fig.
which contributes to the nucleon scalar form factor, a
shown that the HBChPT formulation is not suited for t
low-energy region, neart54m2. Its exact spectral represen
tation is given by@33#

5This problem has been recently reviewed by Meißner in Se
3.4–3.7 of Ref.@30#.
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g~ t !5
1

pE4m2

` dt8

~ t82t !
Img~ t8!, ~50!

where

Img~ t8!5
u~ t824m2!

8pmAt8~4m22t8!
tan21

A~4m22t8!~ t824m2!

t822m2

.
u~ t824m2!

16pmAt8
tan21

2mAt824m2

t822m2
. ~51!

Formally, the argument

x5
2mAt824m2

t822m2
~52!

seems to be of orderq21, and the HB chiral expansion o
Eq. ~51! would yield tan21x5p/221/x11/3x31•••. How-
ever, this representation of tan21x is valid only in the do-
main uxu>1. For uxu,1, one should use tan21x5x2x3/3
1•••, but this corresponds to an expansion ininversepow-
ers ofq. From Eq.~52! we see that the HB expansion of E
~50! breaks down whent8 approaches 4m2.

Becher and Leutwyler have shown that it is possible
write accurately

g~ t !2g~0!5
t

pE4m2

` dt8

t8~ t82t !

1

16pmAt8

3H Fp

2
2

~ t822m2!

2mAt824m2G
HB

1F mAt8

2mAt824m2

2
At8

2m
tan21

m2

mAt824m2G
th
J . ~53!

By keeping only the first bracket in the integrand, o
recovers the heavy baryon result. However, the regiot
;4m2 is dominated by the lower end of integration int8,
where the second term becomes important. The HB appr
mation is not valid there. The integration can be perform
analytically and Becher and Leutwyler found

g~ t !2g~0!5
1

32pmm H F 1

At
ln

21At

22At
211

2m~22t!

pmAt~42t!

3sin21
At

2
2

m

pmG
HB

1F m

mA42t
2

m

2m

2 lnS 11
m

mA42t
D 1 lnS 11

m

2mD G
th
J ~54!

with t5t/m2. This result is interesting because it show
clearly that, for values oft far from 4m2, the contributions of
the two brackets decouple and can be expanded in powe
q. The second term is thenO(q2). On the other hand, when

s.
4-8
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t;4m2, both contributions merge, the full result forg(t) is
the outcome of large cancellations between them, and
expansion inq does not apply. In Fig. 5, we display th
behavior of the various terms in Eq.~54! in the range 3m2

<t<4m2, where the second bracket is important. In th
figure we also show the effect of making

F m

mA42t
2

m

2m
2 lnS 11

m

mA42t
D 1 lnS 11

m

2mD G
th

→ m2

m2~42t!
2

m2

4m2
. ~55!

3.5 4
t(µ2

)

0

5

1

5

2

FIG. 5. Behavior of the functiong(t) as given by Eq.~54! ~full
line! and partial contributions: HB~dashed line!, th ~dotted line!,
and Eq.~55! ~dot-dashed line!.
02400
an

This rough approximation is not mathematically precise,
it allows one to guess the order of magnitude of the thresh
contribution.

The discussion of the behavior of the triangle diagram
the neighborhood oft54m2 is relevant to theNN potential
because, in configuration space, this region describes its
distance properties, as observed numerically in our previ
works @20,32#. To see this, let us take the representation
Eq. ~50! in configuration space:

G~r !5
1

pE4m2

`

dt8E d3q

~2p!3
e2 iq•r

Img~ t8!

t81q2

5
1

4p2E4m2

`

dt8
e2rAt8

r
Img~ t8!. ~56!

The exponential in the integrand shows clearly that,
large values ofr, results are dominated by the lower end
the integration. Thus, if we want to have a good descript
of G(r ) at large distances, we need a decent representa
for Img(t8) near t854m2, which is not provided by HB-
ChPT.

VII. DYNAMICS

The chiral two-pion exchange potential is determined
the processes depicted in Fig. 6, derived from the basicpN
subamplitude and organized into three different families. T
first one corresponds to the minimal realization of chi
symmetry@14#, includes the subtraction of the iterated OPE
vertex. The
actions are
.

.

.

.

.

.

.

.

.

..

..

.

.

.

p

p

p

..

p

p.

. ..

. p

.

(a) (b) (c) (e)(d) (f)

.

.

.

.

(g) (h) (i) (j)

..

..

.

..

..

.

.

.

(o)(k) (l) (m) (n)

+ + + +

++ + +

++ + + +

FIG. 6. Dynamical structure of the TPEP. The first two diagrams correspond to the products of BornpN amplitudes, the third one
represents the iteration of the OPEP, whereas the next three involve contact interactions associated with the Weinberg-Tomozawa
diagrams on the second line describe medium range effects associated with scalar and vector form factors. The remaining inter
trianglesandbubblesinvolving subthreshold coefficients.
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loop, associated with the constantm, g, and f p . The same
constants also determine the two loop processes of the
ond family. The last family includes chiral corrections ass
ciated with subthreshold coefficients and LECs, represen
either higher order processes or other degrees of freedo

The first two diagrams of Fig. 6, known, respectively,
crossed boxandbox, come from the products of thepN PV
Born amplitudes, given by Eqs.~18!–~21! and involve the
propagations of two pions and two nucleons. The third o
represents the iteration of the OPEP and gives rise to
amplitude denoted byTi t , derived after the work of Partov
and Lomon@5# and discussed in detail in Appendix C. Th
remaining interactions correspond totriangle andbubbledia-
grams, which contain a single or no nucleon propagat
besides those of two pions.

The construction of the TPEP begins with the determi
tion of the relativistic profile functions, Eqs.~7!–~10!, using
the pN subamplitudesD6 and B6 discussed in Sec. III
Results are then expressed in terms of the one-loop Feyn
integrals presented in Appendixes B and C, which may
volve two, three, or four propagators. The evaluation a
manipulation of these integrals represent an important as
of the present work and it is worth discussing the notat
employed.

Momentum space integrals are generally denoted byP
and labeled in such a way as to recall their dynamical
gins. We use lower labels, corresponding to nucleons 1
2, with the following meanings:c, contact interaction;s,
s-channel nucleon propagation; andu, u-channel nucleon
propagation. This means that functions carrying the s
scripts (cc), (sc), (ss), and (us) correspond, respectively
to bubble, triangle, crossed box, andbox diagrams. The las
class of integrals includes the OPEP cut, which needs to
subtracted. This subtraction is implemented by replacing
(us) integrals by regular ones, represented by the subsc
(reg) and given in Appendix C. Upper labels, on the oth
hand, indicate the rank of the integral in the external kin
matical variablesq, z, and W. For instance, the rank 2
crossed boxintegral is written as

I ss
mn5E d4Q

~2p!2 S QmQn

m2 D 1

k22m2

1

k822m2

2mm

s12m2

2mm

s22m2

5
i

~4p!2 Fqmqn

m2
Pss

(200)1
zmzn

4m2
Pss

(020)1
WmWn

4m2
Pss

(002)

1gmnP̄ss
(000)G .

All integrals are dimensionless and include suitable po
ers of pion and nucleon masses, so as to make them
tively stable upon wide variations of the latter. We have st
ied these integrals numerically and, typically, they change
30% when one moves the nucleon mass from its empir
value to infinity. The fact that the integrals areO(q0) is
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rather useful in discussing chiral scales and heavy bar
limits. At present the infrared regularization techniques
still being developed for the case of two nucleon system@39#
and we have used dimensional regularization whenever
propriate. As a consequence, our results are accurate onl
distances larger than a typical radius. Our numerical stud
in configuration space indicate that this radius is of abou
fm.

The covariantly expanded TPEP, to be given in Sec. X
expressed in terms of the functionsPcc

(000) , Psc
(000) , Pss

(000) ,
P reg

(000) , andP reg
(010) . In order to simplify the notation, in the

main text we call themP, , P t , P3 , Pb , andP̃b , respec-
tively.

The function P, represents thebubble diagram and is
given by

I cc5E d4Q

~2p!4

1

@k22m2#@k822m2#
5

i

~4p!2
P, . ~57!

This integral can be performed analytically6 and its regular
part may be written as

P,522
A12t/4m2

A2t/4m2
ln~A12t/4m21A2t/4m2!. ~58!

The functionP t , associated with thetriangle diagram, is
expressed by

I sc5E d4Q

~2p!4

1

@k22m2#@k822m2#

2mm

@s12m2#
5

i

~4p!2
P t

~59!

and related to the functiong(t) discussed in the precedin
section byP t522mm(4p)2g(t). The heavy-baryon repre
sentation of this function is

P t→P t
HB5Pa1

m

2m
P t

NL ~60!

with7

Pa52
p

A2t/4m2
tan21A2t/4m2, ~61!

P t
NL5~12t/2m2!P,8, ~62!

andP85m(dP/dm).

The functionsP3 , Pb , and P̃b are associated with
crossed boxand box diagrams and their complete expre

6The functionP, is related to theL(q) used in Ref.@21# by P,

522L(q) and to theJ(t) of Ref. @29# by P,5(4p)2 J21.
7The function Pa is related to theA(q) of Ref. @21# by Pa

524pmA(q).
4-10
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sions are given in Appendix B. Their heavy baryon expa
sions are derived in Appendix G and read

P3
HB52P,82Fm

mG p/2

~12t/4m2!
2Fm

mG2 1

4
@~12t/2m2!2

3~2P,82P,9!1~2z2/3m2!P,8#1•••, ~63!

Pb
HB5P3

HB1Fm

mG p/4

~12t/4m2!

1Fm

mG2 1

6
@~12t/2m2!2~2P,82P,9!#1•••, ~64!

P̃b
HB52

1

2
Pa2Fm

mG 1

3
~12t/2m2!P,81•••. ~65!

In the heavy baryon expansion of the potential, the follow
results are useful:

P,8521P, /~12t/4m2!, ~66!

P,952/~12t/4m2!1@2/~12t/4m2!21/~12t/4m2!2#P, ,
~67!

Pa85Pa2pt/~12t/4m2!. ~68!

For the reasons discussed in the preceding section, all t
heavy baryon representations are inaccurate arount
;4m2.

VIII. COVARIANT AMPLITUDES

The direct reading of the Feynman diagrams of Fig
gives rise to our full results for the relativistic profile fun
tions, displayed in Appendix D. These are the functions t
the chiral expansion must converge to and hence they a
one to assess the series directly. On the other hand, the
not exhibit explicitly the chiral scales of the various comp
nents of the potential, since their net values are the outc
of several cancellations.

In order to display these scales, in Appendix E we der
several relations among integrals, which are used to tra
form the full results of Appendix D into the forms listed i
Appendix F. The relations given in Appendix E are, in pri
ciple, exact, provided one keepsshort rangeintegrals that
contain a single or no pion propagators. However, for
sake of simplicity, we neglect those contributions.8 The im-
portance of this approximation was checked by compar
numerically the Fourier transforms of the various amplitud
of Appendixes D and F. In all cases, agreement is m

8It would be very easy to keep those terms, but this would prod
longer equations.
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better than 1% for distances larger than 1 fm, except
I DD

1 , where the difference is 4% at 1.5 fm and falls belo
1% beyond 2.5 fm. This has very little influence over the f
potential.

With the purpose of allowing comparison with results pr
duced in the HB tradition, we write our final expressions f
the potential in terms of the axial constantgA , which is
related to the pN coupling constant by g5(1
1DGT)gAm/ f p . HereDGT is the Goldberger-Treiman~GT!
discrepancy,9 proportional to m2. In applications, on the
other hand, we recommend the direct use of thepN coupling
constantg, by makinggA5g fp /m and neglectingDGT in our
results.

The appropriate truncation of the expressions of Appen
F, at the orders inq prescribed at the end of Sec. IV, leads
the following results for the profile functions:
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1Fm

mGFgA
4

16
~12t/2m2!2P3

2
gA

2
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~70!

e 9The GT discrepancy may be written@29# as DGT522d18m
2/g

1O(q4).
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2Fm

mG m2

64p2f p
2

gA
4@~12t/4m2!P t2p#2J , ~77!
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(g)25

m2

16p2f p
4 Fm

mG H gA
2

4
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22122b̄00
2 !~12t/4m2!P t
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4
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24
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mG m2

64p2f p
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4@~12t/4m2!P t2p#2J , ~78!

I BB
(w)2.I BB

(z)2.0. ~79!

The results for the basic subamplitudes presented in this
tion are closely related to the underlyingpN dynamics and,
in many cases, this relationship can be directly perceive
the final forms of our expressions. For instance, reorganiz
the contributions proportional toP t in Eq. ~78!, one has

I BB
(g)25

m2/ f p
4

~4p!2 Fm

mG H FgA
2

4 S gA
2212

gA
2

f p
2

mm

~4p!2
@~12t/4m2!P t

2p#22b̄00
2 D @~12t/4m2!P t2p#1•••G J . ~80!
02400
c-
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g

The terms within the parentheses represent the contribut
from Fig. 4, which read:~a! Born terms, proportional togA

2 ;
~b! Weinberg-Tomozawa term;~c! two-loop medium range
interactions; ~d! other degrees of freedom plus two-loo
short range interactions. The organization of the last th
terms may be better understood by noting that, around
point t50, the following expansion holds: (12t/4m2)P t

→2p1t p/6m2, and the content of the parentheses of E
~80! may be written as

H g2

2m2
2F 1

2 f p
2

1b̄00
2 1

1

2 S 2
gA

2mm

8p f p
4

1t
gA

2m

96p f p
4 m

D G J .

~81!

This shows that the structure of Eq.~28! is recovered, excep
for the medium range contribution, which is divided by
factor 2, characteristic of the topology of Feynman diagram

IX. TPEP

Our final result for the relativisticO(q4) two-pion ex-
change potential is obtained by feeding the truncated cov
ant profile functions of the preceding section into Eqs.~29!–
~33!. It is ready to be used as input in other calculations a
is expressed in terms of five basic functions~Sec. VII! and
empirical subthreshold coefficients~Sec. V!. If one wishes,
the latter may be traded by LECs, using the results of Sec
The various components are listed below.
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This potential is the main result of this work. If one kee
only terms up to orderO(q3), it coincides numerically with
that derived earlier by us@20#. As far asO(q4) terms are
concerned, the only difference is due to the explicit treatm
of medium range contributions. In our previous study
have shown that diagrams~k!–~o! of Fig. 6 strongly domi-
nate the potential. In the above expressions, these term
represented by products ofgA

2 by subthreshold coefficients
About 70% of the isoscalar potentialtC

1 comes from the term

proportional to (d̄00
1 1 d̄01

1 t/m2), which is related to the scala
form factor of the nucleon@32#, given by

s~ t !5
3m3gA

2

64p2f p
2 ~12t/2m2!P t . ~90!

The leading contribution totC
1 then reads

tC
1;2

~ d̄00
1 1 d̄01

1 t/m2!

m fp
2

s~ t !

;
4

f p
2 @22c12c3~12t/2m2!#s~ t !. ~91!

As the scalar form factor represents the probing of
part of the nucleon mass associated with its pion cloud,
leading term of theNN potential corresponds to a picture
which one of the nucleons, acting as a scalar source, dist
the pion cloud of the other. A rather puzzling aspect of t
problem is that the largest term in aO(q2) potential is of
O(q3).
02400
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X. COMPARISON WITH HEAVY BARYON
CALCULATIONS

The relativistic potential of the preceding section involv
five basic functions, representing loop integrals, and s
threshold coefficients. The latter can be reexpressed in te
of LECs and explicit powers ofm/m, using the results of
Ref. @29#, summarized in Sec. V. The loop functions we
derived by means of covariant techniques and one uses
results of Sec. VII and Appendix B. As discussed by El
and Tang@31# and in our Sec. VI, if one forces an expansio
of the relativistic functions in powers ofm/m, even in the
regions where this expansion is not valid, one recoversfor-
mally the results of HBChPT. This procedure amounts to
placing the relativistic functions, which cover the neighbo
hood of the pointt54m2, by the heavy baryon series, whic
is not valid there.

Performing such a replacement in theO(q4) results of
the preceding section, we find~inequivalent! expressions
that coincide largely with those produced by means of he
baryon techniques. In order to allow comparison w
HBChPT calculations, in this section we display the fu
m/m expansion of our potential, without including terms d
to the common factorm/E.

We reproduce below the results of Refs.@21,24,25#, which
include relativistic corrections and were elaborated furt
by Entem and Machleidt@40#. The few terms that are only
present in our potential are indicated by@•••#* :
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256p2m2f p
4 F ~4m21q2!216gA

2~m213q2/8!1
4gA

4

3 S 9m2111q2/42
4m4

4m21q2D G1
gA

4

512p2f p
6 $@~4m21q2!A~q!#

3@~4m21q2!A~q!12m#%* , ~98!

WsL
R .WsL

HB.0. ~99!
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XI. SUMMARY AND CONCLUSIONS

We have presented aO(q4) relativistic chiral expansion
of the two-pion exchange component of theNN potential,
based on that derived by Becher and Leutwyler@28,29# for
elasticpN scattering. The dynamical content of the potent
is given by three families of diagrams, corresponding to
minimal realization of chiral symmetry, two-loop intera
tions in thet channel, and processes involvingpN subthresh-
old coefficients, which represent frozen degrees of freed

The calculation begins with the full evaluation of the
diagrams. Results are then projected into a relativistic s
basis and expressed in terms of many different loop integ
~Appendix D!. At this stage, the chiral structure of the pro
lem is not yet evident. However, chiral scales emerge w
these first amplitudes are simplified by means of relati
among loop integrals. This gives rise to our intermedi
results~Appendix F!, which involve no truncations and pre
serve the numerical content of the various subamplitudes
distances larger than 1 fm. The truncation of these inter
diate results toO(q4) yields directly the relativistic potentia
~Sec. IX!, which is ready to be used in momentum spa
calculations ofNN observables.

Our treatment of theNN interaction emphasizes the ro
of the intermediatepN subamplitudes and, in this sense, it
akin to that used in the Paris potential. We discuss h
power countings inpN andNN processes are related~Sec.
IV ! and results are expressed directly in terms of observ
subthreshold coefficients. The LECsci anddi are implicitly
kept within these coefficients, grouped together with tw
loop short range contributions.

If the potential presented here were truncated at or
O(q3), one would recover numerically the results derived
us sometime ago@20#. However, processes involving tw
loops in thet channel do show up atO(q4) and results begin
to depart at this order.

The dependence of the potential on the external varia
is incorporated into five loop integrals, associated w
bubble, triangle, crossed box and box, diagrams. The tria
integral is the same entering the scalar form factor of
nucleon and can be represented accurately by means o
ementary functions~Sec. VII! and has the correct analyti
behavior at the important pointt54m2. We have shown tha
this kind of representation can also be used to disclose
chiral structures of box and crossed box integrals~Appendix
G!. The effects associated with the correct analytic struct
02400
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of relativistic integrals are important because they domin
the long distance behavior of the potential.

The expansion of the functions entering the relativis
potential in powers ofm/m is not mathematically defined
aroundt54m2. Nevertheless, in order to compare our resu
with those produced by means of HBChPT, we have
sumed that such an expansion could be made for all l
energy values oft. This expansion then reproduces most
the standard HBChPT results. We find, however, two syste
atic differences, apart from some minor scattered ones.
first one is due to the Goldberger-Treiman discrepancy. T
other one concerns terms ofO(q3), whose origin is less
certain. However, the fact that they occur at the same o
as the iteration of the OPEP suggests that there may b
important dependence on the procedure adopted for subt
ing this contribution. This aspect of the problem is rath
relevant in numerical applications of the potential and d
serves being clarified.

The numerical implications of the various approximatio
required to derive theO(q4) potential in configuration spac
will be presented in a forthcoming paper.
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APPENDIX A: KINEMATICS

The initial and final nucleon momenta are denoted byp
andp8, whereask andk8 are the momenta of the exchange
pions, as in Fig. 1. We define the variables

W5p11p25p181p28 , ~A1!

z5@~p11p18!2~p21p28!#/2, ~A2!

q5k82k5p182p15p22p28 , ~A3!
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Q5~k1k8!/2. ~A4!

The external nucleons are on shell and the following c
straints hold:

m25~W21z21q2!/4, ~A5!

Wz5Wq5zq50. ~A6!

For the Mandelstam variables, one has

t5q2, ~A7!

s15@Q21Q~W1z!2t/41m2#, ~A8!

u15@Q22Q~W1z!2t/41m2#, ~A9!

n15~W1z!Q/2m, ~A10!

s25@Q21Q~W2z!2t/41m2#, ~A11!

u25@Q22Q~W2z!2t/41m2#, ~A12!

n25~W2z!Q/2m, ~A13!

Sometimes it is useful to write

Q25~k22m2!/21~k822m2!/21~m22t/4!, ~A14!

Qq5~k822m2!/22~k22m2!/2. ~A15!

For free spinors, the following results hold:

@ ū~p8!q”u~p!# (1)5@ ū~p8!q”u~p!# (2)50, ~A16!

@ ū~p8!~W” 1z” !u~p!# (1)52m@ ū~p8!u~p!# (1), ~A17!

@ ū~p8!~W” 2z” !u~p!# (2)52m@ ū~p8!u~p!# (2), ~A18!

and also

$ūglu%(1)5$~W1z!l/2m@ ūu#

2 i /2m@ ūsml~p82p!mu#% (1), ~A19!

~q2/4m2!$ūu%(1)5$2 i /2m@ ūsml~p82p!mu#

3~W1z!l/2m%(1), ~A20!

$ūgru%(2)5$~W2z!r/2m@ ūu#2 i /2m@ ūsnr~p82p!nu#%(2),

~A21!

~q2/4m2!$ūu%(2)5$2 i /2m@ ūsnr~p82p!nu#

3~W2z!r/2m%(2). ~A22!

In c.m., one has

p15~E;p!, p185~E;p8!, ~A23!

p25~E;2p!, p285~E;2p8!, ~A24!
02400
-

W5~2E;0!, ~A25!

q5~0;p82p!, ~A26!

z5~0;p81p! ~A27!

and the on shell condition for nucleons reads

E25m21q2/41z2/4. ~A28!

In the c.m. frame, the nucleon spin functions may be
pressed in terms of two component matrices as

$ū~p8!u~p!% ( i )5x†F2m1
1

2~E1m!
~q22 i s•q3z!Gx,

~A29!

H i

2m
ū~p8!sm0~p82p!mu~p!J ( i )

5x†F 1

2m
~q22 i s•q3z!Gx,

~A30!

H i

2m
ū~p8!sm j~p82p!mu~p!J ( i )

5s~ i !x†F2 i s3~p82p!1~q22 i s•q3z!

3
~p81p!

4m~E1m!G
j

x, ~A31!

wheres( i )5(1,21) for i 5(1,2). These results, which con
tain no approximations, allow one to write the identities

@ūu#(1)@ūu#(2)54m2F~11q2/l2!224~11q2/l2!
VLS

l2
2

VQ

l4 G ,

~A32!

2
i

2m
$@ ūu# (1)@ ūsml~p82p!mu# (2)2~1↔2!%

zl

2m

54m2F2~11q2/l2!
z2q2

2m2l2
1~11q2/l21z2/l2

12q2z2/l4!
VLS

m2
1~11z2/l2!

VQ

2m2l2G , ~A33!

2
1

4m2
@ ūsml~p82p!mu# (1)@ ūsnr~p82p!nu# (2)glr

54m2F ~114m2z2/l4!
q4

16m4
2

VSS

6m2
2

VT

12m2

2~114m2/l214m2z2/l4!
q2VLS

4m4

2~118m2/l214m2z2/l4!
VQ

16m4G , ~A34!
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2
1

4m2
@ ūsml~p82p!mu# (1)@ ūsnr~p82p!nu# (2)

zlzr

4m2

54m2F2
q4z4

16m4l4
1~11z2/l2!

q2z2VLS

4m4l2

1~11z2/l2!2
VQ

16m4G , ~A35!

where the two-component spin operatorsV were defined in
Sec. II andl254m(E1m).

APPENDIX B: LOOP INTEGRALS

The basic loop integrals needed in this work are

I cc
m•••5E @•••#S Qm

m
••• D , ~B1!

I sc
m•••5E @•••#S Qm

m
••• D 2mm

@Q21Q~W1z!2t/4#
,

~B2!

I ss
m•••5E @•••#S Qm

m
••• D

3
2mm

@Q21Q~W1z!2t/4#

2mm

@Q21Q~W2z!2t/4#

~B3!

with

E @•••#5E d4Q

~2p!4

1

@~Q2q/2!22m2#@~Q1q/2!22m2#
.

~B4!

All denominators are symmetric underq→2q and results
cannot contain odd powers of this variable. The integrals
dimensionless and have the following tensor structure:

I cc5
i

~4p!2
$Pcc

(000)%, ~B5!

I cc
mn5

i

~4p!2 H 1

m2
@qmqnPcc

(200)#1gmnP̄cc
(000)J , ~B6!

I cc
mnlr5

i

~4p!2 H 1

m4
@qmqnqlqrPcc

(400)#1
1

m2
@~gmnqlqr

1gnlqrqm1glrqmqn1gmlqnqr1gmrqlqn

1gnrqmql!P̄cc
(200)#1@~gmnglr1gmlgnr

1gmrgnl!P̄̄cc
(000)#J , ~B7!
02400
re

I sc5
i

~4p!2
$Psc

(000)%, ~B8!

I sc
m 5

i

~4p!2 H 1

2m
@~zm1Wm!Psc

(001)#J , ~B9!

I sc
mn5

i

~4p!2 H 1

m2
@qmqnPsc

(200)#1
1

4m2
@~W1z!m~W

1z!nPsc
(002)#1gmnP̄sc

(000)J , ~B10!

I ss5
i

~4p!2
$Pss

(000)%, ~B11!

I ss
m 5

i

~4p!2 H 1

2m
@zmPss

(010)1WmPss
(001)#J , ~B12!

I ss
mn5

i

~4p!2 H 1

m2
@qmqnPss

(200)#1
1

4m2
@zmznPss

(020)

1WmWnPss
(002)#1gmnP̄ss

(000)J . ~B13!

The usual Feynman techniques for loop integration allow
to write

Pcc
(k00)5E

0

1

da~2Ca!kFr02 lnS Dcc

m2 D G , ~B14!

P̄cc
(k00)52

1

2E0

1

da~2Ca!k
Dcc

m2 F2r11 lnS Dcc

m2 D G ,

~B15!

P̄̄cc
(000)5

1

8E0

1

da
Dcc

2

m4 Fr22 lnS Dcc

m2 D G , ~B16!

Psc
(kmn)5S 2

2m

m D m1n11E
0

1

daaE
0

1

db
m2~2Cq!k~Cb!m1n

Dsc
,

~B17!

P̄sc
(000)52S 2m

m D 1

2E0

1

daaE
0

1

dbF2r01 lnS Dsc

m2 D G ,

~B18!

Pss
(kmn)5S 2

2m

m D m1n12E
0

1

daa2E
0

1

dbbE
0

1

dc

3
m4~2Cq!k~Cc!

m~Cb!n

Dss
2

, ~B19!
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P̄ss
(000)52S 2m

m D 2 1

2E0

1

daa2E
0

1

dbbE
0

1

dc
m2

Dss
~B20!

with

Ca5a21/2, ~B21!

Scc
2 52q2/41m2, ~B22!

Dcc5Ca
2q21Scc

2 , ~B23!

Cb5ab/2, ~B24!

Cq5Ca2Cb , ~B25!

Smc
2 52~122ab!q2/41~12ab!m2, ~B26!

Dsc5Cq
2q21Cb

2~z21W2!1Smc
2 , ~B27!

Cc5abc/2, ~B28!

Smm
2 5Smc

2 , ~B29!

Dss5Cq
2q21Cc

2z21Cb
2W21Smm

2 . ~B30!

The case (cs) is obtained from (sc) by makingzm→2zm.
The case (us) is obtained from (ss) by making
Cb↔2Cc .

APPENDIX C: OPEP ITERATION

The iteration of the OPEP has to be subtracted from
elastic scattering amplitude, in order to avoid double cou
ing in the potential. In this work we adopt the procedure us
by Partovi and Lomon@5#, based on a prescription develope
by Blankenbecler and Sugar@41#. In this appendix we adap
their expressions to our relativistic notation and also simp
some of the results.

The iterated OPEP is contained in the box diagram, c
responding to the amplitude

Tbox5@322t(1)t(2)#Tus , ~C1!

where

Tus5 i F g

mG4 m2

4 E @•••#
QmQn

m2 F 2mm

u2m2
ūgmuG (1)

3F 2mm

s2m2
ūgnuG (2)

. ~C2!

Evaluating this integral using the results of Appendix B, o
recovers the spin structure of Eq.~6! with

IDD] us52
m2/4

~4p!2 F g

mG4F2
z4

16m4
Pus

(020)1
W4

16m4
Pus

(002)

1
W22z2

4m2
P̄us

(000)G , ~C3!
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I DB
(w)] us52

m2/4

~4p!2 F g

mG4F W2

4m2
Pus

(002)1P̄us
(000)G , ~C4!

I DB
(z) ] us52

m2/4

~4p!2 F g

mG4F z2

4m2
Pus

(020)1P̄us
(000)G , ~C5!

I BB
(g)] us52

m2/4

~4p!2 F g

mG4

@P̄us
(000)#, ~C6!

I BB
(w)] us52

m2/4

~4p!2 F g

mG4

@Pus
(002)#, ~C7!

I BB
(z) ] us52

m2/4

~4p!2 F g

mG4

@Pus
(020)#. ~C8!

The iterated amplitude is denoted byTp and given by

Tp5@322t(1)t(2)#Ti t ~C9!

with

Ti t52 i F g

mG4 m2

4 H ~ ūu!(1)~ ūu!(2)~ I B22I C!

2@~ ūu!(1)~ ūg iu!(2)2~ ūg iu!(1)~ ūu!(2)#

3Fm

m
I C

i 1
zi

2m
~ I B22I C!G2~ ūg iu!(1)~ ūg ju!(2)

3F m2

m2
~ I A

i j 2I C
i j !1

m

m S zi

2m
I C

j 1I C
i zj

2mD
1

zizj

4m2
~ I B22I C!G J . ~C10!

The functionsI i are three-dimensional loop integrals, defin
as

I A
i •••5 i E ~••• !S Qi

m
••• D m3

E@EQ
2 2E2#

, ~C11!

I B5 i E ~••• !
m3

E2EQ

, ~C12!

I C
i •••5I A

i •••2I D
i ••• , ~C13!

I D
i •••5 i E ~••• !S Qi

m
••• D m3

EQ@EQ
2 2E2#

, ~C14!

whereEQ5Am21(Q2z/2)2 and

E ~••• !5E d3Q

~2p!3

m

@~Q2q/2!21m2#@~Q1q/2!21m2#
.

~C15!
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The usual Feynman parametrization techniques, the re
sentation

m

EQ
5

1

pE2`

` mEde

@~Q2z/2!21m21e2E2#
, ~C16!

and the tensor decomposition

I x5
i

~4p!2
$Px

(000)%, ~C17!

I x
i 5

i

~4p!2 H zi

2m
Px

(010)J , ~C18!

I x
i j 5

i

~4p!2 H qiqj

m2
Px

(200)1
zizj

4m2
Px

(020)1gi j P̄x
(000)J

~C19!

~for x5A,B,C) yield

IDD] i t5
m2/4

~4p!2 F g

mG4H m2

m2 S z4

16m4
PA

(020)1
z2

4m2
P̄A

(000)D
1S 12

z2

4m2D 2

~PB
(000)22PC

(000)!2
z2

4m2 S m2

m2
P̄C

(000)

1
2m

m
PC

(010)D 2
z4

16m4 S m2

m2
PC

(020)2
2m

m
PC

(010)D J ,

~C20!

I DB
(z) ] i t5

m2/4

~4p!2 F g

mG4H 2
m2

m2 S z2

4m2
PA

(020)1P̄A
(000)D

1
m2

m2
P̄C

(000)1
m

m
PC

(010)1S 12
z2

4m2D ~PB
(000)

22PC
(000)!1

z2

4m2 S m2

m2
PC

(020)2
2m

m
PC

(010)D J ,

~C21!

I BB
(g)] i t52

W2

4m2
I BB

(w)] i t

5
m2/4

~4p!2 F g

mG4H m2

m2
@2P̄A

(000)1P̄C
(000)#J , ~C22!

I BB
(z) ] i t5

m2/4

~4p!2 F g

mG4H 2
m2

m2
PA

(020)1
m2

m2
PC

(020)2
2m

m
PC

(010)

2PB
(000)12PC

(000)J . ~C23!

The functionsP andP̄ are written as
02400
re-
PA

(020)5S 2m

m D 2 4m4

E E
0

1

daaE
0

1

dbE
0

`

dQ
~Cb!2

@Q21SA
22PI

2#2
,

~C24!

P̄A
(000)52

2m4

m2E
E

0

1

daaE
0

1

dbE
0

`

dQ
1

@Q21SA
22PI

2#
,

~C25!

PB
(000)5

4m4

pE E
0

1

daaE
0

1

dbE
2`

`

deE
0

`

dQ
1

@Q21SB
22PI

2#2
,

~C26!

PC
(0n0)5S 2m

m D n 4m4

pE E
0

1

daaE
0

1

dbE
2`

` de

11e2E0

`

dQ

3
~Cb!n

@Q21SB
22PI

2#2
, ~C27!

P̄C
(000)52

2m4

pm2E
E

0

1

daaE
0

1

dbE
2`

` de

11e2E0

`

dQ

3
1

@Q21SB
22PI

2#
, ~C28!

where

PI5Cqq2Cbz, ~C29!

SA
25Smc

2 , ~C30!

SB
25Smc

2 1ab~11e2!E2, ~C31!

SD
2 5Smc

2 1abl~11e2!E2. ~C32!

The contribution from the OPEP cut in the functionsPus is
canceled by the integralsPA . We parametrize the loop mo
mentum in those integrals asQ5(abcW/2)5(2CcW) and
have@Q21SA

22PI
2#5Dus , and write

m2

m2
PA

(020)[P i t
(020) ,

m2

m2
P̄A

(000)[P̄ i t
(000) ~C33!

with

P i t
(kmn)5S 2

2m

m D m1n12E
0

1

daa2E
0

1

dbbE
0

`

dc

3
m4~Cq!k~2Cb!m~2Cc!

n

Dus
2

, ~C34!

P̄ i t
(000)52S 2m

m D 2 1

2E0

1

daa2E
0

1

dbbE
0

`

dc
m2

Dus
.

~C35!

The integralsPB andPC can also be simplified, by adoptin
the new variablesc and u, defined by the relationse
5Aa2b2c22ab, cosu/Aab,Q5EAa2b2c22absinu. Per-
forming the angular integrations, we have
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PB
(000)5S 2m

m D 4 1

4E0

1

daa2E
0

1

dbbE
1/Aab

`

dc
m4Aabc

Dus
2

,

~C36!

PC
(0m0)5S 2m

m D m14 1

4E0

1

daa2E
0

1

dbbE
1/Aab

`

dc
m4~Cb!m

Dus
2

,

~C37!
e

02400
P̄C
(000)52S 2m

m D 4 1

16E0

1

daa2E
0

1

dbbE
1/Aab

`

dc
m2

Dus
.

~C38!

The results presented so far in this appendix correspond
to a reorganization of those obtained by Partovi and Lom
@5#. They may be further simplified by noting that
I B5 i E ~••• !
m3

E2EQ

. i
m3

E3E ~••• !@12~Q22q2/42Q•z!/

2E213~Q22q2/42Q•z!2/8E4#, ~C39!

I C
i •••5 i E ~••• !S Qi

m
••• D m3

EEQ~E1EQ!

. i
m3

2E3E ~••• !@123~Q22q2/42Q•z!/4E215~Q22q2/42Q•z!2/8E4#. ~C40!
The integrals*(•••) can be performed analytically and w
have

E ~••• !52
1

~4p!2

2m

m
Pa , ~C41!
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wherePa is the function given in Eq.~61!.
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The results presented in Eqs.~C3!–~C8!, ~C20!–~C23!,
~C33!–~C35!, and~C43!–~C47! allow one to write
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where the integralsP reg[P i t2Pus are regular and given by
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APPENDIX D: FULL RESULTS

In this appendix we list the results for the amplitudes t
enter Eq.~15!, obtained by reading the diagrams of Fig.
and representing loop integrals by means of the functi
displayed in Appendixes B and C.

Family 1 @diagrams~a!1~b!1~c!1~d!1~e!1~f!#.
02400
t

s

I DD
1 5

m2/4

~4p!2

g4

m4 H 2Pcc
(000)24

W21z2

4m2
Psc

(001)2
z4

16m4
Pss

(020)

1
W4

16m4
Pss

(002)1
W22z2

4m2
P̄ss

(000)2
z4

16m4
P reg

(020)

1
W4

16m4
P reg

(002)1
W22z2

4m2
P̄ reg

(000)2
m

2m S 12
q2

2m2D
3S 11

m2

m2
1

q2

8m2
1

z2

8m2D PaJ , ~D1!

I DB
(w)15

m2/4

~4p!2

g4

m4 H 22Psc
(001)1

W2

4m2
Pss

(002)1P̄ss
(000)

1
W2

4m2
P reg

(002)1P̄ reg
(000)J , ~D2!

I DB
(z)15

m2/4

~4p!2

g4

m4 H 2Psc
(001)1

z2

4m2
Pss

(020)1P̄ss
(000)

1
z2

4m2
P reg

(020)1P̄ reg
(000)2

m

2m S 3

2
2

5q2

8m2D PaJ , ~D3!

I BB
(g)15

m2/4

~4p!2

g4

m4 H P̄ss
(000)1P̄ reg

(000)1
m

2m S 12
q2

4m2D PaJ ,

~D4!

I BB
(w)15

m2/4

~4p!2

g4

m4
$Pss

(002)1P reg
(002)%, ~D5!

I BB
(z)15

m2/4

~4p!2

g4

m4
$Pss

(020)1P reg
(020)% ~D6!

and

I DD
2 5

m2/4

~4p!2 H m2

2m2 S g2

m2
2

1

f p
2 D 2

W22z2

4m2
P̄cc

(000)

1
2m

m

g2

m2 S g2

m2
2

1

f p
2 D W22z2

4m2 FW21z2

4m2
Psc

(002)

1P̄sc
(000)G1

g4

m4 F2
z4

16m4
Pss

(020)1
W4

16m4
Pss

(002)

1
W22z2

4m2
P̄ss

(000)1
z4

16m4
P reg

(020)2
W4

16m4
P reg

(002)

2
W22z2

4m2
P̄ reg

(000)1
m

2m S 12
q2

2m2D
3S 11

m2

m2
1

q2

8m2
1

z2

8m2D PaG J , ~D7!
4-23



R. HIGA AND M. R. ROBILOTTA PHYSICAL REVIEW C68, 024004 ~2003!
I DB
(w)25

m2/4

~4p!2 H m2

2m2 S g2

m2
2

1

f p
2 D 2

P̄cc
(000)1

2m

m

g2

m2

3S g2

m2
2

1

f p
2 D F W2

4m2
Psc

(002)1P̄sc
(000)G

1
g4

m4 F W2

4m2
Pss

(002)1P̄ss
(000)2

W2

4m2
P reg

(002)2P̄ reg
(000)G J ,

~D8!

I DB
(z)25

m2/4

~4p!2 H m2

2m2 S g2

m2
2

1

f p
2 D 2

P̄cc
(000)

1
2m

m

g2

m2 S g2

m2
2

1

f p
2 D F z2

4m2
Psc

(002)1P̄sc
(000)G

1
g4

m4 F z2

4m2
Pss

(020)1P̄ss
(000)2

z2

4m2
P reg

(020)2P̄ reg
(000)

1
m

2m S 3

2
2

5q2

8m2D PaG J , ~D9!

I BB
(g)25

m2/4

~4p!2 H m2

2m2 S g2

m2
2

1

f p
2 D 2

P̄cc
(000)

1
2m

m

g2

m2 S g2

m2
2

1

f p
2 D P̄sc

(000)

1
g4

m4 F P̄ss
(000)2P̄ reg

(000)2
m

2m S 12
q2

4m2D PaG J ,

~D10!

I BB
(w)25

m2/4

~4p!2

g2

m2 H 2m

m S g2

m2
2

1

f p
2 D Psc

(002)

1
g2

m2
@Pss

(002)2P reg
(002)#J , ~D11!

I BB
(z)25

m2/4

~4p!2

g2

m2 H 2m

m S g2

m2
2

1

f p
2 D Psc

(020)

1
g2

m2
@Pss

(020)2P reg
(020)#J . ~D12!

Family 2 @diagrams~g!1~h!1~i!1~j!#.

I DD
1 52

m2/4f p
2

~4p!4

g4

m2
~122q2/m2!@Pcc

(000)2Psc
(001)11#2,

~D13!

and
02400
I DD
2 52

m2/ f p
2

~4p!4
m2H W2

4m2 F g2

m2 S W2

4m2
Psc

(002)1P̄sc
(000)D

1
m

2m S g2

m2
2

1

f p
2 D P̄cc

(000)G 2

2
z2

4m2 F g2

m2 S z2

4m2
Psc

(002)1P̄sc
(000)D

1
m

2m S g2

m2
2

1

f p
2 D P̄cc

(000)G 2J , ~D14!

I DB
(w)252

m2/ f p
2

~4p!4

g4

m2 F W2

4m2
Psc

(002)1P̄sc
(000)

1
m

2m S 12
m2

g2f p
2 D P̄cc

(000)G 2

, ~D15!

I DB
(z)252

m2/ f p
2

~4p!4

g4

m2 F z2

4m2
Psc

(002)1P̄sc
(000)

1
m

2m S 12
m2

g2f p
2 D P̄cc

(000)G 2

, ~D16!

I BB
(g)252

m2/ f p
2

~4p!4

g4

m2 F P̄sc
(000)1

m

2m S 12
m2

g2f p
2 D P̄cc

(000)G 2

,

~D17!

I BB
(w)252

m2/ f p
2

~4p!4

g4

m2 H W2

4m2
@Psc

(002)#212Psc
(002)F P̄sc

(000)

1
m

2m S 12
m2

g2f p
2 D P̄cc

(000)G J , ~D18!

I BB
(z)252

m2/ f p
2

~4p!4

g4

m2 H z2

4m2
@Psc

(002)#212Psc
(002)F P̄sc

(000)

1
m

2m S 12
m2

g2f p
2 D P̄cc

(000)G J , ~D19!

Family 3 @diagrams~k!1~l!1~m!1~n!1~o!#.

I DD
1 5

1

~4p!2

g2

m2 H m~ d̄00
1 1q2d01

1 !FPcc
(000)2

W21z2

4m2
Psc

(001)G
1

m3

2
~12q2/2m2!~d10

1 1q2d11
1 !F ~W21z2!2

16m4
Psc

(002)

1
W21z2

4m2
P̄sc

(000)G J 1
1/2

~4p!2
$~ d̄00

1 1q2d01
1 !2Pcc

(000)
4-24



f
s

om

ns
s

TWO-PION EXCHANGE NUCLEON-NUCLEON . . . PHYSICAL REVIEW C68, 024004 ~2003!
12m2~ d̄00
1 1q2d01

1 !d10
1 P̄cc

(000)13m4~d10
1 !2P̄̄cc

(000)%,

~D20!

I DB
(w)152

m/2

~4p!2

g2

m2
$~ d̄00

1 1q2d01
1 !Psc

(001)

1m2~d10
1 1q2d11

1 !P̄cc
(000)%, ~D21!

I DB
(z)15

m/2

~4p!2

g2

m2
$~ d̄00

1 1q2d01
1 !Psc

(001)

23m2~d10
1 1q2d11

1 !P̄cc
(000)%, ~D22!

I BB
(g)152

m2m

~4p!2

g2

m2
b00

1 P̄cc
(000) ~D23!

and

I DD
2 52

mm

~4p!2

W22z2

4m2
~ d̄00

2 1q2d̄01
2 !

3H m

2m S g2

m2
2

1

f p
2

2d̄00
2 2q2d̄01

2 D P̄cc
(000)

1
g2

m2 FW21z2

4m2
Psc

(002)1P̄sc
(000)G J

1
m4/2

~4p!2 H d10
2F23S g2

m2
2

1

f p
2 D P̄̄cc

(000)

1
g2

m2
~12q2/2m2!P̄cc

(000)G J , ~D24!

I DB
(w)252

mm/2

~4p!2 H m

2m S g2

m2
2

1

f p
2 D b̄00

2 P̄cc
(000)

1
g2

m2
b̄00

2F W2

4m2
Psc

(002)1P̄sc
(000)G J , ~D25!

I DB
(z)25I DB

(w)2 , ~D26!

I BB
(g)252

mm

~4p!2
b̄00

2 H m

2m S g2

m2
2

1

f p
2

2b̄00
2 D P̄cc

(000)

1
g2

m2
P̄sc

(000)J . ~D27!

APPENDIX E: RELATIONS AMONG INTEGRALS

We display here the relations among integrals needed
the chiral expansion of the potential. The derivation of the
relations is based on the fact that the numerators of s
integrands can be simplified. For instance, a result forI sc
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may be obtained through
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Other two relations involvingPss
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tained by deriving Eq.~B20! and Eq.~C55! with respect to
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APPENDIX F: INTERMEDIATE RESULTS

The results presented here for the TPEP were obtaine
using the relations among integrals of the preceding app
dix into the full expressions of Appendix D. In this procedu
we just neglected short range integrals and both sets of e
tions are equivalent for distances larger than 1 fm. In fam
3, we did not keep contributions larger thanO(q4), in order
to avoid unnecessarily long equations.
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m4/4f p
2

~4p!4 H W2

4m2 F2
g2

m2 S ~12t/2m2!Psc
(001)

1
m

m
~z2/2m2!Psc

(002)112t/3m2D1
1

3 S g2

m2
2

1

f p
2 D

3@~12t/4m2!Pcc
(000)122t/4m2#G 2

2
z2

4m2 F g2

m2 S ~12t/4m2!Psc
(000)1

m

2m
~12t/2m2!

3Psc
(001)1

m2

m2
~z2/2m2!Psc

(002)2p D
1

m

3m S g2

m2
2

1

f p
2 D ~12t/4m2!Pcc

(000)G 2J , ~F14!

I DB
(w)252

m4/4f p
2

~4p!4 F2
g2

m2 S ~12t/2m2!Psc
(001)

1
m

m
~z2/2m2!Psc

(002)112t/3m2D1
1

3 S g2

m2
2

1

f p
2 D

3@~12t/4m2!Pcc
(000)122t/4m2#G 2

, ~F15!

I DB
(z)252

m2m2/4f p
2

~4p!4 F g2

m2 S ~12t/4m2!Psc
(000)

1
m

2m
~12t/2m2!Psc

(001)1
m2

m2
~z2/2m2!Psc

(002)2p D
1

m

3m S g2

m2
2

1

f p
2 D ~12t/4m2!Pcc

(000)G 2

, ~F16!

I BB
(g)252

m2m2/4f p
2

~4p!4 F g2

m2 S ~12t/4m2!Psc
(000)

1
m

2m
~12t/2m2!Psc

(001)2p D
1

m

3m S g2

m2
2

1

f p
2 D ~12t/4m2!Pcc

(000)G 2

, ~F17!

I BB
(w)252

m2m2/2f p
2

~4p!4

g2

m2
Psc

(002)F g2

m2 S ~12t/4m2!Psc
(000)

2
m

2m
~12t/2m2!Psc

(001)2
m2

m2
~z2/m2!Psc

(002)D
1

2m

3m S g2

m2
2

1

f p
2 D ~12t/4m2!Pcc

(000)G , ~F18!
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I BB
(z)252

m2m2/ f p
2

~4p!4

g2

m2
Psc

(002)F g2

m2 S ~12t/4m2!Psc
(000)

1
m

2m
~12t/2m2!Psc

(001)1
m2

m2
~z2/4m2!Psc

(002)D
1

m

3m S g2

m2
2

1

f p
2 D ~12t/4m2!Pcc

(000)G . ~F19!

Family 3 @diagrams~k!1~l!1~m!1~n!1~o!#.

I DD
1 5

m3/2m fp
2

~4p!2

g2

m2 H ~ d̄00
1 1t/m2d01

1 !~12t/2m2!Psc
(000)

2
m

2m
d10

1 ~12t/2m2!2Psc
(001)J

1
m4/2m2

~4p!2

1

f p
4 H ~ d̄00

1 1t/m2d01
1 !2

1
2

3
~ d̄00

1 1t/m2d01
1 !d10

1 ~12t/4m2!

1
1

5
~d10

1 !2~12t/4m2!2J Pcc
(000) , ~F20!

I DB
(w)152

m2/2f p
2

~4p!2

g2

m2 H @ d̄00
1 1~ t/m2!d01

1 #Psc
(001)

1
1

3
d10

1 ~12t/4m2!Pcc
(000)J , ~F21!

I DB
(z)15

m2/2f p
2

~4p!2

g2

m2
$@ d̄00

1 1~ t/m2!d01
1 #Psc

(001)

2d10
1 ~12t/4m2!Pcc

(000)%, ~F22!

I BB
(g)152

m2/ f p
2

~4p!2

g2

m2

1

3
b00

1 ~12t/4m2!Pcc
(000) , ~F23!

and

I DD
2 52

m4/2m2f p
2

~4p!2 H 1

3 S g2

m2
2

1

f p
2 D F d̄00

2 1~ t/m2!d̄01
2

1
3

5
~12t/4m2!d10

2 G~12t/4m2!Pcc
(000)

2
g2

m2
~12t/2m2!F ~ d̄00

2 1~ t/m2!d̄01
2 !Psc

(001)

1
1

3
d10

2 ~12t/4m2!Pcc
(000)G J , ~F24!
02400
I DB
(w)252

m2/4f p
2

~4p!2
b̄00

2 H 1

3 S g2

m2
2

1

f p
2 D ~12t/4m2!Pcc

(000)

2
g2

m2 F ~12t/2m2!Psc
(001)1

m

2m
~z2/m2!Psc

(002)G J ,

~F25!

I DB
(z)25I DB

(w)2 , ~F26!

I BB
(g)252

mm/2f p
2

~4p!2
b̄00

2 H m

3m S g2

m2
2

11b̄00
2

f p
2 D

3~12t/4m2!Pcc
(000)1

g2

m2 F ~12t/4m2!Psc
(000)

1
m

2m
~12t/2m2!Psc

(001)G J . ~F27!

APPENDIX G: RELATIVISTIC EXPANSIONS

In Sec. VII we have discussed the relativistic expansion
the functiong(t) derived by Becher and Leutwyler, whic
does not coincide with the usual heavy baryon expansion
this appendix we show how their results can be used to p
duce relativistic expansions for box and crossed box in
grals.

The triangle, crossed box, and regularized box integ
given, respectively, by Eqs.~B17!, ~B19!, and~C54! can be
written as

P̄ss
(000)52E

0

1

dcPsc
(001)~Mss!, ~G1!

P̄ reg
(000)52E

1

`

dcPsc
(001)~Mus!, ~G2!

wherePsc
(00n)(M) is a generalized triangle integral, given b

Psc
(00n)~M!5S 2

2m

m D n11E
0

1

daaE
0

1

db
m2~ab/2!n

D~M!
~G3!

and the denominatorD(M) is

D~M!5M 2a2b22a~12a!~12b!q21~12ab!m2.
~G4!

When M5m, one recovers the triangle integral defined
Eq. ~B17!. On the other hand, the valuesM 25(W21q2

1c2z2)/4 andM 25(c2W21q21z2)/4 yield Eqs.~G1! and
~G2!.

Performing explicitly theb integration in Eq.~G4!, we
obtain the generalization of Eq.~E2!, which reads
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~12t/4M 2!Psc
(001)~M!

5
m2

M 2 FPcc
(000)2

m

2m
~12t/2m2!Psc

(000)~M!1PL~M!G
~G5!

with

PL~M!5S 12
m2

M 2D S ln
M 2

m2
22D

12
m

MA12
m2

4M 2
tan21S M

m
A12m/2M

11m/2MD .

~G6!

In all cases,M is a large parameter and we can use
relativistic expansion ofg(t), which is related to our triangle
integral byPsc

(000)522mm(4p)2g(t). We have

Psc
(000)~M!5

m

M H Pa1
m

2MP t
NL1

p

2 F2
m

MA12t/4m2

12lnS 11
m

2MA12t/4m2D G J ~G7!

with Pa andP t
NL given by Eqs.~61! and~62!. Recalling that

Pcc
(000)5P, and inserting these results into Eqs.~G1! and

~G2!, we obtain

P̄ (000)52E dc
m2

M 22t/4
S P,1PL~M!2

m

2M ~12t/2m2!

3H Pa1
m

2MP t
NL1

p

2 F2
m

MA12t/4m2

12 lnS 11
m

2MA12t/4m2D G J D . ~G8!

In the chiral limit m→0, we have

P̄ss
(000)5P̄ reg

(000)→2~11z2/6m2!P, ~G9!

and, using Eqs.~E7!, ~E8!, ~E9!, and~E17! and Eqs.~E12!,
~E13!, ~E14!, and ~E18!, one finds the following relation-
ships valid in that limit:

Pss
(001)522P reg

(001)→Pa , ~G10!

Pss
(020)5P reg

(020)→2P,/3, ~G11!

Pss
(002)5P reg

(002)→2P, , ~G12!
y

02400
e

Pss
(000)5P reg

(000)→2P,8 . ~G13!

These results may also be combined with those presente
Appendix E, in order to produce relativisticO(q2) expan-
sions for box and crossed box integrals. Equations~E8!,
~G13!, and~E2! yield

P̄ss
(000)52S 11

t

4m2
1

z2

6m2D P,1
m

2m S 12
t

2m2D P t

~G14!

and, using Eqs.~E17! and ~E7!, one has

Pss
(000)52S 11

m2

2m2
1

z2

6m2D P,8

2
m

2m S 12
t

2m2D @P t2P t8#. ~G15!

Recalling thatPss
(000)5P3 and using the results of Sec. VI

we find the heavy baryon expansion

P3
HB52P,82

m

m

p/2

~12t/4m2!
2

m2

4m2
@~12t/2m2!2~2P,8

2P,9!1~2z2/3m2!P,8#1•••, ~G16!

where the ellipsis represent polynomials int.
For the box integrals we evaluate Eq.~G8! directly and

obtain

@P̄ reg
(000)#HB52S 11

t

4m2
1

z2

6m2D P,1
m

2m S 12
t

2m2D
3F1

2
Pa1

m

6m
P t

NLG . ~G17!

Comparing with Eq.~E14! and using Eq.~E2!, we find

P̃b
HB52

1

2 FPa1
2m

3m
P t

NLG , ~G18!

whereP̃b5P reg
(010) . Finally, evaluating Eq.~E18!, we have

Pb
HB52P,82

m

m

p/4

~12t/4m2!
2

m2

12m2
@~12t/2m2!2

3~2P,82P,9!1~2z2/m2!P,8#1••• ~G19!

with Pb5P reg
(000) .
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