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Two-pion exchange nucleon-nucleon potentialO(g*) relativistic chiral expansion
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We present a relativistic procedure for the chiral expansion of the two-pion exchange componem Nf the
potential, which emphasizes the role of intermediafd subamplitudes. The relationship between power
counting in77N and NN processes is discussed and results are expressed directly in terms of observable
subthreshold coefficients. Interactions are determined by one- and two-loop diagrams, involving pions, nucle-
ons, and other degrees of freedom, frozen into empirical subthreshold coefficients. The full evaluation of these
diagrams produces amplitudes containing many different loop integrals. Their simplification by means of
relations among these integrals leads to a set of intermediate results. Subsequent trun@4tdh yields the
relativistic potential, which depends on six loop integrals, representing bubble, triangle, crossed box, and box
diagrams. The bubble and triangle integrals are the samesal iscattering and we have shown that they also
determine the chiral structures of box and crossed box integrals. Relativistic threshold effects make our results
to be not equivalent with those of the heavy baryon approach. Performing a formal expansion of our results in
inverse powers of the nucleon mass, even in regions where this expansion is not valid, we recover most of the
standard heavy baryon results. The main differences are due to the Goldberger-Treiman discrepancy and terms
of 0(q®), possibly associated with the iteration of the one-pion exchange potential.
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[. INTRODUCTION portant contribution along this line was given in the early
1970s by Partovi and Lomon, who considered box and

A considerable refinement in the description of nuclearcrossed box diagrams, using a Lagrangian containing just
interactions has occurred in the last decade, due to the sypions and nucleons with pseudoscalBS coupling[5]. A
tematic use of chiral symmetry. As the non-Abelian charactestudy of the same diagrams using a pseudove@b) cou-
of QCD prevents low-energy calculations, one works withpling was performed later by Zuilhof and Tjd6]. The de-
effective theories that mimic, as much as possible, the basieelopment of this line of research led to the Bonn model for
theory. In the case of nuclear processes, where interactiorise NN interaction, which included many important degrees
are dominated by the quarksandd, these theories are re- of freedom and proved to be effective in reproducing empiri-
quired to be Poincarénvariant and to have approximate cal data[7]. On the phenomenological side, accurate poten-
SU(2)x SU(2) symmetry. The latter is broken by the small tials also exist, which can reproduce low-energy observables
guark masses, which give rise to the pion mass at the effe@mploying parametrized forms of the two-pion exchange
tive level. componen{8].

In the 1960s, it became well established that the one-pion Nowadays, it is widely acknowledged that chiral symme-
exchange potentialOPEP provides a good description of try provides the best conceptual framework for the construc-
NN interactions at large distances. When one moves inwardjon of nuclear potentials. The importance of this symmetry
the next class of contributions corresponds to exchanges o¥as pointed out in the 1970s by Brown and Duf8pand by
two uncorrelated pionfl] and, until recently, there was no Chemtob, Durso, and Risd.0], who stressed that it con-
consensus in the literature as how to treat this component sftrains the form of the intermediateN amplitude present in
the force. An important feature of the two-pion exchangethe TPEP.
potential (TPEP is that it is closely related to the pion- In the early 1990s, the works by Weinberg restating the
nucleon grN) amplitude, a point stressed more than thirty-role of chiral symmetry in nuclear interactiof$l] were
five years ago by Cottingham and Vinh M&2|. This idea  followed by an effort by Ordioez and van KolcK12] and
allowed one to overcome the early difficulties associatedther authord13,14 to construct the TPEP in that frame-
with perturbation theory3] and led to the construction of the work. The symmetry was then realized by means of nonlin-
successful Paris potentigd], where the intermediate part of ear Lagrangians containing only pions and nucleons. This
the interaction is obtained by means of dispersion relationgninimal chiral TPEP is consistent with the requirements of
This has the advantages of minimizing the number of unnecehiral symmetry and reproduces, at the nuclear level, the
essary hypotheses and yielding model independent resultgell known cancellations present in the intermediaté am-
but it does not help in clarifying the role of different dynami- plitude[15]. On the other hand, a Lagrangian containing just
cal processes, which are always treated in bulk. pions and nucleons could not describe experimembhldata

Field theory provides an alternative framework for the[16] and the corresponding potential missed even the scalar-
evaluation of the TPEP. In this case, one uses a Lagrangiaigsoscalar medium range attractiptd].
involving the degrees of freedom one considers to be rel- One needed other degrees of freedom. Theontribu-
evant, and calculates amplitudes using Feynman diagramgpns were shown to improve predictions by Onda, Ray,
which are subsequently transformed into a potential. An im-and van Kolck[17] and other authorgl8]. Empirical infor-

0556-2813/2003/68)/02400430)/$20.00 68 024004-1 ©2003 The American Physical Society



R. HIGAAND M. R. ROBILOTTA PHYSICAL REVIEW C68, 024004 (2003

mation about the low-energyN amplitude is normally sum- p P P _p
marized by means of subthreshold coefficiefils,19, N = ) ,‘
which can be used either directly in the construction of the Tz = ka (| Dk
TPEP or to determine unknown coupling constdhCs) in - N

chiral Lagrangians. The inclusion of this information allowed B p LI B
satisfactory descriptions of the asymptohidN data to be ) )

produced, with no need of free parameti26—23. FIG. 1. Two-pion exchange amplitude.

As far as techniques for implementing the symmetry ) ) )
are concerned, recent calculations of the TPEP were pele discuss the dynamical content of the potential and the
formed using both heavy baryon chiral perturbationprOpert.'eS of |mportant loop mtegralg used to express it. O_ur
theory (HBChPT) and covariant Lagrangians. In the former TPEP is suited to Lippmann-Schwinger dynamics and, in
case [12,17,21-24 one uses nonrelativistic effective APpendix C, we review the subtraction of the OPEP itera-
Lagrangians, which include unknown counterterms, and amion., needed to avoid double counting. The full TPEP, which
plitudes are derived in which loop and counterterm contribu/€Presents an extension of our earlier woik, 20, is de-
tions are organized in well defined powers of a typical low-"ved in Appendix D. This potential is transformed using
energy scale. In this approach, relativistic correctiondelations among integrals given in Appendix E and a new
required by precision have to be added separd@sy. form is given in Appgndl_x F, which is S|mpler by the neglect
QCD is a theory without formal ambiguities and the sameof shor.t range contr|but.|ons.. The trunpatlon of these re_sults
should happen with effective theories designed to be used &iVes rise to our0(q®) invariant amplitudes and potential
the hadron level. In the case of nuclear interactions, this alcomponents, displayed in Secs. VIl and IX. In Sec. X we
lows one to expect that the chiral TPEP should be uniqueSompare our TPEP with the standard heavy baryon version,
except for the iteration of the OPEP, which depends on th&/Sing expansions for loop integrals derived in Appendix G.
dynamical equation employed. Conclusions are p_resentgd in Sec. XI., yvh_ereas Appendlxes A
In the meson sector, chiral perturbation is indeed uniqué‘nd B deal with kinematics and relativistic loop integrals.
and predictions at a given order are unambiguous. However,
the problem becomes much more difficult for systems con- Il. TPEP FORMALISM
taining baryons. At present, the uniqueness problem is under ) . i )
scrutiny and two competing calculation procedures are avail- 1he TPEP is obtained from thEmatrix 7rp, which de-
able based on either heavy bary¢#BChPT) or relativistic ~ Scribes the on-shell procebgp;)N(pz) —N(p1)N(p3) and
(RBChPT) techniques. If both approaches are correct, theytontains two intermediate pions, as represented in Fig. 1. In
should produce fully equivalent predictions for a given pro-order to derive the corresponding potential, one goes to the
cess. Descriptions of single nucleon properties were found tenter of mass frame and subtracts the iterated OPEP, so as
be consistent, provided the nucleon mass is used as the df avoid double counting. ThEN interaction is thus closely
mensional regularization scal@6]. In the case ofrN scat- ~associated with the off-shettN amplitude.
tering, comparison of predictions became possible only re- The coupling of the two-pion system to a nucleon is de-
cently, through the works of Fettes, Meiner, and Steiningepcribed by T, the amplitude for the process®(k)N(p)
[27] (HBChPT) and Becher and Leutwyler[28,29  — m"(k')N(p’). It has the isospin structure
(RBChPT). Differences were found, associated with the fact

that some classes of diagrams cannot be fully represented by Tha=0apT ' +i€pacreT (1)
the heavy baryon series. Discussions of the pros and cons of
these techniques may be found in R¢&0,31]. and the evaluation of Fig. 1 yields
In the NN problem, all perturbative calculations produced
so far were based on HBChHT2,17,18,21-2b On the Trp=[3T " +274Y. 7497 2

other hand, an indication exists tHdN results are approach

dependent, for the large distance properties of the centravith

potential were shown to be dominated by diagrams that can-

not be expanded in the HB serig&2]. The main motivation i d‘Q  [T*]W[T=®@

of the present work is to extend the discussion of the unique- T 2 K= 2K 2— 2] <)
ness of chiral predictions to tHe=2 sector. We do this by o @2m)t [K =l #]

calculating covariantly the TPEP to ord&(q*) and com- . .
paring our results with the HB potential at the same order. wherepu is the pion mass and the factor 1/2! accounts for the

Our presentation is organized as follows. In Sec. Il we€XChange symmetry ?f the intermediate pions. The integra-
give the formal relations between the relativistic TPEP and'©" vana?le isQ=(k ,+ k)/2 and we also defing= (k"
the intermediaterN amplitude, whose chiral structure is —K), t=0Q°, andv;=(pj +p;)- Q/2m. Our kinematical vari-
analyzed in Sec. Ill. We discuss how power countingsiy ~ ables are fully displayed in Appendix A. _
is transferred to the TPEP in Sec. IV and how it is reflected FOr on-shell nucleons, the subamplitudesmay be writ-
into subthreshold coefficients in Sec. V. The problem of thef€N as
triangle diagram, in which heavy baryon and relativistic de- -
scriptions disagree, is briefly reviewed in Sec. VI. In Sec. VI T==u(p)[A*+QB*Ju(p) (4)
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and the functionsA= and B= are determined dynamically. The Lorentz structure of the integralsis realized in terms

An alternative possibility is of the external quantitieg, z, W, andg*”, defined in Appen-
dix A. Terms proportional tog do not contribute and we
e — ] ) P write
T==u(p’)| D™= 5 0P’ —P)*Q"B~u(p)  (5) . z“
e I IBB:ﬁIS’Q*ﬁI%, (12
with D==A~+vB~. This second form tends to be more
convenient when one is interested in the chiral content of the WA A
amplitudes. The information needed about the pion-nucleon INp=o—IW 7@ (13)
subamplitudesA™, B*, andD™ may be found in the com- 2m 2m
prehensive review by Hder [16] and in the recent chiral . X
analysis by Becher and Leutwylg29]. N Apr(0) WHWP w2 z° -
The intermediaterN subamplitudesA™, B=, and D~ Tgs=0""Tgpt a2 IBB+4mZIBB- (14)

depend on the variablé€, k'2, v, andt. For physical pro-

cesses one hds?=k?=u?, v=u, andt<0. On the other These expressions and the spinor identit&20) and (A22)
hand, the conditions of integration in E@) are such that the  yjg|q

pions are off-shell and the main contributions come from the

region v~0. Physical amplitudes cannot be directly em- o o 2 q*
ployed in the evaluation of the TPEP and must be continued ~ 7=[uu]®[uu]®| Zpp+ —ZI(D"‘Q+—4L(3"Q
analytically to the region below threshold, by means of either 2m 16m

dispersion relations or field theory. In both cases one should P .
preserve the analytic structure of théN amplitude, which - 2—{[uu](1)[uam(p’—p)"u](z)
plays an important role in the TPEP. m
The relativistic spin structure of the TPEP is obtained by s Py 12)
using Eq.(5) into Eqg.(3) and one has, for each isospin chan- (U (p’=p) Ul uul™}
nel, Vil
“2m

2
q
763

w, 7@ 9
IO+ TE+

_ _ [ _
T=[uu]V[uu]PZpp— 5 —[uu]Puo,\(p’ —p)*u]®
i = graluon (P =P ul®uo,, (p' —p) ul®
X Ipg= 5mlU0,n(p’ = p) u] luu] @y, X
z"zP
OVIEt 5 (~TER+IEY

X (15

1 _
~graluom (P’ =P Ul uo,, (p' -~ p) ] @I,
In order to display the ordinary spin content of this ampli-
(6) tude, we go to the center of mass frame and use identities

(A32)—(A35), which allow one to rewritel7p, without ap-

where proximations, in terms of the (22) identity matrix and the
operator$
Tpp=—il2 f [---[D]W[D]®), M 0se=oD- 0@, Qr=—(36™.G0@-g— oM. o),

Q s=i(oW+0?).qxz4, Qu=0Y.qxz6D-gxz
IEB=—i/2f[-~-][D]<1>[Q*B]<2>, ® o
The two-component momentum space amplitude in the
center of massc.m) is derived by dividingZ by the factor
N o AR MA(2) (4Em), present in the relativistic normalization, and intro-
Tgp=—i/2| [---IIQ'BIV[D]*, © ducing back the isospin coefficients as in Eg).. We then
have the decomposition

ngB: —i/ZJ [ NQ"BIQB™, (19 to =7" Tom =tc+ %tt + &ti—k Q_Lstt + 29
em=T 4Em_ S A
and (16)
d*Q 1 L . .
f [---]= f . (11 We use here the notation and results from Partovi and LdiBpn
(2m)* [K*= p][Kk'2 = u?] Egs.(4.26—(4.28.
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with 7*=3 andr~ =2. Finally, the momentum space poten- sign between the and u poles is negative, these contribu-

tial, denoted byt*, is obtained by subtracting the iterated tions add up and we havg1/(s—m?)—1/(u—m?’)]
OPEP from this expression, so as to avoid double counting—©(d). On the other hand, when the relative sign is posi-

IIl. INTERMEDIATE &N AMPLITUDE

tive, the leading contributions cancel out and we obtain
[1/(s—m?)+ 1/(u—m?)]—O(g?).
In ChPT, the structure of the amplitud&g involves both

The theoretical soundness of the TPEP relies heavily ofree and loop contributions. The former can be read directly

the description adopted for the intermediathl amplitude.

from the basic Lagrangians and correspond to polynomials in

In this work we employ the relativistic chiral representation  andt, with coefficients given by the renormalized LECs.

produced by the Bern group and collaboratf28,29,33,

The calculation of the latter is more complex and results may

which incorporates the correct analytic structure. For thehe expressed in terms of Feynman integrals. In the descrip-
sake of completeness, in this section we summarize some @bn of 7N processes below threshold, it is useful to approxi-

their results.
At low and intermediate energies, theN amplitude is

mate these contributions by polynomials, using

given by the nucleon pole contribution, superimposed to a

smooth background. Chiral symmetry is realized differently

Xg= 2, Xmn??M", (22)

in these two sectors and it is useful to disentangle the

pseudovector Born termp¢) from a remainder R). We
then write

T =T, +Tgr.

7

whereXg stands foDg, , Bg/v, Dg/v, or B . The values

of the coefficientsx,,, can be determined empirically, by
using dispersion relations in order to extrapolate physical
scattering data to the subthreshold regi@6,19. As such,

The pv contribution involves two observables, namely, thethey acquire the status of observables and become a rather

nucleon massn and thewN coupling constang, as pre-
scribed by the Ward-Takahashi identj4]. In chiral pertur-

bation theory, depending on the order one is working with,
the calculation of these quantities may involve differen

numbers of loops and several coupling constamNsverthe-

important source of information about the values of the
LECs.
The isospin odd subthreshold coefficients include leading

torder contributions, which yield the predictions made by

Weinberg[36] and Tomozaw437] (WT) for =N scattering

less, at the end, results must be organized in such a way as f@'9ths, given by

reproduce the physical values of bathandg in Trfv [35].
Following Hadhler [16] and the Bern grougd,33,29 in their
treatments of the Born term, we use the constaint these

equations, instead o, /f ;). The motivation for this choice

is that thewN coupling constant is indeed the observable

determined by the residue of the nucleon pole. We write

2 ’ ’
. @[ Kk | KK ,
pv_zm(s_m2+u_m2 _’O(q )l (18)
1 1
Bl =—g° —-———|—=0(q™Y, 19
pv g i u—mm2 a ) (19
B L T -
P oml oo ueme M (@, (20

| 11 ,
Bp,=—9 + + —0(q), (21)
S

u—-m? 2m?

where s=(p+k)2=(p'+k’)? and u=(p—k')?=(p’

B v
DWTZE—’O(Q), (23
1
B\;,T=—2H0(q°). (24)
2f

m

Some time ago, we developed a chiral description of the
TPEP based on the empirical values of the subthreshold co-
efficients, which could reproduce asymptoldN data[20].

As we discuss in the sequence, that description has to be
improved when one goes beyo@iq®). In nuclear interac-
tions, the ranges of the various processes are associated with
the variable and must be accurately described. In particular,
the pion cloud of the nucleon gives rise to scalar and vector
form factors[33], which correspond, in configuration space,
to structures that extend well beyond 1 f82]. On the other
hand, the representation of an amplitude by means of a
power series, as in E¢22), amounts to a zero-range expan-
sion, for its Fourier transform yields onlyfunctions and its
derivatives. So, this kind of representation is suited for large

—k)?. The arrows after the equations indicate their chiraldistances only. At shorter distances, the extension of the ob-

orders, estimated by using—m?~W-Q and u—m?
~—W-Q, with W=p;+p,=p;+p,. When the relative

2For instance, up t®(q* T;U receives contributions from tree

graphs of ™. .. £® and one-loop graphs fromd ) and £ ®,
expressed in terms of its bare coupling constants.

jects begins to appear.

In the work of Becher and Leutwyld29] we can check
that the only sources dfiN medium range effects are their
diagramsk and|, reproduced in Fig. 2, which contain two
pions propagating in thechannel. Here we consider explic-
itly their full contributions and our amplitude&; and B
are written as
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|(:

FIG. 2. Long range contributions to the scalar and vector form
factors.

Dg = D) +[dgot digr?+ dgit] )
+[d;o”4+df1”2t+agzt2](3)l (25
Br =Bm(t) +[bgor]). (26)

D =D +[#/(2f2)] 1)+ [door+ d;ov3+Eglut](3)(,
2

Br = Bu(1) +[1/(212) +bogl 0y + [D1gv2+ boat] 1)
28)

In these expressions, the labéfs outside the brackets indi-
cate the presence of leading terms@fq"), whereas the
label mr denotes the contribution from the medium range
diagrams of Fig. 2. This decomposition implies the redefini-
tion of some subthreshold coefficients, indicated by a bar
over the appropriate symbol. Their explicit forms will be
displayed in the sequence.

The dynamical content of th®(q*) T, amplitude de-
rived in Ref.[29] is shown in Fig. 3 and our approximation
in Fig. 4. In the latter, the first two diagrams correspond to
the direct and crossed PV Born amplitudes, with physical

masses and coupling constants. The third one represents the
contact interaction associated with the Weinberg-Tomozawa t3= ™=

vertex, whereas the next two describe the medium range ef-
fects associated with the scalar and vector form factors. Fi-
nally, the last diagram summarizes the terms within square
brackets in Eqs(25)—(28).

IV. POWER COUNTING

One begins the expansion of the TPEP to a given chiral
order by recasting the explicitly covariaftp into the two-
component form of Eq(16). This procedure involves no
approximations and one finds, in the c.m. frame,

2
+

tre=71"—
LS E

PHYSICAL REVIEW &8, 024004 (2003

q4

GmA(1+4m222/>\4)1§§',;i

J’_
1
Pz

2mA\2

4
q 24 I(Z)i

emin4 P

. (29

(1+ENATEY ~ -
. .mp 1
tss= 7 E[ - EI(B%_} (30)

tT= *T{_i (9)*} (31
T 12IBB ’

m

+

4m
— ?(1+ PIN?) T 5p+ (1+202/\?)

X(1+ PN+ Z2IND ISR

q2

- m(1+q2/>\2+ 2IN?)2T 0=
2

q

- p(1+4m2/)\2+ Aam?2INH TG
m

+(1+ PIN+ N2+ 2072 I T EL"

2

Vra

+
m?\?

(1+Z2I\3)TE" |, (32)

m[ mt 2

m
_FI5D+ 2—)\2(1+q2/>\2+22/7\2)z(ggi
1 2/ 2 Z2 2\27(w) =
~ (L N+ 2T

1 .
— 1(1+8m\2+AmPZ I\ TR

m? 1
27 (2)* 227 () *
+—2)\2(1+22/)\ WA +—16(1+22/)\ 2T

(33

m q
te=7"—| (L+IND°T5,— ——= (1+?I\?
cTE(q)DDZmZ(q)

X(1+@IN+2IND ISR

4

with g=p’ —p, z=p’ +p, andA\?=4m(E+m).

The potential to orderO(q") is determined byt
—0(q"), {tsst7 ,tis—0(q""?), andtg—0O(q"~%). This
means that one needs;,—O(q"), {ZW* 7&* 7@=\

LA (1+ Q@IN+ 2IN2)2T LY —0(q"?), and {Ig‘“gi,zg?si}HO(q“*“)_. We now dis-
16m* cuss how the chiral powers in these functions are related with
N 7 S\ 7 RN 2 N 7 RN 7 FIG. 3. Dynamical structure of
the O(g*) =N amplitude; the
) s blobs represent terms coming
- = —O0O00C— =0-0-0= — 0= directly from the effective

Lagrangians.
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N 7 N 77 N \) 7
— TT — — = — — — —
FIG. 4. Dynamical content of
the approximaterN amplitude.
\ 7 \ 7 N 7
. ®

those in the bagia-N amplitude. This relationship involvgs a [Dﬁ]‘”[QBﬁv](j)HO(qr),
subtlety, associated with the fact thagv and B, contain
chiral cangellatlons. . o [QBgu](')[QBﬁ](J)HO(q“r)_
A generic subamplitud ., is given by the product of the _ _
correspondingrN contributions and we have Finally, in the case of Xg 1")[ Y51, one just adds the
corresponding powers.
T :J [ HIXEJOIYE 1@+ [XE W[ YL@ In this work we con§|der the expansion of thg poterlual to
« el e et R O(g*) and need Zp,—0(q%), {Z88" .5 . 7§}

—0(q?), and{Z{0* ,7&*1—0(q%. This means that, in
the intermediaterN amplitude, we must considddy to
The loop integral and the two pion propagators, as given byd(q®) andBg to O(q).

Eq. (11), do not interfere with the counting of powers, since

+HIXRIPLY R 1P+ [XR IV YR (34)

f[---1—0(q%. The loop integration is symmetric under V. SUBTHRESHOLD COEEFICIENTS
the operationQ— —Q, which gives rise to the exchange
s<u in the Born terms. In the case pX, [ Y,,]1?), one The polynomial parts of the amplitudeB; to order
is allowed to use 0(qg®), as given by Eqs(23)—(26), are determined by the
M) i subthreshold coefficients of Rgi29], which we reproduce
)]
1 1 1 1 below
2 2 27 2
s—m‘ u—-m s—m° u—-m
_ _ . 2(2c;—cy)u? 8gau® | 3gau’
(M) 0) deog=— + (37)
1 1 1 00 f2 64mrft | 64mf?
—2 + (35) w T Tl e
s—m? s—m? u—m?
4
within the integrand. For the specific components this yields d _ﬁ _ (4+50,) 1 (39)
. . . . 10— 2 4 ’
[D;U](')[DSU]“)%O(&), [D;v](l)[ng](J)_)o(qZ), e 32wt
[D;,17[QB;,19—0(a), [D,,1"[QB,,]1"—0(a), . Cs A4Bgau | TTgiu @9
_ ) 01— " 2 4 a|
[QB;,1V[QB;,]V—0(q?), fr 768wl 7687,
[QB,,1V[QBy, 1" —~0(q). . 12+5q} w0
These results show that, inside the integis], andB,, * 192ntiy’
cannot be always counted _&qz) and O(q "), respec-
tively. For the product§ X, 10 Yz 19 and[ Xz 1LY, 19, . gr
one uses 11=m, (41)
1 L0 0 ’
+ —2 (36 19392
s—m? u—m2> (s— m? 0= 19 (42
. . 15360712 1
and has D,,—O(q) and B,,—O(q™"). Assuming mr
[Xr1®,[YR1V—0(q"), one gets ~ 4
4m(d,—d m
biy= (dig—dis)  QOa (43

(D5 1V[DR1P—0(q "), [D,,1V[QBR1V—0(g2"), 2 gpt’
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TABLE |. Experimental values for the subthreshold coefficients and medium r@mgeontributions in
w " units; experimental results are taken from Héb|.

dao dio doy dzo diy dga
Expt. —1.46+0.10 1.12:0.02 1.14-0.02 0.20:0.005 0.170.01 0.036:-0.003
mr 0.12 —0.25 0.032
boo
Expt. —3.54+0.06
doo dig doy
Expt. 1.53:0.02 —0.167£0.005 —0.134+0.005
WT+mr 1.18 —0.032
boo bio boy
Expt. 10.36:0.10 1.08-0.05 0.24-0.01
WT-+mr —0.99 0.18
B 1 4(d,+7,+ 2d5) range diagrams shovx_/n in Fig. 2 and r_nus_t be_Qeglétted,
doo=| =7 > because we already include their contributionsDip, and
207 wr = B, The terms bearing the WT label must also be excluded,
20— 082 | 3022 for they were explicitly cpn;idered in Eq&5)—(28). This
+9A( +toau gam (44 corresponds to the redefinition mentioned at the end of Sec.
4872 f4 4872f4 M.
7 Tmr The values of the subthreshold coefficients are determined
~ 4 from N scattering data and, in a chiral expansioia®),
4d; 15+ 79a h d to fix the otherwise undetermined parameters
e (45)  they are use _ p
f7  240m°f7 ¢; andd; . In our formulation of the TPEP, we bypass the use
o of these unknown parameters, for the redefined subthreshold
B 2(d;+dy) 29?\ 1+7gi coefficients are already the dynamical ingredients that deter-
dog=— f2 - 192,24 - 192,24 (46) mine the strength of the various interactions. This allows the
ar ar . . .
m g T mr potential to be expressed directly in terms of observable
4 ) quantities.
1 2c4m - gaMu | gamu (47) In Table | we show the experimental values of the sub-
00| 5¢2 §2 8mft | 8xft| threshold coefficients determined in REf6] and the sum of
oWt i i T (WT) and (mr) contributions. The redefined values are ob-
A tained by just subtracting the latter from the forrfit. is
___9am (48) worth noting that the values afy, and by, are compatible
10 4 ! :
27t with zero.
When writing the results for the TPEP, it is very conve-
2 nient to display explicitly the chiral scales of the various
0= _9aMm , (49) contributions. With this purpose in mind, we will employ the
967 . dimensionless subthreshold constants defined in Table II.

VI. RELATIVISTIC AND HEAVY BARYON
FORMULATIONS

where the parameters andd; are the usual renormalized
coupling constants of the chiral Lagrangians of order 2 and
3, respectively[26]. The terms within square brackets la-

: . In this section we review briefly the relativistic formula-
beled mr in some of these results are due to the medium . . ) . .
tion of baryon ChPT and its relationship with the widely

used heavy baryon techniques. Chiral perturbation theory is a

TABLE II. Dimensionless subthreshold coefficients. . . . -
systematic expansion of low-energy amplitudes in powers of

5 5t 5 B momenta and quark masses, generically denoted. byhe
00 10 01 00 . . . . .
chiral Lagrangian consists of a string of terms, labeled by its

Definition  mf2dgy u? mfid),  mfidy;  mfibd,
Value —4.72 3.34 4.15 —10.57

— _ — — 3In Ref. [29] the contribution of the triangle diagram tf}, in-

00 510 S01 Boo cludes both short and medium range terms and only the latter must
Definion  m2f2d;/u2  mfid,  m2f2d;,  f2bg, be excluded.
Value 7.02 —-3.35 —2.05 5.04 “We use ga=1.25, f,=93 MeV, ©=139.57 MeV, andm

=938.28 MeV.
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power ing. To a given order, one builds the most general 1= dt
Lagrangian, consistent with Poincaimvariance and other y(t)=— o Imy(t"), (50
symmetries of QCOparity, time reversal, and approximate Tl apA(t’ —t)

chiral symmetry. A Lagrangian of ordem produces tree

. h
graphs of the same order, while loop graphs are expected to ere

contribute a}t _higher orders, following' a power cqunting o(t' — 4p?) J@m2=t) (1 — 442
scheme. This is indeed what happens in the mesonic sectdmy(t’)= - — an * - >
where loop graphs are two orders higher than tree graphs, if gmmyt'(4m°—t’) t'=2p
one uses dimensional regularization. , ]
In relativistic baryon ChPT, dimensional regularization no = g(t_—4,u2) tanlemt——Al,uz (52)
longer leads to a well defined power countif®g], loops 16mmyt” t'—2u?
start at the same order as tree graphs and the connection
between loop and momentum expansion is lost. A similar Formally, the argument
phenomenon is observed in the mesonic sector if one uses
another regularization scheme, such as Pauli-Villars. _ 2myt’ —4u® 50
In HBChPT, this problem is overcome by means of the X= t—2u2 (52

expansion of the original Lagrangian around the infinite
nucleon mass limif38]. One integrates out the heavy de- seems to be of ordeg™!, and the HB chiral expansion of
grees of freedom of the nucleon field, eliminates its nmass Eq. (51) would yield tan *x= m/2— 1/x+ 1/3x3+ - - -. How-

from the propagator, and expands the resulting vertices iver, this representation of fatx is valid only in the do-
powers of 1. This formulation gives rise to a power count- main |x|=1. For |x|<1, one should use tafx=x—x%/3

ing scheme, but Lorentz invariance is no longer explicit. It4 ... put this corresponds to an expansioririmersepow-
can still be recovered, but only after a resummation of allers ofg. From Eq.(52) we see that the HB expansion of Eq.
terms in this expansion. (50) breaks down whet' approaches 42.

The HB approach also has a more serious problem, Becher and Leutwyler have shown that it is possible to
pointed out recently by Becher and Leutwyl@8], namely,  write accurately
that it fails to converge in part of the low-energy region. In
order to avoid this, they proposed a new regularization tfw dt’ 1

scheme, the so called infrared regularization, which is mani-y(t) — y(0)= —
9 YT T et (v —t) 16mmyt

festly Lorentz invariant and gives rise to a power counting.

The method is based on a previous work by Ellis and Tang T (' —2u?) Jr
[31], where a loop integral was separated into “soft,” in- [__ K + L
frared(l) and “hard,” regular(R) pieces. The former satisfies 2 2myt’ —4,u2 HB 2myt’ —4,u2
a power counting rule and has the same analytic structure as

H in the low-energy domain. The latter may contain singu- t’ 71 w?

larities only at high energies—in the low-energy region, it is - Zta” W : (53)
well behaved and can be expanded in a Taylor series, result- Kl

ing in polynomials of the generic momentugn Therefore

the hard pieces, which are the power counting violatingr
. ) . e

terms, can be absorbed in the appropriate coupling constants

of the Lagrangian and one considers oijythe infrared- where the second term becomes important. The HB approxi-

regularized part of. S , . )
Ellis and Tang have shown that the chiral expansion of thénatlon is not valid there. The integration can be performed

infrared regularized one-loop integrgl with the ratiog/u analytically and Becher and Leutwyler found

By keeping only the first bracket in the integrand, one
covers the heavy baryon result. However, the regdion
4u? is dominated by the lower end of integration tifh

fixed, reproduces formally the corresponding terms in the 1 2447 2u(2— 1)
HBChPT approach31], even in the cases where such an y(t) = y(0)= ==——{ | —=In 1+ K
expansion is not permitted. This allows one to assess the 82mmu | |z 2— 7 My 7(4—7)
domain of validity of the HB series.

For the sake of completeness, in the sequence, we repro- " \/?- " M "
duce some of the results derived by Becher and Leutwyler. Xxsinm—o—— o mya—; 2m
They have analyzed in detail the triangle graph of Fig. 4, HB T
which contributes to the nucleon scalar form factor, and
shown that the HBChPT formulation is not suited for the —In( 1+ _k +Inl 1+ el (54)
low-energy region, near=4u?. Its exact spectral represen- my4—r1 2m th

tation is given by{33]
with 7=t/u?. This result is interesting because it shows
clearly that, for values dffar from 4u?, the contributions of
SThis problem has been recently reviewed by MeiRner in Secsthe two brackets decouple and can be expanded in powers of
3.4-3.7 of Ref[30]. g. The second term is the@(g?). On the other hand, when
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‘ This rough approximation is not mathematically precise, but

! it allows one to guess the order of magnitude of the threshold
5¢ i contribution.

. The discussion of the behavior of the triangle diagram in
! the neighborhood of=4u2 is relevant to theNN potential

" because, in configuration space, this region describes its long
] } distance properties, as observed numerically in our previous
I works [20,32. To see this, let us take the representation of
Eq. (50) in configuration space:

T 1 (= d3 _Imy(t)
%% 4 I'(r)= —f dt'f a e 'ar " 5
I(HZ) T 4,u,2 (277)3 t, + q
FIG. 5. Behavior of the functiop(t) as given by Eq(54) (full 1 (= e*”/t—'
line) and partial contributions: HEdashed ling th (dotted ling, :F . 2dt' ; Imy(t"). (56)
m°J dp

and Eq.(55) (dot-dashed ling

The exponential in the integrand shows clearly that, for
large values of, results are dominated by the lower end of
expansion ing does not apply. In Fig. 5, we display the he integration. Thus, if we want to have a good description

; . : L 2 of I'(r) at large distances, we need a decent representation
behavior of the various terms in E¢4) in the range 3 for Imy(t') neart’ =442, which is not provided by HB-
<t<4u?, where the second bracket is important. In thiSChPTy B P y

figure we also show the effect of making

t~4u2, both contributions merge, the full result foft) is
the outcome of large cancellations between them, and

VII. DYNAMICS
o n o u The chiral two-pion exchange potential is determined by
ma—s omIn| 1+ mid—s +in{ 1+ 5 the processes depicted in Fig. 6, derived from the basic
mya=r mya=r th subamplitude and organized into three different families. The
2 P first one corresponds to the minimal realization of chiral
e R (55  Symmetry[14], includes the subtraction of the iterated OPEP,
m2(4—7) 4m? and involves only pion-nucleon interactions with a single
- - - = s @ms =. - - - - -
N ! | S A (R S E R
E - = e =
@ ® © @ ® 0
+ ® + e o + o
© ® 0} )
= - - = = o = ;;; - 3 -
+ W + 4 ) + TERYY + ¢ + Gon
== T’T —— = = = T’T
(k) [0} (m) (n) (0

FIG. 6. Dynamical structure of the TPEP. The first two diagrams correspond to the products ofrBoamplitudes, the third one
represents the iteration of the OPEP, whereas the next three involve contact interactions associated with the Weinberg-Tomozawa vertex. The
diagrams on the second line describe medium range effects associated with scalar and vector form factors. The remaining interactions are
trianglesand bubblesinvolving subthreshold coefficients.
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loop, associated with the constamf g, andf .. The same rather useful in discussing chiral scales and heavy baryon
constants also determine the two loop processes of the selimits. At present the infrared regularization techniques are
ond family. The last family includes chiral corrections asso-still being developed for the case of two nucleon sysi8€j
ciated with subthreshold coefficients and LECs, representingnd we have used dimensional regularization whenever ap-
either higher order processes or other degrees of freedom.propriate. As a consequence, our results are accurate only for
The first two diagrams of Fig. 6, known, respectively, asdistances larger than a typical radius. Our numerical studies
crossed boxandbox come from the products of theN PV in configuration space indicate that this radius is of about 1
Born amplitudes, given by Egq$18)—(21) and involve the fm.
propagations of two pions and two nucleons. The third one The covariantly expanded TPEP, to be given in Sec. X, is
represents the iteration of the OPEP and gives rise to aexpressed in terms of the functiohg2?, 11{20), 11200,
amplitude denoted by, derived after the work of Partovi Hfggo), andﬂfgéo)_ In order to simplify the notation, in the
and ITo.morll[S] and discussed in detail in Appendix C. The . 1ot we call thendl,, TI,, IT,,, T, , andTl,, respec-
remaining interactions correspondtt@ngle andbubbledia- :

. . ) vely.
grams, which contain a single or no nucleon propagators, The functionIl, represents théubble diagram and is
besides those of two pions. given by

The construction of the TPEP begins with the determina-
tion of the relativistic profile functions, Eq§7)—(10), using d*Q 1 i
the 7N subamplitudesD* and B* discussed in Sec. Il Icczf
Results are then expressed in terms of the one-loop Feynman
o e o o sy e b, an1S TGl G b ortomed anayicAand s regu

rt may be written as

manipulation of these integrals represent an important aspergl

2m (=2l 7= (a7

of the present work and it is worth discussing the notation 1 —t/4u2
employed. ,=- 2—M2In(\/1—t/4,u2+ V—t/4u?). (59
Momentum space integrals are generally denotedlby —t/4u

and labeled in such a way as to recall their dynamical ori-
gins. We use lower labels, corresponding to nucleons 1 an
2, with the following meaningsc, contact interactions,
s-channel nucleon propagation; ang u-channel nucleon dQ 1 om i
propagation. This means that functions carrying the sub- :f ®_ I,
scripts €c¢), (s©), (s9, and [Us) correspond, respectively, (2m)% [K2— u2][k' 2= u?] [s;—m?]  (4m)?

to bubble, triangle, crossed bpandbox diagrams. The last (59
class of integrals includes the OPEP cut, which needs to be

subtracted. This subtraction is implemented by replacing the ) ) ) _
(us) integrals by regular ones, represented by the subscrigind related to the function(t) discussed in the preceding
(reg) and given in Appendix C. Upper labels, on the otherSection byll;=—2mu(4m)?y(t). The heavy-baryon repre-
hand, indicate the rank of the integral in the external kine-Sentation of this function is

matical variablesq, z, and W. For instance, the rank 2

crossed boxntegral is written as

he functionIl;, associated with thériangle diagram, is
expressed by

72
Ht—>Hr'B=Ha+ﬁH{\‘L (60)
W_J' d‘Q [Q*QY| 1 1 2mp 2mu
ss 2m2\ 12 K= w2 k2= u? 5,—mP 5,—m? with’
a
i |9“q” z*z" WHWY = — —— tan /- t/4u?, (62)
= > —ZHgZSOO)"r —2Hg%20)+ —ZHQ%OZ) \/_t/4,LL
(4m)°| u 4m 4m
Y= (1-t/2p?)11, (62)
+g T andTl' = u(dI1/du).
The functionsIlI, , II,, and ﬁb are associated with

crossed boxand box diagrams and their complete expres-
All integrals are dimensionless and include suitable pow-

ers of pion and nucleon masses, so as to make them rela=——

tively stable upon wide variations of the latter. We have stud- éthe functionll, is related to the.(q) used in Ref[21] by I,
ied these integrals numerically and, typically, they change by= — 21 (q) and to thel(t) of Ref.[29] by I1,= (4)2J—1.
30% when one moves the nucleon mass from its empirical “The functionTI, is related to theA(q) of Ref. [21] by TT,
value to infinity. The fact that the integrals a@(q®) is =—47uA(q).
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sions are given in Appendix B. Their heavy baryon expan-better than 1% for distances larger than 1 fm, except for

sions are derived in Appendix G and read T5p, Where the difference is 4% at 1.5 fm and falls below
1% beyond 2.5 fm. This has very little influence over the full
5 potential.
- T /2 M 1 _ 22 With the purpose of allowing comparison with results pro-
I5°=—1l;— | =|——————| =| [(1—-t/2u%) ) " : . :
mj(1—t/4u?) [m| 4 duced in the HB tradition, we write our final expressions for

the potential in terms of the axial constagf, which is
X (I —T17) +(2Z°/3u*) ]+ - - -, (63 related to the #N coupling constant by g=(1

+Agr)gam/f .. Here Agr is the Goldberger-Treima(GT)

discrepancy, proportional to x?. In applications, on the

HB_ yHB, | M wl4 other hand, we recommend the direct use of#ihecoupling
=1+ | = ) . X
M| (1—t/4u?) constang, by makingg,=gf,/m and neglecting\ st in our
24 results.
K / " The appropriate truncation of the expressions of Appendix
+|=| =[(1—ti2u®)?2I0,— )]+ --, (64 i i
m 6[( SRACRY o] €4 F, at the orders i prescribed at the end of Sec. 1V, leads to
the following results for the profile functions:
~ 1 1
fite=— sr,— | &2 (1-t2udI+--. (69 s ol s
20 m3 RN Lo b ARV
DD_16ﬂ_2fi m 16( p) (I b)
In the heavy baryon expansion of the potential, the following g9
results are useful: +AGTZA(1_t/2M2)2(H><_Hb)-
M, =2+11,/(1—t/4u?), (66) 2
2R (1 tr2u) [~ gL+ 45t St
V=201—tI4p?) +[2((1—t/4u?) — 11— t/4u?)?],, m| 8
(67) A 42
H 9a 22
+—=| | = So(1—1/2
1. =11,— 7t/ (1—t/4u?). (68) m 4 oud w)
2
For the reasons discussed in the preceding section, all these n } STt WPt 15+ 1—t/4u2 )
heavy baryon representations are inaccurate arotind 7 | Qo0 Sorl/ 7 5 O3 1= U/AR)
~4u?.
2 +\2 2\2
+4—5(510) (1—t/4u")< |11,
VIIl. COVARIANT AMPLITUDES
The direct reading of the Feynman diagrams of Fig. 6 w2 m? o, ,
gives rise to our full results for the relativistic profile func- “I'm —256772f2 gal(1—2t/p%)

tions, displayed in Appendix D. These are the functions that
the chiral expansion must converge to and hence they allow
one to assess the series directly. On the other hand, they do ><[(1—t/2,u2)Ht—27r]2] , (69)
not exhibit explicitly the chiral scales of the various compo-
nents of the potential, since their net values are the outcome
of several cancellations.
In order to display these scales, in Appendix E we derive m? [u

. . . TW+ _ -
several relations among integrals, which are used to trans- ~D8 16724 [mH
form the full results of Appendix D into the forms listed in g
Appendix F. The relations given in Appendix E are, in prin-
ciple, exact, provided one keeg$ort rangeintegrals that + m
contain a single or no pion propagators. However, for the
sake of simplicity, we neglect those contributidrishe im- 9/24
portance of this approximation was checked by comparing 5
numerically the Fourier transforms of the various amplitudes
of Appendixes D and F. In all cases, agreement is much (70

g4
- §A(1—t/2,u2)l_[t

gi
_ 2\2
16(1 t/12u) Il

. 1
S0t 5§1t/,u2+§ 51’0(1—t/4,u2)) He} } ,

81t would be very easy to keep those terms, but this would produce ®The GT discrepancy may be writtd@9] as Agr= —2d,gu?/g
longer equations. +0(g).
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m?  [u][ga ~ 2 2
- 2 - - =
I‘.fé*—mzfi[a g L(1-t/2p7), AL
9a 1
(312 5/8u2)T1,] X gx E(l—t/ZMZ)ZHX+§,38'0(1—t/4,u2)ng”,
. (72)
| S T80t ot i = Sl 1= t/4u) T,
(w) m’
w)+ _ 4
(71) BB _167T2f:1TgAH€1 (73)
m? [ga
T =——— 1 =S (1—t/ap?) (I, +11
BB 16772fi{ 4( w) (I b) 2 g4
4 2 I =—— =1, (74)
+Agrga(1—t/4p) (I, +1T,,) 16724 3
1] 9a
- =2 _ 2 _T]
g g (A= 12p) (T~ Tlp) and
J
m? [u)? 94A 22 9a, 5 2 1, 2 2
IDD:M ml 1761~ ¥2u ) (I +1p) = 77 (ga— (1= /2u5) 1+ 57 (ga = D)1~ t/4u 1L,
2 2[ ~2
AR 12 g2+ (g3 DL U2u2) T+ | | 21— v2u2)
m| 8 m| | 2
_ 1 2—1
X | (93— 1)Z%4u>+ Sgg+ Sgpt w2+ 3 S1o(1—t/4u?) (gAG ) (1-t/4u?)
2 2 2 2 o o 2 3 - 2
X| (A= 1) (V160> + Z218%) + Soor+ Soatl >+ £ 81 L= t/4p?) | |11,
w2 m? 1 2
_[E} TS —g,i[(l—t/zﬂz)nﬁ1—t/3M2]+§(g,§—1)[(1—t/4M2)H€+2—t/4M2]}
2 2
s m 2142\ 4 2 2
+|= 7%/4 1—t/4u)IL— 7
- 647r2f';1,( ©)Gal ( ) — ]
1 2\~2 (2 2\ N2 (2 gi 2\2
+A61 | g (1=t ga(ga—1) — (1= /2" ga(ga— 1/2) [Tl + 7= (1= t/12u®) (I + ITp) | 1, (79
_om [u Ja m? [u][[dh
w-__  |= _ A 2 - |= A2 _ 2
AN T6m2f% | m H 3 (1—t/2u9)II, 7 167214 | m)| | 3 (ga— D(1—t/4p")IL,
mll 1 — gi =
+H Zl(gf\— 1)(ga—1—2Bgo) (1—t/4u?) —g[(l—tlz,uz)l'[b—(3/2—5t/8,u2)1'la]}
2
ga — mll 1 —
—T(gi—l—ﬁoo)(l—t/Z,uz) I, +H ﬂ(gi—1)(gi—1—2300)(1—t/4u2)
][ da Ja =
+[E 1—6(1—t/2,u,2)2HX : (76) +§(gi_1+2,300)(1_t/2,u2)}ne
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w] m
_{E}mgi[(l_t/4ﬂz)ﬂt_ﬂ.]2 , 77
BEL AT S
7 _M[E [Z(QA_l_Zﬁoo)(l—tMM ),
Ja

—g[(l—t/Z,u,z)ﬁb-l—(1—t/4,u,2)1_[a]
L (21 2B tau?)
mll 22 9a Boo 1%

2
g —
+ gA(QZA_ 1_2/300)(1—UZMZ)}H€

2
—[%}Jj—zfzgﬂ(l—tlwz)nt—ﬂz], (78)

88 ~1§ ~o0. (79)

PHYSICAL REVIEW &8, 024004 (2003

The terms within the parentheses represent the contributions
from Fig. 4, which read{a) Born terms, proportional tgi;

(b) Weinberg-Tomozawa tern{c) two-loop medium range
interactions; (d) other degrees of freedom plus two-loop
short range interactions. The organization of the last three
terms may be better understood by noting that, around the
point t=0, the following expansion holds: (At/4u?)I1,

— —m+t w/6u?, and the content of the parentheses of Eq.
(80) may be written as

This shows that the structure of E&8) is recovered, except
for the medium range contribution, which is divided by a
factor 2, characteristic of the topology of Feynman diagrams.

gam
967Tf?7,u

2
gamu

- 87Tfi

|
~5 +bgt 5

(81)

The results for the basic subamplitudes presented in this sec-
tion are closely related to the underlyiagN dynamics and,

in many cases, this relationship can be directly perceived in
the final forms of our expressions. For instance, reorganizing Our final result for the relativisti©(g*) two-pion ex-

IX. TPEP

the contributions proportional tH; in Eq. (78), one has

|

m?/f4

(4m)?

A
4

Lad
m

7 -

2
m
(219A1u“

1—-t/4u?)11
A 2 (47)2[( w1

change potential is obtained by feeding the truncated covari-
ant profile functions of the preceding section into EGS)—

(33). It is ready to be used as input in other calculations and
is expressed in terms of five basic functiai®ec. VI) and
empirical subthreshold coefficien(Sec. V). If one wishes,

the latter may be traded by LECs, using the results of Sec. V.
The various components are listed below.

] . (80

- w]—zﬁao) [(1-t/4u?) T —m]+- -

m 3m? [ul? M -
B ] 11— 22(11, — Pla2(1— 27 — o2 2 L ey 2
fe E 256772fi[m} 9a(1=t2p) " (I = Hp) +| = GA(1 = 120 ) — Ga(211a + 11t/ u7) + 8(Sgot Soat/ w) 1]
12[ 2 4 4
M7 MGA N s o 12, 9a U
i) |7 tempp ORIz R (Tt )
12[ 2
+ % 91; — AQA[ (8go+ St w2+ 1o 1— 2t/3u2+1216%) ]+ 8[ Sgo+ Sgpt/ m?+ (873) (1 —t/4u?)]?

32
+4—5(51’0)2(1—t/4M2)2 T, +4Agrga(1—t/2u?) (I, —1Ip) |, (82
t*=t*42=TLg’2* — Q21— t/A)[TT, + 1]~ | = g—i[(l—t/Z 2)(I1,— 1) + (1 — t/4p?)I1,]
T S E 2567T2f?7 gA 752 X b m 2 o2 t b 722 a
w17 9a 4
b= Z(l—t/ZMZ)ZHXJr5330(14/4#2)114—4AGTgi(1—t/4M2)[HX+Hb] : (83
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m gA
ts=— ( 1—t/2u?)(II —(3/2—5t/8u?)11
LS E128772f gAl( ) (I =TI —( ) 1l,]
][
+ S22 (1 + 20/ w2 — 121204 (T o + 1T,
mi|| 4
2 2 16 + 2
| 208U/ p" = 5 610 (1—1Au®) |11, |1, (84)
2~4
L. M mogy
—— 7" 1 85
°E 2562t (89
and
2 2
,_m :u’z gi t 9a 2 1 2 t gA t
tC_EM{l_G(l 2—M2> (I +11p) = 77 (ga= 1| 1= —— [+ 5, (g 1?1 a2 He+ mls ! 2.2
t MEEH ot 72 t
x| ga| IT H(GA-D)| 1- — | |+]|=| { 5[ 1- —1)| = =5+ —5 |+ 50t o
ga| lla B (9a—1) 27 t ml 172 ZM (gi—1) 8.2 4’ 00" %017,
. t ot | (di-1) t 22 t 3 t) — t
+ 365 1——4le o,z 6 1——4M2 (92— 1) +500+501M2+5510 1- ”": +Booy IT,
2 2 2
K m 2 2 15 2 t
=] ——=| ;| (A-t2ud+1— — |+ 2 (03— 1)| (1-t/4ud)T+2— —
|:mj| 64772f727 gA(( /'L) t 3#2 3(gA ) ( lu’) € 4/,1,2
2 2 2 2 2 4
7 m z t ®
H 75677 —0a 1—4—#2)1'161—77 + (1 t/zﬂz)z—(n —11)
1 2,2 2,2 gi
+AgT] 5(1—t/4M2)9A(9A—1)—(1—t/2M2)9A(9A—1/2) e+ Z(l—t/ZMZ)Z(HxﬂLHb) (86)

m? [u
=tsd2 —Em[ [GA[(l t/2u?) M+ (1 - t/4u?)T1,] - 203(02— 1— 2800 (1— t/4u?)I1,
13 Mgy
+ —0A(0A—1-2B40) (1- t/2M2)——(gA 1-2Bo) (1~ t/4u?) H«+ mlgs ZAZ[(l t/4p?) 11— W]]
(87
2
LRI o 41 (3/2—5t/8u?)IT,— (1—t/2u2) (I, + 1) ]+ 202 (g2 — 1) (1 — t/4u?) 11
LSTE 6amr 2f4 9a w) g “ tTp 9alQa )L
| 42 (G2 1)2(1— tap?) 4 AgZ B 1 /2) — (g% 1) B 1~ U4 |TT
mll 2 ga 1% 9aBool M 3(9A Bool /Y ¢
] da J2u?) (11 I mga P
) 7 (A2 A M) | s G L )= (89
to=0. (89
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X. COMPARISON WITH HEAVY BARYON
CALCULATIONS

This potential is the main result of this work. If one keeps
only terms up to orde®(q®), it coincides numerically with
that derived earlier by ug20]. As far asO(g*) terms are
concerned, the only difference is due to the explicit treatment
of medium range contributions. In our previous study we The relativistic potential of the preceding section involves
have shown that diagran{&)—(0) of Fig. 6 strongly domi- five basic functions, representing loop integrals, and sub-
nate the potential. In the above expressions, these terms a@reshold coefficients. The latter can be reexpressed in terms
represented by products gfi by subthreshold coefficients. of LECs and explicit powers of./m, using the results of
About 70% of the isoscalar potentig] comes from the term  Ref. [29], summarized in Sec. V. The loop functions were
proportional to g+ g5t/ 1?), which is related to the scalar derived by means of covariant techniques and one uses the
form factor of the nucleofi32], given by results of Sec. VII and Appendix B. As discussed by Ellis
3.2 and Tand 31] and in our Sec. VI, if one forces an expansion
o(t)= S 9a (1—t/2u?)TI, . (90) of the relativistic functions in powers gi/m, even in the
6471-2f727 t regions where this expansion is not valid, one recoYers
mally the results of HBChPT. This procedure amounts tore-

; At +
The leading conribution t; then reads placing the relativistic functions, which cover the neighbor-

(8got Ougt! w?) hood of the point=4u?, by the heavy baryon series, which
t$~ZTU ) is not valid there.
mtz Performing such a replacement in tigq*) results of
4 the preceding section, we fininequivalent expressions
~f—2[— 2¢c;—C3(1—t/2u?)]a(t). (91 that coincide largely with those produced by means of heavy

7 baryon techniques. In order to allow comparison with

As the scalar form factor represents the probing of thd1BChPT calculations, in this section we display the full
part of the nucleon mass associated with its pion cloud, thet/m expansion of our potential, without including terms due
leading term of theNN potential corresponds to a picture in to the common factom/E.
which one of the nucleons, acting as a scalar source, disturbs We reproduce below the results of Rg&1,24,23, which
the pion cloud of the other. A rather puzzling aspect of thisinclude relativistic corrections and were elaborated further
problem is that the largest term in@(qg?) potential is of by Entem and Machleidi40]. The few terms that are only

0o(q%). present in our potential are indicated py - |*:
303 gaun®
Vc:tgzl%?[; { - 16m(4A,u2+q2) +[2u%(2¢1—¢3) — qPes](2u + o) AQ)
2 2 2 2 6
ga(2p+a7)A(q) gaL(a) | 24u
+ e [ 3 (4u ) ]+ 32’; i | aaregp 20 o) Bu(eam2c0) + dulai(Bes ey
4 3L(q) 2 2 2 2 2 2 1 2 2 2\2
—3c3) +q'(c—6c3) T lon?fd [—4n"CrtCa(2u™+07) + Co(Au+q)/6]"+ fz(C)(4n"+07)

4 8 6 6 4 2
da 2u 8u wol2 3galA(9)]
—A + —2ut—qt |+ - 24 22) (22 + )2
32w2f1m2[ D Gy e Y gt )| t02amers HRD@HTHD)
3ga(2u®+ P)A(Q)
B 402 (2 W2+ )+ 2 24 2020, 92
1004721 {4nga(2u+a) +2u(p”+20°)} (92
3ty 3gaL(q)  gaA(Q) gaL(a) 4
Vo= — = - 9(2u?+ ) +3(4u’+ ) * | — ————— | 2IA+[5/8— (3/8)* J?+
T om? ean?ft 5127rff7m[ (a4 @)+ 3 4p™ )7 3224 m? [5/8-(3/87]a 4u+
2 2 2 4 *
galdp +a)l(a) ~ - gaLl(a)
+= oz (G i)~ (g4/32m* ) ]+ SAGTlgﬂ—ZfA , (93
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t's_ 30xA(Q) gaL(@) | w*  11,| gicoL(q)
Vig=——=-— 2uP+ %) + (> +3¢218)* ] - + P |- ———(4pP+ ), (94
4t al
VUL:_Q:_gA—(‘lq) (95)
m* 3222 m?
and
() 48gau’
=tc=—>—7| 4n2(5ga— 495~ 1)+ q?(23ga— 10g5— 1) +
c=lc 384772fi{ 1 (59a—493—1) +q7(23g5,—10g3— 1) 47+
ga P
- A +A) (22 + A ga(4p®+307) — 2(2u?+ 0?) + ga(Au’+ o) *
128nf:‘,m| 9A4M2+qz (@) (2u+a)[ga(4p"+307) —2(2u"+q°) + ga(4u"+q)*]
g’esl(a) L(q) 6
—— " [gA(8u?+5¢%) + (4ul+ )] - ———— | (4u+P)P+da —24u*— 1202 %+ ) P
16u° 64u° 48u®  [16—(24)* JuicP
+(16u2+ 1092 | + 0| 2| s TP 202 |~ —— - L1297
4utta (4p’+d)? 4P+ ApP+o?
legau® 1 L(q)
+[20—-(6)*]q*+ 24u*q?+ 24u’ | | + —
(207 (07 Ja 2uma 24u ] 768m2f e 4p?+q? 18432746
x[192w2fi<4u2+q2>83[295\<2#+q2>—3/5(9,%\—1)<4M2+q2>]+[egi<2u2+q2>—<gi—1><4M2+q2)]
- - o
X 3847T2f37[(2,u2+qz)(d1+dz)+4,uza5]+L(Q)[4M2(1+29§)+q2(1+59/§)]—(§(5+13gf\)+8uz(1+293\))
4 2 2 2 2 2 * 1 2 2 4 2 2 2 2 2 2\ 1%
] 20a2p"+a) + 30°(1+20) | | = 55 (4u+0)(15+ TgR)[100A(21 "+ ) —3(9a— 1) (4p"+q7)]
Zga gaL(q) 48u* *
— —————{[(Ap*+ P A 1+ 2u(4p?+ P A} +A 2 +20u?+ 2307 | —8u?—5¢?| |
2048w2fi{[( pEF A ]+ 2u(4p”+a9)A9)} ST o6t 9a apig 2 3q we=5q
(96)
— 3 *_g%‘A(q) 1 2 2 gi 2 2 2 2\ *
WT__E'[T_W Cat g (A H07) = g [10u"+ 30"~ (4p"+0)"]
2
caL(q) cqaL(q) L(q)
- AP+ P+ ————[9A(16u2+ 7)) — (p’+ )] - ———
96772fi( o) 192W2fim[9A( w+7q°) — (4p +a7)] 1536n2F 47
4 2 2 16" 2 2 2 2, 2
X| ga| 28u + 170"+ ——— | —ga(32u°+149°) + (4u”+ )
4pt+q
[A@TPgA4E’+ D) A@)ga4u®+ ) (14 2g2) 07
2048728 10247216 " .
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A(a)

327fim

cqk(a)

Wis=— =t s= [0A(95— 1)(4u?+ ) +ga(2u?+3qP/A)* |+ ————[gA(8u?+50P) + (4u’+P)]
m 48m“mf,

Ja
5127%%

L(q) 49 At
——— | (42 + ) — 1693( >+ 3¢/8) + —— | Iu?+ 110%/4—
25672mef" (4p”+07) — 16g5(n"+3q°/8)+ —=| 9u q P

X[(Ap2+P)A(Q) +2u ]}, (98)

Wi =WE=0. (99)

{[(4u*+d)A(Q)]

Xl. SUMMARY AND CONCLUSIONS of relativistic integrals are important because they dominate
the long distance behavior of the potential.
The expansion of the functions entering the relativistic

of the two-pion exchange component of tNeN potential,  stential in powers ofu/m is not mathematically defined
based on that derived by Becher and Leutwyi8,29 for ;
y ' aroundt=4.u2. Nevertheless, in order to compare our results

elasticN scattering. The dynamical content of the potentialyyiin those produced by means of HBChPT, we have as-
is given by three families of diagrams, corresponding to th&ymed that such an expansion could be made for all low-
minimal realization of chiral symmetry, two-loop interac- energy values of. This expansion then reproduces most of
tions in thet channel, and processes involvingN subthresh-  the standard HBChPT results. We find, however, two system-
old coefficients, which represent frozen degrees of freedomytic differences, apart from some minor scattered ones. The
The calculation begins with the full evaluation of thesefirst one is due to the Goldberger-Treiman discrepancy. The
diagrams. Results are then projected into a relativistic spither one concerns terms @(q3), whose origin is less
basis and expressed in terms of many different loop integralgertain. However, the fact that they occur at the same order
(Appendix D. At this stage, the chiral structure of the prob- a5 the iteration of the OPEP suggests that there may be an
lem is not yet evident. However, chiral scales emerge whefimportant dependence on the procedure adopted for subtract-
these first amplitudes are simplified by means of relationsng this contribution. This aspect of the problem is rather

among loop integrals. This gives rise to our intermediat&elevant in numerical applications of the potential and de-
results(Appendix B, which involve no truncations and pre- gerves being clarified.

serve the numerical content of the various subamplitudes for The numerical implications of the various approximations
distances larger than 1 fm. The truncation of these intermerequired to derive th©(q*) potential in configuration space
diate results t@(g*) yields directly the relativistic potential \yj|| pe presented in a forthcoming paper.

(Sec. IX), which is ready to be used in momentum space
calculations ofNN observables.

Our treatment of thédN interaction emphasizes the role
of the intermediaterN subamplitudes and, in this sense, itis We thank C. A. da Rocha for supplying his numerical
akin to that used in the Paris potential. We discuss howprofile functions for theNN potential and J. L. Goity for
power countings inrN andNN processes are relaté8ec.  useful discussions. R. H. also acknowledges helpful commu-
IV) and results are expressed directly in terms of observablgications with T. Becher and M. Mdg, the kind hospitality
subthreshold coefficients. The LE€sandd; are implicity ~ of the Theory Group of Thomas Jefferson National Accelera-
kept within these coefficients, grouped together with two-tor Facility, and the financial support by FAPESRIndaeo
loop short range contributions. de Amparo aPesquisa do Estado de@Raulg. This work

If the potential presented here were truncated at ordewas partially supported by DOE Contract No. DE-ACO05-
0(g®), one would recover numerically the results derived by84ER40150 under which SURA operates the Thomas Jeffer-
us sometime ag$20]. However, processes involving two son National Accelerator Facility.
loops in thet channel do show up &(qg*) and results begin
to depart at this order. APPENDIX A: KINEMATICS

The dependence of the potential on the external variables o )
is incorporated into five loop integrals, associated with 1he initial and final nucleon momenta are denotedpby

bubble, triangle, crossed box and box, diagrams. The triangl@ndP’, whereask andk’ are the momenta of the exchanged
integral is the same entering the scalar form factor of thdions, as in Fig. 1. We define the variables
nucleon and can be represented accurately by means of el-

We have presented @(q*) relativistic chiral expansion

ACKNOWLEDGMENTS

ementary functiongSec. VI and has the correct analytic W=p;+p2=p1+ P2, (A1)
behavior at the important poit=4,2. We have shown that , ,

this kind of representation can also be used to disclose the z=[(p2+p1)— (P2t p2)1/2, (A2)
chiral structures of box and crossed box integtAlgpendix

G). The effects associated with the correct analytic structure q=k' —k=p;—p1=p>— Pz, (A3)
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Q=(k+k')/2. (A4)

The external nucleons are on shell and the following con-

straints hold:
m?=(W?+2z2+q?)/4, (A5)
Wz=Wqg=2zq=0. (A6)

For the Mandelstam variables, one has

t=q?, (A7)
$1=[ Q%+ Q(W+2) —t/4+m?], (A8)
U, =[Q*— Q(W+2)—t/4+m?], (A9)
v1=(W+2)Q/2m, (A10)
$,=[ Q%+ Q(W—2)—t/4+m?], (A11)
u,=[Q*— Q(W—2z)—t/4+m?], (A12)
v,=(W-2)Q/2m, (A13)
Sometimes it is useful to write
Q%= (K?>— u?) 2+ (K'?— u?) 2+ (u?—t/4), (Al4)
Qq= (k2= u?)2— (K*= u?)/2. (A15)
For free spinors, the following results hold:
[u(p)gu(p 1P =[u(p)du(p)]®=0,  (A16)
[u(p ) (W+2)u(p)D=2mlu(p )u(p)]™, (AL7)
[u(p ) (W—2)u(p)]P=2mlu(p )u(p)]®, (A18)
and also
{unuf®={(W+2),/2mluu]
—il2mlue,,(p'—p)*ult®,  (AL9)
(@*/4m?){uu}®={—i/2m[uo,,\(p' — p)*u]
X (W+ z)M2m} D), (A20)

{uy,u}@={(W-2) /2m[uu]—i/2m[uc,,(p’—p)"ul}?,

(A21)
(@*4m?){uu}®={~i/2m[uc,,(p' —p)"u]
X (W—z)?/2m}(3)., (A22)
In c.m., one has
p1=(E;p), p1=(Eip’), (A23)
p2=(E;=p), p=(E;—p), (A24)

PHYSICAL REVIEW C68, 024004 (2003

W=(2E;0), (A25)
a=(0;p'—p), (A26)
z=(0;p" +p) (A27)
and the on shell condition for nucleons reads
E2=m?+ ?/4+ 214, (A28)

In the c.m. frame, the nucleon spin functions may be ex-
pressed in terms of two component matrices as

{u(pHu(p)}=x*

1
2m+ 2(E—+rn)(q2_|0' qXZ)}X,
(A29)

P @) 1
{zl—mU(p’)aﬂo(p’ - p)“u(p)] =x*[m(q2—io-q>< z)}x,

(A30)
i (i)
{ﬁU(p’)am(p’—p)“u(p)
=s(i)x'| —iox(p'—p +(F—-io-qx2)
(p"+p)
am(E+m)| X (A3D

wheres(i)=(1,—1) fori=(1,2). These results, which con-
tain no approximations, allow one to write the identities

[uu]®[uu]@=4n?

Q
(1+PIN2)2—4(1+ q2/x2)T;S— —2

i A
- Zl—m{[UUJ(”[UUM(p’ —p)u]®- (1H2)}22—m

2¢?
—(L+ PN —— + (L+ PIN*+ N2

=4m?
2m2\?

Qq
2m?\?2

Q
+ 2022\ — +(1+2I\?) , (A33)
m

1 _ —
_ m[uam\(p' _ p)#u](l)[uO.Vp(pr -p) Vu](z)g)\p

q4 B st_ Qr

=4m?
6m* 6m? 12m?

(1+4m222/)\4)1

2
Q
- (1+4m2/)\2+4m222/)\4)q—:s
4m
Qq
16m*|’

—(14+8m?IN2+4m?Z2IN%) (A34)
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)\Zp

1 _
—m[um(p’—p)"U](l)[uwp(p’—p UJ‘2’4 5

P20 s
+(1+ 2N
16m*\* ( ) Am*\?

Q
+(1+22/x2>2rq; , (A35)

where the two-component spin operaté2swere defined in
Sec. Il and\2=4m(E+m).

APPENDIX B: LOOP INTEGRALS

The basic loop integrals needed in this work are

a2

), (B]_)

N Q ) 2mu
Ko — PR | QS
'se f[ ]( M [Q2+Q(W+2z)—t/4]’
(B2
Q* )
Mo — PR | S
'ss j[ ]( 7
« 2mu 2mu
[Q%+Q(W+2z)—t/4] [Q*+Q(W—12)—t/4]
(B3)
with
d*Q 1

[

All denominators are symmetric undgr——q and results

(2m)* [(Q—al2)?— u2I[(Q+0a/2)2— u?]

(B4)

PHYSICAL REVIEW &8, 024004 (2003

lsc= (4_)2{H(ooo , (B8)
i
= )Z(Zm[<zﬂ+w“>n<°°l’]], (B9)
v 1 v (2oo
§c=(4w)2 ;[qﬂqn >]+ sl (W)W
+2) 1]+ g T} (B10)
[
lss W{11<°°°, (B12)
M ! 1 w1y (010) wyy (001)
ISSZ(L].T)Z ﬁ[z Hss + W HSS ] s (812)
MY _

SS

1
(4 ) ‘_[q#q (200)]_1’_4_[2#21/1_[(50320)

+ WEW T+ g+ T 0 (B13)

The usual Feynman techniques for loop integration allow us
to write
D
|n<—°2°) ] (B14)
)2

D
M

1
1~ [ dai— ) po-

_ 11 Dcc
ngo=—3 foda(—ca>k—2
o

cannot contain odd powers of this variable. The integrals are

dimensionless and have the following tensor structure:

(000
ICC (4 )2{1_[ 1 (BS)
6= [—[q*‘q”n(z‘)mﬁgwnwf’m . (B6)
(47)?
HVNp M p17 (400) 1 “vohgp
lee "= —[qqqu 1+ —l[(g""a*q
(4m)? M

+g“q”q"+ g"a“q"+g"a"a’+g"*q*q”
+g"qrgM I +[(g#g™ + g g

+gurg ™I (87)

(B15)
11 D2
oot f da—ce ) (B16)
8Jo
2m| mHn+1 k C,)m*n
Hgkcmn):( M) Jdaaf db ( °)
(B17)
_ 2m\ 1 (1 1 D
H(000)=—<_) —f daaf db| — po+In| —
sc )% 2 0 0 Po “
(B18)
2m m+n+2 ~q 1 1
H&ym:(___J J.dafj‘dbbj dc
M 0 0 0
4 C k cO)™C )"
( q)( c) ( b) , (Blg)

D2
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— 2m\?1 2 2
H(SZOO)=—( ) fdaaj dbb dc— (B20) TW] o= — m’i4 (g4 W (024 [0 (ca
(4m)2lm] | am? ’
with s
m?/4 [ g4 2z _
- 1|2 y7(020) (000)
Ca:a_l/z, (821) IDB]US_ (477)2[”1 4m2Hus +Hus ’ (C5)
32.=—q%4+u?, (B22) g
cc q M 1O = - m2/4 g [H(OOO)] -
— 2 2 BBlus 2lm
DCC_Caq +2cc! (823) (477) Lo
Cp=ab/2, (B24) m2/4 [ gl*
T88lus=— 5 ) L) (C7)
Cq=Ca—Cy, (B25) ™)L
32 =—(1-2ab)q%/4+(1—ab)u? (B26) o, __ miafg]* [1(020) -
BBlus™ (477)2 m [ us ] ( )
Dsc=Caq%+ CH(Z2+W?)+ 32 (B27) o
The iterated amplitude is denoted By and given by
C.=abd/2, (B29)
=[3-24AVAM T, (C9
S2=32, (B29) .
with
Dgs=C20?+ C2Z2+ CIW2+ 32 | (B30) .

Tit:_i[a

The case ¢s) is obtained from ¢c) by makingz*— — z*.
The case ((s) is obtained from ¢s) by making

2
m;[ () D) @(15—21)

Co=—Ce. =[Py @ = (uyn®(uw)@]
|
APPENDIX C: OPEP ITERATION % %llc+ ﬁ(l 5—21¢) —(inu)(l)(iju)(2>
The iteration of the OPEP has to be subtracted from the
elastic scattering amplitude, in order to avoid double count- wlz 2
ing in the potential. In this work we adopt the procedure used —(I U ”)+ 2—IJC+ I '02—)
by Partovi and Lomof5], based on a prescription developed m m
by Blankenbecler and Sugp41]. In this appendix we adapt izl

their expressions to our relativistic notation and also simplify
some of the results.

The iterated OPEP is contained in the box diagram, cor-
responding to the amplitude

as

Tbox:[3_27(1)7(2)]7as: (CYD
where

Q| 2me (”
Tomil f [ Al
U—
L C
X 2U'y,,u (C2
s—m

Evaluating this integral using the results of Appendix B, one i
D

+ —(1g—2I
1a(la=2l0)

] . (C10

The functiond; are three-dimensional loop integrals, defined

3

TN S -
o A E[E3—E?]’ (1D
3

IB=if(--->Er2"EQ, 12
e =1 =15, (C13

Q' ) m?
_'f( (M - EQEZ-E?’ (€19

whereEq= Jm?+(Q—2/2)? and
d*Q

m

recovers the spin structure of E@) with
2 4 4
Top]ue= m_/"'[g} _ 2 ooy U ppoon)
(4m)2[m 16m* 16m* “°
W [ o=
- T 3
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The usual Feynman parametrization techniques, the repre

sentation
m 1(= MEde 16
Eq 7= [(Q-72)%+m?+%E?)’
and the tensor decomposition
| =——{11{0%° (C17)
X (477)2{ )}
. i z
= [ H§°1°>], (C18
(4m)?
. | ]
it 99 00, 2 H(020)+gu]](000)
*(4m)? * 4m
(C19
(for x=A,B,C) yield
2 af 2 4 2
IDD]it:m—M[g B2 ooy 2 00
(4m)2Lm) [m?\ 16m* 4m?
2\ (000) (000) ? 1“2_(000)
+ l—m (HB —ZHC )—m ?HC
2
SR o)) _ 2 | B 020 ZH pp(010)
Pt ) 16m* m2HC m e '
(C20

m24 [gl4[ w2
BT
(4m)<lM m

2
ppes H(A°20)+ H(A000)>

2

2
n “_ﬁéoooh_ﬁnéomh_ 1— = (1100
m? m m?

2
z
=209+ —

2
K 020 _2H 1 010)
m2 C m C '

(c21)
W2
Ik(ag‘%]n:_ 4mZI(BV\I13)]iI
m2/4 g 4 /1,2 _ o
:<4w>2H el IR+ TIER) (€22
m?/4 [ g|* 2 2 5
Igg‘]”:(mr)z{%} %H&OZOM “_ZH(Cozo)_ WMH&ON)

— T1(000)4 o[ (000)} (C23

The functionsIT andII are written as
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: om 24m4 1 1 oo C 2
H(Aozo):(_) —J daaf de dQ%.
w| E Jo o Jo T[Q*+3Z-PiJ?
(C24
_ 2m? (1 S 1
HgOOO):_Tj daaf dbf Q- 57
u EJo 0 0 [Q +EA_ PI]
(C25
4m* (1 P R !
H(BOOO):_J daaf dbf def dQﬁ,
(C26
2m\"4m?* d -
11070 = ( ) fdaaf db € J' dQ
w =]+ €2
(Cp"
—— (€27
[Q*+3§—PPI?
ﬁ(coom: f daaf dbf J
T E — 1+E
- (C28
[Q2+EB—P|]
where
P = qu_ Cpz, (C29
Eizzﬁqm (€30
33=32 +ab(1+)E?, 3y
32=32 +ab\(1+€)E> (€32

The contribution from the OPEP cut in the functiofgs is
canceled by the integrald,. We parametrize the loop mo-
mentum in those integrals &= (abcW2)=(—C.W) and
have[ Q>+ 32— P?]=D,, and write

u? M2 — 001 =
020)_— 020 000)_— 000
—NP0=1,  — =11

(C33
with
2m m+n+2 ~q 1 ©
Hi‘t"m”’=(——) fdaazf dbbf dc
M 0 0 0
4 k n
p*(Cg)*(—Cp)™(—Co)
. D;’ = (C34
— 2m
{000= — ( ) fdaaf dbbf dc—
(C39

The integrald1g andIl: can also be simplified, by adopting
the new variablesc and 6, defined by the relations

=/a%b%c?—ab, cosfl\/ab,Q=Ea?b?c?—absind. Per-

forming the angular integrations, we have
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2m\*1 4\Jabc

1000 ( ) fdaaf dob|  dcE 2
1/Jab Dus

(C36)

4(Cp™
Dis

(C37)

2m m+41
[10m0) ( ) fdaaf abb| dc”
M 1/Jab

m
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2

_ 2m|\* 1 (1 ! - ®

H(OOO):_(_) _f daa@f dbb| dco—.

c w | 16Jo 0 wab  Dus
(C38

The results presented so far in this appendix correspond just
to a reorganization of those obtained by Partovi and Lomon
[5]. They may be further simplified by noting that

m?
=i Ef (- [1-(QP—g?4—Q-2)/

2E%+3(Q°—

o Q m?
|C :|f ()(z)—EEQ(E_}_EQ)

3
=] — (

ogs) (3@

The integralsf (- -

have
[ ¢h=-—=52n (c41
(4m)? p %
1 m Qi 2
[ o Qe L, 99 (4 E
u? | (4m)? e q* 4u?
(C42
wherell, is the function given in Eq(61).
Thus,
0= _2mm 1+ —(u?=q%2)
= 2m?

1 2 3 2
+F(q +2%)(u? q/2)+—(u —0?/2)°

(P-4 |11, (C43

16m

o?/4— Q- 2)%/8E*],

o?14— Q- 2)/4E2+5(Q*—

-) can be performed analytically and we

(C39

o?/4— Q- 2)%/8E*]. (C40)

mm3 3
(co0)_ _ - 2
¢ E3 T am 5 (n?=q?2)
5
2+ 22) (WP = q712) + — (u*—?12)*
8m*
S 20 .2 2
+1 227 (n=q/4) |11, (C44
3 q?
(010)_~ _
I —4(1 4M2>Ha, (C49)
1m%%0)=p, (C46)
o “ i ca
Tza| gl Y

The results presented in Eq$C3)—(C8), (C20—(C23),
(C33—(C35H, and(C43—(C47) allow one to write
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2 4 4 4 2 2 2 4
IDD]us—IDD]n:m—M[g} _ ¢ Hggéo) i Hsggz) So= 4 g 2 g%OO)_4Wng%oD_ Z_Hgoszo)
(47)2[M 16m* 1 (4 )2 4m? 16m*
4 2_ 2 4
W2— g + WV o, W2 000 2 020
T nggg@ 2m 1_5 ot = amE S eme e
4 2_ 2
B2 2 H(°°2)+W H(000) 1_q_
I+ S+ —5+—|i, (C49 16m* "¢ am? " 2m 22
m? 8m? 8m?
MZ q2 Z2
) X1+ —+—+— |y, (D1)
T 7w _miarg)t wo 112024 [0 m?  8m*  8m
DBlus DBlit (477)2 m 4m? reg
4 2 2
(C49 (W)+ _ m*/4 g o (001) W (002)_, 17(000)
DB 2HSC + HSS +HSS
2 2 (47)%> m 4m?
L@y @y - MAg] Z_H(ozcn e
pelus—Zbelit (4m)2lm m2 e + 2 002 000
m — I+ (%0 (D2)
3 5¢°
_L __i Ha , (C50)
2m\2 g2 m2/4a gt 2
Ig);: g 2TT(00D 4 = 7(020), 7(000)
2 4 (47)2 m* ¢ gm2 e ss
@ m</4 | g
Tgelus—Igslic= 2l m 72 3 5q2
(4) H(ozo) H(OOO)__ . I (D3)
reg reg 2m! 2 8,LL2 aj»
o T L G
'eg " 2m 442 8
a @+ _ m?/4 g T7(000), Ty(000), M q?
(C5) Igp _(477)2 Hgs +Hreg +% 1_4/L2 Iy,
(D4)
7]~ T m’/4[g]* (002 c52 s _ M4 0° (0.1 (092 (D5)
]US BB]It_(47T)2 m { reg I ( ) BB (42)2 y
I(Z) + — /4 g_{H(OZO) H(OZO)} (D6)
2 4 BB 2 mt
@ @1 M40 020 (4m)"m
IBB]US_ZBB]H:—Z m {Hreg J (C53
(4m)
and
where the integralbl,.,=1I;; — 115 are regular and given by
(kmn) 2m\Mtn+2 g 1 % T= /4 g 1 2WZ_ZZ_(OOO)
mn_ | _ ~ 2 = — | S5 5
Hreg —( Iu) fodaa fodbbfl dc DD (471_)2 2m2 m2 ffr 4m2 cc
2 2 2 2 2 2
4(Cq)k( Cp)"(—C¢)" o5 2p 97 (97 1T \W Wi Z7 o0y
D2, ’ (€59 mm\m? f2) 4m? | 4m? °°
4 4 4
2m|? cmeo|y 92 e, W o
(90— — f daa? J dbb f dc— (C55 “l 16m? 16m*
22 4 4
n W_Zﬁg200)+ 2o ﬂnggoa
APPENDIX D: FULL RESULTS am? i6m* 9 1em* "¢
In this appendix we list the results for the amplitudes that W2— 000 >
enter Eq.(15), obtained by reading the diagrams of Fig. 6 - > Hﬁeg) 2m 1-—
and representing loop integrals by means of the functions 4m 2
displayed in Appendixes B and C. P 72
X[ 1+ —+—+—|ll, ] (D7)
Family 1[diagrams(a)+(b)+(c)+(d)+(e)+(f)]. m? 8m* 8m
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2 2 2 2
T _ M4 9 1 oo, 2# 97
DB (477_)2 m2 fi, cc m m2
9> 1)jw (002) (000)
X _2_f_2 H +1I1
m
4 2 2
9 ﬂnggoz)+ﬁgc;00) w Hgggm (000
m*| 4m? ’
(D8)
2
@-_ M4 w8 1) o
P8 am?om\m? 2] ¢
2 2 2
R 11(002) . {7(000)
m m2\m? f2)]4am? °° s¢
g*[ 22 - 22
> mﬂ(s?% {0 - — nm&0-1gyY
3 5q
b 8,2 ° ] (D9)
2
79) °/4 9_2 1 (000)
BB —(47T)2 m2 f2 cc
2 2
L2991 o
mm2lm2 f2) ¢
4 2
9 [T(000_ [7(000)_ 9
H Hreg 2m 4M2 Ha ’
(D10)

mm2 f2

T _ m?/4 g
BB (477_)2

2
L i) 11(002)

2
9 [H(OOZ) H(ooz)] (D11)
m
I(Z)7: m2/4 9_2 2_M g_z_i H(ozo)
o8 (4m)2m2| m\m?2 f2) °°
& - gz, 012
Family 2 [diagrams(g)+ (h)+(i)+(j)].
+ w14t g* 2/ 2yr17(000)_ 77(001) , 112
IDD: W_(l 2q /,U~ )[Hcc _Hsc +1]%,
(D13)
and
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27£2 2 2 2
_ It L) Wl g (002)_,_ T7(000)
Too= = ™ [4m2 w2\ ame e e
2 2
A9 2 o
2m m2 f2 ce
22| 2 o
" anf e am eI
2 2
m1g 1| =000)
e E_f_Z)H“ , (D14)
212 2
7 :_:‘4”) g A\fN 11(002) 4 (000
T m
m? 2
% 1- =5 )H(OOO) , (D15)
g
212 2
pilts gt z
TB = i am eI
m? 2
% 1- =5 )H(OOO) , (D16)
g
27£2 4 2 2
T@-_ P15 9 oo, A (M 7000
B8 (amfm?| ¢ 2m|T g2f2 ’
(D17)
2/§2 4
_ M /f’n' g W —
rig - 00 T g anie g
M m? 1000
| 1- —| ¢ , (D18)
2m ng
w?lf2 via —
= 2 gy 2ngee o
w m* | —
+ﬁ 1_—ng2 11(%%0) ) (D19
Family 3[diagrams(k)+(1)+(m)+(n)+(0)].
1 g W2+ 72
+ 2 (000)__ (001)
Tpp= (4 2 [m(doo+q doy)| Mge am? g
3 2 2\2
M (W+29)
+ 5 (1=°T2p%)(d]g+ quI1>[—4Hé%°2’

W2+ 72 _
+ ——— 11 {(dgo+ g2dgy) 211

L 2
(4m)?

4m
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+2u(dgo+ ‘312‘3101)(1101](000)Jr 3M4(d10)2H(OOO )

(D20)
mi2 g2
iR =~ (4m )2 {(d00+q2d01)1'[(001)
+ p2(d i+ q2d;) 12000 (D21)
m/i2 g2
(DZ)B+_(4 2 m {(d00+q2d01)1'[(°°1)
—3,u2(d10+q2d11)H(000 ) (D22)
w'm g?
T =" (4m)2 m? bl 1" (D23
and
_ wm W2—z2
IDD:_wW(dOO_i_qdel)
wg® 1 — | =
‘ m E - f_2 —dgo q2d01) H(c(ioo)
2[\W2+ 22 .
e e Ty
4 2
I I N O AR e
(4m?| * m? 2]
9 —
(- 9?2311 (D24)
2
W-— pmi2) 9”1 g [1000
(41)2 m?  f2 e
2 W2
+g—boo[4 — 2+ (D25
7@ =7 (D26)
2
_ um— | op(g° 1
T = P | 2P| T
2
+ 9 00 (D27)
2-7SC "

APPENDIX E: RELATIONS AMONG INTEGRALS

We display here the relations among integrals needed for

PHYSICAL REVIEW &8, 024004 (2003

(W+Z)“I“ f[ Q(W+z)

2 _
f[ —qg/4) :(W Z)’MI'U‘
2) 2m Ccs
o
=|cc_ﬁ 1—2—M2 lget -, (ED

where the ellipsis indicates that short range contributions
were discarded. The combination of both results produces

2
W22 Wz qeon_ppeoo_ # (4 |0,
4m? 2m 2u?) %
(E2)
The repetition of this procedure yields
17(000) 1 t (000)
Hcc :§ 1_4_/1,2 Hcc +"'. (E3)
(000 1 t )" oo
H _15 1—4—M2 Hcc +ee (E4)
2
W2 W2 oz v - [ L)Hg%01)+ .
am 2 Zm 2/"L2
(EH)

— 1 t y72
000 000
ch )25(1——4M2)ch )+

e

4m 212
(E6)
Wz 001, 000 t 000
2H( )= H( ) 2 1-— H(ss ..,
4m m 2u
(E7)
2 —
Lo fign- g, e

2
W H(°02)+H(0°°) H(001)

1— L roon . .,
2u°

the chiral expansion of the potential. The derivation of these

relations is based on the fact that the numerators of some

integrands can be simplified. For instance, a resultlfor
may be obtained through

2m SS
(E9
W2 —
(002) (000)
16m4HSS +4m2HSS
2 2 2
P ) e, W oo
4m? 2u?) % am? t°
_* 1_L 100 . (E10)
2m 2,LL2 sc !
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100 _ | 1_ |00, ¥ |4 (001) (w+_ _ mm/8 9 2, 717(001)
I _<1 2 Igs +2m 1 2 2)Hss + Ipg = (477) )Hss ) (F2)
(E11)
z° m t 2m um/8 g*
s Egém:ﬁ 1_2_/1«2 11(090)¢ 17000 Ty at e, 7@t = amim —{(1-t2u®) 10— (312 5t/8u?)I1,},
(E12 (F3
2
W H§202)+H(000) H(OOl) (E13 @ m2/4 g , 000 (000
9 79 G -4 (1 t/4u) (11204 11(990)
t 2
(020)_,_ 77(000)_ _ (010)_ (00D oo 1o 2y 77(001)_ 17(010)
4m Hreg +H|’eQ 2m 1 2# )Hreg H +- +2m[(1 t/ZM )(Hss Hreg )
(E14
4 2 Tt 2 +(1_t/4ﬂ2)Ha]], (F4)
(020) oo M| 4 (000)
Tom® o0 +4 aneg el 2u? Hreg
m?/4 g*
72 t w+__ " 39 H(002)+H(002 (F5)
_ FI—I(S(():Ol) 2m 1— 2_ BB (477)2 m4{ )}
m 5
2m 2 4
(000)_ =" m</4 g
X + ...
ewe (E19 Z(E’Z%’+:(4w)z i IS T (F6)
— t 2 t
©000)_ [ 4_ - |00 # [ 4_ b )10
Hreg _<1 4M2)Hreg 2m 1 ZMZ)Hreg ' and
(E16)
N 28 (1[g? 17 2
‘Other two relations involving1{3® and 11" are ob- ISD:M—Z 3 g_z_ _2) 1— M—Z(t/4M2+ZZ/ZM2)
tained by deriving Eq(B20) and Eq.(C55) with respect to (4) m*  f7 m
Ko 2 42
g9 1
47000 X (1—t/4p?) 1200 2—2(—2——2
u dss —11(200)¢ %H(S%OD, (E1D) m*\m*  f<
K 2
M
4000 X 1—E(t/4,b2+22/2,b2) (1—t/2u?) 1%
reg_ _ y(000)_ H(om) (E19
dM reg reg -
g_4 (1_t/2M2)2(H(000)+ H(OOO))
m

APPENDIX F: INTERMEDIATE RESULTS

The results presented here for the TPEP were obtained by
using the relations among integrals of the preceding appen-
dix into the full expressions of Appendix D. In this procedure
we just neglected short range integrals and both sets of equa-
tions are equivalent for distances larger than 1 fm. In family
3, we did not keep contributions larger th@gq?*), in order
to avoid unnecessarily long equations.

Family 1[diagrams(a)+(b)+(c)+(d)+(e)+(f)].

2 4
,u,/8 g1
D= @mim { (1= t/2u2) IO 1107
- %(14/2#2)114 : (FD)
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1
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S 2 i W |
T == 2Pl 3| ) (L AT
g2
——2{(1—tlzﬂ2)n<°°1>+ (2%l 2)H(002)}
m
(F25
I8 =168 (F26)
Z(g)—:_“mlzﬁ— # (g 14Bw
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2
><(1—t/4,u2)H(°°°)+—[(l t/4u2) 11000

)72
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APPENDIX G: RELATIVISTIC EXPANSIONS

In Sec. VIl we have discussed the relativistic expansion of
the functiony(t) derived by Becher and Leutwyler, which
does not coincide with the usual heavy baryon expansion. In
this appendix we show how their results can be used to pro-
duce relativistic expansions for box and crossed box inte-
grals.

The triangle, crossed box, and regularized box integrals
given, respectively, by Eq$B17), (B19), and(C54) can be
written as

. 1
M=~ J [ delIEU Mg, (GD)
miee)=— f delT P M), (G2

Wherel'[gm)(/\/l) is a generalized triangle integral, given by
2m n+1 1 1
Hg%‘*“)(/w):(——) f daaj db
M 0 0

and the denominatdd (M) is

w’(ab/2)"
D(M)
(G3

D(M)=M?a?b?>—a(1l—a)(1—b)g?+(1—ab)u?.
(G9

When M=m, one recovers the triangle integral defined in
Eq. (B17). On the other hand, the valuest?=(W?+ >
+¢?2%)/4 and M %= (c®W?+ g+ 7%)/4 yield Eqgs.(G1) and
(G2.

Performing explicitly theb integration in Eq.(G4), we
obtain the generalization of E¢E2), which reads
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(1—t/AMHTTD( M)

=M—22[H£%°°>— = (1= U2u2) IS0 M) + T (M)
(G5
with
2 2
(M=[1-2 In%—Z)
+2% 1- 4//”:/212tanl %\/%).

(G6)

In all cases, M is a large parameter and we can use the
relativistic expansion o§(t), which is related to our triangle

(000)_

integral byIT{°%= —2mu(4m)2y(t). We have

H(OOO)M - H HNL _ M
o M= 2M 2| M1-tan?
+2|n(1++ (G7)
2MN1—t/4u?

with I, andTI}'" given by Eqs(61) and(62). Recalling that
M%=11, and inserting these results into Ed&1) and
(G2), we obtain

_ m2
11(000)= — f dC./\/lz——t/( L(M)_ (1 t/ZMZ)
)73
I+ —HN'-+ S
2M 2| M1-tan?
)72

+2In 14+ ————— . G8
2MN1—t/4u? ]) (9

In the chiral limit u—0, we have

IQO=11{00 — (1+22/6m?)11, (G
and, using Eqs(E7), (E8), (E9), and(E17) and Eqs(E12),
(E13, (E14), and (E18), one finds the following relation-
ships valid in that limit:

Hggm): _ Znﬁggl)ﬁna, (G10
{%0=11(%_, 211,/3, (G1y
T 12
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m0=11(Q%0— —11; . (G13
These results may also be combined with those presented in
Appendix E, in order to produce relativistid(g?) expan-
sions for box and crossed box integrals. Equati¢Bis),

(G13), and(E2) yield

t z2
1+ —4+—

[000)_ _
ss am?  6m?

and, using Eqs(E17) and (E7), one has

2 2
VA
0= | 14 “—+—)Hg

2 2

t
_Z_MZ)[Ht_Ht]' (G19

Recalling thatl{2*®=11, and using the results of Sec. VII,
we find the heavy baryon expansion

w2 w?
mB=—11,-= 1—t/2p?)?(211,
X 4 m(l—t/4M2) 4 2[( M) ( 4
— 1))+ (22213u®) ]+ - - -, (G16)

where the ellipsis represent polynomialstin
For the box integrals we evaluate E@8) directly and
obtain

2
t
1+F+W)H€ 2m 1——

[H(OOO)]HB: _
2u?

reg

H +—HNL

6m (G179

Comparing with Eq(E14) and using Eq(E2), we find

~ 1 2u
HB_ _ — NL
I,== 5 I+ 3mH (G198

17(010)

wherell,= feg

Finally, evaluating Eq(E18), we have
4 w?
mye——1;- & -
(1—t/4u? ) 12m
X (211, —1I1}) + (222 w)TT ] + - - -
— 17(000)

reg *

[(1—t/2u?)?

(G19
with ITy
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