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Shapes of the proton
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A model proton wave function, constructed using Poincare´ invariance and constrained by recent electromag-
netic form factor data, is used to study the shape of the proton. Spin-dependent quark densities are defined as
matrix elements of density operators in proton states of definite polarization, and shown to have an infinite
variety of nonspherical shapes. For high momentum quarks with spin parallel to that of the proton, the shape
resembles that of a peanut, but for quarks with antiparallel spin the shape is that of a bagel.
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The recent data@1,2# showing that the ratio of the proton’
electric and magnetic form factorGE /GM falls with increas-
ing momentum transferQ2 for 1,Q2,6 GeV2 are very in-
teresting. This behavior, or the equivalent statement that
ratio of Pauli to Dirac form factors,QF2(Q2)/F1(Q2), is
approximately constant, indicates that quarks in the pro
carry considerable orbital angular momentum@3–6#.

This paper is concerned with the relation between
shape of the proton and the quark oribtal angular moment
Several subtleties and difficulties enter in determining
shape. As a particle of spin-1

2 , the proton can have no quad
rupole moment, according to the Wigner-Eckhart theore
Thus any nonspherical manifestation must reside in fluct
ing components of the quantum wave function. Another d
ficulty occurs in using experiments in which momentum
transferred to the proton. The proton’s final state carries
ferent total momentum than that of its initial states, and
effects of boosts cause the initial and final state wave fu
tions to differ. For example, one often thinks of a particle
relativistic motion having a pancake shape because of
effects of Lorentz contraction. Such an effect is caused
external influence, and is therefore not a manifestation of
intrinsic shape of the proton. Another possible problem
curs through the use of light cone coordinates, which
volves a separation of coordinates into longitudinal a
transverse, that complicates a simple interpretation.
technique is to use a model of the proton wave funct
@7,5,8#, constructed with Poincare´ invariance and parameter
constrained by data, to compute specific matrix elements
ing only the proton’s rest frame wave function and ordina
coordinates.

The basic experimental observables concerning us are
form factors

F1~Q2!5
1

2P1 ^N,↑uJ1uN,↑&,

QkF2~Q2!5
22MN

2P1 ^N,↑uJ1uN,↓&, ~1!

with F1 obtained from a non-spin-flip matrix element andF2
obtained from a spin-flip term. In evaluating the right-ha
side of Eq.~1! we takeJ1 to be that of free quarks@9#, g1

times the quark charge. We use a frame in whichqn5(p8
2p)n,Q252q2,q150,q5Qex522p.
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Our three-quark wave function is constructed using sy
metries @10,11#. It is antisymmetric, expressed in terms
relative momentum variables, an eigenstate of the spin
erator defined by the Pauli-Lubanski vector, is rotationa
invariant, and reduces to nonrelativistic SU~6! wave function
in the limit that the quark mass goes to infinity. The wa
function is given by

Cs~pi !5F~M0
2!u~p1!u~p2!u~p3!cs~p1 ,p2 ,p3!,

pi5pisi ,t i , ~2!

wherecs is a spin-isospin color amplitude factor@11#, thepi
are expressed in terms of relative coordinates~with 2p3'

5K ), and theu(pi) are Dirac spinors. The spin-independe
wave functionF is a function of the mass-squared opera
for a noninteracting system@12#:

M05~K21M3
2!1/21~K21m2!1/2, M3[2~k21m2!1/2,

~3!

wherek is the relative momentum between quarks labele
and 2 and2K is the momentum of the third quark@13#. We
use the Schlumpf@12# form

F~M0
2!5

N

~M0
21b2!g

, b50.607 GeV, g53.5,

m50.267 GeV. ~4!

The value ofg is chosen so thatQ4GM(Q2) is approxi-
mately constant forQ2.4 GeV2. The values ofb andm are
determined by the charge radius and magnetic moment o
proton. Slightly different values ofb, g, and m are used
when the effects of the pion cloud are incorporated@8#. Us-
ing these newer values would cause very small differen
here.

The calculation of electromagnetic form factors is co
pletely defined once this wave function and operatorJ1 are
specified. Although the evaluation was presented long
@7# and explained recently@5#, it is worthwhile to briefly
explain how the constant nature of the ratioQF2 /F1
emerges from the relativistic nature of the calculation. T
wave function Eq.~2! is completely antisymmetric, so w
may takeJ1 to act only on the third quark which absorbs th
©2003 The American Physical Society01-1



ir

ic
en

f
s
to

tu
t o
ve

ta
m

m

io
fi

pr
ti

0
tra
io
th
-
en

ty
at

th

xis:

x-
ses
e

the
the

ve
r-

sity

-

he
ts

he
lar

Its
fine
era-

on
ime.
eld
ent

rks,
ent

RAPID COMMUNICATIONS

GERALD A. MILLER PHYSICAL REVIEW C 68, 022201~R! ~2003!
virtual photon’s momentum. The average charge of the th
quark in the mixed-symmetric component of Eq.~2! van-
ishes, so only the mixed-antisymmetric component in wh
the first two quarks have a vanishing total angular mom
tum enters here. Then the spin of the protons is governed by
that of the third quark. The relevant Dirac spinor is

u~p35K ,s!5
1

AE~K !1m
S @E~K !1m#us&

s•K us&
D , ~5!

with E(K)5(K21m2)1/2. The total angular momentum o
the proton is denoted bys and the lower component contain
a terms•K that allows the quark to have a spin opposite
that of the proton’s total angular momentum. The vectorK
reveals the presence of the quark orbital angular momen
the struck quark may carry a spin that is opposite to tha
the proton. Consequently nucleon helicity is not conser
@3,4,14#.

SupposeQ is very large compared tob and the third
quark changes its momentum fromK to K 8. Then the form
factor depends on the matrix element ofū(K8,s8)g1u(K,s).
If we keep only the largest terms, those proportional toQ, we
find

ū~K8,s8!g1u~K,s!;^s8uQ1
K1

M0
Qisyus&. ~6!

The spin-flip term proportional toisy arises from the lower
component of the spinor of Eq.~5!, and this term has the
same large factorQ as the nonspin-flip term, implying via
Eq. ~1! that QF2 and F1 have the same dependence onQ,
and thus a constant ratio.

The essential feature is that construction of an eigens
of spin mandates the use of Dirac spinors. The lower co
ponents of these spinors carry the quark orbital angular
mentum responsible for the constant nature ofQF2 /F1 .

Our aim is to interpret these features of the wave funct
in terms of the shapes of the proton. The technique of de
ing spin-dependent density operators is introduced by
senting two simple examples. Consider a nonrelativis
nuclear wave function consisting of a proton outside a1

inert core. The proton is bound by a combination of a cen
and spin-orbit potential and the single particle wave funct
is an eigenfunction of total angular momentum. Consider
case (l , js)5(1,1/2s), with one unit of orbital angular mo
mentum. Then the proton wave function is a two-compon
Pauli spinor: ^r puc1,1/2s&5R(r p)s• r̂ pus&, where r p is the
proton’s position andus& is a Pauli spinor. The charge densi
of this system is the expectation value of the density oper
d(r2r p). Then r(r )5^c1,1/2sud(r2r p)uc1,1/2s&5R2(r ),
and is spherically symmetric. However, consider instead
case that we require the proton at a positionr to have a spin
in a direction defined by a unit vectorn. Then we define a
spin-dependent density:
02220
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r~r ,n!5^c1,1/2sud~r2r p!
~11s•n!

2
uc1,1/2s&

5
R2~r !

2
^su112s• r̂ n• r̂2s•nus&. ~7!

An interesting special case is to taken parallel or antiparallel
to the direction of the proton angular momentums. The di-
rection of this vector defines an axis~the ‘‘z axis’’!, and the
direction of vectors can be represented in terms of this a
ŝ• r̂5cosu. With this notation r(r ,n5 ŝ)5R2(r )cos2u,
r(r ,n52 ŝ)5R2(r )sin2u and the nonspherical shape is e
hibited clearly. Note that the average of these two ca
would give a spherical shape~as would an average over th
direction of the total angular momentum!, but the ability to
define a spin-dependent density allows the presence of
orbital angular momentum to be revealed in the shape of
computed density.

Another useful example is that of the Dirac electron wa
function of the hydrogen atom. This wave function is a fou
component spinor given byuce& with

^reuce&5Nre
gexp~2mear e!S 1us&

ia/2s• r̂eus&
D , ~8!

wherea is the fine structure constant andg5A12a2. We
compute the expectation value of the spin-dependent den
operator, in terms of Dirac matrices:d(r2re)(1
1g0g•ng5)/2, so that with n5 ŝ, r(r ,n̂5 ŝ)
5r e

22gexp(22meare)@11a2/4cos2u#. We see that the hydro
gen atom is deformed. The angular dependence is;1
11025cos2u so that the shape is almost spherical. But t
principle is clear: relativity as manifest by lower componen
of a Dirac wave function implies a deformed shape, if t
matrix element is computed in a state of fixed total angu
momentum. Forn52 ŝ, r(r ,n̂52 ŝ)5a2sin2u/4.

With these examples in hand we turn to the proton.
wave function is specified in momentum space, so we de
a momentum-space, spin-dependent, charge-density op
tor:

r̂~K ,n!5E d3r

~2p!3 eiK•rc̄~r !
Q̂

e
~g01g•ng5!c~0!, ~9!

whereQ̂/e is the quark charge operator in units of the prot
charge. The quark field operators are evaluated at equal t
In QCD, one would need to add a factor between the fi
operators to ensure gauge invariance. With the pres
model, any gluons are contained within constituent qua
so the factor becomes unity. For our model, it is conveni
to use first-quantized notation so that

r̂~K ,n![ (
i 51,3

~Qi /e!d~K2K i !@11~g0g•ng5! i #/2.

~10!
1-2



en

e

on

sp

gl
te
he

s

r
o-
g

nti-

f a
f
wn

in
the

-
ts on

,

RAPID COMMUNICATIONS

SHAPES OF THE PROTON PHYSICAL REVIEW C68, 022201~R! ~2003!
We may compute probabilities for a quark to have a mom
tum K[(K,u,f) and spin directionn, for a spin-polarized
proton polarized in theŝ direction. We find

r~K ,n!5^Csur̂~K ,n̂!uCs&

5r~K ! 1
2 @11n• ŝ1g~K !~12n• ŝ12K̂•nK̂• ŝ!#

~11!

with

r~K ![E d3kF2~k,K !@E~K !1m#, g~K ![
E~K !2m

E~K !1m
.

~12!

Some special cases of Eq.~11! are interesting. Suppose th
quark spin is parallel to the proton spin,n5 ŝ, then r̂(K,n
5 ŝ)5r(K)@11g(K)cos2u#. For values ofK!m the shape
is nearly spherical, but forK@m the cos2u term becomes
prominent. But if the quark spin is antiparallel to the prot
spin, n52 ŝ, we find: r̂(K,n52 ŝ)5r(K)g(K)sin2u, and
the shape is that of a torus. We may also take the quark
perpendicular to the proton spinn•s50, so that
r(K ,n•s50)5r(K)@11g(K)#/21g(K)sinu cosu(cosfnx
1sinfny), to display the dependence on the azimuthal an
In each case, the nonspherical nature arises from the
proportional tog(K) caused by the lower components of t
Dirac spinor~5!.

We turn to the numerical evaluation and display of the
shapes, see Fig. 1. The shape for a given value ofK is de-
termined by the ratiog(K) which reaches a value of 0.6 fo
K51 GeV/c, implying considerable nonsphericity and pr
viding a sharp contrast between the proton and the hydro

FIG. 1. Momentum probabilityK2r(K) in dimensionless units
arbitrarily normalized.
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atom. The probability that a given value ofK is reached is
determined by the functionK2r(K), displayed in Fig. 1. The
most likely value ofK corresponds tog(K)50.16.

The shapes for the cases of quark spin parallel and a
parallel to the polarization direction of the protons are dis-
played in Fig. 2. As the value ofK increases from 0 to
4 GeV/c the shape varies from that of a sphere to that o
peanut, if nis. The torus or bagel shape is obtained i
2nis. Takingn's leads to some very unusual shapes sho
in Fig. 3.

It is worthwhile to look at the shape of the proton
coordinate space. One can determine the probability for
separation of a quark from the center of mass to ber because
r is canonically conjugate toK . We define a coordinate
space, spin-dependent, charge-density operator that ac
the quarks in the proton rest frame:

r̂~r ,n![ (
i 51,3

~Qi /e!d~r2r i !@11~g0g•ng5! i #/2 ~13!

FIG. 2. ~Color online! Shapes of the proton.s is in the vertical

direction ẑ. Left column quark spin parallel to nucleon spinn5 ŝ.
Right column: quark spin antiparallel to nucleon spinn52s. The
value ofK increases from 0 to 1 to 4 GeV/c.
1-3
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so that we may compute probabilities for a quark to hav
position r[(r ,u,f) and spin directionn. We find

r~r ,n!5^Csur̂~r ,n!uCs&

5E d3kx†~k,r !
1

2
~11g0g•ng5!x~k,r !, ~14!

with

x~k,r !5S Fk~r !us&

2 i s• r̂Gk~r !us&
D , ~15!

and Fk(r )5*d3KF(k,K)@E(K)1M #1/2eiK•r,Gk(r )
5]/]r *d3KF(k,K)eiK•r/@E(K)1M #1/2. We find

r~r ,n!5rU~r ! 1
2 ~11n• ŝ!1rL~r ! 1

2 ~112r̂• ŝn• r̂2n• ŝ!,
~16!

where rU(r )[*d3kFk
2(r ),rL(r )[*d3kGk

2(r ). The pattern

is similar to that in momentum space, withr(r ,n5 ŝ)
5rU(r )1rL(r )cos2u, r(r ,n52 ŝ)5rL(r )sin2u, and r„r ,n
5( x̂1 ŷ)/A2…5 1

2 rU(r )1 1
2 rL(r ) @112/A2cosu sinu(cosf

1sinf)#.
The ratiorL /rU , which determines the size of the rel

tivistic effects, can be much larger~Fig. 4! than the factor
g(K) ~Fig. 1! controlling the momentum-space shapes,
that extreme deviations from a spherical shape are poss
The most likely value ofrL /rU is about 0.25, but there is n
limit. The case withrL /rU53 is shown in Fig. 5. A pretze
form is obtained ifn is out of the page.

The shape of the proton may be defined in terms of ma
elements of spin-dependent density operators Eqs.~10! and
~13! taken for protons in any fixed polarization state. Re
tivity mandates the use of Dirac spinors to describe
quarks. These components, embodied in Eq.~6!, lead to a
constant ratio ofQF2 /F1 in accord with observation, an
also to shapes that depend strongly on the relative orienta

FIG. 3. ~Color online! n•s50. Left column,n5 x̂ ~out of page!,

central: n5 ŷ, right n5( x̂1 ŷ)/A2. The momentumK increases
from 1 to 4 GeV/c.
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of the quark spin with respect to that of the proton to
angular momentum, Eqs.~11! and ~16! ~Figs. 2, 3, and 5!.

We next consider experiments aimed at measuring
matrix elementr̂(K ,n), Eq. ~9!, for real nucleonsuN&. Ob-
serve that*d3K r̂(K ,n) is a local operator. Its matrix elemen
is a linear combination of the charge, integrals of sp
dependent structure functionsDq, andgA that can be deter-
mined from previous measurements. We find

E d3K^Nur̂~K ,n56 ŝ!uN&

5
1

2
^Nuc̄~0!

Q̂

e
~g06g3g5!c~0!uN&

5 1
2 @16 1

6 ~Du1Dd1Ds!1 1
2 gA#50.560.34, ~17!

in which numerical values ofDq are taken from Ref.@15#.
The model we use gives 0.560.37 for the above quantity

FIG. 4. Coordinate space densities.

FIG. 5. ~Color online! Shape of the proton coordinate spac
Left, n5s; right, n points out of the page.
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indicating that the results shown here may not be unrealis
The task of determiningr(K ,n) as a function ofK re-

mains open. However, the specific relativistic effects of
bital angular momentum and the related spin-flip effects
sponsible for the nonspherical shapes can be expecte
influence many measurable quantities. These include: s
dependent structure functionsg1 , g2 , the ND electromag-
.

D

02220
c.

-
-
to

in-

netic transition form factor, and spin-dependent cross s
tions in high momentum transfer scattering of polarized p
tons.
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