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Shapes of the proton
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A model proton wave function, constructed using Poindgavariance and constrained by recent electromag-
netic form factor data, is used to study the shape of the proton. Spin-dependent quark densities are defined as
matrix elements of density operators in proton states of definite polarization, and shown to have an infinite
variety of nonspherical shapes. For high momentum quarks with spin parallel to that of the proton, the shape
resembles that of a peanut, but for quarks with antiparallel spin the shape is that of a bagel.
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The recent datfl,2] showing that the ratio of the proton’s Our three-quark wave function is constructed using sym-
electric and magnetic form fact@g /Gy, falls with increas- metries[10,11]. It is antisymmetric, expressed in terms of
ing momentum transfe®? for 1< Q%<6 Ge\? are very in-  relative momentum variables, an eigenstate of the spin op-
teresting. This behavior, or the equivalent statement that therator defined by the Pauli-Lubanski vector, is rotationally
ratio of Pauli to Dirac form factorsQF,(Q?)/F,(Q?), is invariant, and reduces to nonrelativistic ®Jwave function
approximately constant, indicates that quarks in the protoin the limit that the quark mass goes to infinity. The wave
carry considerable orbital angular moment{8s-6]. function is given by

This paper is concerned with the relation between the
shape of the proton and the quark oribtal angular momentum. ~ ¥s(pi) =®(MJ)u(py)u(p2)u(ps) ¥s(P1.P2.Pa).

Several subtleties and difficulties enter in determining the

shape. As a particle of spih; the proton can have no quad- Pi=RiSi, 7, 2
rupole moment, according to the Wigner-Eckhart theorem. ) o _ )

Thus any nonspherical manifestation must reside in fluctuat/heres is a spin-isospin color amplitude factdrl], thep;

ing components of the quantum wave function. Another dif-2'¢ expressed in terms of relative coordinateth —ps,
ficulty occurs in using experiments in which momentum is=K), and theu(p;) are Dirac spinors. The spin-independent
transferred to the proton. The proton’s final state carries difwave function® is a function of the mass-squared operator
ferent total momentum than that of its initial states, and thdor & noninteracting systeifi.2]:

effects of boosts cause the initial and final state wave func- P 2112 ENT L2 2

tions to differ. For example, one often thinks of a particle in Mo=(K"+M3)" "+ (K=+m9)™ Mg=2(k"+m")™,
relativistic motion having a pancake shape because of the ©)
effects of Lorentz contraction. Such an effect is caused b)O\/herek is the relative momentum between ks labeled 1
external influence, and is therefore not a manifestation of the . =N quarks ‘anee
T . and 2 and—-K is the momentum of the third quafk3]. We
intrinsic shape of the proton. Another possible problem oc-
curs through the use of light cone coordinates, which in-15€ the Schlumpfi12] form
volves a separation of coordinates into longitudinal and

transverse, that complicates a simple interpretation. Our @(M§)= , B=0.607 GeV, y=3.5,

technique is to use a model of the proton wave function (M3+ B2
[7,5,8], constructed with Poincatiavariance and parameters
constrained by data, to compute specific matrix elements us- m=0.267 GeV. (4)
ing only the proton’s rest frame wave function and ordinary
coordinates. The value ofy is chosen so thaQ*G(Q?) is approxi-
The basic experimental observables concerning us are theately constant fo?>4 Ge\?. The values of3 andm are
form factors determined by the charge radius and magnetic moment of the
proton. Slightly different values oB, vy, and m are used
FL Q%)= L(N 197N, 1) when the effects of the pion cloud are incorporaf@ Us-
2PV T ing these newer values would cause very small differences
here.
—2My The calculation of electromagnetic form factors is com-
QxF2(Q%)= op* (N,TITIN, L), @) pletely defined once this wave function and operdtbrare

specified. Although the evaluation was presented long ago
with F, obtained from a non-spin-flip matrix element afg  [7] and explained recently5], it is worthwhile to briefly
obtained from a spin-flip term. In evaluating the right-handexplain how the constant nature of the rat@@F,/F;
side of Eq.(1) we takeJ™ to be that of free quarki®], y* emerges from the relativistic nature of the calculation. The
times the quark charge. We use a frame in whichk= (p’ wave function Eq.(2) is completely antisymmetric, so we
-p)*,Q%=-g%q"=0,0=Qe=—2p. may takel™ to act only on the third quark which absorbs the
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virtual photon’s momentum. The average charge of the third (1+o-n)

quark in the mixed-symmetric component of H®) van- p(r,n) = (i1 12| 5(f—rp)T|¢1,1/2s>

ishes, so only the mixed-antisymmetric component in which

the first two quarks have a vanishing total angular momen- R?(r) . A

tum enters here. Then the spin of the prosis governed by =—5(sl1+20-rn-r—o-n[s). (7

that of the third quark. The relevant Dirac spinor is

An interesting special case is to takearallel or antiparallel
to the direction of the proton angular momentsmrhe di-

u(ps=K,s)= ; [E(K)+m]|s>) , (5)  rection of this vector defines an axithe “z axis”), and the
VE(K)+m a-Kls) direction of vectors can be represented in terms of this axis:

s-r=cosf. With this notation p(r,n=s)=R?(r)cos4,
p(r,n=—3s)=R3(r)sirg and the nonspherical shape is ex-
hibited clearly. Note that the average of these two cases
would give a spherical shagas would an average over the

with E(K)=(K?+m?)¥2. The total angular momentum of
the proton is denoted byand the lower component contains

aterme-K that allows the quark to have a spin opposite ©girection of the total angular momentiinbut the ability to

that of the proton’s total angular momentum. The vedtor define a spin-dependent density allows the presence of the

reveals the presence of the quar_k orblta_l ang'“"ar MOmeNtun e angular momentum to be revealed in the shape of the
the struck quark may carry a spin that is opposite to that o omputed density.

the proton. Consequently nucleon helicity is not conserve Another useful example is that of the Dirac electron wave

[3,4,14. . ; s )
SupposeQ is very large compared t@ and the third i%r:gggr;:;ttzgi%??iggg a;?,n;'v-giw]s wave function is a four
qguark changes its momentum frafto K’. Then the form e

factor depends on the matrix eIemenanK’,s’) v u(K,s).

If we k ly the | h i Ls)
fwe keep only the largest terms, those proportiondDtave (re|he)=Nr2exp( —mear )| . 7 (8)
find ial20-1s)
B K+ where« is the fine structure constant ana= y1-— a?. We _
u(K’,s" )y u(K,s)~(s'|Q+ —Qiay|s>. (6) compute thg expectation valug of the spm-dependent density
Mo operator, in terms of Dirac matrices:5(r—rg)(1

+9%y-nys)l2, so that with n=s  p(r,n=9
=r 2Yexp(—2mear)[1+a?/4codd]. We see that the hydro-
gen atom is deformed. The angular dependence-is

+10 5cogd so that the shape is almost spherical. But the
principle is clear: relativity as manifest by lower components
Eq. (1) that QF, andF, have the same dependence @n of a Dirac wave function implies a deformed shape, if the

and thus a constant ratio. . . matrix element is computed in a state of fixed total angular
The essential feature is that construction of an eigenstate

_ = N D — 2a
of spin mandates the use of Dirac spinors. The lower comMOMentum. Fon=-—s, p(r,n=—9)=a Siro/4,
With these examples in hand we turn to the proton. Its

ponents of these spinors carry the quark orbital angular mo- S o :
mentum responsible for the constant natured, /F, wave function is specified in momentum space, so we define

Our aim is to interpret these features of the wave functiorft Momentum-space, spin-dependent, charge-density opera-

in terms of the shapes of the proton. The technique of defint"

ing spin-dependent density operators is introduced by pre-

senting two simple examples. Consider a nonrelativistic . dr o Q 0

nuclear wave function consisting of a proton outside a 0 P(Kv”):J’ 2 e 'rl//(f)g(y +y-nys)(0), (9)

inert core. The proton is bound by a combination of a central

and spin-orbit potential and the single particle wave function -~ _ ]

is an eigenfunction of total angular momentum. Consider th&vhereQ/e is the quark charge operator in units of the proton
case (,js)=(1,1/2s), with one unit of orbital angular mo- charge. The quark field operators are evaluated at equal fume.
mentum. Then the proton wave function is a two-component? QCD, one would need to add a factor between the field
Pauli SpInor: (1 o[ i1 1) = R(F ) o Fp|s>, wherer, is the operators to ensure gauge invariance. With the present

proton’s position andls) is a Pauli spinor. The charge density mo?hel, fang/ ggj ons are co_?ta:?ed within dCCJlnitl'tuent qugrks£
of this system is the expectation value of the density operato,?g usg fﬁgt?ruaiiiozggsngtnz;t%gn g(r) c:rl:;tmo €l It1s convenien
S(r=rp). Then p(r)={ 1| (r =1 )| ths 1) = R(r). a

and is spherically symmetric. However, consider instead the

case that we require the proton at a positiclo have a spin - — , _K. 0., ,

in a direction defined by a unit vector. Then we define a p(K'n)_igﬁ (Qife) oK =K)IL+ (7 nys)i]f2.
spin-dependent density: (10

The spin-flip term proportional too, arises from the lower
component of the spinor of Eq5), and this term has the
same large facto® as the nonspin-flip term, implying via
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FIG. 1. Momentum probabilit)<?p(K) in dimensionless units,
arbitrarily normalized.

We may compute probabilities for a quark to have a momen-
tum K=(K, 6, ¢) and spin directiom, for a spin-polarized

proton polarized in the direction. We find
p(K,n)=(¥¢p(K,n|¥y)

=p(K)i[1+n -5+ y(K)(1—n-s+2K-nK-9)]

(11)
with . . .
FIG. 2. (Color online Shapes of the protors.is in the vertical
E(K)—m directionz. Left column quark spin parallel to nucleon spirs.
P(K)EJ d3kc1)2(k,K)[E(K)+m], y(K)= m Right column: quark spin antiparallel to nucleon spi —s. The

(12) value ofK increases from 0 to 1 to 4 Ge¥/

S ial f B int ting. S the atom. The probability that a given yalue bifig rgached is
ome special cases of EQLL) are interesting. Suppose the determined by the functiok?p(K), displayed in Fig. 1. The

quark spin is parallel to the proton spin=s, then p(K,n most likely value ofK corresponds ta/(K)=0.16.

=5)=p(K)[1+ y(K)cos ). For values ofk<m the shape The shapes for the cases of quark spin parallel and anti-

is nearly spherical, but fok>m the co$¢ term becomes parallel to the polarization direction of the proterare dis-

prominent. But if the quark spin is antiparallel to the protonpjayed in Fig. 2. As the value ok increases from 0 to

spin, n=—s, we find: p(K,n=—9)=p(K)y(K)sir?6, and 4 GeVi/c the shape varies from that of a sphere to that of a

the shape is that of a torus. We may also take the quark spipeanut, if n|s. The torus or bagel shape is obtained if

perpendicular to the proton spimn-s=0, so that —n||s. Takingnl sleads to some very unusual shapes shown

p(K,n-s=0)=p(K)[1+ y(K)]/2+ y(K)sin 8 cosf(cos¢dn, in Fig. 3.

+sin¢n,), to display the dependence on the azimuthal angle. It is worthwhile to look at the shape of the proton in

In each case, the nonspherical nature arises from the terpoordinate space. One can determine the probability for the

proportional toy(K) caused by the lower components of the separation of a quark from the center of mass to because

Dirac spinor(5). r is canonically conjugate t&K. We define a coordinate-
We turn to the numerical evaluation and display of thesespace, spin-dependent, charge-density operator that acts on

shapes, see Fig. 1. The shape for a given valug of de- the quarks in the proton rest frame:

termined by the ratioy(K) which reaches a value of 0.6 for

K=1 GeV/c, implying considerable nonsphericity and pro- - _ , . 0., _

viding a sharp contrast between the proton and the hydrogen p(r,n)—iE’S (Qi7e)e(r=rl1+(¥'y-nys)liz (13
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FIG. 3. (Color online n-s=0. Left column,n=x (out of page, + ) / ~ 1
central: n=y, right n=(x+y)/y2. The momentunK increases R R s
from 1 to 4 GeVE. 0.0, 05 ] 5 5 o5 3
. r(fm)
so that we may compute probabilities for a quark to have a
positionr=(r,6, ) and spin directiom. We find FIG. 4. Coordinate space densities.
p(r,n)=(Wlp(r.n)|W¥s) of the quark spin with respect to that of the proton total
1 angular momentum, Eq¢ll) and(16) (Figs. 2, 3, and b
=f d3kXT(k,r)§(1+ Yy nys)x(k,r), (14 We next consider experiments aimed at measuring the
matrix elemenip(K,n), Eq. (9), for real nucleongN). Ob-
with serve thaff d®K p(K ,n) is a local operator. Its matrix element

is a linear combination of the charge, integrals of spin-

F(r)s) dependent structure functiodsy, andg, that can be deter-
x(k,rn)={ . . , (15) mined from previous measurements. We find
—ia-rGy(r)|s)
and F(r)=[d3K®(k,K)[E(K)+M]Y2%K " G,(r)

! o a .
=3l or [d*K D (k,K)e'® T/[E(K) +M]Y2 We find f d*K(N|p(K,n==x3)|N)

p(r,n)=pu(r)%(l+n§)+p|_(r)%(1+2f§n F—n%), <N| (0)9()/0i 7375)¢(0)|N>
e

(16)

N -

[1+f(Au+Ad+As)+3g,]=0.5+0.34, (17

NI

where py(r)=[d3kFZ(r),p (r)=/d°kGi(r). The pattern
is similar to that in momentum space, with(r,n=s)
=pu(r)+pL(r)cogs, p(r,n= _g):pL(r)sinzg, and p(r,n in which numerical values ohq are taken from Refl15].
— (X+Y)/V2)=py(r) +Lp,(r) [1+ 2/\2cosfsin f(cose The model we use gives 0:3.37 for the above quantity,
+sin¢)].

The ratiop, /py, which determines the size of the rela- S
AN

tivistic effects, can be much largéFig. 4) than the factor
v(K) (Fig. 1) controlling the momentum-space shapes, so
that extreme deviations from a spherical shape are possible.
The most likely value op, /py, is about 0.25, but there is no
limit. The case withp, /py=3 is shown in Fig. 5. A pretzel
form is obtained ifn is out of the page.

The shape of the proton may be defined in terms of matrix
elements of spin-dependent density operators E3.and
(13) taken for protons in any fixed polarization state. Rela-
tivity mandates the use of Dirac spinors to describe the
qguarks. These components, embodied in &, lead to a
constant ratio ofQF,/F; in accord with observation, and FIG. 5. (Color online Shape of the proton coordinate space.
also to shapes that depend strongly on the relative orientatiareft, n=s; right, n points out of the page.
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indicating that the results shown here may not be unrealistimetic transition form factor, and spin-dependent cross sec-
The task of determining(K,n) as a function ofK re-  tions in high momentum transfer scattering of polarized pro-

mains open. However, the specific relativistic effects of or-tons.

bital angular momentum and the related spin-flip effects re- | thank the U.S. DOE for partial support of this work. |

sponsible for the nonspherical shapes can be expected fRank M. Burkardt for useful discussions, and C. Glasshauser

influence many measurable quantities. These include: spirand J. Ralston for emphasizing the importance of under-
dependent structure functioms, g,, the NA electromag- standing the shape of the proton.
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