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Pre-asymptotic behavior of single-particle overlap integrals of non-Borromean two-neutron halos
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For non-Borromean two-neutron halo nuclei, modifications to the behavior of single-particle overlap inte-
grals will arise due to the correlations of the two interacting nucleons in the halo. An additional contribution to
the overlap integral can be obtained using the Feynman diagram approach. This additional term is modeled
using a simple local potential model. We show that these modifications may play a role in detailed interpre-
tations of experimental results from single-nucleon knockout, transfer, and other reactions that probe the
single-nucleon overlap functions.
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It is well known that when a neutron or proton is added tomuch larger distances than for ordinary nuclei. The resulting
a stable nucleus, the separation energy of this last nucleathanges in the overlap functions in the nuclear surface and
does not decrease monotonically. The one-nucleon separheyond may therefore affect analyses and the interpretation
tion energyS,(1N) from a nucleus of masA depends on of experimental results.
that of the previous nucleonS,_;(1N). If S,(1N) The physics behind this nonstandard behavior of the one-
<Sa_1(1N) then, in general, the pairing interaction betweennucleon overlaps is the correlations of the two nucleons of
nucleons will act to increas8,, ;(1N). Thus, a characteris- the halo outside of the nuclear core. As we attempt to remove
tic staggering behavior is predicted theoretically and ob-a single nucleon to large distanagsbeyond the range of its
served experimentally in the systematics of 8@N). Near interactions with all the other nucleons, the remainig
the limits of nuclear stability one finds a class of nuclei for —1 nucleons will rearrange as if the removed nucleon was
which the one- and two-nucleon separation ener§jgdN)  absent. In the non-Borromean two-nucleon cases of interest
and S,(2N) are very similar, and where both are signifi- here, however, this.— 1 configuration is a one-nucleon halo
cantly smaller than those for stable nuclei. Several examplegucleus with a separation ener@i_;(1N) considerably
of such nuclei are shown in Table |I. These weakly boundsmaller than that of the first removed nucleon. So, for a range
systems, withS,(2N)~S,(1N), and for which theA-, (A of r beyond the nuclear core the separated nucleon will con-
—1)-, and A—2)-body nuclei are all particle stable, are tinue to overlap and interact with the halo nucleon of the
referred to in this paper as non-Borromean two-neut@mn (A—1)-body subsystem. Thus, although far from the center
proton halo nuclei. of mass of the A—1)-body residual nucleus, the removed

Over the last decade it has been established that nucleucleon will be affected by these correlations of the two halo
close to the edge of stability display shell melting and in-nucleons. This will lead to surface and preasymptotic devia-
truder states phenomefH. Nuclear breakup, knockout, and tions from the overlap functions calculated using potential
transfer reactions have recently been propdgddéind used models, out to large distances. These deviations may also be
[3,4] to study experimentally the strengths of the intruderdifferent for different orbital angular momentaof the last
states on several non-Borromean two-neutron halo systemgucleon, and so may affect the interpretation of experiments
The theoretical interpretation of the experimental data fromwhich aim to probe the occupancies of normal and intruder
these reactions relies on nuclear structure and reaction thesingle-particle states.
ries in which the single-particle state information enters The one-nucleon overlap integri{r) is defined as the
through the one-nucleon overlap integrals. An important feaoverlap between thétranslationally invariant many-body
ture of these direct reaction mechanisms is that their ampliwave functions¥, and¥ ,_; of the nuclei, with masseA
tudes are primarily sensitive to the behavior of the one-and A—1, and the spin-isospin wave functigypy of the
nucleon overlaps at and beyond the nuclear surfaceemoved nucleon,
Asymptotically, these single-particle overlaps decrease expo-
nentially with a decay constant determined by S$¢1N).
Most theoretical analyses of experimental data assume that
these overlaps can be calculated using simple two-body po-
tential models. These suggest that for radii outside of thevherer is the vector separation between the centers of mass
range of the binding interaction, which for very weakly of the (A—1)-body residue and the removed nucleon. Be-
bound systems give the main contribution to the reaction, théow, we consider only theg=0 case and assume that the
asymptotic behavior for these overlaps is already achievedremoved nucleon is a neutron.

In this paper, we discuss the possibility that for non- The best way to establish the asymptotic behavidr(of
Borromean two-nucleon halo nuclei this assumed asymptotits to consider its Fourier transforhiq). The latter has a pole
behavior of the one-nucleon overlaps may be reached only @t imaginary momentumqg=ix, where xk=kus(1N)
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TABLE |. Non-Borromean two-nucleon halo nucldé, one-
nucleon halo nucleA— 1, and their commoA— 2-body cores. The
two- and one-nucleon threshol&g(2N), Sy(1N), andS,_1(1N)
are also shown.

A A-1 A—2  Sp(2N)  SA(IN)  Sa_1(1IN)
(MeV) (MeV) (MeV)
“Be  upglt)y 'Be 3.670 3.170 0.500
“Be  11gel-)y Be  3.670 3.490 0.180
5 ¥B(17) ] 3.740 3.510 0.230
°c %B(g.s.) Be 1.433 1.296 0.137
16c 15c(1+) tc 5.469 4.251 1.218
16 150(5+) 4c 5.469 4.991 0.478

=v211Sa(IN)/A and u, is the (A—1)+N reduced mass.
In the absence of the Coulomb interaction, this pole provide

the asymptotic behavior df(r), given by the terni5,6]
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FIG. 2. The ratid 1(r)/lo(r) in the asymptotic region shown for
k1=+2k, as a function of. The calculations assun@,/C,=1
fm3/2.

S

K2(2N) = %SA<2N>. ®)

where u, is the (A—2)+2N reduced mass, and,_1(1N)
is that for the two-body virtual decapy—1—(A—2)+N.
Evaluating the integral in E(3) gives

Graphically, this term corresponds to the point diagram of

Fig. 1, panela). However, if a nucleus consists of more than

two particles, other terms will appear in the asymptotics of
I(r) [6]. They arise because virtual decays into different
cluster channels become possible, and are formally associ-

ated with a singular behavior of the vertex form factor
G(9%)~(a*+ «?)1(a).

For non-Borromean two-neutron halo nuclei, the most im-

portant virtual decay i®%\— (A—2)+ N+ N and its contribu-

tion to the single-particle overlap integral is determined by

the Feynman diagram of Fig. 1, pand). As has been
shown in Ref[6], for =0 the contribution from this gen-
eralized triangle diagram is

Cl s e*kr(k_ Kl)3/2

(=" S kdk

r ®

K1

The constantc,; is determined by the location of the singu-
larity of diagram(b) of Fig. 1, and is equal to

(A-1)

(A_2) [KA(ZN)—’_KA*l(lN)]'

(4)

K1

Here k5(2N) is the momentum corresponding to the three-
body virtual decayA— (A—2)+N+N,
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FIG. 1. The pointa) and generalized trianglg) Feynman dia-
grams for theA— (A—1)+N vertex.
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+ (k14 k) 3% erfd (ki + K)r]}, (6)
which at large distances behaves as
Cl 5 K1 e Kaf
|1(r)~>TF 5 —Ki_KZ _r5/2 . (7)

This behavior is reached foe> |k, — x| 1 [6].
Since for non-Borromean two-neutron hal&,_;(1N)

<SaA(2N),
2(A=1)
“Na—2

Becausex,;>k, asymptotically the overlap integrdl(r)
continues to be determined only by the tekgr). In prac-
tice, in the analysis of experiments, calculations are sensitive
to smaller distances where the contribution fropar) may

be non-negligible. For the typical three-body energies of the
non-Borromean two-nucleon halo systems shown in Table I,
« lies in the range of 0.25-0.5 frd. In the most extreme
case 0fS,_1(1N)<S,(2N), x4 can be larger thar by only
40% and the ratid(r)/14(r) decreases only slowly in the
region between 5 and 10 fifsee Fig. 2 of importance to
reaction analyses. Clearly, the surface contributions from
I,1(r) depend critically on the strength of the coupling con-
stantC;.

Ky

K

®

021601-2



PRE-ASYMPTOTIC BEHAVIOR OF SINGLE-PARTICE . ..

To calculateC, from the many-body overlap, E¢l), the
wave function¥ , must have the correct asymptotic in the
three-body channel to provide the correct analytical proper-
ties for diagram(b) of Fig. 1. Available many-body ap-
proaches cannot generate these correct three-body asymptot-
ics, although, existing many-body models could be used to
calculateC, as the discontinuity of the amplitude of diagram
(b). To do this, the Feynman integral of the product of four
propagators and three vertex functions should be written and
then modified to include not only th&-, (A—1)-, and A
—2)-body nuclear wave functions, but pairwise potentials
too, in order to cut off unreliable long-range contributions.
Developments along these lines will constitute a major long-
term project.

In the absence of a proper many-body approach, in this
paper we study possible pre-asymptotic changes to the over-
lap integrals for non-Borromean two-neutron halos within a
simple two-body potential model. We use an effective local
potential Vq¢¢(r) which, for a givenC,/C,, generates an
asymptotic behavior for the overlagr) given by the sum of
Egs.(2) and (6). The long-range nature of such a potential
can be obtained from the Scliiager equation

L
dr? “

with [,4(r)=1o(r)+14(r). It can be shown that

-V(r) (MeV)

-V(r) (MeV)

2y FIG. 3.
[Mas(]= 52 Ver(Nlrlas(r)] ©) ent values oft;9, shown by numbers next to solid lines, f@) «
=0.25 fm ! and (b)x=0.5 fm™ !, compared to standard Woods-
Saxon potentialédashed lines for 10<A<100.
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Effective local potential¥¢(r) (solid lineg for differ-

Figure 3 suggests that, to model the preasymptotic behav-
) + ior within a two-body potential model, one can introduce a
y __h /167("17"” 2Kqf 10 Model potentiaVpoqq(r) CONsisting of two partsycore(r)
eti(1)= ZMClo K1 5/2 l(r) " (10 and Vy,410(r). Vhaio(r) here accounts for the interaction of
+ Io(r) the removed neutron with the halo neutron of the residual
0 nucleus,A—1. We give it a radial form similar to the

r

Here cqp= K§’2C1/Co is a dimensionless constant. One can
see that at large, wherel, dominates, this potential de-
creases as~ (*1~¥"/r52 the rate of decrease determined by
x1— k. In the extreme case of E(B), k;— k~0.4«x and can
range between 0.1 and 0.2 fh providing a very slow de-
crease. For small values ofg, the effective potential, Eqg.

Woods-Saxon potential,

r5/2 -1

o
Vhaio(F)=—Von 1+—5 elr~Rn)fan , (11

1+

2K1r

(10), is proportional toc,q, while for very largec,y, when  which is approximately constant for smalland which ap-
[1(r)/1g(r)>1, Vei4(r) is independent ot and is deter- proximatesVei¢(r) outside the nucleusV,,o(r) has the
mined only by« and ;. This places an upper limit for asymptotic behavior given by Eq10). PotentialV ,e(r)
V(). models the interaction of the removed nucleon and the (

We have calculated the potentialgs¢(r) in the extreme —2)-body core of the residual mags-1 nucleus. It is of
case of Eq(8) for two values of«, 0.25 and 0.5 fm*, and  short range and is chosen to be of Woods-Saxon form,
for arange ot;o, shown in Fig. 3. For comparison, standard V.q,e(r) = — Vo /(1 +exp(r—R:)/a.)), with standard radius
Woods-Saxon potentials, with the depth of 50 MeV, radius ofand diffuseness parameters, see Table Il.

1.25A13 fm, and diffuseness of 0.65 fm, are also shown in

As an example, we have taken tféBe(g.s.)!?Be) over-

Fig. 3 for 10 A<100, and which decrease much faster. Forlap, which enters the analysis of the one-nucleon knockout
eachA, a minimum value ofc;, exists for which the long- reaction, such as has been measured in [f. For this
range effective potential§{(r) compete with the Woods- overlap,x=0.372 fm * andx,=0.766 fm . We have cal-
Saxon potential in the near-surface region. Thegevalues  culated the tails of the effective potentidlg(r) for differ-
increase withA. One should therefore expect that the largestentc,q using Eq.(10). In Fig. 4, these are compared with the
possible effects of any preasymptotic deviations will beconventional Woods-Saxon potential which binds the neu-
manifested in the lightest nuclei, for example, in thetron in 12Be with the correct separation energy. We note that
(YBe(g.s.}*?Be) overlap. For heavy nuclei these effects for c,;;<1 the long-range contribution frond(r) is too
might only be noticeable foc,>1. small to compete with the Woods-Saxon potential or to pro-
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TABLE II. The ratiosc,y and the parameteid,, «, Ry, a, of the potentialVy,,;,. Also shown are the
depthsV, of the potentialV.,,. and the asymptotic normalization coefficiebts r ¢,oqe(r)/€ “",r —oo.

C1o Von a Ry an Voc b
(MeV) (fm~57?) (fm) (fm) (MeV) (fm~17?)

0 0 65.505 2.610

1 14.86 3.275 8.214 3.881 55.477 2.638

2 14.84 2.067 9.121 3.899 52.848 2.271

10 14.70 3.112 17.26 4.037 43.315 3.269

100 13.81 1.123 25.42 5.050 21.538 7.523

duce significant deviations to tHé'Be(g.s.)*?Be) overlap. ~ consistent with the experimental data. On the basis of Fig.
For eachc;;>1 we have fitted the calculatéd,¢(r) for r  6(a), this, in turn, would imply an upper bound on the uncer-
>5 fm to the form of the potentiaV, ., of Eq. (11). The  tainty in spectroscopic factors due to such preasymptotic ab-
deduced values &f,,, a, Ry, anday, are collected in Table normalities of the order of 22%.

Il. For each of these potentials we have fitted the dafgh For the(*'Be(3 7)|*?Be) overlap, which is relevant to the

of V¢re to reproduce the physical neutron separation energy; =1 neutron knockout leading to tHéBe residue in the ~
assuming thaR,=2.78 fm anda, = 0.65 fm. TheV,, are first excited state, the value af;, equal to 0.577 fm?, is

also shown in Table 1. smaller than that in the case of tHéBe(g.s.) transition. It

The single-particle wave functiongn,.qe(r) generated follows that, for fixedc,,, the effective potential¥q(r), if
by theV 0461 POtentials from Table Il and their ratios to the still assumed given by Eq13), are larger. These increased
true asymptotic forme™ “'/r are shown in part¢éa) and(b),  deviations are compensated somewhat by the centrifugal po-
respectively of Fig. 5. The deviations from the usualtential, but are still larger than those in tlie-0 case. For
asymptotic behavior are significant for the valuesgf>2  ¢,,=10, the change to the shape of the longitudinal momen-
and increase witle. tum distribution is essentially the same as for the0 case,

We have calculated the cross sections for the one-neutrdfiowever the calculated cross section now increases by 41%.
removal reaction from*?Be, using the eikonal reaction More definite conclusions will be possible only after proper
theory methods of Ref$3,7], and using the model overlaps calculation of theVq(r) for the =1 case.
calculated withc,y of 0, 2, 10, and 100. The diffractive
breakup, stripping, and their summed cross sections and the 10
longitudinal momentum distributions of thE€Be(g.s.) resi-
dues are shown in parts) and (b), respectively, of Fig. 6.
The neutron removal cross sections calculated with the wave
functions ¢,,04e(r) corresponding ta,o of 2, 10, and 100
are larger than those calculated with=0 by 3%, 22%, and
124%, respectively. As for the longitudinal distributions, they
become narrower with the increaseogf. Forc,q<10, their
shapes agree with the experimental ones, taken from &ef.
within the present error bars. So, within the context of the

I
o

o
=}

r¢ model (I’) (fm{l/z)

-0.5

eikonal reaction theory usd@®,7], the constraint,¢;<<10 is 0 2 4 6 8 10
r (fm)
10° ‘ ‘ [
. Be | 11Be(g.s.)l] 7F , e 4
107 ¢ 100000 “— € =0
0 = — - Cp=2
< 10 £ — - ¢,=10 ]
g 1 = — - ¢, =100
< 10 ¥ 0 e .
c F= S e e S S — 1
< 10° g
10° g b |
14
10* ‘ ‘ ‘ ‘
5 10 15 20 10 15 20 25 30
r (fm) r (fm)
FIG. 4. Effective local potential¥¢(r) (solid lines for differ- FIG. 5. (a) The single-particle wave functionsp,oqe(r) gen-
ent ¢, values, for the(*'Be(g.s.)1?Be) overlap, compared with a erated by the potential¥,,,qc(r), and(b) their ratios to the true
standard Woods-Saxon potential mo¢ahshed ling asymptoticse™ ', calculated for different values af;,.
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180 also be very helpful.
160+ o L The presence of significant irregularities in the single-
_qqp | BelBe Be(@)X o particle overlaps for non-Borromean halos, if confirmed,
£ 120 80 MeV/nucleon would have important consequences for direpty) and
5 100 (n,y) capture reactions in which non-Borromean two-
‘g:wg 80 | nuglgon halos are produced on Ioosely. bound even-odd nu-
2 6o 1 stipping glel in therp andr processes. The amplitudes of thesg reac-
5 - = — tions include the same overlap integrals that appear in one-
40T diftraction .7 nucleon removal reactions studied in terrestrial laboratories.
20 T T AT At astrophysical energies, the,(y) reactions occur at the
%1 y 10 100 region of a true asymptotic behavior of overlap integrals
c, given by a point diagrama) and their cross sections are
determined by normal asymptotic normalizing coefficients
200 ' ' ' ' (ANCs). The (n,y) reactions can be sensitive for any part of
— the overlap integral depending on the target nucleus. At
S 50 | present, simple two-body potential models, in which extra-
8 nuclear behavior of the wave functions is normal, are used to
é calculate the low-energy cross sections of such reactions.
g 100 The results obtained within these models are often normal-
B ized according either to ANCs or to spectroscopic factors
§ 50 | determined experimentally from transfer, breakup, or knock-
5 out reactions. Although such reactions are often peripheral,
they are sensitive to the extranuclear but near-surface part of
=0

the single-particle overlap integral that can be influenced by
preasymptotic abnormalities. If the latter are significant, then
what is extracted from such reactions may not correspond to
FIG. 6. (a) Partial cross section contributions, afii) longitu-  the true ANCs or spectroscopic factors. A particular example
dinal momehtum distribution; from one-neutron Knockout fromis the BB(p,y)QC reaction. It has been studied recently indi-
12Be populating''Be(g.s.) residues, calculated for different values rectly via knockou{8,9] and transfer reactiorf40] and in a
of Cyo. The data are taken from R¢8] simple potential moddl11]. The situation is aggravated here
by the long-range Coulomb interaction between the last two
The example OflzBe shows that pOSSibIe irregularities in protons, which may lead to stronger pre_asymptotic abnor-
the preasymptotic behavior of the single-particle overlap inmajities. Further study of the pre-asymptotic behavior of
tegrals for non-Borromean two-neutron halo nuclei deservgjngie-particle overlaps for non-Borromean two-neutron and

serious theoretical study. This requires development ofyo-proton halos is an urgent and timely task.
many-body nuclear structure models with an explicit

asymptotic treatment of three-body channels, together with This work was supported by the United Kingdom Engi-
the Feynman integral techniques. A careful analysis at theeering and Physical Sciences Research CodE&ISRQ,
level of a three-body model, with binary channels, wouldGrant No. GR/M82141.
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