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Relativistic instant-form approach to the structure of two-body composite systems: Nonzero spin
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The relativistic approach to electroweak properties of two-particle composite systems developed in A.F.
Krutov and V.E. Troitsky, Phys. Rev. 65, 045501(2002 is generalized here to the case of nonzero spin. In
developed technique the parametrization of matrix elements of electroweak current operators in terms of form
factors is a realization of the Wigner-Eckart theorem on the Poirgrangp and form factors are reduced matrix
elements. The-meson charge form factor is calculated as an example.
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A new relativistic approach to electroweak properties of ;> IR ml N — Je INFECK ! c /
composite systems has been proposed in our recent papé[r)c'm‘]"“"mc’mJC> (myel D7(pe . Po)[FIK,, + F2l'u(Pe)
[1]. The approach is based on the use of the instant {tfjn + FgRMJr FZKM“mSc)’ )
of relativistic Hamiltonian dynamic¢RHD). The detailed
description of RHD can be found in the revid&]. Some
other references as well as some basic equations of RHD _ P n
approach are given in Refl]. Fi= 2 Fa(QOipe I (Po)]"™ @
Now our aim is to generalize the approach to composite
systems of two particles of spih with nonzero values of Here K,=(Pe—pl),=d, K. —(p +p R, =
total angular momentum, total orbital momentum, and total, -, IO PR NP S
S (pc) (Pe—p)?=—Q%pi=p'i=M: M¢.J, are the
pin. The main problem is the construction of electromag
netic current operator satisfying standard conditigsse, mass and spin of the composite partla‘mg,,c is spin projec-
e.g., Refs[1,3)). tion, Ff’(pc) is the spin four-vector defined with the_ use of
The basic point of our approagh] to the construction of the Pauli-Lubansky vectdrl], fj;, are reduced matrix ele-
the electromagnetic current operator is the general method #Rents,e,,,,, is a completely antisymmetric pseudotensor in
relativistic invariant parametrization of local operator matrix four-dimensional space-time witkp,,3=—1.
elements proposed long ago in 1963 by Cheshkov and Shi- In the framework of RHD, the form factors of composite
rokov [4]. This canonical parametrization of local operatorssystems§, are to be expressed in terms of RHD wave func-
matrix elements was generalized to the case of composit§ons and constituents form factors.
systems of free particles in Ref§,6]. This parametrization In RHD a state of two-particle interacting system is de-
is a realization of the Wigner-Eckart theorem for the Poin-scribed by a vector in the direct product of two one-particle
caregroup and so it enables one, for given matrix element oljlpert spacessee, e.g., Ref1]). So, the matrix element in
arbitrary tensor dimension, to separate the reduced matrIRHD can be decomposed in the badsi}
elementgform factorg that are invariant under the Poincare
group. 3
Physical approximations that we use in our approach are [P Vs.2.1,5my). ®
formulated in terms of reduced matrix elements, for ex-
ample, the well known relativistic impulse approximation. In
gg;ﬁ%ﬂg%? ItSh: %ﬁ?gﬂaﬂon does not violate the standar e center-of-mass fram@.m), S is the total spin in the
In the present paper we propose a general formalism fof-m-» J is the total angular momentum with the projection
the operators diagonal in the total angular momentum. Th&Y
details of calculations can be found in RE3].

/.LV)\ppcpC

Here P,=(p1+P2) ., Pi=s, s is the invariant mass of
Hle two-particle systen,is the orbital angular momentum in

Let us consider the operatgy,=j,(0) that describes a <5C!m3|jﬂ|5(’) ,mj)
transition between two states of a composite two-constituent
. o . dPdP’
system. Let us neglect temporarily, for simplicity, the condi _z T dysdys
tions of self-adjointness, conservation law, and parity conser- NeoNeg

vation. The Wigner-Eckart decomposition of the matrix ele- R R
ment has the forni4] X (pc, Myl P,Vs,3,1,S,m;)

X(P,\s,3,1,8myj,|P',\s",0",1",",my)
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Hfre the sum is overﬁvanablé.s\] 1,17,S,S ,mj,my ,.and (e My TP M) =(Pe., My O H(A)j#O(A)|pL ,m}e)
(P',\s",3',1",S",my/|p.,m}.) is the wave function in the
sense of IF RHD. = Z (myd[D%(Ry) ] My0)
N o i N J mJC'mSC
(P.V5,3,1,S,my|pe,my ) =NcS(P—Pe) 8 38m, m,#1(K). o
‘ (5) X(Apc,mydj#|Apg,mje)
=~ Je ’
Herek=\\(s,M? ,M2)/(24/s), M{,M, are masses of con- X{mMje|De(Ry)|[mje). (8)
stituents A (a,b,c) =a?+b?+c?—2(ab+bc+ac). Here D’¢(R,) is rotation matrix realizing the angular mo-
The RHD wave function of constituents relative motion mentum transformation under the action of Lorentz transfor-
with fixed total angular momentum is defined as mations. Equalitie$8) show that the transformation proper-
ties of the current as a four-vector can be described using the
I, _ \/ﬁ four-vectors of the initial and the final states. This means that
¢isk(s))= Vs(1- 7282 uis(kk, (6)  the canonical parametrizatidi] is the realization of the
Wigner-Eckart theorem on the Poincayeoup.
and is normalized by the condition In the case of the current matrix element in the rhs of Eq.

(4) relations(8) are not valid and direct application of the
5 Wigner-Eckart theorem is impossible.
> f uis(k)k*dk=1. (7 However, it can be shown that for the matrix element in
'S Eq. (4) considered as a generalized funct{¢imat is consid-
5 5 ) ) ered as an object having sense only under integrals and sums
Here n=M7—M3,uis(k) is a model wave function. in Eq. (4)], the equality(8) is valid in the weak sense.
The main difficulty arising in this case is the following. In | et us consider the matrix element in question as a regular

expression1) we were dealing with the parametrization of | orentz covariant generalized functidsee, e.g., Ref(7]).

local operator matrix elements in the case when the transfoiysing Eq.(5), let us rewrite Eq(4) in the following form:
mations of the state vectors and of the operators were defined

by one and the same representation of the quantum mechaxp, Myl pL,m}o)
cal Poincaregroup.

A different situation takes place in the case of the matrix  _ NAVsdVs 025(s) 0. (s
element in the right-hand sidehs), of Eq. (4). The operator ,’,I’ZS,S/ VSdVS gis(S) i (5")
describes the system of two interacting particles and trans- . .
forms following the representation with Lorentz boosts gen- X(Pe Vs do 1 Simydjlpe Vs dc .17, S . mjo).  (9)

erators depending on the interactiph]. The state vectors o . L
P d o JHere itis taken into account that the current operafpis

physically describe the system of two free particles an L Lin total | ¢ fth t
present the basis of a representation with interaction- lagonal In total angular momentum of the composite Sys-

independent generators. So, the Wigner-Eckart decompostlem'Nz NcN¢/NceNee - .
tion cannot be applied directly to the matrix element in the L€t us make use of the fact that the set of sta®sis
integrand in the rhs of Ed4). This is caused by the fact that COMPlete:

it is impossible to construct four-vectors describing the ma- dp

trix element transformation properties under the action of = f_d\/§||5,\/E,J,I,S,mJXIS,\/E,J,I,S,m3|.
Lorentz boosts from the variables entering the state vectors Nce

[contrary to the case of, e.g., EQ)]. In fact, the possibility (10)
of matrix element representation in forfh) is based on the ere the sum is over the discrete variables of bégjis
following fact. Let us act by Lorentz transformation on op-  ynder the integral the matrix element of the transformed
eratorU *(A)j#U(A)=]*. We obtain the following chain current satisfies the following equaliti¢Egs. (5) and (10)
of equalities: are taken into accouht

> f NAsdVs' 9i(s) @) (' )(Pe VS, dc 1, Smyd O 2(A)} L U(A)[pg, Vs’ Jg, 17, S',m)o)
=> f NS eig(8)¢irs (s)_ 2 (Mydl[D*(Ry)]™mye)

X(APe, VS, Jc, 1, S Mycli AP NS 3c 17, S mi) (M) DRy ) mje). (11)
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It is easy to see that under the integral the current matrix All the form factors in the rhs of Eq15) are nonzero if
element satisfies the equalities analogous to(Bg.so now the generalized functiom contains parts that are diagonal
it is possible to use the parametrization under the integrak.4;) and nondiagonal A,) in m;.,m).. For the diagonal
that is to use the Wigner-Eckart theorem in the weak sensgart we have, from Eq.15),

The rhs of Eq(9) can be written as a functional on the space
of / test functions of the form[see Eq. (6), too)] > du(s,s’) " Sg(s,s’)(mJC|A'1'n§S'(s,Q2,s’)|mJC>
P58 (s,8") = us(k(s)u s (k(s')), and Eq.(9) can be re-  1.I'ss’

. . . 2 . . . ,

written as a functional iR with variables 6,s’): =(my|[f5.[ zp]KM+on[lﬂ]Kﬂ]|ch>- (16)

The notationf [ ] in the rhs emphasizes the fact that form
factors of composite systems are functionals on the wave
, functions of the intrinsic motion, and so, on the test func-
= > du(s,s )Ny 'SS(s,s") tions.
L".ss' Let equality (16) be valid for any test function
X (e V5,361, S Myd] L PL NS Ic .S mi). y"'55(s,s'). When the test functionghe intrinsic motion
wave functiong are changed, the vectors in the rhs are not
(12 changed because according to the essence of the parametri-
zation (1) they do not depend on the model for the particle
Here the measure is chosen with the account of the relativntrinsic structure. So, when the test functions are varied the

<5c’ch|j#(o)|5é im\,]c>

istic density of states, subject to normalizati@ and (7): vector of the rhs of Eq(16) remains in the hyperplane de-
fined by the vector& , K, .
" — _ i 2 r_ T 2 When test functions are varied arbitrarily, the vector in lhs
duu(s,8)=166(s=[M1+ Mo 0"~ [M1+ Mo]%) of Eq. (16) can take, in general, an arbitrary direction. So,
2y i1 2712 the requirement of the validity of E¢16) in the whole space
X \/\/5(1 nls )‘/S—(l 718" of our test functions is that the Ihs generalized function has
Xdu(s)du(s'). (13  theform
A” 'ss s, Z'S/): KI Gll 'ss S, Z’S/)
Heredu(s) = (1/4)kdys. i (8:Q KO (8.Q
The sums over discretg invariz.int variables can be trans- +KMG%SS(S,Q2,S')- (17)
formed into integrals by introducing the adequaktgunc- ,
tions. The obtained expressions are functionalRn HereG!'n SS(s,Qz,s’), i=1,4 are Lorentz invariant general-

The functional in the rhs of Eq12), defines a Lorentz ized functions. Substituting E¢17) in Eq. (16) and taking
covariant generalized function, generated by the current opnto account Eqs(6) and(13), we obtain the following inte-
erator matrix element. gral representations:

Taking into account Eq(11), we decompose the matrix € (Q?)
element in the rhs of Eq12) into the set of linearly inde- i
pendent scalars entering the rhs of ED: ,
= X | dVsd{s'g}(s) g5 (s)GI %% (5,Q%8)
- .=y . e , I,1",s,8
MpeVsJc, 1S, Mydlulpg VS de.l 7, S mio)

23,

=<chlD“‘°(pc,pé)r§0 [ipc, L#(po)]"

(18

for i=1,4. In the case of the matrix element in E45)
nondiagonal inm;.,m}, we can proceed in an analogous
) way and obtain an analogous integral representations for
X AN (5,Q2,8)) | mjo). (14 f5,(Q?),i=23.

So, the matrix element in the rhs of E42) considered as
Lorentz covariant generalized function can be written as the

II’'ss 2 o\ i ; i
Here A,,”"(s,Q%s") is a Lorentz covariant generalized ¢q)1oying decomposition of the type of Wigner-Eckart de-

function. , composition:
Making use of Eq(14) and comparing the rhs of E{l) ) )
with Eq. (12), we obtain (Pe,Vs,3c 1,5 myli lpg s 3c 1, S m)y)

1
2 d,LL(S,S’)lﬂ“/SSI(S,S/) = N(mJC|DJC(pCvp(,:)[FlK;L—i_fZF#(p(’:)—’_fSRp.

L,ss

, +F4K 1 Imig). (19
x(myd A5 (5,Q%,8")[mio) S
= (my [ FS K+ TS T (pl)+ 5 R, + S K 1 Im)y). Ze
< Jc|[ 1In™u 2n u(pc) 3n" M 4n ,u]| Jc> ]_—IZE G!'nSS(S,QZ,S’)[ipCMF“(pé)]”. (20)
n=0

(19
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In Egs. (19) and (20) the form factorsG|! S5 (s,Q%s’) 1.00 -
contain all the information about the physics of the transition
described by operatgr, . They are connected with the com-
posite particle form factorél) and(2) through Eq.(18). In
particular, physical approximations are formulated in our ap-

proach in terms of form factor§!!'SS(s,Q2,s') (see Ref. ~
[1] for detailg. The matrix element transformation properties O o010
are given by the four-vectors in the rhs of Ed9). o1

It is worth emphasizing that it is necessary to consider the
composite system form factors as the functionals generated
by the Lorentz invariant generalized functions
Gly ¥ (s.Q%s"). i

Now let us impose the conditions of self-adjointness, con-
servation law, and parity conservation on the matrix elements
in Egs. (1) and(19). The rhs of equalitie$l) and(19) con- 5 )
tain the same four-vectors and the same sets of Lorentz sca- Q(GeV?)
lars (2) and(20), so, to take into account the additional con-
ditions, it is necessary to redefine these four-vectors and FIG. 1. The results of the calculations of themeson charge

functions G:'n SS'(S,Qz,s’). For example, the conservation f_orm factor with dlfferer_lt'm_odel wave fun<_:t|or{§_,3]. The SO'.'d
. ¢ line represents the relativistic calculation with the wave function of
law givesF,=0 andF,=0.

] o harmonic oscillator, the dashed line—with the power-law wave
Let us write parametrization§l9) and (20) for the par- function forn=3; dash-dot-line—with the wave function with lin-

ticular case of composite particle electromagnetic curréngay confinement; dotted line—uwith the power-law wave function for
with quantum numberd=J’'=S=S'=1, which is realized, n=2: dot-dot-dash-line—the nonrelativistic calculation with the
for example, in the case of deuteron. Separating the quadryyave function of harmonic oscillator. The wave functions param-
pole form factor and using Eq&l9) and(20), we obtain the  eters are obtained from the fitting pf meson MSR. The sum of
following form: quark anomalous magnetic moments is takemas xg = 0.09 in

R . natural units. The quark mass4=0.25 GeV.
(Per Vs, Jc ., S myd j P Vs el .S M)

]
VAR

0.01 1 1 1 ) 1

to see that for the redefined form factors equalit) re-

Imje). mains valid. Form factors~fi°n(Q2) are connected with

charge, quadrupole, and magnetic Sachs form factors:

Gc(Q?) =T(Q%, Go(Q?) = (2MIQA)TIAQ?), Gu(Q?)

-~ ~1 —MJ5(Q?. The modified impulse approximation
_ Al 2 o 1l 2 of H vin'\12 c' 30

F1=G1p(s,Q%8") +G1,(8,Q ,S){[IDCVF (Pc)] (MIA) can be formulated in terms of form factors

G!'(s,Q%s'). The physical meaning of this approximation

q
is considered in detail in Ref1,3].

1 - i~
= /T/<ch|D1(pc !pcl:)[}—lK,;—i' M_c}—BR”

(21)

1 H v I\12
— 3SHipe, I (py)]

s pcVFV(IOé)]Z’ The results of calculations for themeson charge form
factor in MIA (I=1"=0) are represented in Fig. 1.
7 Al 2 o
F3=Gg(s,Q%8"). (22 The authors thank S. Simula for the discussion on RHD

i 1t 5 problems(see Ref[8]). This work was supported in part by
We have taken into account that equat®h; (s,Q%s’)  the Program “Russian Universities Basic Researchi€sant
= 0Ois valid in weak sense. Parametrizati¢hsand(2) take  No. 02.01.018 and Ministry of Education of RussiéGrant
forms (21) and(22) with G} (s,Q%,s') T, (Q?). Itis easy No. E02-3.1-3%
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