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Relativistic instant-form approach to the structure of two-body composite systems: Nonzero spin
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The relativistic approach to electroweak properties of two-particle composite systems developed in A.F.
Krutov and V.E. Troitsky, Phys. Rev. C65, 045501~2002! is generalized here to the case of nonzero spin. In
developed technique the parametrization of matrix elements of electroweak current operators in terms of form
factors is a realization of the Wigner-Eckart theorem on the Poincare´ group and form factors are reduced matrix
elements. Ther-meson charge form factor is calculated as an example.
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A new relativistic approach to electroweak properties
composite systems has been proposed in our recent p
@1#. The approach is based on the use of the instant form~IF!
of relativistic Hamiltonian dynamics~RHD!. The detailed
description of RHD can be found in the review@2#. Some
other references as well as some basic equations of R
approach are given in Ref.@1#.

Now our aim is to generalize the approach to compo
systems of two particles of spin12 with nonzero values of
total angular momentum, total orbital momentum, and to
spin. The main problem is the construction of electrom
netic current operator satisfying standard conditions~see,
e.g., Refs.@1,3#!.

The basic point of our approach@1# to the construction of
the electromagnetic current operator is the general metho
relativistic invariant parametrization of local operator mat
elements proposed long ago in 1963 by Cheshkov and
rokov @4#. This canonical parametrization of local operato
matrix elements was generalized to the case of compo
systems of free particles in Refs.@5,6#. This parametrization
is a realization of the Wigner-Eckart theorem for the Po
carégroup and so it enables one, for given matrix elemen
arbitrary tensor dimension, to separate the reduced ma
elements~form factors! that are invariant under the Poinca´
group.

Physical approximations that we use in our approach
formulated in terms of reduced matrix elements, for e
ample, the well known relativistic impulse approximation.
our method this approximation does not violate the stand
conditions for the current.

In the present paper we propose a general formalism
the operators diagonal in the total angular momentum.
details of calculations can be found in Ref.@3#.

Let us consider the operatorj m5 j m(0) that describes a
transition between two states of a composite two-constitu
system. Let us neglect temporarily, for simplicity, the con
tions of self-adjointness, conservation law, and parity con
vation. The Wigner-Eckart decomposition of the matrix e
ment has the form@4#
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^pW c ,mJcu j mupW c8 ,mJc8 &5^mJcuDJc~pc ,pc8!@F1
cKm8 1F2

cGm~pc8!

1F3
cRm1F4

cKm#umJc8 &, ~1!

Fi
c5 (

n50

2Jc

f in
c ~Q2!@ ipcmGm~pc8!#n. ~2!

Here Km5(pc2pc8)m5qm ,Km8 5(pc1pc8)m ,Rm5emnlrpc
npc8

l

3Gr(pc8);(pc2pc8)
252Q2,pc

25p8c
25Mc

2 ,Mc ,Jc are the
mass and spin of the composite particle,mJc is spin projec-
tion, Gr(pc8) is the spin four-vector defined with the use
the Pauli-Lubansky vector@1#, f in

c are reduced matrix ele
ments,emnlr is a completely antisymmetric pseudotensor
four-dimensional space-time withe0123521.

In the framework of RHD, the form factors of composi
systemsf in

c are to be expressed in terms of RHD wave fun
tions and constituents form factors.

In RHD a state of two-particle interacting system is d
scribed by a vector in the direct product of two one-parti
Hilbert spaces~see, e.g., Ref.@1#!. So, the matrix element in
RHD can be decomposed in the basis@1#

uPW ,As,J,l ,S,mJ&. ~3!

Here Pm5(p11p2)m , Pm
2 5s, As is the invariant mass o

the two-particle system,l is the orbital angular momentum i
the center-of-mass frame~c.m.!, S is the total spin in the
c.m., J is the total angular momentum with the projectio
mJ .

^pW c ,mJu j mupW c8 ,mJ8&

5( E dPW dPW 8

NCGNCG8
dAsdAs8

3^pW c ,mJcuPW ,As,J,l ,S,mJ&

3^PW ,As,J,l ,S,mJu j muPW 8,As8,J8,l 8,S8,mJ8&

3^PW 8,As8,J8,l 8,S8,mJ8upW c8 ,mJc8 &. ~4!
©2003 The American Physical Society01-1
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Here the sum is over variablesJ,J8,l ,l 8,S,S8,mJ ,mJ8 , and

^PW 8,As8,J8,l 8,S8,mJ8upW c8 ,mJc8 & is the wave function in the
sense of IF RHD.

^PW ,As,J,l ,S,mJupW c ,mJc
&5Ncd~PW 2pW c!dJcJdmJc

mJ
w lS

Jc~k!.

~5!

Herek5Al(s,M1
2 ,M2

2)/(2As), M1 ,M2 are masses of con
stituents,l(a,b,c)5a21b21c222(ab1bc1ac).

The RHD wave function of constituents relative motio
with fixed total angular momentum is defined as

w lS
Jc
„k~s!…5AAs~12h2/s2!ulS~k!k, ~6!

and is normalized by the condition

(
lS

E ulS
2 ~k!k2dk51. ~7!

Hereh5M1
22M2

2 ,ulS(k) is a model wave function.
The main difficulty arising in this case is the following. I

expression~1! we were dealing with the parametrization
local operator matrix elements in the case when the trans
mations of the state vectors and of the operators were defi
by one and the same representation of the quantum mec
cal Poincare´ group.

A different situation takes place in the case of the ma
element in the right-hand side~rhs!, of Eq. ~4!. The operator
describes the system of two interacting particles and tra
forms following the representation with Lorentz boosts ge
erators depending on the interaction@1#. The state vectors
physically describe the system of two free particles a
present the basis of a representation with interacti
independent generators. So, the Wigner-Eckart decomp
tion cannot be applied directly to the matrix element in t
integrand in the rhs of Eq.~4!. This is caused by the fact tha
it is impossible to construct four-vectors describing the m
trix element transformation properties under the action
Lorentz boosts from the variables entering the state vec
@contrary to the case of, e.g., Eq.~1!#. In fact, the possibility
of matrix element representation in form~1! is based on the
following fact. Let us act by Lorentz transformation on o
eratorÛ21(L) j mÛ(L)5 j̃ m. We obtain the following chain
of equalities:
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^pW c ,mJcu j̃ mupW c8 ,mJc8 &5^pW c ,mJcuÛ21~L! j mÛ~L!upW c8 ,mJc8 &

5 (
m̃Jc ,m̃Jc8

^mJcu@DJc~RL!#21um̃Jc&

3^LpW c ,m̃Jcu j muLpW c8 ,m̃Jc8 &

3^m̃Jc8 uDJc~RL!umJc8 &. ~8!

Here DJc(RL) is rotation matrix realizing the angular mo
mentum transformation under the action of Lorentz transf
mations. Equalities~8! show that the transformation prope
ties of the current as a four-vector can be described using
four-vectors of the initial and the final states. This means t
the canonical parametrization@4# is the realization of the
Wigner-Eckart theorem on the Poincare´ group.

In the case of the current matrix element in the rhs of E
~4! relations~8! are not valid and direct application of th
Wigner-Eckart theorem is impossible.

However, it can be shown that for the matrix element
Eq. ~4! considered as a generalized function@that is consid-
ered as an object having sense only under integrals and s
in Eq. ~4!#, the equality~8! is valid in the weak sense.

Let us consider the matrix element in question as a reg
Lorentz covariant generalized function~see, e.g., Ref.@7#!.
Using Eq.~5!, let us rewrite Eq.~4! in the following form:

^pW c ,mJcu j mupW c8 ,mJc8 &

5 (
l ,l 8,S,S8

E NdAsdAs8w lS
Jc~s!w l 8S8

Jc
~s8!

3^pW c ,As,Jc ,l ,S,mJcu j mupW c8 ,As8,Jc ,l 8,S8,mJc8 &. ~9!

Here it is taken into account that the current operatorj m is
diagonal in total angular momentum of the composite s
tem,N5NcNc8/NCGNCG8 .

Let us make use of the fact that the set of states~3! is
complete:

Î 5( E dPW

NCG
dAsuPW ,As,J,l ,S,mJ&^PW ,As,J,l ,S,mJu.

~10!

Here the sum is over the discrete variables of basis~3!.
Under the integral the matrix element of the transform

current satisfies the following equalities@Eqs. ~5! and ~10!
are taken into account#:
( E NdAsdAs8w lS
Jc~s!w l 8S8

Jc
~s8!^pW c ,As,Jc ,l ,S,mJcuÛ21~L! j mÛ~L!upW c8 ,As8,Jc ,l 8,S8,mJc8 &

5( E NdAsdAs8w lS
Jc~s!w l 8S8

Jc
~s8! (

m̃Jc ,m̃Jc8
^mJcu@DJc~RL!#21um̃Jc&

3^LpW c ,As,Jc ,l ,S,m̃Jcu j muLpW c8 ,As8,Jc ,l 8,S8,m̃Jc8 &^m̃Jc8 uDJc~RL!umJc8 &. ~11!
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It is easy to see that under the integral the current ma
element satisfies the equalities analogous to Eq.~8!, so now
it is possible to use the parametrization under the integ
that is to use the Wigner-Eckart theorem in the weak se
The rhs of Eq.~9! can be written as a functional on the spa
of test functions of the form @see Eq. ~6!, too!#
c l l 8SS8(s,s8)5ulS„k(s)…ul 8S8„k(s8)…, and Eq.~9! can be re-
written as a functional inR2 with variables (s,s8):

^pW c ,mJcu j m~0!upW c8 ,mJc8 &

5 (
l ,l 8,S,S8

E dm~s,s8!Nc l l 8SS8~s,s8!

3^pW c ,As,Jc ,l ,S,mJcu j mupW c8 ,As8,Jc ,l 8,S8,mJc8 &.

~12!

Here the measure is chosen with the account of the rela
istic density of states, subject to normalization~6! and ~7!:

dm~s,s8!516u~s2@M11M2#2!u~s82@M11M2#2!

3AAs~12h2/s2!As8~12h2/s82!

3dm~s!dm~s8!. ~13!

Heredm(s)5(1/4)kdAs.
The sums over discrete invariant variables can be tra

formed into integrals by introducing the adequated func-
tions. The obtained expressions are functionals inR6.

The functional in the rhs of Eq.~12!, defines a Lorentz
covariant generalized function, generated by the current
erator matrix element.

Taking into account Eq.~11!, we decompose the matri
element in the rhs of Eq.~12! into the set of linearly inde-
pendent scalars entering the rhs of Eq.~1!:

N^pW c ,As,Jc ,l ,S,mJcu j mupW c8 ,As8,Jc ,l 8,S8,mJc8 &

5^mJcuDJc~pc ,pc8! (
n50

2Jc

@ ipcmGm~pc8!#n

3A nm
l l 8SS8~s,Q2,s8!umJc8 &. ~14!

Here A nm
l l 8SS8(s,Q2,s8) is a Lorentz covariant generalize

function.
Making use of Eq.~14! and comparing the rhs of Eq.~1!

with Eq. ~12!, we obtain

(
l ,l 8,S,S8

E dm~s,s8!c l l 8SS8~s,s8!

3^mJcuA nm
l l 8SS8~s,Q2,s8!umJc8 &

5^mJcu@ f 1n
c Km8 1 f 2n

c Gm~pc8!1 f 3n
c Rm1 f 4n

c Km#umJc8 &.

~15!
01850
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All the form factors in the rhs of Eq.~15! are nonzero if
the generalized functionA contains parts that are diagon
(A1) and nondiagonal (A2) in mJc ,mJc8 . For the diagonal
part we have, from Eq.~15!,

(
l ,l 8S,S8

E dm~s,s8!c l l 8SS8~s,s8!^mJcuA 1nm
l l 8SS8~s,Q2,s8!umJc&

5^mJcu@ f 1n
c @c#Km8 1 f 4n

c @c#Km#umJc&. ~16!

The notationf in
c @c# in the rhs emphasizes the fact that for

factors of composite systems are functionals on the w
functions of the intrinsic motion, and so, on the test fun
tions.

Let equality ~16! be valid for any test function
c l l 8SS8(s,s8). When the test functions~the intrinsic motion
wave functions! are changed, the vectors in the rhs are n
changed because according to the essence of the param
zation ~1! they do not depend on the model for the partic
intrinsic structure. So, when the test functions are varied
vector of the rhs of Eq.~16! remains in the hyperplane de
fined by the vectorsKm ,Km8 .

When test functions are varied arbitrarily, the vector in l
of Eq. ~16! can take, in general, an arbitrary direction. S
the requirement of the validity of Eq.~16! in the whole space
of our test functions is that the lhs generalized function h
the form

A 1nm
l l 8SS8~s,Q2,s8!5Km8 G1n

ll 8SS8~s,Q2,s8!

1KmG4n
ll 8SS8~s,Q2,s8!. ~17!

HereGin
ll 8SS8(s,Q2,s8), i 51,4 are Lorentz invariant genera

ized functions. Substituting Eq.~17! in Eq. ~16! and taking
into account Eqs.~6! and~13!, we obtain the following inte-
gral representations:

f in
c ~Q2!

5 (
l ,l 8,S,S8

E dAsdAs8w lS
Jc~s!w l 8S8

Jc
~s8!Gin

ll 8SS8~s,Q2,s8!

~18!

for i 51,4. In the case of the matrix element in Eq.~15!
nondiagonal inmJc ,mJc8 we can proceed in an analogou
way and obtain an analogous integral representations
f in

c (Q2), i 52,3.
So, the matrix element in the rhs of Eq.~12! considered as

Lorentz covariant generalized function can be written as
following decomposition of the type of Wigner-Eckart d
composition:

^pW c ,As,Jc ,l ,S,mJcu j mupW c8 ,As8,Jc ,l 8,S8,mJc8 &

5
1

N ^mJcuDJc~pc ,pc8!@F1Km8 1F 2Gm~pc8!1F3Rm

1F4Km#umJc8 &. ~19!

Fi5 (
n50

2Jc

Gin
ll 8SS8~s,Q2,s8!@ ipcmGm~pc8!#n. ~20!
1-3



io
-

ap

es

th
at
s

on
n

sc
n-
an

n

en

dr

ors:

n
s

n

D
y

of
ve
-
for
e

m-
f

BRIEF REPORTS PHYSICAL REVIEW C68, 018501 ~2003!
In Eqs. ~19! and ~20! the form factorsGin
ll 8SS8(s,Q2,s8)

contain all the information about the physics of the transit
described by operatorj m . They are connected with the com
posite particle form factors~1! and ~2! through Eq.~18!. In
particular, physical approximations are formulated in our

proach in terms of form factorsGin
ll 8SS8(s,Q2,s8) ~see Ref.

@1# for details!. The matrix element transformation properti
are given by the four-vectors in the rhs of Eq.~19!.

It is worth emphasizing that it is necessary to consider
composite system form factors as the functionals gener
by the Lorentz invariant generalized function

Gin
ll 8SS8(s,Q2,s8).
Now let us impose the conditions of self-adjointness, c

servation law, and parity conservation on the matrix eleme
in Eqs.~1! and ~19!. The rhs of equalities~1! and ~19! con-
tain the same four-vectors and the same sets of Lorentz
lars ~2! and~20!, so, to take into account the additional co
ditions, it is necessary to redefine these four-vectors

functions Gin
ll 8SS8(s,Q2,s8). For example, the conservatio

law givesF4
c50 andF450.

Let us write parametrizations~19! and ~20! for the par-
ticular case of composite particle electromagnetic curr
with quantum numbersJ5J85S5S851, which is realized,
for example, in the case of deuteron. Separating the qua
pole form factor and using Eqs.~19! and~20!, we obtain the
following form:

^pW c ,As,Jc ,l ,S,mJcu j mupW c8 ,As8,Jc ,l 8,S8,mJc8 &

5
1

N ^mJcuD1~pc ,pc8!F F̃1Km8 1
i

Mc
F̃3RmG umJc8 &.

~21!

F̃15G̃10
l l 8~s,Q2,s8!1G̃12

l l 8~s,Q2,s8!H @ ipcnGn~pc8!#2

2
1

3
Sp@ ipcnGn~pc8!#2J 2

Sp@pcnGn~pc8!#2
,

F̃35G̃30
l l 8~s,Q2,s8!. ~22!

We have taken into account that equationG̃21
l l 8(s,Q2,s8)

5 0 is valid in weak sense. Parametrizations~1! and~2! take

forms ~21! and~22! with G̃in
ll 8(s,Q2,s8)→ f̃ in

c (Q2). It is easy
01850
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to see that for the redefined form factors equality~18! re-
mains valid. Form factorsf̃ in

c (Q2) are connected with
charge, quadrupole, and magnetic Sachs form fact
GC(Q2) 5 f̃ 10

c (Q2), GQ(Q2) 5 (2Mc
2/Q2) f̃ 12

c (Q2), GM(Q2)

52Mcf̃ 30
c (Q2). The modified impulse approximatio

~MIA ! can be formulated in terms of form factor

G̃iq
ll 8(s,Q2,s8). The physical meaning of this approximatio

is considered in detail in Ref.@1,3#.
The results of calculations for ther-meson charge form

factor in MIA ( l 5 l 850) are represented in Fig. 1.
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FIG. 1. The results of the calculations of ther-meson charge
form factor with different model wave functions@1,3#. The solid
line represents the relativistic calculation with the wave function
harmonic oscillator, the dashed line—with the power-law wa
function for n53; dash-dot-line—with the wave function with lin
ear confinement; dotted line—with the power-law wave function
n52; dot-dot-dash-line—the nonrelativistic calculation with th
wave function of harmonic oscillator. The wave functions para
eters are obtained from the fitting ofr meson MSR. The sum o
quark anomalous magnetic moments is taken asku1k d̄ 5 0.09 in
natural units. The quark mass isM50.25 GeV.
.
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