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The kaon polarization operator in dense baryonic matter of arbitrary isotopic composition is calculated
including s- and p-wave kaon-baryon interactions. The regular part of the polarization operator is extracted
from the realistic kaon-nucleon interaction based on the chiral addepansion. Contributions 0f(1116),
3,(1195), £*(1385) resonances are taken explicitly into account in the pole and regular terms with the
inclusion of mean-field potentials. The baryon-baryon correlations are incorporated and fluctuation contribu-
tions are estimated. Results are appliedor in neutron star matter. Within our model a second-order phase
transition to theswaveK™ condensate state occursgatz4p, with baryon-baryon correlations included. We
show that a second-order phase transition to pheave K~ condensate state may occur at densipes
~(3-5)p, dependent on the parameter choice. We demonstrate that a first-order phase transition to a proton-
enriched(approximately isospin-symmetjioucleon matter with @-waveK ™ condensate can occur at smaller
densitiesp<2p,. The transition is accompanied by the suppression of hyperon concentrations.
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I. INTRODUCTION star N=<2Z), where the electric charge of protons is compen-
sated by the charge of the condensed kad@js (iii) The

Strangeness modes in compressed hadronic matter hagghanced neutrino-emission processes occurring on protons
been the focus of interests during the last decade. Strang# proton-enriched matter and on the kaon condensate field
ness is considered to be a good probe of the dynamics dgad to substantially faster cooling of the sféi.
heavy-ion collisions. A vast amount of data is already accu- The K~ condensate is created in neutron stars through
mulated for different collision energy regimes at GANIL, weak multiparticle processes
GSI, CERN, and BNL facilitied1], and new data are in
advent[2]. Understanding strangeness production requires a
systematic study of the evolution of virtual strangeness

modes in the quark-gluon plasma and in the soup of wrtue};n which electrons are replaced By mesons and neutrons

hadrons. At the breakup stage, these virtual modes are redls-e converted into protons akd™ [8]. The symbolic writing

tributed between real strange particles which can be observ aé
: , i
in experiment. e( ) assumes that surrounding baryoXsX’') assure the mo

Another interesting topic is the strangeness content o%ngntum conservation, and thus, the critical point is deter-
mined by the energy balance only. These processes become

neutron stars. With an increasing density, strangeness shows . . . )
up in the filling of the hyperon Fermi seas and/or in thepqs§|ble |f_the electron chemical potentjal exceeds the
creation of a kaon condensate. A better understanding of th'é"nlmal K™ energy,

topics mentioned above needs more in-depth knowledge of
the kaon-baryon interaction in dense baryonic matter. The
possibility of kaon condensation in dense nuclear matter was

risen in Refs[3,4]. Kaon condensation in neutron star inte-

riors may have interesting_ observational consequen@gs: where o™([K) is the K ~ energy at the lowest quasiparticle
The softening of the equation of sta@o3 due to the ap- branch of the spectrum dk~ excitations in neutron star

pearance of a kaon condeqsate phase lowers th? MaxXIMYliL ter. In Refs[4,8,9 it has been postulated that there is
neutron star mass and can induce the transformation of neu-

tron stars into low-mass black holEs]; (i) Kaon condensa- ©Only one kaon branch, for whict(k=0)—my (mg is the
tion is predicted to be accompanied with the change of th&a0n masgas the baryon densify—0, and the minimum is
nucleon isospin composition from a neutron-enriched stapchieved ak,=0. The critical point of theswaveK™ con-
(N>2Z) to a “nuclear” star (N\~Z) or even to a “proton” densation in a second-order phase transition is determined by
the conditionw(k=0)= u,. A first-order phase transition to
the kaon condensate state was investigated in [R6f.ap-
*Email address: E.Kolomeitsev@nbi.dk plying the Maxwell construction principle and in Réfl1]

e +X—=K +X', n+X—p+K +X’, (1)

©™"(Kq) = min{ ™"(K)},
K
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according to the Gibbs criteria. Thewave kaon-nucleon The discussion of thesswave and, especially, of the
interaction, which changes the kaon spectrum at finite mop-wave kaon-baryon interactions in nuclear matter is impor-
menta was disregarded in those works. phegave A (1116)  tant for the kaon production in heavy-ion collisidi]. The
—nucleon-hole ana (1195)-nucleon hole contributions to momentum dependence of kaon yields is experimentally
the kaon polarization operator were introduced in R&2]  measured18]. Also, the multibranchK™ spectrum can be

in the framework of the chiral S@) symmetry. However, tested viar scattering on atomic nuclél5]. Peculiarities of
the authors of Ref[12] focused on the discussion of the the K~ -nucleon interaction near the mass shell are of great
s-wave kaon condensation only, and considered the polarizamportance for the physics &~ atoms[19,20.
tion operator at zero momentum. This paper is structured as follows. In Sec. I, we describe
In Ref. [6], we worked out a possibility for the-wave  paryon matter within a relativistic mean-field model. In Sec.
kaon condensation. The kaon polarization operator was cony, we introduce the kaon-nucleon interaction in vacuum fol-
structed with the inclusion of thA(lllG)—nUCleOﬂ-hOle and |owing the partia]-wave ana|ysis of Réﬂ_G] Then, we sepa-
2(1195)-nucleon-hole contributions in tipewave part of  yate the pole contributions of\(1116), 3(1195), and
the kaon polarization operator and the kaon-pion and kaorg*(1385) hyperons i waves. Sections IV through VII are
kaon interactions. The multibranch spectrumkof mesons  devoted to the construction of the kaon polarization operator.
was found and the possibility of thewave kaon condensa- |n Sec. IV, we build the polarization operator in the gas ap-
tion related to the population of hyperon—nucleon-holeproximation, but including the mean-field potentials that act
modes was demonstrated. Possibilities of the first-ordepn baryons. Besides theA(1116), 3(1195), and
phase transitions in neutron star interiors to a protons *(1385)-nucleon-hole contributions the polarization opera-
enriched matter with g-wave K~ condensate and to a tor contains a regular attractive part that is weakly dependent
neutron-enriched matter with @wave K® condensate were on the kaon energy. In Sec. V, we separatesthendp-wave
investigated. parts of the kaon polarization operator. The occupation of
The case of a large hyperon admixture in the neutron stafiyperon Fermi seas is incorporated in Sec. VI. Repulsive
core was considered in RéfL3]. In such a medium both the baryon-baryon correlations are evaluated and included in the
K~ and theK™ spectra possess extra branches associatetyperon-nucleon particle-hole channels and in the regular
with the particle-hole excitationg — A%, E—3 "1 for K~ part of the polarization operator in Sec. VII. In each of these
andN—A~% N—A"1for K* [hole states are labeled here sections, we illustrate the strength of new terms included into
by (—1)]. At large kaon momenta, the brancheskf and  the polarization operator and suggest effective parametriza-
K™ spectra merge, signaling an instability with respect totions. We relegate the discussion of contributions from kaon
K*K™ pair creation. fluctuations(baryon self-energies, multiloop correctiorte
The analysis in Refs[6,13] relied heavily on the pole Appendix C. We argue that these effects do not modify sub-
approximation for the particle-hole diagrams. Final width ef-stantially the kaon polarization operator at zero temperature
fects were thereby disregarded too. The presence or absenicethe region of small kaon energies and momenta, which is
of quasiparticle branches in tie~ spectrum depends on the of our interest here. In Sec. VIII, we analyze different possi-
kaon energy and on the strength of fhendp-wave attrac-  bilities for the second- and first-order phase transitions to the
tion [14]. The short-range baryon-baryon correlations,s- andp-waveK ~ condensates. Particularly, we argue for the
which, as a rule, suppress the attraction, were not included ip-wave K~ condensation ap=<2p, (po=0.17 fm 3 is the
Refs.[6,13]. The role of the correlations for thewave has density of nuclear saturatiprarising via a first-order phase
been investigated in Ref15]. However, the relative strength transition. In this phase transition, all the hyperon Fermi seas
of the s- and p-wave attraction remained model dependentare melted and neutron star matter becomes proton enriched
because no systematic investigation of the kaon-nucleon inwith an approximately symmetric-isospin compositids,
teraction includings andp waves was available at that time. =Z. In Appendix A, we discuss how the results depend on
Recently, the kaon-nucleon scattering has been studied ihe specifics of the EoS. Some technical information on the
the framework of a relativistic chiral S8) Lagrangian im-  Green’s functions is provided in Appendix B. Throughout
posing constraints from th& *-nucleon and pion-nucleon this paper, we use units df=c=1.
sectors[16]. The covariant coupled-channel Bethe-Salpeter Although a number of new effects are incorporated in our
equation was solved with the interaction kernel truncated t&cheme some other effects not included here might be also
the third chiral order including the terms which are leadingimportant. The present calculations suffer from many uncer-
in the largeN, limit of QCD. All SU(3) symmetry-breaking tainties, most of which are due to the lack of experimental
effects are well under control by the combined chiral andinformation on the coupling constants, the absence of unam-
large N expansions. This analysis gives an opportunity tobiguous way for going off-mass shell and the lack of study of
extend the results of Reff6,15] taking into account off-pole  more complicated in-medium fluctuation effects, which we
(regular backgroundcontributions to the kaon self-energy. just roughly estimated in the present work. Among them,
The accurate fit to experimental data achieved in RE]  there are the pion softening effed®1], which can signifi-
fixes the values of the kaon-nucleon-hyperon coupling coneantly affect the results at finite temperatures, and the con-
stants. Particularly, th&* (1385)-pole contribution to the tribution of nonlinear meson-meson interactions. The latter
kaon-nucleon scattering was proved to be sizable, and wasay partially suppress the condensate contribution to the en-
not included in Refs[6,13]. ergy at densities above the critical one.
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Il. BARYON INTERACTION IN RELATIVISTIC 1 »
MEAN-FIELD MODEL Ev( )= —5 6(m—m;) dee?\Je—m?, (4
e

A. Lagrangian of the model "

We consider a dense system consisting of baryons anghere §(x) is the step function.
leptons, which we describe by a Lagrangian density contain-
ing a baryon and a lepton contributidh= Lg+ £, .

It is convenient to describe the baryon matter at densities
relevant for neutron star interiors by the mean-field solution The coupling constants in E) are adjusted such as to
of the Lagrangiari22], reproduce properties of the equilibrium nuclear matter: satu-
ration density py, binding energyE,;,q, compressibility
modulusK, and effective nucleon mass{(po). In the fol-
lowing, we use the valuespo=0.17 fm 3 and Euq
=—16 MeV. For the nuclear compressibility modulus, we

B. Coupling constants

CB:; g(iﬂ_gde’_ngE'{B_mB+gaBU)B

dupodta m5o? B myb(g,no)° B c(g,n0)* take the valug< =210 MeV, which follows from the varia-

2 2 3 4 tional calculation[23]. Following Ref.[22], we adopt the
o R symmetry energyg,,= 36.8 MeV which lies within the in-

W, 0" miwﬂw“ puvP™’  Mop,p* terval allowed by microscopic calculatiof24]. We take the
T4 * 2 4 + 2 (@) effective nucleon massiy (po) =0.85my, cf. argumentation

in Ref.[21]. For discussion of uncertainties in the choices of
where all states of the baryonJ{=3") octet B parameters, we refer the interested reader to [R&l.
=(n,p,A,2*% 279 interact via exchanges of scalar, vec- The corresponding coupling constants of Lagrandin

tor, and isovector mesons, ,,, Eﬂ. Heavier baryons do are
not appear at baryon densities under consideratipn (

_ = g2, m> g2 M2 g2 m>

<6py) and, therefore, are not included. In EQ), tg de- ZoNN 5460, 2NN _q645 PN N_1597
notes the isospin operator acting on the bargoihe field- m? m2 m’

strength tensors for the vector mesons are givenwhy

=d,w,~d,w, for the w mesons ang,,=d,p,—d,p, for b=0.02028, ¢c=0.04716. (5)
the p mesons. Equations of motion for the baryons follow

from Eq. (2), and give In order to verify the sensitivity of the results to details of the

. . . - EoS, we explore another set of the parameters in Appendix
Es(p)=€a(p)+ Ve, e€g(p)=Vmg*+p?, (3) A, which is fitted to reproduce the microscopic calculations
_ . of the Urbana-Argonne groug26].
where mg = (mg—g,0) is the baryon effective mass and  when including hyperons, one also has to specify the hy-
Ve=0,8w0+J,ppostss, With o,wq,po3 being the mean- peron couplings to the meson fieldsyy =gy /Iun With
field solutions of the equations of motion for the mesonM = (¢, w,p) and H=(A,3,Z). Couplings to the vector
fields. The ComPOSition of the cold neutron star matter ah']esons are estimated from the quark Countingxgﬁ(x)
baryon density is determined by thg-equilibrium condi- =xp2=§ and x,,z=x,==4. Alternatively, relying on the
tions Eg(Pee) = 1tn— Qe HeTe,peg is the Fermi momen-  sy(3) symmetry[27], one would findk,s =x,= =1 for thep
tum, gp is the electric charge of a given baryon sped®s meson couplings. The scalar meson couplings can be con-
andu,, ue are the chemical potentials of neutrons and elecstrained by making use of hyperon binding energies in infi-
trons determined by the total baryon dengitand the elec-  nite nuclear matter at saturatip@8], extrapolated from hy-
troneutrality condition. o pernucleus data. For the given hyperon binding en&igy;,
The lepton Lagrangian density is the sum of the electrorjye have the following relation between the scalar and vector
and theu~ meson contributiong;=Le+ L, . In B equilib-  coyplings:
rium u,=ue, and muons appear in the system only when
Mo €xceeds the muon mass, . H 2 2 . L
The energy density of t?\% system is given by Ebing= (Gunpo/ M) Xon = (My = Mg Xon
=(80.7%,4— 140.7,,;) MeV.

Ewor= Emes"'% Egn(pFB)"' E Ei(ue),

l=e ,u~ There is convincing evidence from the systematic study of
) - A 19 2 12 2 hypernuclei that forA particlesEQind:—30 MeV [29]. For
Emes= 30Mn(gono) ™+ 2C(gono) "+ 2ME0+ 2 M 0 S hyperons in nuclei, on the other hand, the data are still

controversial, giving the broadband;-10 MeV<EZ, 4
<30 MeV , from a slight attraction to a strong repulsion
[30]. Following Ref.[31], we adopt forE the valueEg 4

) 1 (p .
4 (pra) = — | dpFea(p). =18 MeV advocated also in Refe7].
wcJo To cover different possibilities we consider four cases.

1.2 2
+§mpp03'
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FIG. 1. Concentration of baryon species in neutron star matter. ) ) ) ) ) ) ) )
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FIG. 2. Real parts of the-wave KN scattering amplitudes in

Case I: vector meson couplings are taken according to thu‘%ospin-zero and isospin-one channfels].

quark Counting, X, (s)=X,s =2X,==2X,=z=5 and Ep4 . _ _ .
=—30 MeV, Ej;,4=— 18 MeV, Egind: 30 MeV. Here, t_he triangle is the full mesor_1-baryon scatterlng_ampll—
Case II: the same as in case | tﬁ‘ﬁind: —10 MeV. tudg with strangenessl a_nd the circle stands fo_r the inter-

Case IlI: the same as in case | but fheneson couplings action k_ernel. This equation |nvoIV(_as rescatterings through
are taken according to the $8) symmetry, i.e.x,s ==1. all possible meson-baryon mtermedlate states allowed by the

Case IV- the same as in case Il but. faE> strangeness conservation. The interaction kernel can be de-

' bind  rived from the SW3) chiral Lagrangian$33—3§ or can be
=—10 Mev. phenomenologically adjusted to fit the data within the
K-matrix formalism[37,38|.
C. Particle concentrations In view of the general interest to tisavave kaon conden-
] ) ) ) sation prevailing in the literature so far, most of the attention
ent baryon species as function of the baryon density. Panelgithough far below the threshold thewave kaon-nucleon
(8)—(d) correspond to the four choices of the hyperon-mesorscattering amplitude is a rather smooth function of the kaon
coupling constants specified above. We see that hyperonghergy, close to the threshold the amplitudes vary strongly
appear in neutron star matter in all cases at density 4 due to theA(1405) resonancésee Fig. 2. Therefore, the
=(2.5-3),. The latter value is rather insensitive to various extrapolation into the subthreshold region of the scattering
choices of hyperon-nucleon interactions. However, the ordeamplitude, adjusted to fit the data above KieN threshold,
in which hyperons populate the Fermi seas depends cruciallgrucially depends on the microscopic model applied. Its in-
on the details of hyperon-nucleon interactions. The hy-  medium modification is a matter of debate {&9—-43.
perons do not appear at least up to,6except for case Il. Up to recently, only scarce information on tipewave
However, even in case Il their concentration is very smallkaon-nucleon interaction was available. In the isospin-zero
The place of2 ™ is readily taken byZ ~ and A hyperons. channel, the smalp-wave amplitudes were not separated
This observation is in line with the results of R§82]. In  from the large contribution of thd (1405) resonance in the
case IV, we choos&r,,<0, butS hyperons do not appear S wave, which dominates near threshold energies. In the
due to the increasing repulsion mediatedbynesons with  isospin-one channel, determination of fre&vave amplitudes
larger coupling constants than in case Il. We see that in caséémained also uncertain due to a lack of direct experimental
I-1V, the proton concentration saturates when hyperons aghformation on theK™n scattering at low energies. This gap
pear in the system. We also see that none of the choices I-IWas filled in Ref.[16], where theKN interaction was ob-
support effects observed in R¢L3], whereA hyperons be- tained as a solution of the covariant coupled-channel Bethe-
come more abundant than protons alreadymt Iherefore, Salpeter equation with a kernel derived from a relativistic
the p-waveK K™ condensation discussed in REE3] does  chiral SU3) Lagrangian with extra constraints from tKe"
not show up in the framework of our model for all four nucleon and pion-nucleon sector. This analysis provides re-
parameter choices. liable estimates for both the andp-wave K™N scattering
amplitudes, which we will use in the following.

Ill. KT™-NUCLEON INTERACTION IN VACUUM
A. Forward scattering amplitudes
The kaon-nucleon interaction in vacuum results as the so-

lution of the coupled-channel Bethe-Salpeter equation ~ The vacuunKN forward scattering amplitudes in a given
isospin channel have the following contributions frons-
M. M M M M M M and p-partial waves:
= + 3 M = 2 2
X X M7 B E(s,my,mg)+my
B B B B g B B TO(5)=TY(5)+TY(s)= o
N
(6) X[FQ(s)+Q%(s,m{, mR)FY(s)],
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the pole contributions from thp-wave amplitudes. We de-
fine the pole and pole-subtracted amplitudes

T SFE(8)=FR —F{Jds), ©)
=
e
- 2
- ©) fer _ Cikna2my  (my+my)?
Fpoid )=~ 2= 2 .2 T (10
4L 1 4L | E< (s,my,k%) s—mj+i0
1000 11I00 12I00 13I00 14I00 15001000 11I00 1200 13I00 14IOO 1500
s*? [MeV] s*? [MeV] ,
. . . (1) CKNEmE (m2+mN)2
FIG. 3. Real parts of thp-waveKN scattering amplitudeS in Frods)=—4 -
P E2(s,m3,m2) s—m2+i0
isospin-zero and isospin-one chann@lslid line9 [16]. The dashed S\ L )
lines represent the corresponding pole-subtracted scattering ampli- 2 — 2
tudes(9). 8 Cins+(8/Ms+)  E (M5, mg,mg)
3 i E.(s,m%,m3
T = (s SO
Q¥(s,p? k%) = 3 , 7)
S (11)

where s=(p+k)2, and p=(ex(p),p), k=(w,k) are the
four-momenta of the incoming nucleon and kaon, respecThe 3* width, 7,2*(5):(\/§+ My« )[ Yo (S) + Vrs(S)

tively. For nucleons and kaons on mass shell, the quantity. ,,  (s)], includes contributions fromrA, 73, and KN
2 2 2 . 1 o i) i)
Q (s,mN,sz] is trlw(e squar(T of the Eenterl-cgmasg, mgmen'channels, 'yqu(S):C(szz*EJr(S!mé1m<2/>)|Q(S’mé1m(23)|3/
tum 2'” 2t € . azon?nuc eon channel, (,S’mN’mK) (127/s), wheremy is the mass of the corresponding baryon
= \/mN+Q (s,nl\,,mK) is the nucleon energy in the center- B=(n,p,A,5* =9 and m, is the mass of the corre-
of-mass frameE(s,p? k?) = (s+p?—k?)/2\s, my andm¢  sponding light mesonp=(,K). The coupling constants
are the free nucleon and kaon masses. We shall neglect ”@m\(z)z* can be extracted from the partial width of tBé&
isospin-symmetry breaking within kaon and nucleon isospimhyperon. The values of th&NA(S) coupling constants
multiplets, which is irrelevant in dense nuclear matter. Cyna=—0.68M,,, Cyns=0.34im, entering Eqs(10) and
The invariant partial-wave amp'itudd'sg) andFp) are  (17) follow directly from the amplitudes shown in Fig. 3.
related to the standard partial-wave amplitutiee Ref[44]  1he values 0C s andCyys are defined as couplings af

Sec. 3.1 for definitionsas to (K'N) and 3 to (K'7N) isospin states, wherk, N
stand for the isospin doublety,” is the isospin triplet, and

FO(s)= — 877\/5 £0) (s) 7% are the isospin Pauli matrices. Note that the value of
s E.(smi,md) ° Ckna » Obtained on the basis of R¢fL6], is smaller than that
fitted by the Jilich group[45] and used in Refd.12,6].
8 102(s,m2 m2 The scattering amplitude near tR&* resonance can be
FO(s)= Wig Q (sszz mK)[f(l'),(s)Jer(l'l(s)]. (8)  only approximately described by the last term in Eff),
E. (s,my,mi) since the corresponding amplitude results from a multichan-

nel dynamics, which generates the energy-dependent self-

The partial amplitude$, . =f, ;.. 1 in Eq. (8) are the scat- energy of theS* resonance. This self-energy, however, can
tering amplitudes for given angular momentunand total e neglected atys relevant for the calculations below.
momentumJ, andE . (s,p? k%) =E(s,p?,k?) = \p?. The real  Reference [16] gives for the 3* resonance coupling
parts of the partial amplitude3Y and T are shown in  C,s+=0.84in, defined by the Lagrangian term
Figs. 2 and 3 by sqlid lines. The pronounced peak §tructureéKNE*§* “guK'7%N. The pole subtracted amplitudes
in the p-wave amplitude are due to the(1116) pole in the SEO H h in Fia. 3 by dashed i Wi that th
isospin-zero channel, and tRg1195) and* (1385) poles (S) are shownin Fig. s by dashed fines. e see that the
in the isospin-one channel. amplltudes in both Isospin channels are smooth funcUons of
Js in the subthreshold regiogis< 1300 MeV of our interest.
Note that the procedure of pole subtraction is not unambigu-
ous. Formg10) and(11) are chosen here for a later conve-

The hyperons-channel exchanges are responsible for thenience, since they allow direct comparison with the analysis
strongest variation of the polarization operator at low fre-of Refs.[6,14,13.
guencies and momenta. Therefore, they deserve a special To consider the kaon-nucleon interaction in dense matter,
consideration in view of the baryon modifications by thewe also need to take into account the mean-field potentials
mean-field potentials. To treat them explicitly, we separateacting on baryons according to Lagrangi@n

B. Separation of the pole terms
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IV. K~ POLARIZATION OPERATOR as the sum of the pole and the regular parts. The pole part is
FROM SCATTERING AMPLITUDES generated by hyperon exchanges
A. Gas approximation and baryonic mean fields goggle(w k)_|p0le(w k)+|pole(w K)+1 0'9( K,

Our next aim is to construct the retardi€d polarization
operator in baryonic mattthF‘{’I(w,IZ), related to the kaon

2d% E_(m},mg,k?)
KNAJ

N ¢ . pole o, k
propagator asDy *(w,k)=w?—k?*—m2 -1 w,k). TrJe (k)= 2m®  m3+p?
spectral  function is  determined as Ax(w,k) )
=—2ImDy(w,k). Quasiparticle branches of the spectrum X(mA+mN) mAn ) 16)
appear in the energy-momentum region where the kaon sz—m§+i0 plP),
width T'x=— 2ImI1%(w,k) is much smaller than any other B
typical energy scale. Then, one can pig—0 in the kaon | 2d35 E_(m§ ,mﬁ k?)
Green'’s function and the quasiparticle branches are given by 18, k)= KNEf 3 >
the dispersion equation R *(w,k)=0. (2m) Vmy+p
From the vacuum scattering amplitudes, we can construct 2
izati (0 K (Metmy)ms -
the causal polarization operatdf’(w,k) related to the X——————[ny(p)+2n,(p)], (17)
partial-wave amplitudesEg) and FS) in the gas approxima- s2— ms+i
tion
0, i " " |"°'(k)—42
TQ(0,K) =1 sad @K +1 prad 0,K), (12 3 S
N N N 3—’ = 2 2 2
I swave(w:k)zl swavep(ka)+| swaven(wak) XJ 2d p E+(m2*’mN’k ) s
j 2% Ei(smikd) (1 (2m®  2ymi+p?  Mus
== S[Fs’(s)
(2m)° 2\/m2+p? Q%(s,mg k%) 3 .
" X : [N5(P)+2n(p)].
- - —_— 2 —
+F<s”<s>]np(p>+Fg”(s)nn(p)], (13 STMyxt572x(8)
(18)
| pwavd @, K) =1 pwavep(@,K) +1 pwaven( @, k) The regular part's$,,. can be expressed as
= 2 i
-] Sl rtd @) =15 ad 0.0+ 0 Fad 0.0, (19
(2m)° 2+/m3+p? including the part of integral14) evaluated withsF$ from
Eq. (9),
1 -
X[E[F%O)(S)‘FF&-)(S)]np(p) - . 2d35 E+(S,m,%, ,kZ) , , ,
Irggvave(w,k):—j Q“(s,my k%)
) (2m)° 2\m?+p?
+FEA(S)NA(p) {, (14)

) x{%[aﬁ‘f’(sw SFE(s)Ing(p)
wheren;(p) are the nucleon Fermi occupations; (n,p).
At zero temperaturen,(p)=6(pr,—|p) and n.(p)
= 0(Pea—p), 5= (w+ Vmi+p?)>=(k+p)?

There are simple relations between the cagsal,—")
and the retarded“ R”) Green’s functions and polarization

+ 6F9’<s)nn<5>] : (20)

and the nonpole contributions from the hyperon exchanges

operators. For zero temperature and positive frequencies, Sl regvave(w,lz)z5|A(w,|2)+5|2(w,|2), (21
they coincide. ForT#0 their real parts are still the same, P .
whereas the imaginary parts are different, but can be interre- - 5 2d%p
lated. Bearing this in mind, we will further suppress the sub- Ol y(w,k)=— CKNAJ 3
scriptsR and C for brevity. (2m)
Exploiting decomposition(9) of the p-wave scattering m, \/g_ mr2\1 +K2 (my +my)2

amplitude, we write

X
) ) ) 2\/§\/mﬁ+f)2 Vs+m,
| pwavd @, K) =170 (0,K)+19dw,k), (15 (22)
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5|2(w,|2)= —CiNA larization operator generated by the hyperon pd)BSE de-
R pends strongly on baryonic mean fields, which change the
f 2d3p My vVs—mZ+k? pole positions in the amplitude. This part will be treated
X explicitly in the course of our consideration.
3 -
(2m) 2\/§\/mﬁ+p2
(m2+mN)2 B. Pole part of the polarization operator

X\/——[np(p)+2nn(p)]' (23) Here, we find the contributions to tHé~ polarization
S+msy operator from hyperon poles in tH¢~N scattering ampli-
tude determined by Eq$16)—(18). Relying on the explicit
calculations of Refs[6,15] we can easily incorporate the
scalar and vector mean fields acting on baryons. The scalar
field is taken into account with the help of the replacement

My /5= m2 + K2 mg—mg . The baryon vgctor potentials are included in the
=12 N (s=my), H={A3. (24  Pole terms by the shift of the kaon frequenay—w

2my /s + vy, With sviy=V,—Vy, i={n,p}, H={A,3}. This
follows from the difference of the baryon energies, see Eq.

The above construction of the polarization operator corre{3). Please notice that this energy shift is obvious only for the
sponds to a gas approximation, and does not take into agole contribution to the polarization operator. Generally, due
count either the mean-field potentials acting on baryons oto the absence of the gauge invariance for massive vector
the vertex corrections due to baryon-baryon correlations, ofields, such a shift is not motivated for more complicated
possible modifications of the scattering amplitudes in mediagrams.
dium. The modification of the baryon propagator on the Writing explicitly all contributions, we cast
mean-field level can be easily incorporated in integfa®

To obtain the last relation, we used

E(s,mg k) —E(mf,m§ k%)

and (14) by the replacemenny—m¢ . Effects induced by TP ), K) =170 ( w,K)

this modification in the kinematic prefactors in EG3) and ooy ¢ (pole.)

(14) can be easily traced back. The scaling of the nucleon =1 (,K)+1 550 (w,K)

mass insis a more subtle issue. Solving the coupled-channel (pole.0), (pole0),
Bethe-Salpeter equation, one sums all two-particle reducible 2~ (w,k) + H 5,67 (w,k)
diagrams for the part of theplane corresponding tol&™ N (pole.0),

scattering. This approach is explicitly crossing noninvariant 25 (w,k), (25

and a continuation of amplitudes far below k€N thresh-
old can generate artificial singularities in the scattering am
plitude. In Ref.[16], from where we borrow the amplitudes,
the approximation scheme for solution of the Bethe-SaIptePIC
equation was furnished in such a way that tiéN and

K™ N scattering amplitudes exhibit trproximate crossing H
symmetry, smoothly matching each other fgis~my.

Therefore, amplitudes depicted in Figs. 2 and 3 are still

physically well constrained in the corresponding intervals of

Js shown there. However, for somewhat smallgs, the N-1
K™N swave scattering amplitude gets unphysical poles. To

cure this problem, the complete solution of the Bethe-

Salpeter equation fok ~N scattering has to be redone with written in terms of the Lindhard functidras
medium modified baryon masses. Fortunately, there are some

where each term is equivalent to the pole contribution of the
hyperon particle-nucleon-hole loop diagra(Bchralinger
icture

(26)

indications that this would not drastically change the results. T w,k) = CZ\ [ (M —m¥)2— (0 + dviy)?
We demonstrate here that the final results for integrals with ., .
the swave scattering amplitudes can be nicely modeled with +K ] Pin(,K),

the polarization operator following from a leading-order chi-

ral Lagrangian, which has no explicit dependence on the Hfg‘i'e‘o)(w,ﬁ)=ci,\l2* ﬂizg*(sz)'ZZq)iz*(w,E),
baryon masses. Loop corrections due to the iteration of the

interaction kernel should be suppressed for small kaon fre- me -+ m*

guencies to keep the approximate crossing invariance of the INH= N H

amplitude. The pole subtractgewave amplitude is a rather 2m{,

smooth function ofys, as it is shown in Fig. 3, being mainly

determined by the contact terms of the chiral Lagrangian and———

thus, has a weak baryon mass dependence. Hence, extrapGgor further convenience, we introduce notatioa(n,p) and
lating the amplitude to somewhat smallgs, we do not continue to us&l when the quantity does not depend on the nucleon
expect its strong variation. On contrary, the part of the podsospin.
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>

2 (i) (M3, +m)2— (0+ dujy) 2+ K>
Vs« (@, K)= :

(27)

6m§f

We reserved the superscript “0” for each term in E25) to
indicate that neither the baryon self-energy corrections be.
yond a mean-field approximation nor the vertex correction
due to baryon-baryon correlations are included. The
tarded Lindhard functiond® accounting for the relativistic
kinematics is defined as

<I>iH<w,IZ)=J

For zero temperature, we have

2d3p
(27)32€;(p) s—m3+i0

* 2
4mg,

ni(p). (28)

N I'Tl*2 pri d A-Jr ,E,_)
Dy (,K) = N_, Fapp N I,H(w le) '
272k|Jo €(P) | Al (w,k,p)
Aj(o,k,p)=[w+ dvin+ &(p) 12— €4(|p| T K, (29

wherepg is the Fermi momentum of the nucleon spedies
The nonrelativistic form of the Lindhard function used, e.g.,
in Ref. [21] (with a different normalizationis recovered
after expandingsg(p)~mg + p%/(2m%) in Eq. (29).

The imaginary part of théretardedl Lindhard function is
obtained as an analytical continuationXy¥In|x|+imé(—x)
leading to nonzero contribution for

wih(K)<w<o (k). (30)

Here, w;, are the upper and the lower borders of the corre-

sponding particle-hole continuum

m*

NI k<pﬁ(_g_1)
. -

i (k)= )
3 e

EH(|k|+pFi)_Ei(pFi)y k>pFI(_*_1),
My

(31

win(K)=Ew(IK| = pr) ~ Ei(Pr). (32

PHYSICAL REVIEW (58, 015803 (2003

V. s- AND p-WAVE PARTS OF THE POLARIZATION
OPERATOR

In our discussion, we would like to put particular empha-
sis on in-medium effects, which modify th€~ spectrum at
finite momenta. For this purpose, we define the momentum
ndependent part, called treewave part of the polarization

%perator and the momentum dependent part, called the

p-wave part of the polarization operator:
9w,k =TT (w) + TP (w,k)
=1T9(0,0) +[TTO(w,k) —TIO(w,0)].
The termIT{?)(w,0) does not depend dn whereas the term
[M9(w,k)—TT19(w,0)] depends ork, and vanishes gk|
=0. In order to avoid misunderstanding, we point out that

the s and p-wave scattering amplitudes contribute to both
parts of the polarization operator

Hg))(w) =l swad @,0) +1 pwavc(wvo)v

Héo)(wnlz):[lswavéka))_Iswav&wuo)]'l'[l pan(,(vaZ)
=1 pwave(wao)]- (33

In the following, we discuss ths- and p-wave parts of the
polarization operator.

A. p-wave part

Following decompositioril5), we split thep-wave part of
the polarization operator into the pole and the regular contri-
butions

MO (w,k) =TIP% o k) + 109 w,k). (34
For the polep-wave part, we have
Hépole,O)(w,E) = (pole)(w,k’) — (DOIQ)((U,O)

=T HN w,K) + TN 0, k) + 21 w,k)

(P,0)

+ILE (0, K) + 211D (w,K), (35)
Hl(ﬁ,o)( (,l),IZ) — Hi(|E)|0|e,0)( o, |Z) _ Hi(}r-)|0|e’0)( (1),0), (36)

where we used Eq$16)—(18) and(25).

Baryon energies include vector potentials according to EXxpanding thep-wave pole part of the polarization opera-

Eq. (3).
An approximate expression fdp;, renders

)_

€j (pFI) '

Dy (w,K)

+

Ai

3

iH

ALA
2

my?

8m2|k|3ex

(Ai)?— (B2
4

with A5 =A% (w,K,pg) and g =
o<(wiy+og)/2.

being valid for

tor for small kaon momenta, we have

A w,K) = CEyuk2hi (@) +O(K?),
b (©) = 73 Pip(@,0)+ nR [ (mf —mk)?
—<w+5viH)2]a®‘“EZ”E) . @D
ok k=0
Dixx(0,K) = Ch s« K27 (0,00 P54 (0,0). (39
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FIG. 4. Left panel: Coeffi-
cients (40) of expansion(39) of
the polarization operator. Solid,
dashed, and dotted lines corre-
spond to nucleon densitieg, ,
=1pg, 3pg, and %y, respec-
tively. Right panel: the same as on
the left plane but integrals evalu-
ated with effective nucleon mass
in kinematical prefactors and

_ coefficients b(>”  scaled by
0 50 100 150 200 250 0 50 100 150 200 250 m*/m
N N -

w [MeV] w[MeV]

b(S) b(P)

The regular part of the@-wave polarization operator is de- p-wave K~ condensate amplitude in the most general case,

fined by one needs to deal with momenta ugko~ pg ,~m . In this
(reg0)y . & R reg N case, we have to extrapolate our result for the regular part of
™ @,K) = [1s wavd ©,K) = s wavd @,0) ]+ [ ' g iavd @,K) the polarization operator to such momenta. Fortunately,

within our approach the critical points of tlse and p-wave

condensations do not deviate much from each other and the

kaon condensate momentum in the vicinity of the critical

density remains small. Also, the main contribution to the

kaon polarization operator comes from the pole terms, which
o0 e e Pp Pn R are written explicitly for arbitrary momenta in Ed25).

ReTS®%% w,k) =K?| by(w) = +by(w) —) +0(k%), Thereby, the ambiguity of the mentioned interpolation should

Po Po (39 not significantly affect our conclusions.

— 15 %ad ©.0)1.

At small kaon momenta, the real part B® % can be
written as

bi(w)= bi(S)(w)+ bi(P)(w), B. s-wave part
The kaon-nucleon interaction results in the following con-
b5 o) Po il Q tributions to thes-wave part of theK™ meson polarization
(@)= 0i K2 swavei (@, K)| operator
k=0
M9 (w)=I 0)+1"9 0)+ ST1e9% )
J s (@)= swavd ©,0) pwave(w! @
Po -
b7 W)= e Phmei(0: )| (40) 0% w,0), 4D
i d k=0

where the last two terms correspond to nonpole and pole

where we used the fact that the real part of the kaon polaparts of the hyperon exchange terms in the amplitude, re-
ization operator is an even function of the kaon momentumspectively. Thd1(P?®9 term is given by Eq(25). Using Eq.

The quantitiess>” andb{>" are shown in Fig. 4 foT  (21), we presensI1(%9 as follows:
=0 and for several values of densitigsas functions of the
kaon energy. SIS0 ) =51 59 d @,0)

In these calculations, the integrdls and I, have been _ ar(reg.0)
evaluated with the free nucleon masses. We see that these = ollp" 0,0
coefficients are almost density independent and only weakly (reg,0) (reg,0)
dependent on the kaon energy in the interval 100 Mey/ o550 (@,0)+ 201 = (,0),
<250 MeV . As we have discussed in the beginning of this i,
section, we replace the baryon masses by the effective

masses, as they follow from the mean-field solutions, only in 2d3|5
the kinematical prefactors in Eq&l3) and(14). The results  SI1{?9%)( w,0)= —CﬁNHJ —
are shown in the right plane of Fig. 4. The coefficieln P) (2m)

depend moderately on the density whereas the coefficients (m¥ Vso— M2+ wd) (M5 +m)2

b{>P) exhibit a stronger density dependence, which can be ni(p)
p . . . * i(P),

parametrized by the factony/m?¥ as demonstrated in Fig. 4. 2€(p) Vso(VSot+ M)

The energy dependence is still weak in the 100 May (42)

<250 MeV interval.
Our result(39) is derived for rather small values of a kaon \here s,=[ w+ €;(p)]2— p2. We also included the depen-

momentum|k|<my . In order to find the actual value of the dence of the effective masses on the mean field. TFe0
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500 according to case I. In order to illustrate the strength of dif-
ferent contributions to the-wave part of the polarization

operator(41), we consider several test polarization operators

400

300

> _
2 M 0) =1 s yavd 0,0+ 10, d ,0), (46)
" 200
s M w) =T @)+ 819N w), (47)
100
N(0)=TTE )+ 1P »,0). (48)

In Fig. 5(a) solid lines show the energy of the lowest branch
of the solution of Eq(45) with I1$? for the cases of pure

FIG. 5. Panel@): The energy of the lowedt  branch of the  proton and neutron matter. The contribution! &, { »,0)
dispersion equatiof#5) atk=0 calculated with1§"? (solid lines s very small, at the level of few percent. It is instructive to
for proton and neutron matter. Dashed lines present approximat@ompare this result with the one given by the frequently used
spectra given by Eq49). Panel(b): The energy of the lowes(™ 5 ametrization of theK™ spectrum motivated by the

branch of Eq.(45) at k=0 for neutron star mattefcase | of the leading-order chiral perturbation theoryRT) [8],
hyperon-nucleon interactipreorresponding to the-wave polariza-

tion operatorsI1&?, 1129 119) given by Egs.(46)—(48) (solid WlPT( )=JmZ—S +VZi—V
lines). Dashed lines are solutions for approximate relati@®s and s Pn:Pp KoK K Ko
(50). Dotted line shows the electron chemical potential. Dash-dotted
line depicts the border of the imaginary part of te polarization S :i[z ( scal S°a5+C( scal_ Scah]
operator(border of hyperonization K™ g2l ZKN Pp T Pn Pp- = Pn )l

and for small kaon energies the integral in E42) can be

well approximated by the following expression: V,F%, (49
*2__ k2
S0 w,00~ — C2 4 H—*Npis"a'+ wpi where f=90 MeV is the pion decay constant in the chiral
2my limit [16], and 3,y and C stand for the isoscalar and the
) isovector kaon-nucleol terms, and are related to explicit
@ 0 (43) chiral symmetry breaking. The $8) symmetry predict
mi+mis ) =mZ(2mz—3ms +m,)/[16(m3—m?2)]~66 MeV [4]. A

model polarization operator leading to the dispersion relation
wherep$®@ stands for the scalar density of nucleons defined49) can be written ag8]

by
SN C
> o | |
scal_ pr'i stp m,l\cl (44) H(SXPT )(00) - f_z(Pf)Ca‘l' pﬁcab - f_Z(pzca_Pﬁcal)
| o (2m° &(p) ,
_|_
__4PpT Pn . (50
C. Energy of the lowest branch of the dispersion equation 2f2

atk=0

Spectrum(49), calculated using =150 MeV, is shown

. . o in Fig. 5 [panel(a)] by dashed lines. We observe a good
terms in Eq.(41), applying the polarization operator to the agreement of the model spectrum with the one following

problem of theswave kaon condensation. . from the numerical evaluation of the integrals, ..d @,0)
Neutron star matter becomes unstable with respect to re-—;

actions (1) producingK~ mesons at the zero momentum © 'pwad®@0)]. The obtained value of the effective kaon-

when the solutior] ws=w™"(K) at k=0] of the dispersion nucleon term is two to thre(_a times sma}ller than what was
. S used as arad hocparameter in Refl8] with the same pa-

equation rametrization(50).

w%— mﬁ—ReHS(wS)ZO, (45) The rgsults for the realistic composi?ion of neutron star

matter(Fig. 1, case)l are presented in Fig.(B) as a repre-

related to the lowest branch of the spectrum, meets the elegentative example. Solid lines depict the energy of the lowest

tron chemical potential. Then, treewave K~ condensation branch of the dispersion equation calculated KerO with

may occur via a second-order phase transition. ¢, 120, and 1Y . Dashed lines show solutions ob-

In Fig. 5, we present the energy of the lowist branch  tained with the approximate expressiof®) in I1$? and
of the dispersion equatio#5) with momentumk=0 as a  (43) for 811099 in [1Z? . The excellent coincidence of the
function of the density. The hyperon interactions are takercurves justifies the accuracy of E450) and (43).

In this section, we illustrate the strength of the different
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The crossing point of the solid and dotted lines corre- 2 % 2 " 2 "
sponds to the cg:itipcal density of tlsewave condensation. We i Pin(@,K) = 7N Pin(@,K) + 7y Pri(— o, k)-(52)
observe that the lines corresponding'téL’O) do not cross the
chemical potentialdotted ling. Therefore, thesswave kaon-  where the last term implies interchange of all indicesH
nucleon interaction, following from Ref.16], would not in Eqs.(28), (29), and(34). The result of such a replacement

support a second-order phase transition intosfneave K~ can be cast as
condensate state due to the small value of the kaon-nucleon
iti i » " le,0
> term(rg)owever, an_add(lztlgnal attraction comes from_ the 5H§]3?)|e,0)(w,k):prgm,m(_w,_k)+H(2p§pe )( )
term ol yave included inlIg™™. It makes the condensation
p035|ble at densitiez 4.50,. Another attractive piece is the +2H(Ep?'f'°)(—w,—IZ), (53

pole terml b2 {w,0) taken into account ibl’. The sig-

nificance of these terms, originating both from the hyperorand is to be added to the total polarization operator.
exchange diagram iiKN interaction, was pointed first in

Ref. [6]. Both of these contributions were disregarded B. Regular terms
in works[8,9,5,7,10—12discussing theswave K~ conden- ) )
sation. There are no experimental constraints on the hyperon con-

tribution to the regular part of the polarization operator. As a
rough estimation, we suggest to extend the model polariza-
tion operator(50) to the hyperon sector according to the
leading-order terms of a chiral Lagrangian

The curveswg calculated with the fuls-wave polarization
operatorl1®) have cuts. In the region between the cuts, Eq,
(45) has no solutions with positive residued. The dashed-
dotted line depicts the border of the imaginary part ofkhe
polarization operator. We see that within our approach, the

curve calculated with1§” and ue meet at an energy below  STT¢FTO(w)=— E—(,DSC"°"Jr pI T — Epical
the region of the imaginary part. Thus, with the full polar- f2 213
ization operator(41) and (48), we recovered the results of

previous workg8,9,5,7,10—12(where, however, the two to _scal scal| & scal P3-T2p=-
three times largeE term was usedabout the possibility of Ps=TPe- |7 G2 PA 2§2

the K™ condensate production in reacti@l) at rather mod-
erate densities. In our case, the critical densitypiss
=2.7po. The reader should bear in mind that the baryon-
baryon correlations are still not included in the above analyIn this expression, we ufilize the value B from the fit

with formula (49) to the numerical results in Fig. Ry
\S/Iﬁ They will increase, s. This issue is addressed in Sec. ~150 MeV), whereas the values of coefficient

~66 MeV  and C,=mi(mz—m,)/[12(mi—m?3)]
~34 MeV andf=90 MeV are predicted by the chiral $8)
VI. CONTRIBUTIONS OF THE HYPERON FERMI SEAS symmetry. To estimate the nonpole contribution from the
TO THE POLARIZATION OPERATOR nucleon u-channel exchangéanalogous tosI1(®% %), we
use the approximate relatida3)
When the nucleon density exceeds the critical density of
hyperonizationp. y, the Fermi sea of hyperoH begins to

(54)

m
grow, and thek ~ polarization operator receives new contri- S5 @)= —Ciyy L " A ps wp
butions. 2my
2 *2__ k2
_ oA i Yor: my —Mmy scal
A. Pole terms m’A‘+m’,\‘, KNS, 2m§ s
The hyperon contribution to thi€ ™ polarization operator

is related to the diagram@ Schralinger picture w?

TOps-T P3| (55)

mz -+ my,

In our estimation, we do not take into account contributions
to the regularp-wave part of the polarization operator
«k?py .
(51) PH

C. The energy of the lowest branch

where hyperons and nucleons interchange their roles com- of the dispersion equation atk=0

pared to diagran(26). ) ) .

The hyperon contributions to the po|e part of the po|ar- Solutions related to the lowest branch of the dISperSIOn
ization operatod]("°®9 can be simply included in Eq27)  equation(45) for k=0 calculated with the polarization op-
with the help of the replacement erator
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500 ———— with the correlation functiorC;;.(r)<0 and it is reduced in
] case | - comparison to the product of two single—particle. densities.
400 L i The correlation function can be approximately written as
S \ | Cii (1) ~Cr)+ &, CF(r)[1+Cr)]  (57)
= : : - :
= 200 L \ ___________ . with contributions from the hard cor&®", and the Pauli
3 ”(éo)hp exclusion principle,C"2" assuming that both correlations
I . N ] contribute multiplicatively. The former can be taken from the
100 - K T description of the nuclear matter with the realistic nucleon-
a nucleon interaction. A convenient parametrizatiof®"{(r)
ol v vy ~—]Jo(mgr) with my=~5.6m, was suggested in Ref49].
0 1 2 3 4 S Here, j,(X) is the spherical Bessel function. For the Pauli
p/po correlation, we use the expression for the ideal fermion gas

[50, CP*(r) = — 9 i(Prr)/(2PEr?) -
FIG. 6. The energy of the lowest branch of the dispersion equa-
tion atk=0 calculated with the polarization operatdt},, given

by Eq. (56) is depicted by solid lines. The dashed line shows the A. Carrection of s-wave and regularp-wave terms

corresponding solution with the polarization operd#s). The dot- A general derivation of corrections to the meson propaga-
ted line depicts the electron chemical potential. tion in dense nuclear matter due to nucleon-nucleon correla-
tions (so-called Ericson-Ericson-Lorentz-Lorenz correctjons
O ()= (w)+ L) (), can be found in Ref451,52 for pions and in Refg.53,54
sy @) =1s7(@) Sy @) for kaons.

Correlation processes can be presented by symbolic dia-
STIQ) o )= STIEET N w) + STI{ed O w) + STIH2*Y w,0)  grammatic equation
(56)

B B B B
are shown in Fig. 6 by solid lines in comparison with the VQN -Q~ m .
corresponding solutions obtained without inclusion of hyper- = + %’: o

ons (dashed linegs Calculations are done for the hyperon
coupling constants corresponding to case I. We see that the (58)
presence of hyperons produces an additional small attracti

0 .
only at rather high densities4p,). The net effect is smalll The wavy line represents the kaon, and the sum goes over

; : PT,0) baryon species. The absence of arrows on the solid fermion
due to the partial canceflation of the attractﬂ@hyp term lines means that both particles and holes are treated on equal

i (reg,0) i
and the repulsivelly,; _ term and because in our model footing (the conservation of charges, e.g., strangeness, bary-
the hyperon concentrations are much smaller than the Nellic number. etc. in each vertex is impliedhe hatched

tron concentration and even smaller than the proton one. Thit?iangle is the bare scattering amplitu@eattering on a par-

allows us not to care much abﬁout the hyperon Fermrseacle or on a hol¢ and the full triangle stands for the ampli-

occupations when considering tke-0 case. tude including baryon-baryon correlations. The dotted line

symbolically depicts the two-baryon correlation function

Cgg' due to theBB' correlations through the core and the

Pauli principle. There are neither experimental informations
Working with the polarization operator constructed by in-nor theoretical estimations for the hyperon-nucleon and

tegrating the meson-nucleon scattering amplitude over thByperon-hyperon correlations. Since the latter ones are less

nucleon Fermi sea, e.g., as in Eq$3) and (14), one as- relevant for our discussion below we will neglect them.

sumes that all multiple meson-nucleon interactions are indelhus, we include only minimal correlations given by g

pendent from each other and have the same probability prducleon-nucleon correlation functions.

portional to the local nucleon density(r). However, First, we consider correlation corche)ct!ons to thevave

successive meson-nucleon scatterings in dense nuclear mR@rt of the kaon polarization opeoratﬂl(s given by Eq.(41)

ter are not independent due to the presence of a repulsigNd the regulap-wave partlI§°® from Eq.(39). We sepa-

core in nucleon-nucleon interactions, and due to the Paufidte the contributions induced by the scattering on a nucleon

exclusion principle[46—-48. The probability to find two Species ={n,p}

nucleons andi’ at the positionsf1 and Fz, respectively, is

proportional to the two-particle density NP(0) =T () +TT)(w),

VII. BARYON-BARYON CORRELATIONS

pit (11,12) =[ 1+ Ciio([r1=12)1pi(r )i (12), IE) (@) =I5 wavei (.00 + |y wavei(,0),
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T ; T T 04 ' ' ‘ ' FIG. 7. Left panel—
0.15p. =0 - PP contribution for the Pauli spin cor-
‘ o 0.3 _\nn\\_ relations to thep-wave correlation
£ function (62) vs the Fermi mo-
) 2 mentum for different kaon ener-
E 'ﬁyz . (0) . .
£ s i gies (pg"’ is the Fermi momentum
€z = for p=py); Right panel—the
o 2 s-wave (dashed lingsand p-wave
01} pp J (solid lineg correlation functions
nn / (61) and (62) evaluated for w
::::\s ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ H
np-ooooIIIIIIIIIIIIIIIIIIIIE = e in neutron star mattefcase
0.0 : L L L I) as function of the total baryon
° ! 2 plp, 3 4 > density.
cf. Egs. (13) and (14). Then, adopting results from Refs. 1
[55,54, we may present the polarization operator terms cor- gfﬁ*core): ESc0) ) = — (64)
rected by baryon-baryon correlations as (my+mi — )

Hsp()+ Mg p(w)+ 20 g (@) g p(0) ) w)

(59

Mg(w)= —r
= 1 Tlgp(0)TTsp(@) ()2
~ g (w)
Hs,i(w)— 1T (@)
150, = , Bp(@) +By(@) +2by(0)by(w) £ @)

1-bp(w)by(@) (£(@))?

bi(w)(pi/po)

bi(w)= : 60
O b @ w)lpe %0
The functionsgi(is,) and §i(ip,) are defined as
£(w)= J d3rCii» (rDR(,1), (61)
&£ w) fd rCii (r)V2D%(w,r)
1 2 2\ &(S)
== 3lCi ()= (M~ )& (w)], (62

with the Pauli and hard-core contributions from E§7),

i,i’={n,p}, andD(w,r)= —exp(—\/mzK—er)/(47rr) as

the free kaon propagator.

to the swave ones. The contribution from the Pauli spin-
correlation(second term inC;;;) to the p-wave correlation
function £ is shown in Fig. 7(left pane) as a function of

the Fermi momentum for different kaon energies. We see that
the correlation parameter decreases with the density since the
core correlations hold baryons apart from each other and
suppresses, thereby, the effect of the Pauli exclusion prin-
ciple. The right panel of Fig. 7 presents the values of the
correlation function(61) and (62) calculated foro= u, in

the neutron star matter with hyperon coupling constants ac-
cording to case I.

In view of their smallness, we leave the contributions
from the hyperon Fermi seas to the regular part of the polar-
ization operatoréHS hyp Without corrections for baryon-
baryon correlations.

B. Correction of p-wave pole terms

We turn now to the consideration of correlation effects in
the particle-hole channel.

If we approximate the freeKN scattering amplitude
(hatched triangle in Eq. (58) by the hyperon-exchange
diagram—the same that produces the particle-hole diagrams
(26)—we can see that the account of correlations via Eq.
(58) is equivalent to the replacemént

H H
O O
N—l N—l

(65)

Using Eq.(58), one finds that the repulsive core contrib- with a modified vertexfat point obeying equation

utes with

g(P,COFE)_ g(P core{

i’

to thep wave &'s and with

)= (63

2
—0
3( o+mi 2)

The replacement65) and (66) can be explicitly proven in the
nonrelativistic limit. Working with relativistic kinematics, we apply
it only to the pole part of diagrani26) written in terms of the
Lindhard function(28). Thereby, we preserve the correct transition
to the nonrelativistic limit.
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expressed in terms @f’ and kaon-nucleon-hyperon coupling
constants.

H H H
Below we would like to put the discussion on a more
= + . phenomenological level. According to the arguments of the
-1 Fermi-liquid theory[56], the particle-hole irreducible box
N-1 N-1 N1 N loc
T,n has a weak dependence on incoming energies and mo-

(66 menta and, therefore, can be parametrized in terms of phe-
The particle-hole irreducible boI:_‘,’,‘";‘, (the squarecan be nomenological Landau-Migdal parameters:

A A b); b
1/2
T = = Cp fA s12, Ty = =Cog§3312P(/)
N—l N—l N—l N—l
A o ¥ by
T = =Cofag s, Tyan= = Co gy S12 PSR,
N—l N—l N—l N—l

(67)

with @=1,2,3. The amplitudes are normalized wifly=300 MeV fn? allowing for a comparison of the values for the
hyperon-nucleon correlation parameters with those for the nucleon-nucleon correlations introduced 24]Rkf.Eq. (67),

P{2=(1-ty- 7)/3 is the projection operator onto tBéN state with isospin 1/2y are the isospin-one matrices andre the
Pauli matrices of the nucleon isospin. The projed?é 2,\), is defined analogously. The spin-spin operators in the particle-hole

channel are given bg;,=(0,0,) andS;,=(S;S,"), with S standing for the spin operator, which couples spiand spin3
states.
The inclusion of correlations according to E§6) brings the pole polarization operat5) into the form

Ty (@,K) +1Ts(0,K) +2¢ 35 Ty (0,K) s (0,K)/3

TP w,K) =
1- 2 3T pa (0,05 (0,K)/3

+ s« (w,K),

I p(w,K)= EJ)( k) =Cy/(C C )
w, - l CcC= ’
pA ' C Ip (,K) 0 KNA KNS

o, K)+ 2017 (w,K)

ﬁg(w,R)Z = ]
1-g4Co[ @ pso(w,K) + 205 - (,K) /3

_ Mo @,K) + 212, - (,K)
s+ (w,k)= = . (68)
pX ’
1-05+Co[ Pps+o(@,K) + 2P 54 -(w,k)]/3

C. Correlation parameters was estimated in line with Ref57], where these parameters
for the nucleon-nucleon interaction were calculated within
To the best of our knowledge, there is no direct experithe Ericson-Ericson-Lorentz-Lorenz approach. We follow
mental information about the values of the Landau-Migdakhis approach below. Further corrections can be computed as
parameters for the hyperon-nucleon mteractlbpsgz(z* , in Ref.[49].
and f <. In principle, this information could be extracted  Following [57], we assume that the squared block in Eq.
from multistrange hypernucleus data, which, however, arg67) is determined by exchanges of kaon and heavy strange
rather poor. In Ref[15], the Landau-Migdal parametdy,  vector mesorkK* with massmg+=892 MeV. This can be
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depicted in diagrams as

H H H H H H
pagRip-
~ +
N-! N-? Nt N-1 N7? N-?
H H H H
. N I NN +
K- K+~
N—l N—l N—l N-l

(69

In this approximation, correlation parameters are equal for
the HN™! and theNH™! interactions. Including hyperon

Fermi seas means that the pole term of the polarization op- 0 1 2 3 4 5
erator is corrected through replacemdB®) in Eq. (68). p/pO
Block (69), being evaluated at the zero momentum and en-
ergy transfer, contributes to the local interaction in E&y) FIG. 8. Solid lines present the energy of the lowest branch of the
as disper(sig)n equation &=0 calculated with the polarization opera-
tors I1¥) and Il including effects of baryon-baryon correlations.
TlHNNCKNHCKNHg(P Core{o) + CK*NHCK*NHf(P core{ 0), Dashe?j—dotted iontinuati%ns of solid cu?/ves de)r/nonstrate effect of
the filling of the hyperon Fermi seas on tsavave polarization
H=A% 2%, (70) operator. Correlation parameters are taken according to Kigglit
pane), (61) and(72). Dashed lines show solutiod$Z® and 1Y
Ioc (P, core . . . . >
s(0)=~CxnaCrnrsék {0) without correlation effects, as in Fig. 5, par(g). The dotted line
depicts the electron chemical potential.
+CrxnaCkxnrs §(P “%0). (7D P P

For shortness, we do not write here explicitly the spin and=0mpared to Refl15], e obtained a smaller value of the
isospin operators and note that those are exactly the same BarameteiCof s =0.6/n7, since we included here the form
in Eq. (67). The vector-meson coupling constagsy, in  factors mentioned above.

Eq. (70) correspond to the nonrelativistic verteo{&x IZ].

The coupling constants can be taken from thicdumodel

of the hyperon-nucleon interaction via meson exchanges .
[45]:  Cysna=—(1.3M,), Cysns=(0.07in,), and at k=0

Ckxns+=(0.7/n;). These values account for the form fac-  Figure 8 illustrates how strongly the kaon spectrum
tors used in Refl45]. Particularly, the very soft form factor changes after including the short-range correlations. We

is responsible for a strong suppression of @jé s Vertex. show the lowest branch of the kaon spectrurka0. This is
Thus, the Landau-Migdal correlation paramet@® can - )
calculated for the polarization operatdis’ constructed

D. Energy of the lowest branch of the dispersion relation

be cast as 2,0) _ o
from II¥™ according to Eq(59) and for the polarization
Cofy=C2\A[E8 ™ 0) + Ry, £ 0)], operator I1g(w) =1 (w) + 1P w,0), where IIP%w,0)
follows from Eq. (68) with parameterg72). The hyperon
Cog%=3CE\s[ 5 0) + Rzz§(P o), couplings are chosen according to case |.
At p>p. ., we have to include correlations in the term
Cof hs = Cina Crns[ %% 0) + Ry £, 0)], SIIE),p in Eq. (56). The pole termdII{f*Nw,0) is in-
cluded in Eq.(68) with the help of replacemen62). The
PT,0 0
CoOle =3C2 5 [P 0) + Ryvs s £7°70) 1, other termssTI¢H1( ) and STIE) can be corrected in the

same manner as thHY term. However these terms are
where the first term was introduced in E3), £ °°"®(0) rather small as it is demonstrated by Fig. 6. Therefore, we
=0.24, the second one is equal &,°*{0)=2m3/(mZ  omit correlations in them.
+m2 )=0.28 cf Ref [57] and Run From Fig. 8, we see that baryon-baryon correlations sup-
K* . y . . y ’ . . .
= CrrnrCronn /(CkntCrnrr)  With  Ryn=3.7, Rys press theswave part of the polarization operator, in agree

~0.04, Rys~0.39, andRsxsx~0.69. The additional factor MeNt with the statemen{§3,54. It results in an increase of
X o 2 o the critical density of tha-wave condensation from 2 to

(P core (P,core) i -
21 &yx compared togi originates from the reduc 4.3p, for case I, chosen as an illustration.

tion [, X K][ o X K]—S4,. Finally, we estimate the follow-
ing values for the correlation parameters of E&j/) as

3Note that different normalizations of Landau-Migdal parameters

f4=0.9, gg=0.1, fiy=-0.1, Oy-=12. (72 are used here and in R¢fL5].
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VIIl. K~ CONDENSATION IN NEUTRON STARS 300

In Secs. IV-VII, we have constructed tKe polarization B 200 N
operator. Now we use it to study a possible instability of the Emloo i
system with respect to a phase transition into a state Kvith s
condensate.
First, we investigate the solutions of tie dispersion plp,

relation
FIG. 9. Solid lines are the energy of the low&st branch of the
w2—K2— mﬁ— Rl w, |Z) =0, (73 dispersion relatiori73) for k=0. Dotted lines show electron chemi-
cal potentials. Dashed lines are calculated without baryon-baryon
correlations. Different panels correspond to the interactions given

where the complete polarization operator is given by
by cases I-IV.

% w,k) =g ) + M5 w,K) + T w,k) + ST (@) ciently large(overcritica) size, created by fluctuations, will
reg continue growing. At zero temperature, the probability for
+5thp’(tw)' (74 the creation of such a droplet via quantum fluctuations is
very small, but it increases greatly with the temperaf@dg.
It contains thes-wave part, the regulgs-wave, and the pole Thys, a first-order phase transition is most likely at an initial
parts of the polarization operator given by E¢59), (60),  stage of a neutron star formation or cooling when the tem-
and (68), respectively, and the terms determined by the hyperature is sufficiently large. If the density in the center of a
peron population$54) and(55). The correlation parameters siar exceeds the valye!', a second-order phase transition
are taken according to Eq&61), (62), and(72). _ occurs. In long-living binary stellar systems, where the neu-
There are two different possibilities{ ™ condensation  {on star slowly accretes the mass from a star companion and
may occur in neutron star matter via a second-order phasge temperature is already very small, a second-order phase

transition or a first-order phase transition. The dynamics Ofransition is a more probable ofgepending on the accretion
these phase transitions is quite different. Both possibilitiegatg.

might be realized at different physical conditions related to

different stages of a neutron star evolution. A. Second-order phase transition
In case of a second-order phase transition, at the moment, to the s-wave condensate state

when the density in the neutron star center achieves the criti-

cal densityp!, reactions(1) become operative. At this tran-

sition, the isospin composition and the density of the syste

change smoothly. During the time r.Npa/Vp—ph

Let us first analyze the possibility of treewave K™ con-
ensation. In Fig. 9, we summarize the results of Secs. V C,
I C, and VII D, showing the energy of the lowest™

where .. is the typical time of the weak procesg@s, the branch of the kaon dispersion relatitfg) for k=0 together

system creates an energetically favorable condensate sta ith the electron chemical potential. For the given parameter

The condensate appears within the region w Iy choice, the crossing points of the lines indicate the critical
here,. . . . . i
this happens during a supernova explosion, the typical sizdens|ty of theswave condensation via a second-order phase

- ; ffansition.
of the condensate region might become of the order of the We see that for all models the neutron star matter is un-

neutron star radius. Due to energy conservation, the galnesqable with respect to the reactions in Ed) at densities
energy must be released in such a transition. When the co

densate region is heated up to the temperatied o r83—5.2)00. The critical density depends on the choice of the

~(1-2)-MeV neutrinos are trapped. At this stage, the Cool_correlation parameters and the parameter; of the hypefon'
ing time is determined by the neutrino heat transport fromnucleon interactions. As long as correlations are not in-

the condensate interior to the star surfi2#. When the star CIUdET\d.' we support the conjecture .Of pre(Y,;OUS works on the
cools down to temperaturéb<T,,., the neutron star be- possibility of theswave condensation af; 5~ 3po. How-

comes transparent for neutrinos, and these can be direct er, the baryon-baryon correlations shift the condensation

radiated away. A part of the energy is also radiated by pho rit]ical density to values larger than those ones discussed in
tons from the star surface. In binary long-living systems, theRe s.[5,7-12.
critical density in the neutron star center can be achieved by N
accretion. Then, the transition is characterized by the typical B. Second-order phase transition
accretion time. to the p-wave condensate state

In case of a first-order phase transition, the final state |n this section, we study a principal possibility for the
might significantly differ from the initial one in its isospin p-waveK ™ condensation in neutron star matter via a second-
composition and its density. Thus, this new state cannot berder phase transition. We investigate whether pheave
prepared in microscopic processes. Small-size droplets of theondensation can occur before thaave condensation and
new phase are not energetically favorable due to a positivey what extent this depends on the parameters of hyperon-
surface energy. When the density in the star center excee@gicleon interactions and correlations.
the valuep'c< p!, the system arrives at a metastable state. In  Let us first assume that threwave K~ condensation is
this state, a droplet with the densipf">p. and a suffi- indeed possible at some critical densitys. The lowest en-
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ergy branch of th&K™ spectrum at small momenta is given
by

w~wst a(ws)Zg ws)K?, (75

where wg is, as before,w(lz=0) for the lowest energy
branch of the dispersion law given by the solution of the

equationwi=mz + Rell §(ws,k=0), and

IR w,K)
ZHw)=| 20— ——— >0,
Jw |Z:O
JRell w,lz
a(w)=l+—E(2)
J k=0 FIG. 10. apodpe), ®s=pe, (solid lines, and —1- a g

. (dashed linesvs critical density of theswaveK ~ condensation for
If at pc s, we havea(wg) <0, then instead of thewave  \arioys correlation parameter choices. Labels show valuefs, of
condensation we have thewave condensation at a some- —q: - solid lines are drown fofjs=0, and f}=g=0,0.5,1.

what smaller density. The aim of this section is to find thepashed lines are for three choices of the correlation parameters
value a(wg) in Eq. (75) at the critical point of theswave  ysed in calculation Ofteg, Enn=Epp=£np=0,0.5,1(from the upper

condensation, i.e., whesg= i . line to the lower ong Cases |-V correspond to those in Fig. 1. In
Using thep-wave kaon polarization operator determinedthe upper plot>* is taken withgs, =0s, Vs+=Vs, andg,s«
in Sec. V, we write =¢,s . In the lower plot,Vs«=0 andg,s+=0. Hyperon popula-
tions are included in the mean fields but not in the polarization
a(w) =1+ apod w) + aed w). (76)  operator.

Without baryon-baryon correlations, the contribution of the b.(w)p./
pole part is Bp(w)= p(@)pplpo

1-by(@)ppéfg(@)/po’

J .
a® _ﬁReH(pole,O)(w,k)lR:O: a5\03+ a(20)+ a(EO*) ,

pole™ ~ bn(@)pwlpo
70 P L bR )iy 7
with a(EO)= a(zoo)p-l— Za(zozn and a(zo*)= ag)z)*o-f- Zag*, . From b
Egs.(37) and (38), we have Although thegi(i )(w) functions can be evaluated as in Eq.
(62), we will treat them here as free energy-independent pa-
afQ(w)=Canul 7indh (@) + nindhi(— ©)], rametersg;, in order to investigate the sensitivity of the
results to their variation.
ai(gl(w) _ CiNE* ﬂﬁ,g*‘biz*(w,o), H={A,3}. In Figs. 10 and 11 we show the valuesa@f;d ) (solid

lines) and —1— a4 (dashed lines calculated as a function
of p¢ s for various baryon-baryon correlation parameters and

The term»?, ¢ (— ) accounts for the contribution of the . o Pe
hyperon Fermi sea. Once the baryon-baryon correlations allyperon couplings. ThE hypero_n c_ontnbutlon IS prove_d to
be very small. The major contribution to the strength is due

included in the pole part of the polarization operator accord- 2 .1 .
ing to Eq.(68), aé%}e is to be replaced by to Ap~ - andX*n" - loops. The hyperon Fermi seas are not

incorporated for the momenive drop terms<®,,; in TIP%9).

Inclusion of2* into the mean-field mod€R) is quite uncer-

Apoid @)= 4R$p0|%wyﬁ) ' tain dye to the absence of any empirig:al constraint on the
ok? - coupling constants. We consider two different cases: In the

k=0 upper plot in Fig. 10, we assume tf¥t couples to the mean

The regular part follows from Eq.(39), a((w) field with the same strength as tie hyperon (\/2**: Vs,
=by(@)pp/po+ba(@)pnlpo, With the coefficients defined Yox+ =Jox); in the lower plotin Fig. 10, we detach”™ from
in Eq. (40). The suppression of the regular pat, due to  the mean-field potentials/s« =0, g 5+ =0).

the baryon-baryon correlations can be taken into account, At the crossing point of the solid line with the correspond-

according to Eq(60) ing dashed line, we havepye= —1— a4 and thereforeq
=0. This means that the given density is the critical density
By()+Bp(w)+2b,(0)bn(w) P (w) for both thes- and thep-wave condensations. For values of
Aped ©) = P — P oW P , pe.s, for which the solid line is below the corresponding
1-bp(w)bp(@)(&np) (@) dashed linexpye< — 1— ayeq. This means thak<0 and for
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reg

reg

T 0.4 B

,-1-a

pole
ole’
.

a -0.

reg

FIG. 12. Valuesy,g (solid lineg and —1— a4 (dashed lines
ws= ue, calculated for the correlation parametér®). Solid lines
are calculated witlt* hyperons coupled to the mean field as strong
as> hyperons. Dotted lines are with* detached from the mean-
field potentials. Cases |-IV correspond to various sets of hyperon
coupling constants. Contributions from the hyperon populations are
included.

FIG. 11. Same as in Fig. 10, but with account for the hyperon
population in the polarization operator. (2) and in casesiii) and(iv) we also freeze the value of the

proton concentration. For each case, we calculate the total

such a parameter st~ condensation occurs in thewave  energy of the system with and withokt™ condensation.
state at a density somewhat smaller than that assumed for the IN Fig. 13, we show the energy of the lowést branch
s-wave condensation. for the dispersion equatiot73), »™"(kn,,Y, psP) Minimized

Contributions from the hyperon Fermi seas are includedvith respect to the momentum as a functlon of baryon den-
in Fig. 11. Comparing Figs. 10 and 11, we see that the hysity for different proton concentrations. We see that the more
peron population affects noticeably thpewave attraction. protons exist in the matter, the smaller is the value of the
Figures 10 and 11 also show that th& hyperons contribute density at which the kaon energy“'”(km Y,.p) meets the
significantly to theK™ polarization operator, increasing the electron chemical potential. Therefore, if the energy gain due
attraction in thep wave. The most favorable case for the to the condensation is large enough to compensate an energy
p-wave condensation is realized wher is detached from |oss due to fermion kinetic energies, the system undergoes a

-1-a

pole’

the mean-field potentials. first-order phase transition from the NHM state to the state
In Fig. 12, we show the results for the values of the cor-with a proton-enriched composition and a different density.
relation parameters evaluated in Sec. VII. Bgr hyperons Let us first compare the energies of NHM, NPM, ISM,

detached from the mean-field potentials our model predicts and PEM taking into account the possibility for tke con-
preference for the-wave condensation. Thpwave conden-  yansation in each case. For densitie@‘”(lzm,Yp 0)> e,

sation is preferred gic s=3.5p, for the cases Il and IV, and here is no condensation and the energy density of the system
atp s=4po andp. s=4.5 for cases Il and |, provided the is given by Eq.(4). When o™"(K,. Yo 0)<pte, the K~ exci-

swave softening of the spectrum is also rather high. Xor tations appear, replacing partially the leptons. These excita-
coupled with the same strength As s-wave condensation . ppear, rep g partally P :
. . tions occupy a single state with the lowest energy and form a
might be preferable to thp-wave condensation. _ . ST
K™ condensate. The electron chemical potential is fixed now

aspe= wmi“(IZm,Yp, ). The energy density of the system with
the K™~ condensate reads

In the previous two sections, we have studied the possi-
bility of K™ condensation assuming that this occurs via a E(K)_Emes+z EXn4 E E (wm'“(km,Y ) +E
second-order phase transition. Here, we investigate the prop-
erties of K™ excitations in baryonic matter of different par- (79
ticle compositions, in order to understand whether an abrupt ) ]
( of a first ordef phase transition into a state with new par- Where EG)g is the energy density of the condensate field
ticle composition and new baryon density can be energetitelated to the mean-field Lagrangian
cally favorable. .

We consider(i) nucleon-hyperon mattefNHM) with a Ly=[w?—mi—k*—
composition which we have discussed ab&see Fig. 1 (ii)
neutron-proton matteiNPM) consisting only of protons and The ¢ is theK™ condensate mean field with the wave vec-
neutrons ing equilibrium; (iii ) isospin-symmetrical nuclear tor k. This field component should be found from the mini-
matter (ISM) consisting of protons and neutrons with ~ mization of an appropriate thermodynamical potential. For
=p, and leptons that compensate for the electric charge dafimplicity, we neglect higher-order terms, such walspg|*,
the protons; andiv) proton-enriched matteiPEM) consist-  which represent an effective kaon-kaon interaction in dense
ing of protons and neutrons with concentrati¥p=p,/p baryonic matter. The effective kaon-kaon interaction depends
=0.7 and charge compensated by the leptons. Thus, in cases the structure of the mean field. In the absence of
(i)—(iv), we switch off the hyperons in our mean-field modela nonlinear effective kaon-kaon interaction, the

C. First-Order phase transition to the K~ condensate state

(80)
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FIG. 13. The energy of the
lowest K~ branch @™(ky,,Y, ,p)
minimized in|k|, and the electron
chemical potential, calculated for
the NHM, NPM, ISM, and PEM.
In the right and left panels results
with and without baryon-baryon
correlation effects are shown. In
the NHM case, the hyperon cou-
plings of case | are used and the
3* contributions are taken with
gé*:gi, VE*:VEr and Oos*
=0os -

o™(k,) [MeV]

condensate field is of the running plane-wave typepreference of ISM. From Fig. 14, we see that PEM, (
b= exr[—iwmi“(lzm,Yp ,p)t+ik,r]. The dispersion relation =0.7) has a larger energy than ISM. As it is also seen from

(73) is fulfilled for k= k.. and w:wmin(lzm’Yp,p), and the Fig. 14, the resulting isospin composition can be only

density of the charged kaon condensateis fixed by the Slightly aboveY,=1/2. In the following, we neglect this
electroneutrality condition small difference and consider ISM as the final configuration.

In Fig. 15, we plot the lowest branch of tie™ excitation

spectrummw,i,(|K) in the ISM at various densities. On the left
panel, baryon-baryon correlations are switched off and on

, right panel, switched on. We see that for densities
and thus, the energy density of the kaon condensate equal;(2.5_3'5p0, the spectra have mininaots in Fig. 15 at

) I finite values of the kaon momentuky,# 0. This signals that
Econe= @™ (Km, Yp.p) EB: UPB— Pe™ Pu— |- the transition from NHM to a dense ISM would occur as a

. . . first-order phase transition into the state with thevave
In Fig. 14, we show the energy per baryon in Varnous, aon condensate. The calculations shown in Figs. 1315 are
baryonic systems, NHM, NPM, ISM, and PEN (=0.7), ' gs-

with and without the kaon condensatdashed and solid 9on€ forgg-*:gz, Vs+=Vs, andgys« =0,y . The results
lines, respectively We see that for a density.=3p, with- obtained with th&&* hyperons detached from the mean-field
out baryon-baryon correlations aredp, with correlations, ~ Potentials are checked to be of minimal difference.

the condensate state in ISM becomes energetically favorable Assuming that the surface tension is large enough, the
compared to NHM. The transition to the new, more sym-initial and final state densities can be determined by the
metrical isospin configuration increases the Fermi energiegouble-tangent Maxwell constructib8,59. In Fig. 16, we

of the leptons(the latter ones are needed to compensate &how such a construction between NHM and ISM states. We
larger charge of protonsbut reduces the symmetry energy see that the critical density for the beginning of a first-order
of nuclear matter and also the total Fermi energy of nuclephase transition is equal to.=1.4p, without correlations
ons. Without &K~ condensate, the energy loss is larger tharand =2.1p, with correlations. The critical densities of the
the gain and the system chooses NHM with the compositiofiinal state argy,=5p, and=6p,, respectively.

shown in Fig. 1(in Fig. 13, the ISM lines lie above the NPM If the surface tension is smaller than some critical value
lineg). With the K™ condensation, the energy of the systemthen the phase transition results in the mixed phase
decreases significantly since leptons are replaced by kaon$0,58,61,59 In such a case, the local charge-neutrality con-
The latter energy gain is large enough to support thelition is to be replaced by the global charge-neutrality con-

PKk= ; UBPB— Pe Pu—>

250 250

FIG. 14. Total energy per
baryon of matter with different
particle compositions:  without
(solid lines and with (dashed
lines) the K~ condensate. Abbre-
viations are the same as in Fig. 13.
The curves in the right and the left
panels are drawn with and without
inclusion of correlations, respec-
tively. In the NHM case, the pa-

ol v oy 0 ) ) . . rameters are the same as in Fig.
1 2 3 4 5 6 1 2 3 4 5 6 13.

200 200

150 150

100

tot
tot

E /p-m  [MeV]
E /p-m [MeV]

50
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T %0 ' ' 20' FIG. 15. The energy of the
250 | 20 2_5/ 300 - 2577 lowest branch of the dispersion
250 3.0 equation(73) as function of the
> 200 1 3 35 momentum for the ISM at various
=, =, 200F T densities (labels are densities in
< 150 . ] 2 1ol 40 ] po). The polarization operator is
3-; 100l ' \r/ 3-; ' taken according to Eq.74). Cal-
35 o 100 F e, | culations  without and with
5ol | soF 50 ] baryon-baryon correlations are
4.0 c 5—\—w shown on left and right panels, re-
0 - - - 0 O spectively. Full circles mark the
0.0 05 1.0 15 2.0 0.0 05 1.0 15 2.0 position of the minimum.
k[m] k[m]

dition. The critical density for the appearance of kaon conthe hyperorH=(A,>,E) Fermi seas at densities above the
densate droplets within a mixed phase is still smaller than théyperonization poinp>p. ;= (2.5-3 ), are analyzed.
value given by Maxwell construction. The presence of the In Fig. 5, we compared the regulaswave part of the

mixed phase may have interesting observable consequencgslarization operator with the simplified form widely used in

(see Ref[62], and references thergin the literature. The kaon-nucled term extracted from this

‘Thus, relying on the analysis above, we argue that th@omparison £ =150 MeV) was found to be two to three
critical density of a first-order phase transition can be eveRines smaller than what allows for thewave K~ conden-

smaller than 2, and that such transition occurs into the ga4ign in ordinary neutron star matter composed mostly of
p-wave condensate state.

neutrons. However, we found a sizable attractive support
from the hyperon exchange terms of thevave scattering
amplitude contributing to the-wave part of the polarization
IX. CONCLUSION operator. Inclusion of these terms , which were omitted in
In this work, we constructed thé ~ polarization operator Previous works, makes a second-order phase transition to the
in dense baryonic matter of arbitrary isotopic composition,SWave K~ condensate state possible at densitie8p,
including both thes- andp-waveK ~-baryon interactions. We When the correlation effects are not included.
used a relativistic mean-field model to describe the baryon We evaluated baryon-baryon short-range correlation pa-
properties. The polarization operator was applied then téameters and corrected all tise and p-wave terms of the
study thes- and p-wave K~ condensations in neutron star Polarization operator, accordingly. The correlations increased
interiors. The results are presented for two different modelghe critical point of a second-order phase transition to the
of the equation of state, cf. Sec. Il and Appendix A. FiniteS'wave K~ condensate state to densitie4-5)p,, (see
temperature effects can easily be incorporated in our gener&ig. 9. We estimatedsee Appendix Cthe effects of the
scheme. kaon fluctuations. Their contributions are small at low kaon
To describe the kaon-nucleon interaction, we used th&nergies, and as first approximation at zero temperature, they
kaon-nucleon scattering amplitude obtained as a solution gfan be neglected.
the coupled-channel Bethe-Salpeter equation with an interac- Our next observatior(see Appendix € was that atk
tion kernel derived from a relativistic chiral $8) Lagrang- =0, the imaginary part of the pole term of the polarization
ian with the largeN, constraints of QC16]. The Ap ™1, operator is finite only in a rather narrow interval of kaon
SN~ S*N~! particle-hole contributions were taken into energies. If the electron chemical potential crosseskihe
account in the polarization operator. Effects of the filling of branch within this energy interval, thewave condensation

150

150

FIG. 16. Energy densities of
NHM and ISM with and without
the K~ condensate shown by
dashed and solid lines, respec-
tively. For NHM, the forces of
case | are used. Calculations with
and without baryon-baryon corre-
lations are shown in left and right
panel, respectively. The dash-
dotted lines represent double-
tangent Maxwell constructions be-
tween two phases.
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100 T T T

T — 200
/ / [
NHM 175
o5 ! o [
E 75+ ISM /T £ 150
> ‘ it > 125
g /./ %) L
=, 50t Py g =, 100 N
o A ,;;, o | FIG. 19. Same as in Fig. 16
£ Pz £ 75 i but for parametergAl).
8 o5l s 4 3
uE s Ve we 50-
7 25
0 1 1 1 1 0
0 1 2 3 4 5 6 0 12 3 4 5 6
plp, Ple,

will not occur. However, this possibility is not realized for may expect a stronger energy release compared to the pion
the parameter choice used in our model. condensate phase transition since the typical energy scale is
Further, we have investigated the possibility of a secondtarger,my>m,, .
order phase transition to tipewaveK ™ condensate state. We  Our derivations can be helpful not only for the description
showed that in the vicinity of the critical point of teewave  of neutron star interiors, but also for discussion of kaonic
K™ condensation the-wave part of the polarization opera- effects in other nuclear systems, such as atomic nuclei and in
tor, induced mainly byA —proton holes an@* —nucleon the systems formed in heavy-ion collisions. Therefore, of
holes, and some regular terms, is large and attractive. Thigarticular interest is the further more detailed analysis of the
may change the sign of the momentum derivative of thep-wave effects orK™ spectra in nucleus-nucleus collisions,
energy at the lowed€ ~ spectrum branch at the origin. If this also motivated by present SIS and SPS experiments and the
occurred, it would mean that there ispavave condensate future SIS200 program at GSI.
instead of ars-wave one appearing at somewhat smaller den-
sity. This statement, although rather model dependent, holds
for a wide range of varying parameters. The results depend
essentially on th&* hyperon coupling to the mean-field  The authors acknowledge J. Knoll, T. Kunihiro, M. F. M.
potentials. In the most favorable case, wi¥h is detached Lutz, A. Mocsy, T. Muto, G. Ripka, T. Tatsumi, and W. Weise
from the mean-field potentials, the second-order phase trafior stimulating discussions. D.N.V. highly appreciates hospi-
sition to thep-wave condensate state may occur already atality and support of GSI Darmstadt. This work was sup-
p~3po (with correlations includex cf. Fig. 12. This result ported in part by DFGProject Nos. 436 Rus 113/558/0 and
is also sensitive to the details of the equation of state and t436 Rus 113/558/0y2and by RFBR Grant No. NNIO-00-02-
the parametrization of the hyperon-nucleon interaction. FoP4012.
an equation of state with the parameters from &d.), the
critical density is increased with respect to the one calculated AppENDIX A: VARIATION OF THE PARAMETERS
with the parameters defined in E((ﬁ) OF THE BARYON INTERACTION
We have also discussed the possibility of a first-order
phase transition to &~ condensate state. We have found In this section, we investigate the sensitivity of the results
that in the presence of &~ Condensation, the isospin- of Sec. VIl to the particular choice of the EoS. For Compari-
symmetrical neutron-proton matter is energetically favorableson, we adjust the parameters of the mean-field model to
than the standard nucleon-hyperon-lepton matter for densfeproduce the EoS from R3], which is a good fit to the
ties =(3—4)p, (depending on the values of parameters ofoptimal EoS of the Urbana-Argonne groi6] up to four
baryon-baryon correlationsThis yields a possibility for a times the nuclear saturation density and smoothly incorpo-
first-order phase transition. At such a transition, hyperons artates the causality limit at higher densities. The correspond-
replaced by nucleons and electrons are replaced by the colild coupling constants of Lagrangid®) are
densateK™ mesons. In dense, isospin-symmetrical nuclear

ACKNOWLEDGMENTS

matter K~ excitations are condensed in tipewave state. 2 mg 2 m2 2 ma

With the help of Maxwell construction, we found that the 2 Nz " =91.25, < Nz " =195.6, gpNz = =77.50,
critical density at the beginning of the phase transition is @ My My

about 2o, with the baryon-baryon correlations included, cf.

Figs. 16 and 19. The final state density is about (5py6) b=0.08675, ¢=0.08060. (A1)

Occurrence of such a strong first-order phase transition may

have interesting observable consequences: blowing-off a pafihese correspond to the following bulk parameters of
of the exterior of the neutron star, strong neutrino pulls,nuclear matter at saturatiopy=0.16 fm °, binding energy
gravitational waves, strong pulsar glitches, etc. These effectsping= — 15.8 MeV, compression moduluk =250 MeV,
have been previously discussed in relation to a first-ordesymmetry energyas,,=28 MeV, and the effective nucleon
phase transition to the pion condensate stafg. Here, we = massmy(pg) =0.8my.
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300 —————F——— 77— The calculations show that a second-order phase transi-
: e tion to thes-wave K~ condensate state occurs at densities

250 F A (3.5-6)q, depending on the choice of the parameters. A
I e second-order phase transition to {ir@vave state may occur

200 i in model(Al) for p=(4.5-5.5p, in cases lI-1V, and it does

not occur for case | up tof,.

In Fig. 19, we show the double-tangent construction for
ol the EoS with the parameters of EGA1). The first-order
phase transition starts at the dens;ity: 2.50¢ (with corre-
lations includegl This value is only slightly larger than g
given by the EoS with paramete(s). The final state density
is p}sz.Spo, i.e., slightly less than the value »@given by
model (5). Thus, the main conclusion is that all the general

trends in the behavior of the kaon condensation are the same

A T R T S R for both models of the EOS. The critical densities of the
0 1 2 3 4 5 6 and p-wave condensations are only slightly higher for the

p/p, parameters of EqAL).

150

100

E/p-my [MeV]

50

FIG. 17. The EoS for ISMN=2) and neutron matterZ=0)  APPENDIX B: NONEQUILIBRIUM GREEN'S FUNCTIONS
calculated with the parameter $8j (dotted lineg and(Al) (dashed

lines). Solid lines show the EoS from RgB3]. Two-point (2P) functions (a Green’s function or a self-

energy are introduced within the Schwinger-Baym-
In Fig. 17, we show energies for the nucleon isospin-Kadanoff-Keldysh(SBKK) approach as, see R¢64],

symmetrical matter and the pure neutron matter for two

choices of the mean-field EoS, modBJ, simulating a softer

EoS and(Al) simulating a stiffer Urbana-Argonne EoS. iF(X,Y)Z(

Even though parameterl®) and (Al) are rather different,

energies and other thermodynamic characteristics of the neu-

tron star matter are rather close to each other for both param- =

eter choices in the absence oKa condensate. For the ISM

case, the EoS with parametei&l) is significantly stiffer

than the one calculated with parameté&sat p=3p. where7 and 7! are the usual time and antitime ordering

In Fig. 18, we show concentrations of the baryon speciesperators. Note that in notations of RE85], in contrast to

in neutron star matter corresponding to the EoS given byhe Green’s functions, the®,=+" self-energies would have

choice(Al) for the four choices of the hyperon-nucleon in- an extra sign “-,” since they contain the vertice¥ ™ =

teraction(cases |1-IV which we have used throughout this —iV, and V*=+iV,. Not all four components of are

paper. We see that the critical density of the hyperonization independent. The useful Kubo-Schwinger-Martin relations

~3p, for all choices. The general trends are the same as themong them can be found in R¢64].

ones in Fig. 1. The most essential difference is that the pro- We denote the fermionic Green’s functions and self-

ton concentrations in Fig. 18 are smaller than those in Fig. lenergies byG! and3 respectively, and the bosonic ones

Thlst shmild h?vg c%nseﬁue?rc]:es fotr the neutr;not_ cooling 0fspii andT1' with i,j== . The hats on the fermionic 2P

neutron stars. Indeed, when the proton concentration exceeds_ .. . S SRA_rh

11%-14% an efficient cooling mechanism becomes Operiunctmns point on their spin structure, e.6,*"=[p—my

_ S RA -1 ; i w
tive via the direct Urca processes-n+e+ v. This differ- 2™%(p)]"". For systems in equilibrium, the =+

ence might be used, in principle, to select the more appro-GreenS functions are connected to the spectral functions and

occupation numbers by the Kubo-Schwinger-Martin rela-

iF~(x,y) iF‘*(x,y))
iIF 7 (x,y) iFT"(xy)

(TA(0B(Y))  F(B(Y)A(X))
(A)B(y)) (T *A(x)B(y))

priate EoS. tions
l-o T T T T T T T T T T T T T T T T .o ~ - A —_ ~

§ o5 .\”&'\” TS TN @] 16 = —Apintta, 167 (p)=ApIL-n(9)],
§ 0.6 + \-- \- \

£ oal N N N iD™ " (p)=Ap(p)n°(e), iD**(p>=Ab(p>[1+nb(e>(], )
e ANE A i B2
< 02 - = -

50 o P s T a2 e

01 345012345012 4501234586

IS (p)=y(p)nf(e), iZ* (p)=—n(p)Ll-n(e)],

plp,
STt - _ b
FIG. 18. Concentration of baryon species in neutron star matter ™" (p) == yp(p)n™(e),
for EoS (Al). Four panels correspond to four choices of the
hyperon-nucleon interaction parameters specified in text. i (p)=—yu(P)[1+n°e)], (B3)
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where Ai(p) = —2ImGf(p), Ay(p)=—2ImD(p) are the 1. Correction of the baryon Green’s functions

. LA due to kaon fluctuations
fermion and the boson spectral functionsy(p) .
_ —2ImEfR(p), Y= _2|meR are the corresponding Ir_1 Refs.[1_9,2_0,39—41,4]3 it has been argued that fluc-_
widths, and tuation contributions to the hyperon self-energy are essential

at low densities and at kaon energies not far away from the
b 1 mass shell. This is, mainly, due to the presence of dynami-
n"2(e)={exm (e~ pugp)/T]=1} (B4) cally generatedA(1405) resonance close to the kaon-
nucleon threshold. This resonance dominates giveave
are the fermion/boson occupation numbers, ang stands  kaon polarization operator ai~my and it is very sensitive

for the fermionic and bosonic chemical potentials. to the Pauli-blocking effect and to the modification of the
In the qua;iparticle approximatioryg— 0 in the bosonic  kaon spectral density. At lower kaon frequencies, corre-
Green’s functiong we have sponding to our main interest, the influence of thgl405)
resonance is small. Thus, what remains to be analyzed are
Ab(q)%Zwé[qg—ﬁz—mﬁ—Rel'IR(qo,ﬁ)] the self-energy contributions oA (1116), >(1195), and

3.*(1385) resonances. Here, we demonstrate that in the low
b - energy region and at baryon densities of our interest these
:zi 2mZ 3 59~ wp(A)), (BS)  contributions are rather suppressed.
Let us first show this on the example of the diagram

bi
Z; K
RGDE(Q)%E +,
T Qo wu(q) = H‘ 3 H
i . N
WhereZE"=1/[2q0—(9ReHR/r9qo]qO:wL(a) are the quasipar- (C1)

ticle normalization factors corresponding to a given spectrum_ = i i
This is the self-energy insertion to the full hyperon Green'’s

-
branchawy(q). o . function due to th&KN intermediate states. In E¢C1), we
As a step towards the nonrelativistic limit, it is convenlentdraw the full vertices. The nucleon line represents the full

to approximate Athe spin structure of the fermjonic Green’SGreen’s function. To be specific, let us concentrate on the
functions as Gf(p)=(p+m)Gf(p) and A«(p)=(P  kaon-proton self-energy insertion for thie hyperon. This
+m)Ag(p). In the quasiparticle approximatiory{—0), we  corresponds téd=A, K=K* (according to selected arrow
have direction, N=p in diagram(C1).
Within the SBKK diagram technique, using the relations
between the retarded and-*, + " Green’s functions and the

- - o
Al(p)~2m 8] €~ e5(p) — RG‘ER(eyp)]:Z%—ﬂé— €5), self-energies, we obtain
€p
(86 iSR re-+ R AR -+
—iX (p)=fV[G (p+a@)D"(a)+ G (p+a)D™"(q)
f
- 1 5 A
ReGH(e,p)~ —— —"—, Z;=[1-ReSP/oe?_]Y, —iG~*(p+q)2ImDR(q)
65 €— 6’5
. . dq
, , R +GR(p+a)DRX(a)IV——. (C2
where e; obeys the dispersion equatior;= €;(p) (2m)

R( - 2\ wi N 2 22 3 R . . .
.+Re2 (€5.P) W'th €o(P) mf'+p - The Selfl ene:rg;& Here, —iV=—iV,I" and —iV, are the full and bare "
includes averaging over the spin structd€=; TH{X"- (p vertices, andV =iV, iV, are the corresponding+ " ver-

+T_fr)]}' field soluti f1h i f motion f tices,I" is a scalar form factor, which includes short-range
b € mgaP-nle .sofu |on(§) 02 € equba lon © m? .'Ond %r nucleon-baryon correlations and simulates, thereby, the dif-
a baryonB, following from Eq. (2), can be parametrized by ference between the bare and the full vertices. The last term

the self-energyER(e,52=2V36+ V%—ZmNQUUWL 92502 in Eq. (C2) vanishes, since both retarded Green’s functions
Then, we havee;=Eg(p), with Eg(p) defined in Eq.(3)  have their poles in the same complgx semiplane.
and ZSZ[l—VB/EB(ﬁ)]_lz1+VB/€B(5)%1- To separate the contributions from partick$ and anti-

particlesk ~, we may use the following decompositions for
the retarded Green’s functions and the Wigner’'s densities
APPENDIX C: EVALUATION OF FLUCTUATION TERMS

Rl M) — R _ A
We will estimate fluctuation effects to the baryon self- D™(a) = (qo)Dyc+(Q) + 6(— o) Dy-(— ), (CI

energies and the feedback from the in-medium kaon modifi- . 4 o
cation to the polarization operator. D™ (a4)=6(do)Dy+ (a)+6(—do)Dy- (—q). (C4
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This allows us to reduce the integration owgrin Eg. (C2) In the region interesting for ugk-<E,(0)—E,(0), the
to positive values only. For tha self-energy, we have 6 functions in Eq(C7) allow only for the contribution of the
lowest branch of thé&K™ spectrum.

6(do) Further evaluation can be easily done fDFO. For posi-
q qO 2 + . . . .
2 2miVAIGT"(p  tive €, the imaginary part differs from zero only foe

(p)——Tr{ER(er )=
! J >wk-(0)+Ey(0), and it isequal to

+q)[DK+(q)—2iImDK+(q)]+GR(p m3R(e.0) .2
) 0 - —_——  —
+q)iD s (q)+iG~*(p—q)[DE-(q) ot =~ Irala I(@)a°6(a—pe,p), (C8)

—2ilmDy(q)]+GR(p—@)iD (@)}, (C5)

whereq is a solution of the equation _(e,09)=0 anda

— 5 320 -, — P
Where we used the notations =—0dA_(€,00)/99°|g2=2>0. If q is small, namely,

_ _(€,04
V2=V2r¥(q), V3 —A_ (600)%(1) <1,
q G2
g=0
_c2 (Il5+mA) (p—g4+my) o
KNAZ 2m?* Grs 2my, s we may approximatg~qo=vA _(€,0,0)/ay, Where

(C6) JA_(€,09)

Having in mind that we are interested in the self-energy in- aq q2=0

sertion to theA —p~? loop, after expanding the denomina- o _
tors of the fermionic Green’s functions near the poles, androm the# function in Eq.(C8), it follows that the fluctua-
assuming that fermlons are nonrelativistic, we may insertions contribute to the |mag|nary part of the given diagram

(po)=mfw, p>=mi2, and w.|q|,(m}-mg)<mi,my. O if € wy-(0)+Ey(0)+ P yao.

As a result, we obtain at the nonrelativispewave vertex From Fig. 15, we see thad - (q) is a very flat function
V2=p29?, with v2=C2,,ms/m%=(0. 3 0. 5)m2 For Of g, and we can, therefore, neﬁglect the momgntum depen-
S hyperon, we would have v3= CKNEmN/mE dence of th&K ™ spectrum for@:|q|52 m,.. The imaginary

~(O 07-0. og)m,,, and forX* the corresponding coupling part of the diagram at f|n|te is
is v3=3CE s« Mi/m¥, =(0.3-0.5)2.. A o
To evaluate IR and R&R, we use the quasiparticle Im2%(e,p)  , (Ipl+a d|Q||Q|BZK_F2 N
approximation for the spectral functioriB6). As we shall om* v 115190l 477|5| q [mN
see below, nonquasiparticle corrections to the intermediate A
fermion Green’s functions, although exist, produce small +A_(€,0,016[A_(€,prp.0)]
contributions to the self-energies at the kaon energies of in- ’
2
terest. N voMy P2 (@ B2
We first evaluate I&R. Using Eqs(B2), (B5), and(B6), ~ T o Z_ (do)do(do+P?)
we get from Eq(C2)
X G[A,(E,pF,p,O)].
Im3R(e,p 10 dq . - -
mE—(f,p): — _f d qzvngfz{zg 11 The energy and momentum of th'e within the Ap~?!
2my (2) loop, contributing to the< ~ polarization operator dtj|=0
—nf;,a]ts(AL(f,F;,a)) aree=Ey(p) + wg-(0) and|p|sprp. Therefore, the condi-

tions for nonzerod functions in Eqs(C8 and C9 are not
fulfilled within the momentum integration interval of the
Ap~* loop.

For R&R, using Eqs(B2), (B6), (C3), and(C6), we get
from Eq.(C2)

+Za n5+d6(A (€,p.9)},

XAl (€,p,0)=e* wy-(d)—Ey(p=Q),

(C7) )

- Re?R(f p) | i
wherei runs over all theK ™ andK™ branches. Heray(q) = —E f voq m
are functions ofy? andn~— 0(pr—|p|) is the proton occu- -Lepd
pation function. We used also that occupations of Kal ne KT
andK™ mesons are absent &0 (we do not consider here p”‘—q] (C9
the processes on the kaon condensate)field Al (,p,q)
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For relevante, the main contribution is given by the first for p,<3p,. We conclude that the absolute value of the
term with the lowesK ~ branch. Forp|=0 the integral in  fluctuation contribution is small fop—0 and this can be
Eq. (C9 is determined by|a|~a and we can expand mimicked by a variation of the weakly constrained param-
A_(€,09)~a(q?—q?). If Zg" andl" depend weakly on the €t€rs of Lagrangiar).

momentum, the remaining integration is straightforward and Frgm I_Eqs.(C.10) and (Cl})’ one can see that R is
logarithmically divergent ajtp|ﬂp,:,p whenq—pg. Inor-

ives
g der to analyze which effects this can produce for the *
. 22 oK 3 contribution to the polarization operator, we separate the
ReS (6,0)~UOF (@Z, b+—2p leading divergent term
2mry 27 3 Fp -
( R) - PEp. Prp— bl
— 2 kT2 K , )
_ 1 T =voMNI“(Prp)Zp —zln—
—g?ql51n Ll pe 1 (C10 2mX ) g o PR
|9l = Pep N
. L - . . =3C Ion’p—|p|, (C19
The extension for finitgp can be easily done if we neglect Prp

theq depe.ndence of .the kflon spectrum. This IS_)]US_t)Ierd byand estimate the variation of the Lindhard functi@9):
our numerical analysis fdg|=2m,.. Then,A_(e,p—q,0)

~[a§—(5—ﬁ)2]/2m’,§, and the integration gives 1 1

A—3cIn(1—p/pep) Al

prod|p]|p|*
2

8(DPAZJ

ReSR(e,p) vimy pe 0 ™
L 247K | FRP 2 2
2m* - 2 r (qO)Zqo 3 + (Aot P)Pep Using Eq.(C12), we write

- D\ /P,A=F(3c/A),

- — 1 |]dol+ P, P pp [ Dpy
~(@+PAaol5 N[ =——"{|. (C1D
|q0|_pF,p 1
F(a)zaf dx(1-x)%/(1—alnx), (C15
Now, we estimate the real part of the Eyperon self-energy at 0
p=0 ande=E,(0)+ wx-(0). Wehaveq,—0 and and find
Res R |6® ) [P,y |<0.2 for |3c/A|=<0.6.

*

%czvgm;\g#(o)zg*pp0.3m7,1“2(0)&,
2m?* Po

The above estimations prove that the self-energy correc-
tions of the A propagator induced by the kaon fluctuations

with m* ~0.6my andzg’zzg;ow 1 2wk-(0)]~1/(21) - EQiagrarltL(Cl)] I<|jo not modifydthe prop}:artiesh'd}i]* excita- y
Assuming that the modification of thpwaveKNA vertex is lons with small energies and momenta, which we consider

determined by the graphical equatit86) with Ap~ ! inter- in the main part of this paper. The same estimation can be

mediate states, we can use the corresponding part ¢6Bg. done also for th&°n contribution to theA self-energy and
and write for theY andX* self-energies.

1 2. Correction of the baryon Green’s functions

I'o)= due to pion fluctuations

1—f,Cod -(0),0)
1CoPpr(@k-(0).0 There is another type of diagrams

The Lindhard function can be estimated as T
D\ (0 -(0),00~ — =-2, (C12
P Ay (0k-(0),0pg,) A H'

(C16

relating to pion fluctuations. Pions are soften in the nucleon
matter already at densities pg. The softening effect may

whereA = wi-(0)—E;(0)+E,(pgp). The value ofg, (0)
—Ey(pe,p) can be estimated from Fig. 5 where this is shown
by the dashed-dottzed line. We estimae- ~ My and there- result in pion condensation at densities p.,,, where the
fore, &py\~—0.5m7pp/po. Thus, we obtainl’(0)=1/(1  cyitical density for pion condensatign., might be smaller
+0.30,/po) and than that for the kaon condensati6,21. However, in this
work, we concentrate only on kaon polarization effects.
Rex®/(2m})=0.2m,, (C13  Thus, we disregard such a possibility assumprgp., .
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The main contribution to EqC16) comes from the width From Eq.(C18), we obtain the advanced polarization op-
of soft pions due to the Landau damping. The maximum oferator
the pion spectral function is achieved at a small pion energy

go<m, and a finite momentung|=|q,|. In the diagram 5HA(k):f [—iP* (k+q)DAQ)+PAk+q)iD*~(q)
with the 7% intermediate states the typical momenta of hy-

perons are~ pg, for Hn™ ! loops in the thek ~ polarization — Pt (k+a)2ImDA

operator or~pg, for the Hp~! loops. With a simplifying P (kta)2ImD(q)
assumptiod§m|<2ppn,2ppp, the nucleon Green'’s function _ ] d*

can be factorized out from the integral. The result is then +'7’A(k+Q)|DA(Q)](2ﬂ_)4. (C19

reduced to the calculation of a pionic tadpp&¥]

r whereP corresponds to thBIN~ loop (including vertices

-~ The last term in Eq(C19 is zero.
' } Let us consider first the real part of the diagram. Using
H‘\ H Egs.(B2), (B3), we obtain
_>_‘_>_
(€17 5RdTA(k)=f {[2+n (ko= o)1 vp(k—a)REDA(— )

At zero temperature, the in-medium contributions from pion d4q
fluctuations given by EqC17) are numerically small for all +[1+nX(qo) JA(Q)RePA(k+ DI
densities except in the closest vicinity of the pion condensa- (2m)
tion critical point[67,21]. For finite temperatures such con- (C20

tributions are substantially increasggB].
The fermion self-energy insertions discussed here entewhere y,=2ImP* and in the first term we have replaced
the loop diagrams of the kaon polarization operator. Sincg— —q. Using relations %n‘i%: —ngo and (C3), we re-

we found them to be rather small, we may still work with the 4 ;e the integration in EC20) to the positive energies:
guasiparticle fermion Green’s functions in the hyperon—

nucleon-hole loop diagrams treating fermions on the mean- d“q
field level, as we did it in main part of the text. 5Re1‘[A(k):J 2 0(ao{[1+ nK(ko—0o)]
)
3. Fluctuation contributions to the K™ polarization operator X yp(k—q)ReDﬁ,(q)Jr[lJr nK(ko+do)]
One of the important fluctuation processes in the kaon A K
polarization operator is given by the diagram X yp(k+q)ReDy+(a) +[1+n"(do) JAk+(q)
K X RePA(k+q) +n(do) Ax-(a) RePA(k—a)}.
(C21

—3011 = . The NN~ loop is suppressed at large frequencies

>|Kk|vg N+ k22m? . Therefore, the second and the third
terms give a small contribution in the energy region of our

-1
N interest. The fourth term is identically zefa*(qy)=0 for

(C18 0o>0 atT=0]. Thus, we may keep only the first term in Eq.
The diagram with free vertices was extensively discussed ir(1021)
the context of kaonic aton]49,20. In Ref.[19] both verti- d'q
ces were t:ﬂ(ghz con|s=t:i\n2ts and _ equgl tQ,z47r(_l 5Rd‘[A(k)%f Z g(qo)vér2[1+nK(ko_qo)]
+mg/my) \/(aEN +3(agy)° for isospin-symmetrical )
- — . . .
case, wherey, is theKN scattering length for isospih In X 70(k—q)ReDﬁf(q). (C22

the threshold region, a large value of the vert¥y

~4m/m; was obtained. We will also use the energy-Here, we introducedy,=V3I'2y,, using the fact that the
independent bare verté¢katched boxbut estimate/, using  correlation factoil” is expressed through the Lindhard func-
our amplitudes of Figs. 2 and 3 in the far off-mass-shelltion A, which leads to 4'2 factor. In the spacelike region,

region. In this energy regioV,,~1/m_, i.e., a much smaller _ % -

value than that in the threshold region. Accordingly, we ex- oK) YO(Eo’k). has a compact analytic presentati@i],
o . N . which atT=0 gives

pect a significant suppression of the contribution from this

diagram to the kaon polarization operator. Another suppres- mi 2k

sion comes from short-range correlations taken into account yo(ko.K) = N0 e ko<Q_(K), (C23

>

in the full box (right vertex. 2m|k|
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_omEe N . ResII7(ko,0)
Yo(Ko,K)= —==[Q_(K) +ko][ 2., (K) ~ ko],
47|K| V2m#2 | { [a-(o)
. . ~— I'2(0)zf ( f
0<Q_(K)<ko<Q,(K), (C24) (2m)? 0
20en \dlqlla] . fm(ko) dlqq|
" 2 + O_ + —Kkp,
o 2lKlpen*K® fm(ko)) 272 Vg 2w 1

Q.(k)
2my,

bordered byq. (ko) =pen=* \/sz’N—Zm’,t,ko which follows
from the equatiorky=Q _(qg-) . The integration results in

C 2kom | 32
pF,N|:1_(1_ 0 N) '

Let us discuss the low energy contributig@23 to the
polarization operator which we label below by subscript “1.”
The qq integration is easily done using

ResTI%(kg,0)=—

o 47? PEN
max v,0)<qo<kg, v=ko—Q_(k—q). (C28
] Now, we discuss the contribution from the energy region
We obtain (C24) which we indicate by subscript “2.”
R K~ 2, %3 3
Ay VoM d’q I°Z, ResTIA (ko0 = 0 [#Prndldl o 60
ResII (k) ~ >l 3T o 2170 2m4Jo |*| q 0 -
(2m)% Jik=al<2pe (27)° |k—q| (2) a
- ko= (a)
- [ko—w-(d)] x [ g
X | [ko— wk-(q)]In - oL@ °
[ko—wk-(a)] M 1.0)— () ko= 024 (d)

X[Q—(a)+k0_QO][Q+(a)_ko+QO]
: (C25 Jo— wk- .

—ko+maxv,0)

) o . ) For ko~ wy—(0) andk=0 this contributes to
This contribution can be easily estimated fdk,
— wk-(0)|/kg< wk-(0) andk=0. )/Ve note that due to the N V2me® 206 q] s
flatness of the kaon spectruay-(q)=wy-(0). Hence, for  Resll5(kg,0)= —TI“Z:
ko~ wk-(0), we canneglect the first term in Eq(C25.

(2m*Jo g

Then, -
- - - Q_(q)
X 0(ko—Q_ ()| 2_(q) 2, (q)In >
zm*z Q+(Q)
ReSTTA (K, 0) = — —— 3 1
(2m)? 202 O (D — 202 (G
29_(Q)+29-(Q)9+(Q) 20+(CI) .

2pend|ql|qg - -
xf FN&'S'FZZE min(ke, (). A

0 2@ We have neglected terms| ko— wk-(q)] in the integrand,
(C26) since these are small due to the flathess ofthespectrum.

For ko~ wg-(0)>p¢ \/(2mf), we find

For ko~ wk-(0)>p2 \/(2my) there is always,>Q _(q),

) C
and we find ReSTIA(ky,0)=3 4pF’2NG(0), (C29
a
Vomy - Cpen ~ 2 *
Reb‘H’i\(kO,O)z— . r2(0)zg PNPEN= — = and forkg~ wg-(0)<pgy/(2mf), we have
41 4
(C27) A CPen *
ResII5(kg,0)=3 A2 G(x), x=\/1—2k0mN/p§FvN.
N a

For kg~ wk-(0)< péqN/(Zmﬁ), the inequalitieky>Q _(q) (C30
or ko< _(q) together with G<|6||<2pF,n determine three
regions for momentum integration, Here, we introduced functions

015803-27



EVGENI E. KOLOMEITSEV AND DMITRI N. VOSKRESENSKY PHYSICAL REVIEW (58, 015803 (2003

V3l 2yo(k—q)Ak-(q).
(C35

2 5
G(0)=—3, GXx=1)==7(1=X). (C31)  TheK~ spectral function can be presented in the form

1=x 1 (kodqy d3q
G(x)= J f dtt{ 4—1t2 |n——4t2+4t A_Y _ 9%
(x)= 16( 1+x) (4=t9In5— moll*=2=5] 24 2y

The suppression of the nucleon—nucleon-hole loop in the Ax-(a)=27Zy 8o~ wx-(0))

scalar-isoscalar channel can be taken into account as in Ref.

[21] [for recent review, see Ref.70], Egs. (4)-(8)] I' " ¥(a)

— 11— 2(f+')CoAun(w=0G=pen) ], WhereAyy is the [q3—mg—RelTA(q) 1%+ 5 »2(a)
nucleon—nucleon-hole loogwithout the spin degeneracy

factor 2, and Ayn(w=0,0=Ppn)=—MyPen/(272). The (C36)

Landau-Migdal parameters of tHéN interaction aref=0 . o i
and f'=05-0.6 [71]. Thus, we have I'~1[1 where we separated two different contributions: The first

+0.3(on/po) 3. For py=(3-5)p, we have C~m_. termis the ordinang function from the spectral branch; the
second term is a possible nonquasiparticle contribution,
which can be obtained only by the self-consistent solution of
Eg. (C35.

Let us now consider the quasiparticle contribution to the
spectral function given by the first term in E36).

When wy-(0)> pE’N/(Zm’,{I), the attractive contribution of
diagram(C18) is estimated to be

—ResI1A<0.3m2.

The ReSHA remains attractive also for larger densities, when 4 mi 2\/2

wi-(0)<pE\/(2mf). However, its absolute value is addi- (Ko, K) = J* ) _q%

tionally suppressed by the ratioy-(0)my/pé . k—dl<2pep (27)° 27|k—q
The imaginary part of the diagram under consideration

[ko— wk-(a)]

describes the processes in which a kaon excitation dissolves X f(ko— wi () 0wy () + Q_(K—q)—Ko)
into multiparticle nucleon—nucleon-hole modes. If tKe "
energy meets the electron chemical potential in the region + My [Q (k— Q)+ko wk-(9)]
where the imaginary part of this diagram is, & conden- 2|k—q|?
sation does not occur via a second-order phase transition. .. . L.

Using Eq.(C19), we obtain X[Q 4 (k=0q) —ko+ wg-(q)]0(ko— Q- (k—0q)

o ~wx-(q K—q) + ok ()~
|m5HA:f a [|P+7(k+q)|mDA(q) wg (q))0(9+(k q)+wK (Q) kO)] .
(2m)*
+ImMPAk+q)iD " " (q)]. (C32 As before, we assume thai - (q) is a very flat function

in g2. Then, we obtain
With the help of relationgB2) and(B3), we find

2 * 2\ /2
N dq 1 ) Y= 0(2)0< pF’f —2| 2 ZOZJM 'z g Zlald[q]
Imall =f WEYP(WFQ)AK(Q)[” (Go) 2my 4> Ja-(
mi3V2 r2en dlq . R
—n°(ko + o). (C33 +“—3°f o da aT20 () +Z)[Q () -2
87° J-a_(-2 |q|
Using relations # n®(—gg) = —n°(q,) and(C3), we reduce o2 x2,2
the integral in Eq(C33) to the positive energies: ~0(z )0< F* z) NW OzZO szFNm
N
|m5HA:J’ 6(do)——— 4q4 2{7P(k a)Ax+(9)[n°(qo) p|2=N MV K™ 2.4 *_) 2
(27 +6(z)6| 4 : -z = Zy I peyHE2mMyZ/pE ),

—nP(ko+ o) 1+ yp(k— ) Ac-(a)[ 1+ n(qp)
+n(k0_q0)]}. (C34) H(X):jz ?[41:2_(1:2_)()2],
VI+x—-1

The second term gives the main contribution. Taking into
account that atT=0 there is (PrngoJrnEo,qo):a(ko

1
_q,), we obtain H(x—0)=~4(1+X),H(x—8)~ 7 (x~8)%  (C37
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where z=ky— wk-(0) . As follows from the# functions
there is no width for energieky<mingwy-(Q)}=wk- (G
and for kg<wg-(0). The width exists only above the
branch. Exactly at the branch, i.e., fég=wy-(K), the
é-function contributes only fok+0. Thus, the quasiparticle
part of theK™ spectral function generates no widthkat O

at the critical point of the second-order phase transition to
the swave K™ condensation, ankly= u.= wx-(0).

At low energieskqo< wa(lZ), where thes-function term
does not contribute, there might appear another contribution
from the self-consistent solution given by the second term of
(C36). In the following, we find this self-consistent solution
and demonstrate that the width exists evenkfer0 affecting
the critical condition for thesswave condensation. In order to
avoid rather cumbersome expressions we make several sim-

¥(Ko)=

PHYSICAL REVIEW C68, 015803 (2003

2\ /2

2
m VOF J[komm/pF,N|q’|d|d’|
8t 0

2PFN [lalpe Nl /my — g2/2my
' T FNI /My — g7 emy
+ f . |Q|d|CI|) f dz
2pg N~ [komy/PENI 0

* 3\ /212
my“Vol'

= [P dldld [ az|2Ake-2)+
y4v4 —Z _—
0 anat f, Alko 1674

% f[komm/pF'N-l— fZPF,N
0 2pg N~ [komy/PEN]

dq| [ minfk, 0 (@)}

. : dZQ_(q)+z]
lal Je-@

plifying assumptions. We assume thigg~ wy—(K)<e€gy
and @wy-199?), is very small in the interval €|q|
<ko/vgy- Then, the spectral function simplifies as

(Z§ )2¥(qo)

[do— wk-(0)1%+ [ Z8 ¥(qo)]?’
(C398

Ax-(go)=A(qo) =

and the self-consistent solution of B35 for the widthy
is determined by

mA2VEL2 (20en . - (mintko. 0 (@) —
7(k0)~—4J d|q||Q|j O et
8 0 0

mE3V2D2 (2pen d|g] [ mintke.0. (G -
LM Vo f Fn dlq] [ minfio Dy @)

167* Jo  |q| Jo_@

+2][Q (@)~ Z]6(ko— Q _(q))A(ko—2)

m?* 2212 a_(kg) [2p - 7

_ N 0 0+ F.N d|q||q| Qi(q)dZ

4
8w 0 d. (ko) 0

Q+(k0) N I(O —_
+ [ dldlidl [ “dz| 2Ako-2)
_ (ko) 0
N m’§,3V§F2 Jqf(ko)

1674 0

20en 1d| Q| [ minfke. 0, (G -
+f FN}M min{k . (q)}dz[Q,(q)Jrz]

a0 |a] Je @

X[Q,(q)—Z]A(ko—2), (C39

where we replacedjy=ky—2z . For ko~ wK—<pE’N/2m’,\],
we have q_~kom{/pen and g.~2pgn—Komi/Pen -
Then, Eq.(C39) reduces to

X[Q4(q)—2Z]A(ko—2).

To solve this equation, we assuméky)=aky for small
values ofky, which we consider here. The main contribution
comes from the third integral of the first linek,. In the first
integral |q|~ko and z~ko. In the second integral [
—|q|~ko and agaireckg. Thus, the first two integralg k3.

In the fourth integral after the replacement |g|pg /My
—g?/(2m}) + £, we see that~q?~k3 and the integral is
ocké. In the fifth integral, besides this replacement, we intro-
duce |q|=2pgn—kom¥/pen+y and observe thattey
«Kkg. This integral isx kg. Thus, keeping only the third inte-
gral, we obtain

* 2y /2
N 0
47t

ako= (2§ )T?pEy

kao za(ky—2z)dz
0 [ko—2z— wy-(0)12+ 3 (Z )2a?(ko—2)

which has the nontrivial solution

y=ako=mx Vol pg nKo/ 72, (C40

for «>2/Z5 . As one may expect, this inequality indeed

holds for rather large densities sind% ~1[2wk-(0)]
>1/m,, for small valuesky~ wy-(0).

A principal question is whether there is a width #r at
low energies. A second-order phase transition wiki acon-
densation cannot occur ibk-(0) crossesue in the energy
region, where imaginary part of the polarization operator ex-
ists. The condensation is possible when the electron chemical
potential exceed®&y-(0) reaching the upper border of the
region with the width. At least fowy-(0)> pEN/(Zm’,Q), we
cannot find self-consistent solution fgr We would like to
stress that a second-order phase transition to the s-ave
condensation may not occur only ifok(0)=pu.
<pZ,/(2m¥). For realistic values of parameters, we have
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wK(O):Me>p§n/(2mﬁ) and there is no problem for the

swave K™~ condensation.

Thus, the above examples demonstrate that in spite of
many new peculiarities associated with the fluctuation pro-
cesses we may drop the fluctuation contributions for a rough

analysis and treat baryons on the mean-field level.
A diagram similar to Eq(C17) (with kaon lines instead of
hyperon lines and a different verbexdescribes the

K™ a-7K™ interaction. Within the simplifying assumption
for the pion momentuniq,,|<2pg , the diagram is reduced

to

PHYSICAL REVIEW (58, 015803 (2003

(C4)

At zero temperature, the in-medium contribution of pion
fluctuations given by Eq.C41) is numerically small except
for a narrow region near the pion condensation critical point
[67,21]. For finite temperature such contributions are sub-
stantially increased in the vicinity of the pion condensation
critical point[68].
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