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Negative kaons in dense baryonic matter
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The kaon polarization operator in dense baryonic matter of arbitrary isotopic composition is calculated
including s- and p-wave kaon-baryon interactions. The regular part of the polarization operator is extracted
from the realistic kaon-nucleon interaction based on the chiral and 1/Nc expansion. Contributions ofL(1116),
S(1195), S* (1385) resonances are taken explicitly into account in the pole and regular terms with the
inclusion of mean-field potentials. The baryon-baryon correlations are incorporated and fluctuation contribu-
tions are estimated. Results are applied forK2 in neutron star matter. Within our model a second-order phase
transition to thes-waveK2 condensate state occurs atrc*4r0 with baryon-baryon correlations included. We
show that a second-order phase transition to thep-wave K2 condensate state may occur at densitiesrc

;(3 –5)r0 dependent on the parameter choice. We demonstrate that a first-order phase transition to a proton-
enriched~approximately isospin-symmetric! nucleon matter with ap-waveK2 condensate can occur at smaller
densities,r&2r0. The transition is accompanied by the suppression of hyperon concentrations.
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I. INTRODUCTION

Strangeness modes in compressed hadronic matter
been the focus of interests during the last decade. Stra
ness is considered to be a good probe of the dynamic
heavy-ion collisions. A vast amount of data is already ac
mulated for different collision energy regimes at GANI
GSI, CERN, and BNL facilities@1#, and new data are in
advent@2#. Understanding strangeness production require
systematic study of the evolution of virtual strangene
modes in the quark-gluon plasma and in the soup of virt
hadrons. At the breakup stage, these virtual modes are r
tributed between real strange particles which can be obse
in experiment.

Another interesting topic is the strangeness conten
neutron stars. With an increasing density, strangeness sh
up in the filling of the hyperon Fermi seas and/or in t
creation of a kaon condensate. A better understanding o
topics mentioned above needs more in-depth knowledg
the kaon-baryon interaction in dense baryonic matter. T
possibility of kaon condensation in dense nuclear matter
risen in Refs.@3,4#. Kaon condensation in neutron star int
riors may have interesting observational consequences~i!
The softening of the equation of state~EoS! due to the ap-
pearance of a kaon condensate phase lowers the maxi
neutron star mass and can induce the transformation of
tron stars into low-mass black holes@5#; ~ii ! Kaon condensa-
tion is predicted to be accompanied with the change of
nucleon isospin composition from a neutron-enriched s
(N@Z) to a ‘‘nuclear’’ star (N;Z) or even to a ‘‘proton’’
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star (N&Z), where the electric charge of protons is compe
sated by the charge of the condensed kaons@6#; ~iii ! The
enhanced neutrino-emission processes occurring on pro
in proton-enriched matter and on the kaon condensate
lead to substantially faster cooling of the star@7#.

The K2 condensate is created in neutron stars throu
weak multiparticle processes

e21X→K21X8, n1X→p1K21X8, ~1!

in which electrons are replaced byK2 mesons and neutron
are converted into protons andK2 @8#. The symbolic writing
~1! assumes that surrounding baryons (X,X8) assure the mo-
mentum conservation, and thus, the critical point is de
mined by the energy balance only. These processes bec
possible if the electron chemical potentialme exceeds the
minimal K2 energy,

vmin~kWm!5min
kW

$vmin~kW !%,

wherevmin(ukWu) is theK2 energy at the lowest quasipartic
branch of the spectrum ofK2 excitations in neutron sta
matter. In Refs.@4,8,9# it has been postulated that there
only one kaon branch, for whichv(kW50)→mK (mK is the
kaon mass! as the baryon densityr→0, and the minimum is
achieved atkWm50. The critical point of thes-waveK2 con-
densation in a second-order phase transition is determine
the conditionv(kW50)5me . A first-order phase transition to
the kaon condensate state was investigated in Ref.@10# ap-
plying the Maxwell construction principle and in Ref.@11#
©2003 The American Physical Society03-1



o

o

e
iz

o

o

-
ole
d
on
a

st

at

re

t

ef
e
e

s
d

h
n
i
.
d

te
t

ng

n
t

y.

on

w

or-

ally

eat

ibe
c.
l-

tor.
p-
ct

ra-
ent

of
ive
the

ular
se
nto
iza-
on

ub-
ture

is
si-
the
he

e
eas
ched

on
the
ut

ur
also
er-
tal
am-
of
e

m,

on-
tter
en-

EVGENI E. KOLOMEITSEV AND DMITRI N. VOSKRESENSKY PHYSICAL REVIEW C68, 015803 ~2003!
according to the Gibbs criteria. Thep-wave kaon-nucleon
interaction, which changes the kaon spectrum at finite m
menta was disregarded in those works. Thep-waveL(1116)
–nucleon-hole andS(1195)-nucleon hole contributions t
the kaon polarization operator were introduced in Ref.@12#
in the framework of the chiral SU~3! symmetry. However,
the authors of Ref.@12# focused on the discussion of th
s-wave kaon condensation only, and considered the polar
tion operator at zero momentum.

In Ref. @6#, we worked out a possibility for thep-wave
kaon condensation. The kaon polarization operator was c
structed with the inclusion of theL(1116) –nucleon-hole and
S(1195) –nucleon-hole contributions in thep-wave part of
the kaon polarization operator and the kaon-pion and ka
kaon interactions. The multibranch spectrum ofK2 mesons
was found and the possibility of thep-wave kaon condensa
tion related to the population of hyperon–nucleon-h
modes was demonstrated. Possibilities of the first-or
phase transitions in neutron star interiors to a prot
enriched matter with ap-wave K2 condensate and to

neutron-enriched matter with ap-wave K̄0 condensate were
investigated.

The case of a large hyperon admixture in the neutron
core was considered in Ref.@13#. In such a medium both the
K2 and theK1 spectra possess extra branches associ
with the particle-hole excitationsJ2L21, J2S21 for K2

andN2L21, N2L21 for K1 @hole states are labeled he
by (21)]. At largekaon momenta, the branches ofK1 and
K2 spectra merge, signaling an instability with respect
K1K2 pair creation.

The analysis in Refs.@6,13# relied heavily on the pole
approximation for the particle-hole diagrams. Final width
fects were thereby disregarded too. The presence or abs
of quasiparticle branches in theK2 spectrum depends on th
kaon energy and on the strength of thes- andp-wave attrac-
tion @14#. The short-range baryon-baryon correlation
which, as a rule, suppress the attraction, were not include
Refs.@6,13#. The role of the correlations for thep wave has
been investigated in Ref.@15#. However, the relative strengt
of the s- and p-wave attraction remained model depende
because no systematic investigation of the kaon-nucleon
teraction includings andp waves was available at that time

Recently, the kaon-nucleon scattering has been studie
the framework of a relativistic chiral SU~3! Lagrangian im-
posing constraints from theK1-nucleon and pion-nucleon
sectors@16#. The covariant coupled-channel Bethe-Salpe
equation was solved with the interaction kernel truncated
the third chiral order including the terms which are leadi
in the largeNc limit of QCD. All SU~3! symmetry-breaking
effects are well under control by the combined chiral a
large Nc expansions. This analysis gives an opportunity
extend the results of Refs.@6,15# taking into account off-pole
~regular background! contributions to the kaon self-energ
The accurate fit to experimental data achieved in Ref.@16#
fixes the values of the kaon-nucleon-hyperon coupling c
stants. Particularly, theS* (1385)-pole contribution to the
kaon-nucleon scattering was proved to be sizable, and
not included in Refs.@6,13#.
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The discussion of thes-wave and, especially, of the
p-wave kaon-baryon interactions in nuclear matter is imp
tant for the kaon production in heavy-ion collisions@17#. The
momentum dependence of kaon yields is experiment
measured@18#. Also, the multibranchK2 spectrum can be

tested vian̄ scattering on atomic nuclei@15#. Peculiarities of
the K2-nucleon interaction near the mass shell are of gr
importance for the physics ofK2 atoms@19,20#.

This paper is structured as follows. In Sec. II, we descr
baryon matter within a relativistic mean-field model. In Se
III, we introduce the kaon-nucleon interaction in vacuum fo
lowing the partial-wave analysis of Ref.@16#. Then, we sepa-
rate the pole contributions ofL(1116), S(1195), and
S* (1385) hyperons inp waves. Sections IV through VII are
devoted to the construction of the kaon polarization opera
In Sec. IV, we build the polarization operator in the gas a
proximation, but including the mean-field potentials that a
on baryons. Besides theL(1116), S(1195), and
S* (1385)-nucleon-hole contributions the polarization ope
tor contains a regular attractive part that is weakly depend
on the kaon energy. In Sec. V, we separate thes- andp-wave
parts of the kaon polarization operator. The occupation
hyperon Fermi seas is incorporated in Sec. VI. Repuls
baryon-baryon correlations are evaluated and included in
hyperon-nucleon particle-hole channels and in the reg
part of the polarization operator in Sec. VII. In each of the
sections, we illustrate the strength of new terms included i
the polarization operator and suggest effective parametr
tions. We relegate the discussion of contributions from ka
fluctuations~baryon self-energies, multiloop corrections! to
Appendix C. We argue that these effects do not modify s
stantially the kaon polarization operator at zero tempera
in the region of small kaon energies and momenta, which
of our interest here. In Sec. VIII, we analyze different pos
bilities for the second- and first-order phase transitions to
s- andp-waveK2 condensates. Particularly, we argue for t
p-wave K2 condensation atr&2r0 (r0.0.17 fm23 is the
density of nuclear saturation! arising via a first-order phas
transition. In this phase transition, all the hyperon Fermi s
are melted and neutron star matter becomes proton enri
with an approximately symmetric-isospin composition,N
.Z. In Appendix A, we discuss how the results depend
the specifics of the EoS. Some technical information on
Green’s functions is provided in Appendix B. Througho
this paper, we use units of\5c51.

Although a number of new effects are incorporated in o
scheme some other effects not included here might be
important. The present calculations suffer from many unc
tainties, most of which are due to the lack of experimen
information on the coupling constants, the absence of un
biguous way for going off-mass shell and the lack of study
more complicated in-medium fluctuation effects, which w
just roughly estimated in the present work. Among the
there are the pion softening effects@21#, which can signifi-
cantly affect the results at finite temperatures, and the c
tribution of nonlinear meson-meson interactions. The la
may partially suppress the condensate contribution to the
ergy at densities above the critical one.
3-2
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II. BARYON INTERACTION IN RELATIVISTIC
MEAN-FIELD MODEL

A. Lagrangian of the model

We consider a dense system consisting of baryons
leptons, which we describe by a Lagrangian density cont
ing a baryon and a lepton contributionL5LB1Ll .

It is convenient to describe the baryon matter at densi
relevant for neutron star interiors by the mean-field solut
of the Lagrangian@22#,

LB5(
B

B̄~ i ]”2gvBv” 2grBr”W • tWB2mB1gsBs!B

1
]ms]ms

2
2

ms
2s2

2
2

mNb~gsNs!3

3
2

c~gsNs!4

4

2
vmnvmn

4
1

mv
2 vmvm

2
2

rW mnrW mn

4
1

mr
2rW mrW m

2
, ~2!

where all states of the baryon (JP5 1
2

1) octet B
5(n,p,L,S6,0,J20) interact via exchanges of scalar, ve
tor, and isovector mesonss, vm , rW m . Heavier baryons do
not appear at baryon densities under considerationr

<6r0) and, therefore, are not included. In Eq.~2!, tWB de-
notes the isospin operator acting on the baryonB. The field-
strength tensors for the vector mesons are given byvmn

5]mvn2]nvm for the v mesons andrW mn5]mrW n2]nrW m for
the r mesons. Equations of motion for the baryons follo
from Eq. ~2!, and give

EB~pW !5eB~pW !1VB , eB~pW !5AmB*
21pW 2, ~3!

where mB* 5(mB2gsBs) is the baryon effective mass an
VB5gvBv01grBr03t3B , with s,v0 ,r03 being the mean-
field solutions of the equations of motion for the mes
fields. The composition of the cold neutron star matter
baryon densityr is determined by theb-equilibrium condi-
tions EB(pFB)5mn2qBme . Here,pFB is the Fermi momen-
tum, qB is the electric charge of a given baryon speciesB,
andmn , me are the chemical potentials of neutrons and el
trons determined by the total baryon densityr and the elec-
troneutrality condition.

The lepton Lagrangian density is the sum of the elect
and them2 meson contributionsLl5Le1Lm . In b equilib-
rium mm5me , and muons appear in the system only wh
me exceeds the muon massmm .

The energy density of the system is given by

Etot5Emes1(
B

EB
kin~pFB!1 (

l 5e2,m2
El~me!,

Emes5
1
3 bmN~gsNs!31 1

4 c~gsNs!41 1
2 ms

2s21 1
2 mv

2 v0
2

1 1
2 mr

2r03
2 ,

EB
kin~pFB!5

1

p2E0

pFB
dpp2eB~p!,
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El~m l !5
1

p2
u~m l2ml !E

ml

m l
dee2Ae22ml

2, ~4!

whereu(x) is the step function.

B. Coupling constants

The coupling constants in Eq.~2! are adjusted such as t
reproduce properties of the equilibrium nuclear matter: sa
ration density r0, binding energyEbind, compressibility
modulusK, and effective nucleon massmN* (r0). In the fol-
lowing, we use the valuesr050.17 fm23 and Ebind
5216 MeV. For the nuclear compressibility modulus, w
take the valueK5210 MeV, which follows from the varia-
tional calculation@23#. Following Ref. @22#, we adopt the
symmetry energyasym536.8 MeV which lies within the in-
terval allowed by microscopic calculations@24#. We take the
effective nucleon massmN* (r0)50.85mN , cf. argumentation
in Ref. @21#. For discussion of uncertainties in the choices
parameters, we refer the interested reader to Ref.@25#.

The corresponding coupling constants of Lagrangian~2!
are

gvN
2 mN

2

mv
2

554.60,
gsN

2 mN
2

ms
2

5164.5,
grN

2 mN
2

mr
2

5121.7,

b50.02028, c50.04716. ~5!

In order to verify the sensitivity of the results to details of t
EoS, we explore another set of the parameters in Appen
A, which is fitted to reproduce the microscopic calculatio
of the Urbana-Argonne group@26#.

When including hyperons, one also has to specify the
peron couplings to the meson fields,xMH5gMH /gMN with
M5(s,v,r) and H5(L,S,J). Couplings to the vector
mesons are estimated from the quark counting asxvL(S)
5xrS5 2

3 and xvJ5xrJ5 1
3 . Alternatively, relying on the

SU~3! symmetry@27#, one would findxrS5xrJ51 for ther
meson couplings. The scalar meson couplings can be
strained by making use of hyperon binding energies in in
nite nuclear matter at saturation@28#, extrapolated from hy-
pernucleus data. For the given hyperon binding energyEbind

H ,
we have the following relation between the scalar and vec
couplings:

Ebind
H 5~gvN

2 r0 /mv
2 !xvH2~mN2mN* !xsH

5~80.73xvH2140.70xsH! MeV.

There is convincing evidence from the systematic study
hypernuclei that forL particlesEbind

L .230 MeV @29#. For
S hyperons in nuclei, on the other hand, the data are
controversial, giving the broadband,210 MeV,Ebind

S

,30 MeV , from a slight attraction to a strong repulsio
@30#. Following Ref. @31#, we adopt forJ the valueEbind

J

.218 MeV advocated also in Ref.@27#.
To cover different possibilities we consider four cases
3-3
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Case I: vector meson couplings are taken according to
quark counting,xvL(S)5xrS52xvJ52xrJ5 2

3 and Ebind
L

5230 MeV, Ebind
J 5218 MeV, Ebind

S 530 MeV.
Case II: the same as in case I butEbind

S 5210 MeV.
Case III: the same as in case I but ther meson couplings

are taken according to the SU~3! symmetry, i.e.,xrS,J51.
Case IV: the same as in case III, but forEbind

S

5210 MeV.

C. Particle concentrations

In Fig. 1, we show the resulting concentrations of diffe
ent baryon species as function of the baryon density. Pa
~a!–~d! correspond to the four choices of the hyperon-me
coupling constants specified above. We see that hype
appear in neutron star matter in all cases at densityr.rc,H
.(2.5–3)r0. The latter value is rather insensitive to vario
choices of hyperon-nucleon interactions. However, the or
in which hyperons populate the Fermi seas depends cruc
on the details of hyperon-nucleon interactions. TheS2 hy-
perons do not appear at least up to 6r0, except for case II.
However, even in case II their concentration is very sm
The place ofS2 is readily taken byJ2 and L hyperons.
This observation is in line with the results of Ref.@32#. In
case IV, we chooseEbind

S ,0, but S hyperons do not appea
due to the increasing repulsion mediated byr mesons with
larger coupling constants than in case II. We see that in c
I–IV, the proton concentration saturates when hyperons
pear in the system. We also see that none of the choices
support effects observed in Ref.@13#, whereL hyperons be-
come more abundant than protons already at 3r0. Therefore,
the p-waveK1K2 condensation discussed in Ref.@13# does
not show up in the framework of our model for all fou
parameter choices.

III. KÀ-NUCLEON INTERACTION IN VACUUM

The kaon-nucleon interaction in vacuum results as the
lution of the coupled-channel Bethe-Salpeter equation

~6!

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
(a)

ΛΞ--p

n

co
nc

en
tr

at
io

n

0 1 2 3 4 5

ρ/ρ
0

(b)

Σ--
ΛΞ--

p

n

0 1 2 3 4 5

(c)

Λ

Ξ--

p

n

0 1 2 3 4 5 6

(d)

Λ

Ξ--

p

n

FIG. 1. Concentration of baryon species in neutron star ma
Four panels correspond to the four choices of the hyperon-nuc
interaction constants~cases I–IV! specified in text.
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Here, the triangle is the full meson-baryon scattering am
tude with strangeness21 and the circle stands for the inte
action kernel. This equation involves rescatterings throu
all possible meson-baryon intermediate states allowed by
strangeness conservation. The interaction kernel can be
rived from the SU~3! chiral Lagrangians@33–36# or can be
phenomenologically adjusted to fit the data within t
K-matrix formalism@37,38#.

In view of the general interest to thes-wave kaon conden-
sation prevailing in the literature so far, most of the attent
has been paid to the kaon-nucleon interaction in thes wave.
Although far below the threshold thes-wave kaon-nucleon
scattering amplitude is a rather smooth function of the ka
energy, close to the threshold the amplitudes vary stron
due to theL(1405) resonance~see Fig. 2!. Therefore, the
extrapolation into the subthreshold region of the scatter
amplitude, adjusted to fit the data above theK2N threshold,
crucially depends on the microscopic model applied. Its
medium modification is a matter of debate too@39–43#.

Up to recently, only scarce information on thep-wave
kaon-nucleon interaction was available. In the isospin-z
channel, the smallp-wave amplitudes were not separat
from the large contribution of theL(1405) resonance in the
s wave, which dominates near threshold energies. In
isospin-one channel, determination of thep-wave amplitudes
remained also uncertain due to a lack of direct experime
information on theK2n scattering at low energies. This ga
was filled in Ref.@16#, where theK̄N interaction was ob-
tained as a solution of the covariant coupled-channel Be
Salpeter equation with a kernel derived from a relativis
chiral SU~3! Lagrangian with extra constraints from theK1

nucleon and pion-nucleon sector. This analysis provides
liable estimates for both thes- and p-wave K2N scattering
amplitudes, which we will use in the following.

A. Forward scattering amplitudes

The vacuumK̄N forward scattering amplitudes in a give
isospin channelI have the following contributions froms-
andp-partial waves:

T(I)~s!5TS
(I)~s!1TP

(I)~s!5
Ē~s,mN

2 ,mK
2 !1mN

2mN

3@FS
(I)~s!1Q2~s,mN

2 ,mK
2 !FP

(I)~s!#,

r.
on 1000 1100 1200 1300 1400 1500

-40

-20

0

20

40

60 I=0

 

F
S
(s

) 
[1

/m
π]

s1/2 [MeV]
1000 1100 1200 1300 1400 1500
0

2

4

6

I=1

 

s1/2 [MeV]

FIG. 2. Real parts of thes-wave KN scattering amplitudes in
isospin-zero and isospin-one channels@16#.
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Q2~s,p2,k2!5
~s2p22k2!224k2p2

4s
, ~7!

where s5(p1k)2, and p5„eN(pW ),pW …, k5(v,kW ) are the
four-momenta of the incoming nucleon and kaon, resp
tively. For nucleons and kaons on mass shell, the quan
Q2(s,mN

2 ,mK
2 ) is the square of the center-of-mass mome

tum in the kaon-nucleon channel,Ē(s,mN
2 ,mK

2 )
5AmN

2 1Q2(s,mN
2 ,mK

2 ) is the nucleon energy in the cente

of-mass frame,Ē(s,p2,k2)5(s1p22k2)/2As, mN and mK
are the free nucleon and kaon masses. We shall neglec
isospin-symmetry breaking within kaon and nucleon isos
multiplets, which is irrelevant in dense nuclear matter.

The invariant partial-wave amplitudesFS
(I) and FP

(I) are
related to the standard partial-wave amplitudes~see Ref.@44#
Sec. 3.1 for definitions! as

FS
(I)~s!5

8pAs

Ē1~s,mN
2 ,mK

2 !
f 01

(I) ~s!,

FP
(I)~s!5

8pAs/Q2~s,mN
2 ,mK

2 !

Ē1~s,mN
2 ,mK

2 !
@ f 12

(I) ~s!12 f 11
(I) ~s!#. ~8!

The partial amplitudesf l 65 f l ,J5 l 6
1
2

in Eq. ~8! are the scat-
tering amplitudes for given angular momentuml and total
momentumJ, andĒ6(s,p2,k2)5Ē(s,p2,k2)6Ap2. The real
parts of the partial amplitudesTS

(I) and TP
(I) are shown in

Figs. 2 and 3 by solid lines. The pronounced peak structu
in the p-wave amplitude are due to theL(1116) pole in the
isospin-zero channel, and theS(1195) andS* (1385) poles
in the isospin-one channel.

B. Separation of the pole terms

The hyperons-channel exchanges are responsible for
strongest variation of the polarization operator at low f
quencies and momenta. Therefore, they deserve a sp
consideration in view of the baryon modifications by t
mean-field potentials. To treat them explicitly, we separ

1000 1100 1200 1300 1400 1500

-4

-2

0

2

4 I=0

 

F
P
(s

) 
[1

/m
3 π]

s1/2 [MeV]
1000 1100 1200 1300 1400 1500

-4

-2

0

2

4 I=1

 

s1/2 [MeV]

FIG. 3. Real parts of thep-waveKN scattering amplitudesFP in
isospin-zero and isospin-one channels~solid lines! @16#. The dashed
lines represent the corresponding pole-subtracted scattering a
tudes~9!.
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the pole contributions from thep-wave amplitudes. We de
fine the pole and pole-subtracted amplitudes

dFP
(I )~s!5FP

(I )2Fpole
(I ) ~s!, ~9!

Fpole
(0) ~s!522

CKNL
2 2mL

Ē1
2 ~s,mN

2 ,k2!

~mL1mN!2

s2mL
2 1 i0

, ~10!

Fpole
(1) ~s!524

CKNS
2 mS

Ē1
2 ~s,mN

2 ,mK
2 !

~mS1mN!2

s2mS
2 1 i0

2
8

3

CKNS*
2

~s/mS* !

s2mS*
2

1
i

2
gS* ~s!

Ē1~mS*
2 ,mN

2 ,mK
2 !

Ē1~s,mN
2 ,mK

2 !
.

~11!

The S* width, gS* (s)5(As1mS* )@gpL(s)1gpS(s)
1gKN(s)#, includes contributions frompL, pS, and KN

channels, gfB(s)5CfBS*
2 Ē1(s,mB

2 ,mf
2 )uQ(s,mB

2 ,mG
2 )u3/

(12pAs), wheremB is the mass of the corresponding bary
B5(n,p,L,S6,0,J20) and mf is the mass of the corre
sponding light mesonf5(p,K). The coupling constants
CpL(S)S* can be extracted from the partial width of theS*
hyperon. The values of theKNL(S) coupling constants
CKNL.20.68/mp , CKNS.0.34/mp entering Eqs.~10! and
~11! follow directly from the amplitudes shown in Fig. 3
The values ofCKNL andCKNS are defined as couplings ofL
to (K†N) and Sa to (K†taN) isospin states, whereK, N
stand for the isospin doublets,Sa is the isospin triplet, and
ta are the isospin Pauli matrices. Note that the value
CKNL , obtained on the basis of Ref.@16#, is smaller than that
fitted by the Ju¨lich group @45# and used in Refs.@12,6#.

The scattering amplitude near theS* resonance can be
only approximately described by the last term in Eq.~11!,
since the corresponding amplitude results from a multich
nel dynamics, which generates the energy-dependent
energy of theS* resonance. This self-energy, however, c
be neglected atAs relevant for the calculations below
Reference @16# gives for the S* resonance coupling
CKNS* .0.84/mp defined by the Lagrangian term

CKNS* S̄m*
a]mK†taN. The pole subtracted amplitude

dF (I) (s) are shown in Fig. 3 by dashed lines. We see that
amplitudes in both isospin channels are smooth function
As in the subthreshold regionAs,1300 MeV of our interest.
Note that the procedure of pole subtraction is not unambi
ous. Forms~10! and ~11! are chosen here for a later conv
nience, since they allow direct comparison with the analy
of Refs.@6,14,13#.

To consider the kaon-nucleon interaction in dense ma
we also need to take into account the mean-field poten
acting on baryons according to Lagrangian~2!.

pli-
3-5
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IV. KÀ POLARIZATION OPERATOR
FROM SCATTERING AMPLITUDES

A. Gas approximation and baryonic mean fields

Our next aim is to construct the retardedK2 polarization
operator in baryonic matter,PR

tot(v,kW ), related to the kaon

propagator asDK
21(v,kW )5v22kW22mK

2 2PR
tot(v,kW ). The

spectral function is determined as AK(v,kW )
522ImDK(v,kW ). Quasiparticle branches of the spectru
appear in the energy-momentum region where the k
width GK522ImPR

tot(v,kW ) is much smaller than any othe
typical energy scale. Then, one can putGK→0 in the kaon
Green’s function and the quasiparticle branches are give
the dispersion equation ReDK

21(v,kW )50.
From the vacuum scattering amplitudes, we can const

the causal polarization operatorPC
(0)(v,kW ) related to the

partial-wave amplitudes,FS
(I) andFP

(I) in the gas approxima
tion

PC
(0)~v,kW !5I s wave~v,kW !1I p wave~v,kW !, ~12!

I s wave~v,kW ![I s wave,p~v,kW !1I s wave,n~v,kW !

52E 2d3pW

~2p!3

Ē1~s,mN
2 ,k2!

2AmN
2 1pW 2

H 1

2
@FS

(0)~s!

1FS
(1)~s!#np~pW !1FS

(1)~s!nn~pW !J , ~13!

I p wave~v,kW ![I p wave,p~v,kW !1I p wave,n~v,kW !

52E 2d3pW

~2p!3

Ē1~s,mN
2 ,k2!

2AmN
2 1pW 2

Q2~s,mN
2 ,k2!

3H 1

2
@FP

(0)~s!1FP
(1)~s!#np~pW !

1FP
(1)~s!nn~pW !J , ~14!

where ni(pW ) are the nucleon Fermi occupations,i 5(n,p).
At zero temperature np(pW )5u(pF,p2upW u) and nn(pW )

5u(pF,n2upW u), s5(v1AmN
2 1pW 2)22(kW1pW )2.

There are simple relations between the causal~‘‘ 2,2 ’’ !
and the retarded~‘‘ R’’ ! Green’s functions and polarizatio
operators. For zero temperature and positive frequenc
they coincide. ForTÞ0 their real parts are still the sam
whereas the imaginary parts are different, but can be inte
lated. Bearing this in mind, we will further suppress the su
scriptsR andC for brevity.

Exploiting decomposition~9! of the p-wave scattering
amplitude, we write

I p wave~v,kW !5I p wave
pole ~v,kW !1I p wave

reg ~v,kW !, ~15!
01580
n

by

ct

s,

e-
-

as the sum of the pole and the regular parts. The pole pa
generated by hyperon exchanges

I p-pole
pole ~v,kW !5I L

pole~v,kW !1I S
pole~v,kW !1I S*

pole
~v,kW !,

I L
pole~v,kW !52CKNL

2 E 2d3pW

~2p!3

Ē2~mL
2 ,mN

2 ,k2!

AmN
2 1pW 2

3
~mL1mN!2mL

s22mL
2 1 i0

np~pW !, ~16!

I S
pole~v,kW !52CKNS

2 E 2d3pW

~2p!3

Ē2~mS
2 ,mN

2 ,k2!

AmN
2 1pW 2

3
~mS1mN!2mS

s22mS
2 1 i0

@np~pW !12nn~pW !#, ~17!

I S*
pole

~v,kW !52
4

3
CKNS*

2

3E 2d3pW

~2p!3

Ē1~mS*
2 ,mN

2 ,k2!

2AmN
2 1pW 2

s

mS*

3
Q2~s,mN

2 ,k2!

s2mS*
2

1
i

2
gS* ~s!

@np~pW !12nn~pW !#.

~18!

The regular partI p wave
reg can be expressed as

I p wave
reg ~v,kW !5 Ī p wave

reg ~v,kW !1dI p wave
reg ~v,kW !, ~19!

including the part of integral~14! evaluated withdFP
(I) from

Eq. ~9!,

Ī p wave
reg ~v,kW !52E 2d3pW

~2p!3

Ē1~s,mN
2 ,k2!

2AmN
2 1pW 2

Q2~s,mN
2 ,k2!

3H 1

2
@dFP

(0)~s!1dFP
(1)~s!#np~pW !

1dFP
(1)~s!nn~pW !J , ~20!

and the nonpole contributions from the hyperon exchang

dI p wave
reg ~v,kW !5dI L~v,kW !1dI S~v,kW !, ~21!

dI L~v,kW !52CKNL
2 E 2d3pW

~2p!3

3
mLAs2mN

2 1k2

2AsAmN
2 1pW 2

~mL1mN!2

As1mL

np~pW !,

~22!
3-6
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dI S~v,kW !52CKNL
2

3E 2d3pW

~2p!3

mSAs2mN
2 1k2

2AsAmN
2 1pW 2

3
~mS1mN!2

As1mS

@np~pW !12nn~pW !#. ~23!

To obtain the last relation, we used

Ē~s,mN
2 ,k2!2Ē~mH

2 ,mN
2 ,k2!

5
mHAs2mN

2 1k2

2mHAs
~As2mH!, H5$L,S%. ~24!

The above construction of the polarization operator co
sponds to a gas approximation, and does not take into
count either the mean-field potentials acting on baryons
the vertex corrections due to baryon-baryon correlations
possible modifications of the scattering amplitudes in m
dium. The modification of the baryon propagator on t
mean-field level can be easily incorporated in integrals~13!
and ~14! by the replacementmN→mN* . Effects induced by
this modification in the kinematic prefactors in Eq.~13! and
~14! can be easily traced back. The scaling of the nucle
mass ins is a more subtle issue. Solving the coupled-chan
Bethe-Salpeter equation, one sums all two-particle reduc
diagrams for the part of thes plane corresponding to aK2N
scattering. This approach is explicitly crossing noninvari
and a continuation of amplitudes far below theK2N thresh-
old can generate artificial singularities in the scattering a
plitude. In Ref.@16#, from where we borrow the amplitude
the approximation scheme for solution of the Bethe-Salp
equation was furnished in such a way that theK2N and
K1N scattering amplitudes exhibit theapproximate crossing
symmetry, smoothly matching each other forAs;mN .
Therefore, amplitudes depicted in Figs. 2 and 3 are
physically well constrained in the corresponding intervals
As shown there. However, for somewhat smallerAs, the
K2N s-wave scattering amplitude gets unphysical poles.
cure this problem, the complete solution of the Beth
Salpeter equation forK2N scattering has to be redone wi
medium modified baryon masses. Fortunately, there are s
indications that this would not drastically change the resu
We demonstrate here that the final results for integrals w
thes-wave scattering amplitudes can be nicely modeled w
the polarization operator following from a leading-order c
ral Lagrangian, which has no explicit dependence on
baryon masses. Loop corrections due to the iteration of
interaction kernel should be suppressed for small kaon
quencies to keep the approximate crossing invariance of
amplitude. The pole subtractedp-wave amplitude is a rathe
smooth function ofAs, as it is shown in Fig. 3, being mainl
determined by the contact terms of the chiral Lagrangian
thus, has a weak baryon mass dependence. Hence, ext
lating the amplitude to somewhat smallerAs, we do not
expect its strong variation. On contrary, the part of the
01580
-
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larization operator generated by the hyperon polesI P
pole de-

pends strongly on baryonic mean fields, which change
pole positions in the amplitude. This part will be treat
explicitly in the course of our consideration.

B. Pole part of the polarization operator

Here, we find the contributions to theK2 polarization
operator from hyperon poles in theK2N scattering ampli-
tude determined by Eqs.~16!–~18!. Relying on the explicit
calculations of Refs.@6,15# we can easily incorporate th
scalar and vector mean fields acting on baryons. The sc
field is taken into account with the help of the replacem
mB→mB* . The baryon vector potentials are included in t
pole terms by the shift of the kaon frequencyv→v
1dv iH , with dv iH5Vi2VH , i 5$n,p%, H5$L,S%. This
follows from the difference of the baryon energies, see
~3!. Please notice that this energy shift is obvious only for
pole contribution to the polarization operator. Generally, d
to the absence of the gauge invariance for massive ve
fields, such a shift is not motivated for more complicat
diagrams.

Writing explicitly all contributions, we cast

P (pole,0)~v,kW ![I p wave
pole ~v,kW !

5PpL
(pole,0)~v,kW !1PpS0

(pole,0)
~v,kW !

12PnS2
(pole,0)

~v,kW !1PpS* 0
(pole,0)

~v,kW !

12PnS* 2
(pole,0)

~v,kW !, ~25!

where each term is equivalent to the pole contribution of
hyperon particle-nucleon-hole loop diagram~Schrödinger
picture!

~26!

written in terms of the Lindhard function1 as

P iH
(pole,0)~v,kW !5CKNH

2 @~mH* 2mN* !22~v1dv iH !2

1kW2#hNH
2 F iH~v,kW !,

P iS*
(pole,0)

~v,kW !5CKNS*
2 h iS*

2
~v,kW !kW2F iS* ~v,kW !,

hNH5
mN* 1mH*

2mN*
,

1For further convenience, we introduce notationi 5(n,p) and
continue to useN when the quantity does not depend on the nucle
isospin.
3-7
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h iS*
2

~v,kW !5
~mS*

* 1mN* !22~v1dv iH !21kW2

6mS*
* 2 . ~27!

We reserved the superscript ‘‘0’’ for each term in Eq.~25! to
indicate that neither the baryon self-energy corrections
yond a mean-field approximation nor the vertex correctio
due to baryon-baryon correlations are included. The~re-
tarded! Lindhard functionF accounting for the relativistic
kinematics is defined as

F iH~v,kW !5E 2d3p

~2p!32e i~p!

4mN*
2

s2mH
2 1 i0

ni~pW !. ~28!

For zero temperature, we have

F iH~v,kW !5
mN*

2

2p2ukW u
E

0

pFi dpp

e i~p!
lnFD iH

1 ~v,kW ,pW !

D iH
2 ~v,kW ,pW !

G ,

D iH
6 ~v,kW ,pW !5@v1dv iH1e i~pW !#22eH

2 ~ upW u7ukW u!, ~29!

wherepFi is the Fermi momentum of the nucleon speciesi .
The nonrelativistic form of the Lindhard function used, e.
in Ref. @21# ~with a different normalization! is recovered
after expandingeB(p)'mB* 1p2/(2mB* ) in Eq. ~29!.

The imaginary part of the~retarded! Lindhard function is
obtained as an analytical continuation ln(x)5lnuxu1ipu(2x)
leading to nonzero contribution for

v iH
2 ~kW !,v,v iH

1 ~kW !. ~30!

Here,v iH
6 are the upper and the lower borders of the cor

sponding particle-hole continuum

v iH
1 ~kW !55 A~mH* 2mN* !21kW21dv iH , k,pFiS mH*

mN*
21D

EH~ ukW u1pFi !2Ei~pFi !, k.pFiS mH*

mN*
21D ,

~31!

v iH
2 ~kW !5EH~ ukW u2pFi !2Ei~pFi !. ~32!

Baryon energies include vector potentials according
Eq. ~3!.

An approximate expression forF iH renders

F iH~v,kW !

'2
mN*

2

8p2ukW u3eFi
F D̃ iH

1 D̃ iH
2

2
lnS D̃ iH

1

D̃ iH
2 D 2

~D̃ iH
1 !22~D̃ iH

2 !2

4 G ,

with D̃ iH
6 5D iH

6 (v,kW ,pFi) and eFi5e i(pFi) , being valid for
v,(v iH

1 1v iH
2 )/2.
01580
e-
s

,

-

o

V. s- AND p-WAVE PARTS OF THE POLARIZATION
OPERATOR

In our discussion, we would like to put particular emph
sis on in-medium effects, which modify theK2 spectrum at
finite momenta. For this purpose, we define the momen
independent part, called thes-wave part of the polarization
operator, and the momentum dependent part, called
p-wave part of the polarization operator:

PC
(0)~v,kW !5PS

(0)~v!1PP
(0)~v,kW !

[PC
(0)~v,0!1@PC

(0)~v,kW !2PC
(0)~v,0!#.

The termPC
(0)(v,0) does not depend onkW , whereas the term

@PC
(0)(v,kW )2PC

(0)(v,0)# depends onkW , and vanishes atukW u
50. In order to avoid misunderstanding, we point out th
the s- and p-wave scattering amplitudes contribute to bo
parts of the polarization operator

PS
(0)~v!5I s wave~v,0!1I p wave~v,0!,

PP
(0)~v,kW !5@ I s wave~v,kW !2I s wave~v,0!#1@ I p wave~v,kW !

2I p wave~v,0!#. ~33!

In the following, we discuss thes- and p-wave parts of the
polarization operator.

A. p-wave part

Following decomposition~15!, we split thep-wave part of
the polarization operator into the pole and the regular con
butions

PP
(0)~v,kW !5PP

(pole,0)~v,kW !1PP
(reg,0)~v,kW !. ~34!

For the polep-wave part, we have

PP
(pole,0)~v,kW !5I P

(pole)~v,kW !2I P
(pole)~v,0!

5PpL
(P,0)~v,kW !1PpS0

(P,0)
~v,kW !12PnS2

(P,0)
~v,kW !

1PpS* 0
(P,0)

~v,kW !12PnS* 2
(P,0)

~v,kW !, ~35!

P iH
(P,0)~v,kW !5P iH

(pole,0)~v,kW !2P iH
(pole,0)~v,0!, ~36!

where we used Eqs.~16!–~18! and ~25!.
Expanding thep-wave pole part of the polarization opera

tor for small kaon momenta, we have

P iH
(P,0)~v,kW !5CKNH

2 kW2f iH
P ~v!1O~kW4!,

f iH
P ~v!5hNH

2 F iH~v,0!1hNH
2 @~mH* 2mN* !2

2~v1dv iH !2#
]F iH~v,kW !

]kW2 U
ukW u50

, ~37!

F iS* ~v,kW !5CKNS*
2 kW2h iS*

2
~v,0!F iS* ~v,0!. ~38!
3-8
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cients ~40! of expansion~39! of
the polarization operator. Solid
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spond to nucleon densitiesrn,p
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The regular part of thep-wave polarization operator is de
fined by

PP
(reg,0)~v,kW !5@ I s wave~v,kW !2I s wave~v,0!#1@ I p wave

reg ~v,kW !

2I p wave
reg ~v,0!#.

At small kaon momenta, the real part ofPP
(reg ,0) can be

written as

RePP
(reg,0)~v,kW !5kW2S bp~v!

rp

r0
1bn~v!

rn

r0
D1O~kW4!,

~39!

bi~v!5bi
(S)~v!1bi

(P)~v!,

bi
(S)~v!5

r0

r i

]

]kW2
I s wave,i~v,kW !U

kW50

,

bi
(P)~v!5

r0

r i

]

]kW2
I p wave,i

reg ~v,kW !U
kW50

, ~40!

where we used the fact that the real part of the kaon po
ization operator is an even function of the kaon momentu

The quantitiesbn
(S,P) andbp

(S,P) are shown in Fig. 4 forT
50 and for several values of densitiesr i as functions of the
kaon energy.

In these calculations, the integralsI S and I P have been
evaluated with the free nucleon masses. We see that t
coefficients are almost density independent and only wea
dependent on the kaon energy in the interval 100 MeV,v
,250 MeV . As we have discussed in the beginning of t
section, we replace the baryon masses by the effec
masses, as they follow from the mean-field solutions, only
the kinematical prefactors in Eqs.~13! and ~14!. The results
are shown in the right plane of Fig. 4. The coefficientsbn

(S,P)

depend moderately on the density whereas the coeffici
bp

(S,P) exhibit a stronger density dependence, which can
parametrized by the factormN /mN* as demonstrated in Fig. 4
The energy dependence is still weak in the 100 MeV,v
,250 MeV interval.

Our result~39! is derived for rather small values of a kao
momentum,ukW u!mK . In order to find the actual value of th
01580
r-
.

se
ly

s
ve
n

ts
e

p-wave K2 condensate amplitude in the most general ca
one needs to deal with momenta up toukW u;pF,n;mK . In this
case, we have to extrapolate our result for the regular pa
the polarization operator to such momenta. Fortunat
within our approach the critical points of thes- andp-wave
condensations do not deviate much from each other and
kaon condensate momentum in the vicinity of the critic
density remains small. Also, the main contribution to t
kaon polarization operator comes from the pole terms, wh
are written explicitly for arbitrary momenta in Eq.~25!.
Thereby, the ambiguity of the mentioned interpolation sho
not significantly affect our conclusions.

B. s-wave part

The kaon-nucleon interaction results in the following co
tributions to thes-wave part of theK2 meson polarization
operator

PS
(0)~v!5I s wave~v,0!1 Ī p wave

reg ~v,0!1dP (reg,0)~v!

1P (pole,0)~v,0!, ~41!

where the last two terms correspond to nonpole and p
parts of the hyperon exchange terms in the amplitude,
spectively. TheP (pole,0) term is given by Eq.~25!. Using Eq.
~21!, we presentdP (reg,0) as follows:

dP (reg,0)~v![dI p wave
reg ~v,0!

5dPpL
(reg,0)~v,0!

1dPpS0
(reg,0)

~v,0!12dPnS2
(reg,0)

~v,0!,

with

dP iH
(reg,0)~v,0!52CKNH

2 E 2d3pW

~2p!3

3
~mH* As02mN*

21v2!~mH* 1mN* !2

2e i~p!As0~As01mH* !
ni~pW !,

~42!

where s05@v1e i(pW )#22pW 2. We also included the depen
dence of the effective masses on the mean field. ForT50
3-9
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and for small kaon energies the integral in Eq.~42! can be
well approximated by the following expression:

dP iH
(reg,0)~v,0!'2CKNH

2 S mH*
22mN*

2

2mN*
r i

scal1vr i

2
v2

mH* 1mN*
r i D , ~43!

wherer i
scal stands for the scalar density of nucleons defin

by

r i
scal5E

0

pF,i 2d3pW

~2p!3

mN*

e i~pW !
. ~44!

C. Energy of the lowest branch of the dispersion equation
at k¢Ä0

In this section, we illustrate the strength of the differe
terms in Eq.~41!, applying the polarization operator to th
problem of thes-wave kaon condensation.

Neutron star matter becomes unstable with respect to
actions ~1! producing K2 mesons at the zero momentu
when the solution@vS5vmin(kW) at kW50] of the dispersion
equation

vS
22mK

2 2RePS~vS!50, ~45!

related to the lowest branch of the spectrum, meets the e
tron chemical potential. Then, thes-wave K2 condensation
may occur via a second-order phase transition.

In Fig. 5, we present the energy of the lowestK2 branch
of the dispersion equation~45! with momentumkW50 as a
function of the density. The hyperon interactions are tak

0 1 2 3 4
0
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200

300

400

500
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ω
S
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µ
e

Π (0)

S

Π (2,0)

S

Π (1,0)

S

(b)

case Ineutron matter

ρ/ρ
0

FIG. 5. Panel~a!: The energy of the lowestK2 branch of the

dispersion equation~45! at kW50 calculated withPS
(1,0) ~solid lines!

for proton and neutron matter. Dashed lines present approxim
spectra given by Eq.~49!. Panel~b!: The energy of the lowestK2

branch of Eq.~45! at kW50 for neutron star matter~case I of the
hyperon-nucleon interaction! corresponding to thes-wave polariza-
tion operatorsPS

(1,0) ,PS
(2,0) ,PS

(0) given by Eqs.~46!–~48! ~solid
lines!. Dashed lines are solutions for approximate relations~43! and
~50!. Dotted line shows the electron chemical potential. Dash-do
line depicts the border of the imaginary part of theK2 polarization
operator~border of hyperonization!.
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according to case I. In order to illustrate the strength of d
ferent contributions to thes-wave part of the polarization
operator~41!, we consider several test polarization operat

PS
(1,0)~v!5I s wave~v,0!1 Ī p wave

reg ~v,0!, ~46!

PS
(2,0)~v!5PS

(1,0)~v!1dP (reg,0)~v!, ~47!

PS
(0)~v!5PS

(2,0)~v!1P (pole,0)~v,0!. ~48!

In Fig. 5~a! solid lines show the energy of the lowest bran
of the solution of Eq.~45! with PS

(1,0) for the cases of pure

proton and neutron matter. The contribution ofĪ p wave
reg (v,0)

is very small, at the level of few percent. It is instructive
compare this result with the one given by the frequently u
parametrization of theK2 spectrum motivated by the
leading-order chiral perturbation theory (xPT) @8#,

vS
xPT~rn ,rp!5AmK

2 2SK1VK
2 2VK ,

SK5
1

f 2
@SKN~rp

scal1rn
scal!1C~rp

scal2rn
scal!#,

VK5
~2rp1rn!

4 f 2
, ~49!

where f .90 MeV is the pion decay constant in the chir
limit @16#, and SKN and C stand for the isoscalar and th
isovector kaon-nucleonS terms, and are related to explic
chiral symmetry breaking. The SU~3! symmetry predictsC
5mK

2 (2mJ23mS1mL)/@16(mK
2 2mp

2 )#'66 MeV @4#. A
model polarization operator leading to the dispersion relat
~49! can be written as@8#

PS
(xPT,0)~v!52

SKN

f 2
~rp

scal1rn
scal!2

C

f 2
~rp

scal2rn
scal!

2
2rp1rn

2 f 2
v. ~50!

Spectrum~49!, calculated usingSKN5150 MeV, is shown
in Fig. 5 @panel ~a!# by dashed lines. We observe a goo
agreement of the model spectrum with the one followi
from the numerical evaluation of the integrals@ I s wave(v,0)
1 Ī p wave

reg (v,0)#. The obtained value of the effective kaon
nucleonS term is two to three times smaller than what w
used as anad hocparameter in Ref.@8# with the same pa-
rametrization~50!.

The results for the realistic composition of neutron s
matter~Fig. 1, case I! are presented in Fig. 5~b! as a repre-
sentative example. Solid lines depict the energy of the low
branch of the dispersion equation calculated forkW50 with
PS

(1,0) , PS
(2,0) , and PS

(0) . Dashed lines show solutions ob
tained with the approximate expressions~50! in PS

(1,0) and
~43! for dP (reg,0) in PS

(2,0) . The excellent coincidence of th
curves justifies the accuracy of Eqs.~50! and ~43!.
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NEGATIVE KAONS IN DENSE BARYONIC MATTER PHYSICAL REVIEW C68, 015803 ~2003!
The crossing point of the solid and dotted lines cor
sponds to the critical density of thes-wave condensation. We
observe that the lines corresponding toPS

(1,0) do not cross the
chemical potential~dotted line!. Therefore, thes-wave kaon-
nucleon interaction, following from Ref.@16#, would not
support a second-order phase transition into thes-waveK2

condensate state due to the small value of the kaon-nuc
( term. However, an additional attraction comes from
term dI p wave

(reg) included inPS
(2,0) . It makes the condensatio

possible at densities>4.5r0. Another attractive piece is th
pole termI p wave

pole (v,0) taken into account inPS
(0) . The sig-

nificance of these terms, originating both from the hype
exchange diagram inK̄N interaction, was pointed first in
Ref. @6#. Both of these contributions were disregard
in works @8,9,5,7,10–12# discussing thes-waveK2 conden-
sation.

The curvesvS calculated with the fulls-wave polarization
operatorPS

(0) have cuts. In the region between the cuts, E
~45! has no solutions with positive residues@6#. The dashed-
dotted line depicts the border of the imaginary part of theK2

polarization operator. We see that within our approach,
curve calculated withPS

(0) andme meet at an energy below
the region of the imaginary part. Thus, with the full pola
ization operator~41! and ~48!, we recovered the results o
previous works@8,9,5,7,10–12# ~where, however, the two to
three times largerS term was used! about the possibility of
the K2 condensate production in reaction~1! at rather mod-
erate densities. In our case, the critical density isrc,S
.2.7r0. The reader should bear in mind that the baryo
baryon correlations are still not included in the above ana
sis. They will increaserc,S. This issue is addressed in Se
VII.

VI. CONTRIBUTIONS OF THE HYPERON FERMI SEAS
TO THE POLARIZATION OPERATOR

When the nucleon density exceeds the critical density
hyperonizationrc,H , the Fermi sea of hyperonH begins to
grow, and theK2 polarization operator receives new cont
butions.

A. Pole terms

The hyperon contribution to theK2 polarization operator
is related to the diagrams~in Schrödinger picture!

~51!

where hyperons and nucleons interchange their roles c
pared to diagram~26!.

The hyperon contributions to the pole part of the pol
ization operatorP (pole,0) can be simply included in Eq.~27!
with the help of the replacement
01580
-

on
e

n

.

e

-
-

f

-

-

h iH
2 F iH~v,kW !→hNH

2 F iH~v,kW !1hHN
2 FHi~2v,2kW !,

~52!

where the last term implies interchange of all indicesi↔H
in Eqs.~28!, ~29!, and~34!. The result of such a replaceme
can be cast as

dPhyp
(pole,0)~v,kW !5PLp

(pole,0)~2v,2kW !1PS0p
(pole,0)

~2v,2kW !

12PS2n
(pole,0)

~2v,2kW !, ~53!

and is to be added to the total polarization operator.

B. Regular terms

There are no experimental constraints on the hyperon c
tribution to the regular part of the polarization operator. As
rough estimation, we suggest to extend the model polar
tion operator~50! to the hyperon sector according to th
leading-order terms of a chiral Lagrangian

dPS,hyp
(xPT,0)~v!52

SKN

f 2
~rL

scal1rS2
scal

1rJ2
scal

!2
C

f 2 S 1

3
rL

scal

2rS2
scal

1rJ2
scalD1

CL

f 2
rL

scal1
rS212rJ2

2 f 2
v.

~54!

In this expression, we utilize the value ofSKN from the fit
with formula ~49! to the numerical results in Fig. 5 (SKN
.150 MeV), whereas the values of coefficientsC
'66 MeV and CL5mK

2 (mJ2mL)/@12(mK
2 2mp

2 )#
'34 MeV andf .90 MeV are predicted by the chiral SU~3!
symmetry. To estimate the nonpole contribution from t
nucleonu-channel exchange~analogous todP (reg, 0)), we
use the approximate relation~43!

dPS,hyp
(reg,0)~v!52CKNL

2 FmN*
22mL*

2

2mL*
rL

scal2vrL

2
v2

mL* 1mN*
rLG22CKNS

2 FmN*
22mS*

2

2mS*
rS2

scal

2vrS22
v2

mS* 1mN*
rS2G . ~55!

In our estimation, we do not take into account contributio
to the regularp-wave part of the polarization operato
}kW2rH .

C. The energy of the lowest branch
of the dispersion equation atk¢Ä0

Solutions related to the lowest branch of the dispers
equation~45! for kW50 calculated with the polarization op
erator
3-11
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EVGENI E. KOLOMEITSEV AND DMITRI N. VOSKRESENSKY PHYSICAL REVIEW C68, 015803 ~2003!
PS,hyp
(0) ~v!5PS

(0)~v!1dPS,hyp
(0) ~v!,

dPS,hyp
(0) ~v!5dPS,hyp

(xPT,0)~v!1dPhyp
(reg,0)~v!1dPhyp

(pole,0)~v,0!
~56!

are shown in Fig. 6 by solid lines in comparison with t
corresponding solutions obtained without inclusion of hyp
ons ~dashed lines!. Calculations are done for the hypero
coupling constants corresponding to case I. We see tha
presence of hyperons produces an additional small attrac
only at rather high densities (.4r0). The net effect is smal
due to the partial cancellation of the attractivePS,hyp

(xPT,0) term
and the repulsivedPhyp

(reg,0) term and because in our mod
the hyperon concentrations are much smaller than the
tron concentration and even smaller than the proton one.
allows us not to care much about the hyperon Fermi-
occupations when considering thekW50 case.

VII. BARYON-BARYON CORRELATIONS

Working with the polarization operator constructed by
tegrating the meson-nucleon scattering amplitude over
nucleon Fermi sea, e.g., as in Eqs.~13! and ~14!, one as-
sumes that all multiple meson-nucleon interactions are in
pendent from each other and have the same probability
portional to the local nucleon densityr(rW). However,
successive meson-nucleon scatterings in dense nuclear
ter are not independent due to the presence of a repu
core in nucleon-nucleon interactions, and due to the P
exclusion principle@46–48#. The probability to find two
nucleonsi and i 8 at the positionsrW1 and rW2, respectively, is
proportional to the two-particle density

r i i 8~rW1 ,rW2!5@11Cii 8~ urW12rW2u!#r i~rW1!r i 8~rW2!,

0 1 2 3 4 5
0

100

200

300

400

500

case I

Π(0)

S hyp ω
S
 [M

eV
]

µ
e

ρ/ρ
0

FIG. 6. The energy of the lowest branch of the dispersion eq

tion at kW50 calculated with the polarization operatorPS,hyp
(0) given

by Eq. ~56! is depicted by solid lines. The dashed line shows
corresponding solution with the polarization operator~48!. The dot-
ted line depicts the electron chemical potential.
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with the correlation functionCii 8(r ),0 and it is reduced in
comparison to the product of two single-particle densiti
The correlation function can be approximately written as

Cii 8~r !'Ccore~r !1d i i 8Ci
Pauli~r !@11Ccore~r !# ~57!

with contributions from the hard core,Ccore, and the Pauli
exclusion principle,CPauli, assuming that both correlation
contribute multiplicatively. The former can be taken from t
description of the nuclear matter with the realistic nucleo
nucleon interaction. A convenient parametrizationCcore(r )
'2 j 0(m0r ) with m0'5.6mp was suggested in Ref.@49#.
Here, j l(x) is the spherical Bessel function. For the Pa
correlation, we use the expression for the ideal fermion
@50#, Ci

Pauli(r )529 j 1
2(pFi r )/(2pFi

2 r 2) .

A. Correction of s-wave and regular p-wave terms

A general derivation of corrections to the meson propa
tion in dense nuclear matter due to nucleon-nucleon corr
tions ~so-called Ericson-Ericson-Lorentz-Lorenz correction!
can be found in Refs.@51,52# for pions and in Refs.@53,54#
for kaons.

Correlation processes can be presented by symbolic
grammatic equation

~58!

The wavy line represents the kaon, and the sum goes
baryon species. The absence of arrows on the solid ferm
lines means that both particles and holes are treated on e
footing ~the conservation of charges, e.g., strangeness, b
onic number, etc., in each vertex is implied!. The hatched
triangle is the bare scattering amplitude~scattering on a par-
ticle or on a hole! and the full triangle stands for the ampl
tude including baryon-baryon correlations. The dotted l
symbolically depicts the two-baryon correlation functio
CBB8 due to theBB8 correlations through the core and th
Pauli principle. There are neither experimental informatio
nor theoretical estimations for the hyperon-nucleon a
hyperon-hyperon correlations. Since the latter ones are
relevant for our discussion below we will neglect them
Thus, we include only minimal correlations given by theCii 8
nucleon-nucleon correlation functions.

First, we consider correlation corrections to thes-wave
part of the kaon polarization operatorPS

(0) given by Eq.~41!
and the regularp-wave partPP

(reg,0) from Eq. ~39!. We sepa-
rate the contributions induced by the scattering on a nucl
speciesi 5$n,p%

PS
(0)~v!5PS,n

(0)~v!1PS,p
(0)~v!,

PS,i
(0)~v!5I s wave,i~v,0!1I p wave,i~v,0!,

a-

e
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FIG. 7. Left panel—
contribution for the Pauli spin cor-
relations to thep-wave correlation
function ~62! vs the Fermi mo-
mentum for different kaon ener
gies (pF

(0) is the Fermi momentum
for r5r0); Right panel—the
s-wave ~dashed lines! andp-wave
~solid lines! correlation functions
~61! and ~62! evaluated for v
5me in neutron star matter~case
I! as function of the total baryon
density.
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cf. Eqs. ~13! and ~14!. Then, adopting results from Refs
@55,54#, we may present the polarization operator terms c
rected by baryon-baryon correlations as

PS~v!5
P̃S,n~v!1P̃S,p~v!12P̃S,n~v!P̃S,p~v!jpn

(S)~v!

12P̃S,n~v!P̃S,p~v!~jpn
(S)~v!!2

,

P̃S,i~v!5
PS,i

(0)~v!

12j i i
(S)~v!PS,i

(0)~v!
, ~59!

PP
reg~v,kW !5kW2

b̃p~v!1b̃n~v!12b̃p~v!b̃n~v!jnp
(P)~v!

12b̃p~v!b̃n~v!~jnp
(P)~v!!2

,

b̃i~v!5
bi~v!~r i /r0!

12bi~v!r ij i i
(P)~v!/r0

. ~60!

The functionsj i i 8
(S) andj i i 8

(P) are defined as

j i i 8
(S)

~v!5E d3rCii 8~r !DK
0 ~v,r !, ~61!

j i i 8
(P)

~v!5
1

3E d3rCii 8~r !¹2DK
0 ~v,r !

52
1

3
@Cii 8~0!2~mK

2 2v2!j i i 8
(S)

~v!#, ~62!

with the Pauli and hard-core contributions from Eq.~57!,
i ,i 85$n,p%, and DK

0 (v,r )52exp(2AmK
2 2v2r )/(4pr ) as

the free kaon propagator.
Using Eq.~58!, one finds that the repulsive core contri

utes with

j i i 8
(P,core)

5jK
(P,core)~v!5

1

3

m0
2

~m0
21mK

2 2v2!
~63!

to thep wavej ’s and with
01580
r- j i i 8
(S,core)

5jK
(S,core)~v!5

1

~m0
21mK

2 2v2!
~64!

to the s-wave ones. The contribution from the Pauli spi
correlation~second term inCii 8) to the p-wave correlation
function j i i

(P) is shown in Fig. 7~left panel! as a function of
the Fermi momentum for different kaon energies. We see
the correlation parameter decreases with the density since
core correlations hold baryons apart from each other
suppresses, thereby, the effect of the Pauli exclusion p
ciple. The right panel of Fig. 7 presents the values of
correlation function~61! and ~62! calculated forv5me in
the neutron star matter with hyperon coupling constants
cording to case I.

In view of their smallness, we leave the contributio
from the hyperon Fermi seas to the regular part of the po
ization operatordPS,hyp

(0) without corrections for baryon-
baryon correlations.

B. Correction of p-wave pole terms

We turn now to the consideration of correlation effects
the particle-hole channel.

If we approximate the freeK̄N scattering amplitude
~hatched triangle! in Eq. ~58! by the hyperon-exchang
diagram—the same that produces the particle-hole diagr
~26!—we can see that the account of correlations via E
~58! is equivalent to the replacement2

~65!

with a modified vertex~fat point! obeying equation

2The replacement~65! and ~66! can be explicitly proven in the
nonrelativistic limit. Working with relativistic kinematics, we appl
it only to the pole part of diagram~26! written in terms of the
Lindhard function~28!. Thereby, we preserve the correct transiti
to the nonrelativistic limit.
3-13
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~66!

The particle-hole irreducible boxTHN
loc ~the square! can be
8

r
da

d
ar

01580
expressed in terms ofjP and kaon-nucleon-hyperon couplin
constants.

Below we would like to put the discussion on a mo
phenomenological level. According to the arguments of
Fermi-liquid theory @56#, the particle-hole irreducible box
THN8

loc has a weak dependence on incoming energies and
menta and, therefore, can be parametrized in terms of p
nomenological Landau-Migdal parameters:
e

hole
~67!

with a51,2,3. The amplitudes are normalized withC05300 MeV fm3 allowing for a comparison of the values for th
hyperon-nucleon correlation parameters with those for the nucleon-nucleon correlations introduced in Ref.@21#. In Eq. ~67!,
PSN

(1/2)5(12 tWS•tW )/3 is the projection operator onto theSN state with isospin 1/2,tWS are the isospin-one matrices andtW are the
Pauli matrices of the nucleon isospin. The projectorPS* N

(1/2) is defined analogously. The spin-spin operators in the particle-

channel are given bys125(sW 1sW 2) andS125(SW 1SW 2
†), with SW standing for the spin operator, which couples spin-1

2 and spin-32
states.

The inclusion of correlations according to Eq.~66! brings the pole polarization operator~25! into the form

Ppole~v,kW !5
P̃pL~v,kW !1P̃S~v,kW !12c fLS8 P̃pL~v,kW !P̃S~v,kW !/3

12c2f LS82 P̃pL~v,kW !P̃S~v,kW !/3
1PS* ~v,kW !,

P̃pL~v,kW !5
PpL

(0)~v,kW !

12 f L8 C0FpL~v,kW !
, c5C0 /~CKNLCKNS!,

P̃S~v,kW !5
PpS0

(0)
~v,kW !12PnS2

(0)
~v,kW !

12gS8 C0@FpS0~v,kW !12FnS2~v,kW !#/3
,

PS* ~v,kW !5
PpS* 0

(0)
~v,kW !12PnS* 2

(0)
~v,kW !

12gS*
8 C0@FpS* 0~v,kW !12FnS* 2~v,kW !#/3

. ~68!
s
in
w

d as

q.
nge
C. Correlation parameters

To the best of our knowledge, there is no direct expe
mental information about the values of the Landau-Mig
parameters for the hyperon-nucleon interactionsf L8 , gS(S* )

8 ,
and f LS8 . In principle, this information could be extracte
from multistrange hypernucleus data, which, however,
rather poor. In Ref.@15#, the Landau-Migdal parameterf L8
i-
l

e

was estimated in line with Ref.@57#, where these parameter
for the nucleon-nucleon interaction were calculated with
the Ericson-Ericson-Lorentz-Lorenz approach. We follo
this approach below. Further corrections can be compute
in Ref. @49#.

Following @57#, we assume that the squared block in E
~67! is determined by exchanges of kaon and heavy stra
vector mesonK* with massmK* .892 MeV. This can be
3-14
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NEGATIVE KAONS IN DENSE BARYONIC MATTER PHYSICAL REVIEW C68, 015803 ~2003!
depicted in diagrams as

~69!

In this approximation, correlation parameters are equal
the HN21 and theNH21 interactions. Including hyperon
Fermi seas means that the pole term of the polarization
erator is corrected through replacement~52! in Eq. ~68!.
Block ~69!, being evaluated at the zero momentum and
ergy transfer, contributes to the local interaction in Eq.~67!
as

THN
loc 'CKNHCKNHjK

(P,core)~0!1CK* NHCK* NHjK*
(P,core)

~0!,

H5L,S,S* , ~70!

TLS
loc ~v!'CKNLCKN8SjK

(P,core)~0!

1CK* NLCK* N8SjK*
(P,core)

~0!. ~71!

For shortness, we do not write here explicitly the spin a
isospin operators and note that those are exactly the sam
in Eq. ~67!. The vector-meson coupling constantsCK* NH in
Eq. ~70! correspond to the nonrelativistic vertex}@sW 3kW #.
The coupling constants can be taken from the Ju¨lich model
of the hyperon-nucleon interaction via meson exchan
@45#: CK* NL52(1.3/mp), CK* NS5(0.07/mp), and
CK* NS* 5(0.7/mp). These values account for the form fa
tors used in Ref.@45#. Particularly, the very soft form facto
is responsible for a strong suppression of theCK* NS vertex.

Thus, the Landau-Migdal correlation parameters~67! can
be cast as

C0f L8 5CKNL
2 @jK

(P,core)~0!1RLLjK*
(P,core)

~0!#,

C0gS8 53CKNS
2 @jK

(P,core)~0!1RSSjK*
(P,core)

~0!#,

C0f LS8 5CKNLCKNS@jK
(P,core)~0!1RLSjK*

(P,core)
~0!#,

C0gS*
8 53CKNS*

2
@jK

(P!,core~0!1RS* S* jK*
(P),core

~0!#,

where the first term was introduced in Eq.~63!, jK
(P, core)(0)

.0.24, the second one is equal tojK*
(P,core)(0)5 2

3 m0
2/(m0

2

1mK*
2 ).0.28, cf. Ref. @57#, and RHH8

5CK* NHCK* NH8 /(CKNHCKNH8) with RLL.3.7, RSS

.0.04, RLS.0.39, andRS* S* .0.69. The additional facto
2 in jK*

(P,core) compared tojK
(P,core) originates from the reduc

tion @sW 23kW #@sW 13kW #→s12. Finally, we estimate the follow-
ing values for the correlation parameters of Eq.~67! as

f L8 .0.9, gS8 .0.1, f LS8 .20.1, gS*
8 .1.2. ~72!
01580
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Compared to Ref.@15#, we obtained a smaller value of th
parameterC0f L8 .0.6/mp

2 , since we included here the form
factors mentioned above.3

D. Energy of the lowest branch of the dispersion relation

at k¢Ä0

Figure 8 illustrates how strongly the kaon spectru
changes after including the short-range correlations.

show the lowest branch of the kaon spectrum atkW50. This is
calculated for the polarization operatorPS

(2) constructed
from PS

(2,0) according to Eq.~59! and for the polarization
operator PS(v)5PS

(2)(v)1Ppole(v,0), where Ppole(v,0)
follows from Eq. ~68! with parameters~72!. The hyperon
couplings are chosen according to case I.

At r.rc,H , we have to include correlations in the ter
dPS,hyp

(0) in Eq. ~56!. The pole termdPhyp
(pole,0)(v,0) is in-

cluded in Eq.~68! with the help of replacement~52!. The
other termsdPS,hyp

(xPT,0)(v) anddPS,h
(0) can be corrected in the

same manner as thePS
(0) term. However, these terms ar

rather small as it is demonstrated by Fig. 6. Therefore,
omit correlations in them.

From Fig. 8, we see that baryon-baryon correlations s
press thes-wave part of the polarization operator, in agre
ment with the statements@53,54#. It results in an increase o
the critical density of thes-wave condensation from 2.7r0 to
4.3r0 for case I, chosen as an illustration.

3Note that different normalizations of Landau-Migdal paramet
are used here and in Ref.@15#.

0 1 2 3 4 5
0

100

200

300

400

500

case I

Π(0)

S

Π(2,0)

S

Π
S

Π(2)

S

 ω
S
 [M

eV
]

µ
e

ρ/ρ
0

FIG. 8. Solid lines present the energy of the lowest branch of

dispersion equation atkW50 calculated with the polarization opera
tors PS

(2) and PS including effects of baryon-baryon correlation
Dashed-dotted continuations of solid curves demonstrate effec
the filling of the hyperon Fermi seas on thes-wave polarization
operator. Correlation parameters are taken according to Fig. 7~right
panel!, ~61! and ~72!. Dashed lines show solutionsPS

(2,0) andPS
(0)

without correlation effects, as in Fig. 5, panel~b!. The dotted line
depicts the electron chemical potential.
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VIII. KÀ CONDENSATION IN NEUTRON STARS

In Secs. IV–VII, we have constructed theK2 polarization
operator. Now we use it to study a possible instability of t
system with respect to a phase transition into a state withK2

condensate.
First, we investigate the solutions of theK2 dispersion

relation

v22kW22mK
2 2ReP tot~v,kW !50, ~73!

where the complete polarization operator is given by

P tot~v,kW !5PS~v!1PP
reg~v,kW !1PP

pole~v,kW !1dPhyp
(xPT,0)~v!

1dPhyp
reg,0~v!. ~74!

It contains thes-wave part, the regularp-wave, and the pole
parts of the polarization operator given by Eqs.~59!, ~60!,
and ~68!, respectively, and the terms determined by the
peron populations~54! and ~55!. The correlation parameter
are taken according to Eqs.~61!, ~62!, and~72!.

There are two different possibilities:K2 condensation
may occur in neutron star matter via a second-order ph
transition or a first-order phase transition. The dynamics
these phase transitions is quite different. Both possibili
might be realized at different physical conditions related
different stages of a neutron star evolution.

In case of a second-order phase transition, at the mom
when the density in the neutron star center achieves the c
cal densityrc

II , reactions~1! become operative. At this tran
sition, the isospin composition and the density of the sys
change smoothly. During the timet}t react

Arc
II /Ar2rc

II ,
wheret react is the typical time of the weak processes~1!, the
system creates an energetically favorable condensate s
The condensate appears within the region wherer.rc

II . If
this happens during a supernova explosion, the typical
of the condensate region might become of the order of
neutron star radius. Due to energy conservation, the ga
energy must be released in such a transition. When the
densate region is heated up to the temperaturesT>Topac
;(1 –2)-MeV neutrinos are trapped. At this stage, the co
ing time is determined by the neutrino heat transport fr
the condensate interior to the star surface@21#. When the star
cools down to temperaturesT,Topac, the neutron star be
comes transparent for neutrinos, and these can be dire
radiated away. A part of the energy is also radiated by p
tons from the star surface. In binary long-living systems,
critical density in the neutron star center can be achieved
accretion. Then, the transition is characterized by the typ
accretion time.

In case of a first-order phase transition, the final st
might significantly differ from the initial one in its isospi
composition and its density. Thus, this new state canno
prepared in microscopic processes. Small-size droplets o
new phase are not energetically favorable due to a pos
surface energy. When the density in the star center exc
the valuerc

I ,rc
II , the system arrives at a metastable state

this state, a droplet with the densityrc
fin.rc

I and a suffi-
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ciently large~overcritical! size, created by fluctuations, wi
continue growing. At zero temperature, the probability f
the creation of such a droplet via quantum fluctuations
very small, but it increases greatly with the temperature@21#.
Thus, a first-order phase transition is most likely at an init
stage of a neutron star formation or cooling when the te
perature is sufficiently large. If the density in the center o
star exceeds the valuerc

II , a second-order phase transitio
occurs. In long-living binary stellar systems, where the n
tron star slowly accretes the mass from a star companion
the temperature is already very small, a second-order ph
transition is a more probable one~depending on the accretio
rate!.

A. Second-order phase transition
to the s-wave condensate state

Let us first analyze the possibility of thes-waveK2 con-
densation. In Fig. 9, we summarize the results of Secs. V
VI C, and VII D, showing the energy of the lowestK2

branch of the kaon dispersion relation~73! for kW50 together
with the electron chemical potential. For the given parame
choice, the crossing points of the lines indicate the criti
density of thes-wave condensation via a second-order ph
transition.

We see that for all models the neutron star matter is
stable with respect to the reactions in Eq.~1! at densities
(3 –5.2)r0. The critical density depends on the choice of t
correlation parameters and the parameters of the hype
nucleon interactions. As long as correlations are not
cluded, we support the conjecture of previous works on
possibility of thes-wave condensation atrc,S

(II) ;3r0. How-
ever, the baryon-baryon correlations shift the condensa
critical density to values larger than those ones discusse
Refs.@5,7–12#.

B. Second-order phase transition
to the p-wave condensate state

In this section, we study a principal possibility for th
p-waveK2 condensation in neutron star matter via a seco
order phase transition. We investigate whether thep-wave
condensation can occur before thes-wave condensation an
to what extent this depends on the parameters of hype
nucleon interactions and correlations.

Let us first assume that thes-wave K2 condensation is
indeed possible at some critical densityrc,S. The lowest en-

2 3 4 5
0

100

200

300 (I)

 ω
s [M

eV
]

 

2 3 4 5

(II)

 ρ/ρ
0

 

2 3 4 5

(III)

 

2 3 4 5 6

(IV)

FIG. 9. Solid lines are the energy of the lowestK2 branch of the

dispersion relation~73! for kW50. Dotted lines show electron chem
cal potentials. Dashed lines are calculated without baryon-bar
correlations. Different panels correspond to the interactions gi
by cases I–IV.
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ergy branch of theK2 spectrum at small momenta is give
by

v'vS1a~vS!ZS~vS!kW2, ~75!

where vS is, as before,v(kW50) for the lowest energy
branch of the dispersion law given by the solution of t
equationvS

25mK
2 1RePS(vS,kW50), and

ZS
21~v!5S 2vS2

]RePS~v,kW !

]v
U

kW50
D .0,

a~v!511
]RePP~v,kW !

]kW2 U
kW50

.

If at rc,S, we havea(vS),0, then instead of thes-wave
condensation we have thep-wave condensation at a som
what smaller density. The aim of this section is to find t
value a(vS) in Eq. ~75! at the critical point of thes-wave
condensation, i.e., whenvS5me .

Using thep-wave kaon polarization operator determin
in Sec. V, we write

a~v!511apole~v!1a reg~v!. ~76!

Without baryon-baryon correlations, the contribution of t
pole part is

apole
(0) 5

]

]kW2
ReP (pole,0)~v,kW !ukW505aLp

(0)1aS
(0)1aS*

(0) ,

~77!

with aS
(0)5aS0p

(0)
12aS2n

(0) andaS*
(0)

5apS* 0
(0)

12anS* 2
(0) . From

Eqs.~37! and ~38!, we have

a iH
(0)~v!5CKNH

2 @hNH
2 f iH

P ~v!1hHN
2 fHi

P ~2v!#,

a iS*
(0)

~v!5CKNS*
2 hNS*

2 F iS* ~v,0!, H5$L,S%.

The termhHN
2 f iN

P (2v) accounts for the contribution of th
hyperon Fermi sea. Once the baryon-baryon correlations
included in the pole part of the polarization operator acco
ing to Eq.~68!, apole

(0) is to be replaced by

apole~v!5
]

]kW2
RePpole~v,kW !U

kW50

.

The regular part follows from Eq. ~39!, a reg
(0)(v)

5bp(v)rp /r01bn(v)rn /r0, with the coefficients defined
in Eq. ~40!. The suppression of the regular parta reg due to
the baryon-baryon correlations can be taken into acco
according to Eq.~60!

a reg~v!5
b̃p~v!1b̃n~v!12b̃p~v!b̃n~v!jnp

(P)~v!

12b̃p~v!b̃n~v!~jnp
(P)!2~v!

,

01580
re
-

t,

b̃p~v!5
bp~v!rp/r0

12bp~v!rpjpp
(P)~v!/r0

,

b̃n~v!5
bn~v!rn/r0

12bn~v!rnjnn
(P)~v!/r0

. ~78!

Although thej i i 8
(P)(v) functions can be evaluated as in E

~62!, we will treat them here as free energy-independent
rametersj i i 8 in order to investigate the sensitivity of th
results to their variation.

In Figs. 10 and 11 we show the values ofapole(me) ~solid
lines! and212a reg ~dashed lines!, calculated as a function
of rc,S for various baryon-baryon correlation parameters a
hyperon couplings. TheS hyperon contribution is proved to
be very small. The major contribution to the strength is d
to Lp21 andS* n21 loops. The hyperon Fermi seas are n
incorporated for the moment~we drop terms}FHi in Ppole).
Inclusion ofS* into the mean-field model~2! is quite uncer-
tain due to the absence of any empirical constraint on
coupling constants. We consider two different cases: In
upper plot in Fig. 10, we assume thatS* couples to the mean
field with the same strength as theS hyperon (VS* 5VS ,
gsS* 5gsS); in the lower plot in Fig. 10, we detachS* from
the mean-field potentials (VS* 50, gsS* 50).

At the crossing point of the solid line with the correspon
ing dashed line, we haveapole5212a reg and therefore,a
50. This means that the given density is the critical dens
for both thes- and thep-wave condensations. For values
rc,S, for which the solid line is below the correspondin
dashed lineapole,212a reg. This means thata,0 and for
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FIG. 10. apole(me), vS5me , ~solid lines!, and 212a reg

~dashed lines! vs critical density of thes-waveK2 condensation for
various correlation parameter choices. Labels show values of L8
5gS8 . Solid lines are drown forf LS8 50, and f L8 5gS8 50,0.5,1.
Dashed lines are for three choices of the correlation parame
used in calculation ofa reg, jnn5jpp5jnp50,0.5,1~from the upper
line to the lower one!. Cases I–IV correspond to those in Fig. 1.
the upper plot,S* is taken withgS*

8 5gS , VS* 5VS , and gsS*
5gsS . In the lower plot,VS* 50 andgsS* 50. Hyperon popula-
tions are included in the mean fields but not in the polarizat
operator.
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such a parameter setK2 condensation occurs in thep-wave
state at a density somewhat smaller than that assumed fo
s-wave condensation.

Contributions from the hyperon Fermi seas are includ
in Fig. 11. Comparing Figs. 10 and 11, we see that the
peron population affects noticeably thep-wave attraction.
Figures 10 and 11 also show that theS* hyperons contribute
significantly to theK2 polarization operator, increasing th
attraction in thep wave. The most favorable case for th
p-wave condensation is realized whenS* is detached from
the mean-field potentials.

In Fig. 12, we show the results for the values of the c
relation parameters evaluated in Sec. VII. ForS* hyperons
detached from the mean-field potentials our model predic
preference for thep-wave condensation. Thep-wave conden-
sation is preferred atrc,S<3.5r0 for the cases II and IV, and
at rc,S.4r0 andrc,S.4.5r0 for cases III and I, provided the
s-wave softening of the spectrum is also rather high. ForS*
coupled with the same strength asS, s-wave condensation
might be preferable to thep-wave condensation.

C. First-Order phase transition to the KÀ condensate state

In the previous two sections, we have studied the po
bility of K2 condensation assuming that this occurs via
second-order phase transition. Here, we investigate the p
erties ofK2 excitations in baryonic matter of different pa
ticle compositions, in order to understand whether an ab
~ of a first order! phase transition into a state with new pa
ticle composition and new baryon density can be energ
cally favorable.

We consider~i! nucleon-hyperon matter~NHM! with a
composition which we have discussed above~see Fig. 1!; ~ii !
neutron-proton matter~NPM! consisting only of protons and
neutrons inb equilibrium; ~iii ! isospin-symmetrical nuclea
matter ~ISM! consisting of protons and neutrons withrp
5rn and leptons that compensate for the electric charge
the protons; and~iv! proton-enriched matter~PEM! consist-
ing of protons and neutrons with concentrationYp5rp /r
50.7 and charge compensated by the leptons. Thus, in c
~ii !–~iv!, we switch off the hyperons in our mean-field mod
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FIG. 11. Same as in Fig. 10, but with account for the hype
population in the polarization operator.
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~2! and in cases~iii ! and~iv! we also freeze the value of th
proton concentration. For each case, we calculate the
energy of the system with and withoutK2 condensation.

In Fig. 13, we show the energy of the lowestK2 branch
for the dispersion equation~73!, vmin(kWm,Yp ,r) minimized
with respect to the momentum as a function of baryon d
sity for different proton concentrations. We see that the m
protons exist in the matter, the smaller is the value of
density at which the kaon energyvmin(kWm,Yp ,r) meets the
electron chemical potential. Therefore, if the energy gain d
to the condensation is large enough to compensate an en
loss due to fermion kinetic energies, the system undergo
first-order phase transition from the NHM state to the st
with a proton-enriched composition and a different densi

Let us first compare the energies of NHM, NPM, ISM
and PEM taking into account the possibility for theK2 con-
densation in each case. For densitiesvmin(kWm,Yp ,r).me,
there is no condensation and the energy density of the sys
is given by Eq.~4!. Whenvmin(kWm,Yp ,r),me, the K2 exci-
tations appear, replacing partially the leptons. These exc
tions occupy a single state with the lowest energy and for
K2 condensate. The electron chemical potential is fixed n
asme5vmin(kWm,Yp ,r). The energy density of the system wit
the K2 condensate reads

Etot
(K)5Emes1(

B
EB

kin1 (
l 5me

El~vmin~kWm ,Yp ,r!!1Econd
(K) ,

~79!

where Econd
(K) is the energy density of the condensate fie

related to the mean-field Lagrangian

LK5@v22mK
2 2kW22P~v,kW !#ufkWu2. ~80!

The fkW is theK2 condensate mean field with the wave ve
tor kW . This field component should be found from the min
mization of an appropriate thermodynamical potential. F
simplicity, we neglect higher-order terms, such as}ufkWu4,
which represent an effective kaon-kaon interaction in de
baryonic matter. The effective kaon-kaon interaction depe
on the structure of the mean field. In the absence
a nonlinear effective kaon-kaon interaction, th

n
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FIG. 12. Valuesapole ~solid lines! and212a reg ~dashed lines!,
vS5me , calculated for the correlation parameters~72!. Solid lines
are calculated withS* hyperons coupled to the mean field as stro
asS hyperons. Dotted lines are withS* detached from the mean
field potentials. Cases I–IV correspond to various sets of hype
coupling constants. Contributions from the hyperon populations
included.
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FIG. 13. The energy of the

lowest K2 branch vmin(kWm ,Yp ,r)

minimized inukW u, and the electron
chemical potential, calculated fo
the NHM, NPM, ISM, and PEM.
In the right and left panels result
with and without baryon-baryon
correlation effects are shown. In
the NHM case, the hyperon cou
plings of case I are used and th
S* contributions are taken with
gS*
8 5gS , VS* 5VS , and gsS*

5gsS .
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condensate field is of the running plane-wave ty
fkW5exp@2ivmin(kWm,Yp ,r)t1 ikWmrW#. The dispersion relation
~73! is fulfilled for kW5kWm and v5vmin(kWm,Yp,r), and the
density of the charged kaon condensaterK is fixed by the
electroneutrality condition

rK5(
B

qBrB2re2rm2,

and thus, the energy density of the kaon condensate eq

Econd
(K) 5vmin~kWm ,Yp ,r!S (

B
qBrB2re2rm2D .

In Fig. 14, we show the energy per baryon in vario
baryonic systems, NHM, NPM, ISM, and PEM (Yp.0.7),
with and without the kaon condensate~dashed and solid
lines, respectively!. We see that for a densityrc.3r0 with-
out baryon-baryon correlations and.4r0 with correlations,
the condensate state in ISM becomes energetically favor
compared to NHM. The transition to the new, more sy
metrical isospin configuration increases the Fermi ener
of the leptons~the latter ones are needed to compensat
larger charge of protons!, but reduces the symmetry energ
of nuclear matter and also the total Fermi energy of nuc
ons. Without aK2 condensate, the energy loss is larger th
the gain and the system chooses NHM with the composi
shown in Fig. 1~in Fig. 13, the ISM lines lie above the NPM
lines!. With the K2 condensation, the energy of the syste
decreases significantly since leptons are replaced by ka
The latter energy gain is large enough to support
01580
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preference of ISM. From Fig. 14, we see that PEM (Yp

.0.7) has a larger energy than ISM. As it is also seen fr
Fig. 14, the resulting isospin composition can be on
slightly aboveYp51/2. In the following, we neglect this
small difference and consider ISM as the final configurati

In Fig. 15, we plot the lowest branch of theK2 excitation

spectrumvmin(ukWu) in the ISM at various densities. On the le
panel, baryon-baryon correlations are switched off and
right panel, switched on. We see that for densit
>(2.5–3.5)r0, the spectra have minima~dots in Fig. 15! at

finite values of the kaon momentumkWmÞ0. This signals that
the transition from NHM to a dense ISM would occur as
first-order phase transition into the state with thep-wave
kaon condensate. The calculations shown in Figs. 13–15
done forgS*

8 5gS , VS* 5VS , andgsS* 5gsS . The results
obtained with theS* hyperons detached from the mean-fie
potentials are checked to be of minimal difference.

Assuming that the surface tension is large enough,
initial and final state densities can be determined by
double-tangent Maxwell construction@58,59#. In Fig. 16, we
show such a construction between NHM and ISM states.
see that the critical density for the beginning of a first-ord
phase transition is equal torc

I .1.4r0 without correlations
and .2.1r0 with correlations. The critical densities of th
final state arerfin

I .5r0 and.6r0, respectively.
If the surface tension is smaller than some critical va

then the phase transition results in the mixed ph
@60,58,61,59#. In such a case, the local charge-neutrality co
dition is to be replaced by the global charge-neutrality co
3.
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FIG. 14. Total energy per
baryon of matter with different
particle compositions: without
~solid lines! and with ~dashed
lines! the K2 condensate. Abbre-
viations are the same as in Fig. 1
The curves in the right and the lef
panels are drawn with and withou
inclusion of correlations, respec
tively. In the NHM case, the pa-
rameters are the same as in Fi
13.
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lowest branch of the dispersio
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r0). The polarization operator is
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baryon-baryon correlations ar
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spectively. Full circles mark the
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dition. The critical density for the appearance of kaon co
densate droplets within a mixed phase is still smaller than
value given by Maxwell construction. The presence of
mixed phase may have interesting observable conseque
~see Ref.@62#, and references therein!.

Thus, relying on the analysis above, we argue that
critical density of a first-order phase transition can be e
smaller than 2r0, and that such transition occurs into th
p-wave condensate state.

IX. CONCLUSION

In this work, we constructed theK2 polarization operator
in dense baryonic matter of arbitrary isotopic compositio
including both thes- andp-waveK2-baryon interactions. We
used a relativistic mean-field model to describe the bar
properties. The polarization operator was applied then
study thes- and p-wave K2 condensations in neutron sta
interiors. The results are presented for two different mod
of the equation of state, cf. Sec. II and Appendix A. Fin
temperature effects can easily be incorporated in our gen
scheme.

To describe the kaon-nucleon interaction, we used
kaon-nucleon scattering amplitude obtained as a solutio
the coupled-channel Bethe-Salpeter equation with an inte
tion kernel derived from a relativistic chiral SU~3! Lagrang-
ian with the largeNc constraints of QCD@16#. The Lp21,
SN21, S* N21 particle-hole contributions were taken in
account in the polarization operator. Effects of the filling
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the hyperonH5(L,S,J) Fermi seas at densities above t
hyperonization pointr.rc,H.(2.5–3)r0 are analyzed.

In Fig. 5, we compared the regulars-wave part of the
polarization operator with the simplified form widely used
the literature. The kaon-nucleonS term extracted from this
comparison (S.150 MeV) was found to be two to thre
times smaller than what allows for thes-wave K2 conden-
sation in ordinary neutron star matter composed mostly
neutrons. However, we found a sizable attractive supp
from the hyperon exchange terms of thep-wave scattering
amplitude contributing to thes-wave part of the polarization
operator. Inclusion of these terms , which were omitted
previous works, makes a second-order phase transition to
s-wave K2 condensate state possible at densities.3r0
when the correlation effects are not included.

We evaluated baryon-baryon short-range correlation
rameters and corrected all thes- and p-wave terms of the
polarization operator, accordingly. The correlations increa
the critical point of a second-order phase transition to
s-wave K2 condensate state to densities*(4 –5)r0, ~see
Fig. 9!. We estimated~see Appendix C! the effects of the
kaon fluctuations. Their contributions are small at low ka
energies, and as first approximation at zero temperature,
can be neglected.

Our next observation~see Appendix C! was that atkW
50, the imaginary part of the pole term of the polarizati
operator is finite only in a rather narrow interval of kao
energies. If the electron chemical potential crosses theK2

branch within this energy interval, thes-wave condensation
f
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FIG. 16. Energy densities o
NHM and ISM with and without
the K2 condensate shown by
dashed and solid lines, respe
tively. For NHM, the forces of
case I are used. Calculations wit
and without baryon-baryon corre
lations are shown in left and righ
panel, respectively. The dash
dotted lines represent double
tangent Maxwell constructions be
tween two phases.
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FIG. 19. Same as in Fig. 16
but for parameters~A1!.
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will not occur. However, this possibility is not realized fo
the parameter choice used in our model.

Further, we have investigated the possibility of a seco
order phase transition to thep-waveK2 condensate state. W
showed that in the vicinity of the critical point of thes-wave
K2 condensation thep-wave part of the polarization opera
tor, induced mainly byL –proton holes andS* –nucleon
holes, and some regular terms, is large and attractive.
may change the sign of the momentum derivative of
energy at the lowestK2 spectrum branch at the origin. If thi
occurred, it would mean that there is ap-wave condensate
instead of ans-wave one appearing at somewhat smaller d
sity. This statement, although rather model dependent, h
for a wide range of varying parameters. The results dep
essentially on theS* hyperon coupling to the mean-fiel
potentials. In the most favorable case, whenS* is detached
from the mean-field potentials, the second-order phase t
sition to thep-wave condensate state may occur already
r;3r0 ~with correlations included!, cf. Fig. 12. This result
is also sensitive to the details of the equation of state an
the parametrization of the hyperon-nucleon interaction.
an equation of state with the parameters from Eq.~A1!, the
critical density is increased with respect to the one calcula
with the parameters defined in Eq.~5!.

We have also discussed the possibility of a first-or
phase transition to aK2 condensate state. We have fou
that in the presence of aK2 condensation, the isospin
symmetrical neutron-proton matter is energetically favora
than the standard nucleon-hyperon-lepton matter for de
ties *(3 –4)r0 ~depending on the values of parameters
baryon-baryon correlations!. This yields a possibility for a
first-order phase transition. At such a transition, hyperons
replaced by nucleons and electrons are replaced by the
densateK2 mesons. In dense, isospin-symmetrical nucl
matter K2 excitations are condensed in thep-wave state.
With the help of Maxwell construction, we found that th
critical density at the beginning of the phase transition
about 2r0 with the baryon-baryon correlations included, c
Figs. 16 and 19. The final state density is about (5 –6)r0.
Occurrence of such a strong first-order phase transition
have interesting observable consequences: blowing-off a
of the exterior of the neutron star, strong neutrino pu
gravitational waves, strong pulsar glitches, etc. These eff
have been previously discussed in relation to a first-or
phase transition to the pion condensate state@21#. Here, we
01580
-

is
e

-
ds
d

n-
t

to
r

d

r

e
i-

f

re
n-
r

s

ay
art
,
ts
r

may expect a stronger energy release compared to the
condensate phase transition since the typical energy sca
larger,mK@mp .

Our derivations can be helpful not only for the descripti
of neutron star interiors, but also for discussion of kao
effects in other nuclear systems, such as atomic nuclei an
the systems formed in heavy-ion collisions. Therefore,
particular interest is the further more detailed analysis of
p-wave effects onK2 spectra in nucleus-nucleus collision
also motivated by present SIS and SPS experiments and
future SIS200 program at GSI.

ACKNOWLEDGMENTS

The authors acknowledge J. Knoll, T. Kunihiro, M. F. M
Lutz, A. Mocsy, T. Muto, G. Ripka, T. Tatsumi, and W. Weis
for stimulating discussions. D.N.V. highly appreciates hos
tality and support of GSI Darmstadt. This work was su
ported in part by DFG~Project Nos. 436 Rus 113/558/0 an
436 Rus 113/558/0-2! and by RFBR Grant No. NNIO-00-02
04012.

APPENDIX A: VARIATION OF THE PARAMETERS
OF THE BARYON INTERACTION

In this section, we investigate the sensitivity of the resu
of Sec. VIII to the particular choice of the EoS. For compa
son, we adjust the parameters of the mean-field mode
reproduce the EoS from Ref.@63#, which is a good fit to the
optimal EoS of the Urbana-Argonne group@26# up to four
times the nuclear saturation density and smoothly incor
rates the causality limit at higher densities. The correspo
ing coupling constants of Lagrangian~2! are

gvN
2 mN

2

mv
2

591.25,
gsN

2 mN
2

ms
2

5195.6,
grN

2 mN
2

mr
2

577.50,

b50.08675, c50.08060. ~A1!

These correspond to the following bulk parameters
nuclear matter at saturation:r050.16 fm23, binding energy
Ebind5215.8 MeV, compression modulusK5250 MeV,
symmetry energyasym528 MeV, and the effective nucleon
massmN* (r0)50.8mN .
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In Fig. 17, we show energies for the nucleon isosp
symmetrical matter and the pure neutron matter for t
choices of the mean-field EoS, model~5!, simulating a softer
EoS and ~A1! simulating a stiffer Urbana-Argonne EoS
Even though parameters~5! and ~A1! are rather different,
energies and other thermodynamic characteristics of the
tron star matter are rather close to each other for both par
eter choices in the absence of aK2 condensate. For the ISM
case, the EoS with parameters~A1! is significantly stiffer
than the one calculated with parameters~5! at r*3r0.

In Fig. 18, we show concentrations of the baryon spec
in neutron star matter corresponding to the EoS given
choice~A1! for the four choices of the hyperon-nucleon i
teraction~cases I–IV! which we have used throughout th
paper. We see that the critical density of the hyperonizatio
'3r0 for all choices. The general trends are the same as
ones in Fig. 1. The most essential difference is that the p
ton concentrations in Fig. 18 are smaller than those in Fig
This should have consequences for the neutrino cooling
neutron stars. Indeed, when the proton concentration exc
11% –14% an efficient cooling mechanism becomes op
tive via the direct Urca processesp→n1e1 n̄. This differ-
ence might be used, in principle, to select the more app
priate EoS.

FIG. 17. The EoS for ISM (N5Z) and neutron matter (Z50)
calculated with the parameter set~5! ~dotted lines! and~A1! ~dashed
lines!. Solid lines show the EoS from Ref.@63#.
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FIG. 18. Concentration of baryon species in neutron star ma
for EoS ~A1!. Four panels correspond to four choices of t
hyperon-nucleon interaction parameters specified in text.
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The calculations show that a second-order phase tra
tion to thes-wave K2 condensate state occurs at densit
(3.5–6)r0, depending on the choice of the parameters
second-order phase transition to thep-wave state may occu
in model~A1! for r>(4.5–5.5)r0 in cases II–IV, and it does
not occur for case I up to 6r0.

In Fig. 19, we show the double-tangent construction
the EoS with the parameters of Eq.~A1!. The first-order
phase transition starts at the densityrc

I .2.5r0 ~with corre-
lations included!. This value is only slightly larger than 2.1r0
given by the EoS with parameters~5!. The final state density
is rfin

I .5.5r0, i.e., slightly less than the value 5.9r0 given by
model ~5!. Thus, the main conclusion is that all the gene
trends in the behavior of the kaon condensation are the s
for both models of the EOS. The critical densities of thes-
and p-wave condensations are only slightly higher for t
parameters of Eq.~A1!.

APPENDIX B: NONEQUILIBRIUM GREEN’S FUNCTIONS

Two-point ~2P! functions ~a Green’s function or a self
energy! are introduced within the Schwinger-Baym
Kadanoff-Keldysh~SBKK! approach as, see Ref.@64#,

iF ~x,y!5S iF 22~x,y! iF 21~x,y!

iF 12~x,y! iF 11~x,y!
D

5S ^TÂ~x!B̂~y!& 7^B̂~y!Â~x!&

^Â~x!B̂~y!& ^T 21Â~x!B̂~y!&
D , ~B1!

whereT and T 21 are the usual time and antitime orderin
operators. Note that in notations of Ref.@65#, in contrast to
the Green’s functions, the ‘‘6,7 ’’ self-energies would have
an extra sign ‘‘2, ’’ since they contain the verticesV25
2 iV0 and V151 iV0. Not all four components ofF are
independent. The useful Kubo-Schwinger-Martin relatio
among them can be found in Ref.@64#.

We denote the fermionic Green’s functions and se

energies byĜi , j andŜ i , j , respectively, and the bosonic one
asDi , j andP i , j with i , j 56 . The hats on the fermionic 2P
functions point on their spin structure, e.g.,ĜR,A5@p”2mf

2ŜR,A(p)#21. For systems in equilibrium, the ‘‘21 ’’
Green’s functions are connected to the spectral functions
occupation numbers by the Kubo-Schwinger-Martin re
tions

iĜ21~p!52Âf~p!nf~e!, iĜ12~p!5Âf~p!@12nf~e!#,

iD 21~p!5Ab~p!nb~e!, iD 12~p!5Ab~p!@11nb~e!#,
~B2!

i Ŝ21~p!5ĝ f~p!nf~e!, i Ŝ12~p!52ĝ f~p!@12nf~e!#,

iP21~p!52gb~p!nb~e!,

iP12~p!52gb~p!@11nb~e!#, ~B3!

er
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where Âf(p)522ImĜf
R(p), Ab(p)522ImDb

R(p) are the

fermion and the boson spectral functions,ĝ f(p)

522ImŜ f
R(p), gb522ImPb

R are the corresponding
widths, and

nf,b~e!5$exp@~e2m f,b!/T#61%21 ~B4!

are the fermion/boson occupation numbers, andm f,b stands
for the fermionic and bosonic chemical potentials.

In the quasiparticle approximation (gb→0 in the bosonic
Green’s functions!, we have

Ab~q!'2pd@q0
22qW 22mb

22RePR~q0 ,qW !#

5(
i

2pZqW
b,id„q02vb

i ~qW !…, ~B5!

ReDb
R~q!'(

i

ZqW
b,i

q02vb
i ~qW !

,

whereZqW
b,i

51/@2q02]RePR/]q0#q05v
b
i (qW ) are the quasipar

ticle normalization factors corresponding to a given spectr
branchvb

i (qW ).
As a step towards the nonrelativistic limit, it is convenie

to approximate the spin structure of the fermionic Gree
functions as Ĝf

R(p)5(p”1mf)Gf
R(p) and Âf(p)5(p”

1mf)Af(p). In the quasiparticle approximation (g f→0), we
have

Af~p!'2pd@e22e0
2~pW !2ReSR~e,pW !#5ZpW

f p

epW
d~e2epW !,

~B6!

ReGf
R~e,pW !'

1

2epW

ZpW
f

e2epW
, ZpW

f
5@12]ReSR/]e2ue5epW

#21,

where epW obeys the dispersion equationepW
2
5e0

2(pW )

1ReSR(epW ,pW ) with e0(pW )5Amf
21pW 2. The self-energySR

includes averaging over the spin structureSR5 1
2 Tr$ŜR

•(p”
1mf)%.

The mean-field solutions~3! of the equation of motion for
a baryonB, following from Eq. ~2!, can be parametrized b
the self-energy SR(e,pW )52VBe1VB

222mNgss1gsB
2 s2.

Then, we haveepW5EB(pW ), with EB(pW ) defined in Eq.~3!

andZpW
B
5@12VB /EB(pW )#21511VB /eB(pW )'1.

APPENDIX C: EVALUATION OF FLUCTUATION TERMS

We will estimate fluctuation effects to the baryon se
energies and the feedback from the in-medium kaon mo
cation to the polarization operator.
01580
t
s

-

1. Correction of the baryon Green’s functions
due to kaon fluctuations

In Refs. @19,20,39–41,43#, it has been argued that fluc
tuation contributions to the hyperon self-energy are essen
at low densities and at kaon energies not far away from
mass shell. This is, mainly, due to the presence of dyna
cally generatedL(1405) resonance close to the kao
nucleon threshold. This resonance dominates thes-wave
kaon polarization operator atv;mK and it is very sensitive
to the Pauli-blocking effect and to the modification of th
kaon spectral density. At lower kaon frequencies, cor
sponding to our main interest, the influence of theL(1405)
resonance is small. Thus, what remains to be analyzed
the self-energy contributions ofL(1116), S(1195), and
S* (1385) resonances. Here, we demonstrate that in the
energy region and at baryon densities of our interest th
contributions are rather suppressed.

Let us first show this on the example of the diagram

~C1!

This is the self-energy insertion to the full hyperon Gree
function due to theKN intermediate states. In Eq.~C1!, we
draw the full vertices. The nucleon line represents the
Green’s function. To be specific, let us concentrate on
kaon-proton self-energy insertion for theL hyperon. This
corresponds toH5L, K5K1 ~according to selected arrow
direction!, N5p in diagram~C1!.

Within the SBKK diagram technique, using the relatio
between the retarded and ‘‘2,1 ’’ Green’s functions and the
self-energies, we obtain

2 i ŜR~p!5E V̂@Ĝ21~p1q!DR~q!1ĜR~p1q!D21~q!

2 iĜ21~p1q!2ImDR~q!

1ĜR~p1q!DR~q!#V̂
d4q

~2p!4
. ~C2!

Here, 2 iV̂52 iV̂0G and 2 iV̂0 are the full and bare ‘‘2 ’’
vertices, andiV̂5 iV̂0G, iV̂0 are the corresponding ‘‘1 ’’ ver-
tices, G is a scalar form factor, which includes short-ran
nucleon-baryon correlations and simulates, thereby, the
ference between the bare and the full vertices. The last t
in Eq. ~C2! vanishes, since both retarded Green’s functio
have their poles in the same complexq0 semiplane.

To separate the contributions from particlesK1 and anti-
particlesK2, we may use the following decompositions fo
the retarded Green’s functions and the Wigner’s densitie

DR~q!5u~q0!DK1
R

~q!1u~2q0!DK2
A

~2q!, ~C3!

D21~q!5u~q0!DK1
21

~q!1u~2q0!DK2
12

~2q!. ~C4!
3-23
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This allows us to reduce the integration overq0 in Eq. ~C2!
to positive values only. For theL self-energy, we have

SR~p!5
1

2
Tr$ŜR~p”1mL* !%5E d4qu~q0!

~2p!4
2mL* V2$ iG21~p

1q!@DK1
R

~q!22i ImDK1
R

~q!#1GR~p

1q!iD K1
21

~q!1 iG21~p2q!@DK2
R

~q!

22i ImDK2
R

~q!#1GR~p2q!iD K2
21

~q!%, ~C5!

where we used the notations

V25V0
2 G2~q!, V0

2

5CKNL
2 1

2
TrH ~p”1mL* !

2mL*
q”g5

~p”2q”1mN* !

2mN*
q”g5J .

~C6!

Having in mind that we are interested in the self-energy
sertion to theL2p21 loop, after expanding the denomina
tors of the fermionic Green’s functions near the poles, a
assuming that fermions are nonrelativistic, we may ins
(pq).mN* v, p2.mN*

2 , and v,uqW u,(mL* 2mN* )!mL* ,mN* .
As a result, we obtain at the nonrelativisticp-wave vertex

V0
2.v0

2qW 2, with v0
25CKNL

2 mN* /mL* .(0.3–0.5)/mp
2 . For

S hyperon, we would have v0
25CKNS

2 mN* /mS*
.(0.07–0.09)/mp

2 , and forS* the corresponding coupling
is v0

25 2
3 CKNS*

2 mN* /mS*
* .(0.3–0.5)/mp

2 .
To evaluate ImSR and ReSR, we use the quasiparticl

approximation for the spectral functions~B6!. As we shall
see below, nonquasiparticle corrections to the intermed
fermion Green’s functions, although exist, produce sm
contributions to the self-energies at the kaon energies o
terest.

We first evaluate ImSR. Using Eqs.~B2!, ~B5!, and~B6!,
we get from Eq.~C2!

ImSR~e,pW !

2mL*
52(

i

1

2E d3q

~2p!2
v0

2qW 2G2$ZqW
K2,i

@1

2npW 2qW
p

#d„D2
i ~e,pW ,qW !…

1ZqW
K1,i

npW 1qW
p d„D1

i ~e,pW ,qW !…%,

3D6
i ~e,pW ,qW !5e6vK6

i
~qW !2Ep~pW 6qW !,

~C7!

wherei runs over all theK2 andK1 branches. Here,vK
i (qW )

are functions ofqW 2 andnpW
p
5u(pF,p2upW u) is the proton occu-

pation function. We used also that occupations of realK1

andK2 mesons are absent atT50 ~we do not consider here
the processes on the kaon condensate field!.
01580
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In the region interesting for us,vK2&EL(0)2Ep(0), the
d functions in Eq.~C7! allow only for the contribution of the
lowest branch of theK2 spectrum.

Further evaluation can be easily done forpW 50. For posi-
tive e, the imaginary part differs from zero only fore
.vK2(0)1Ep(0), and it isequal to

ImSR~e,0!

2mL*
52

v0
2

4pa
Zq̄

K2

G2~ q̄!q̄3u~ q̄2pF,p!, ~C8!

where q̄ is a solution of the equationD2(e,0,q̄)50 anda

52]D2(e,0,qW )/]qW 2uqW 25q̄2.0. If q̄ is small, namely,

2D2~e,0,0!
]D2~e,0,q!

]qW 2 U
qW 250

!1,

we may approximateq̄'q̄05AD2(e,0,0)/a0, where

a052
]D2~e,0,q!

]qW 2 U
qW 250

.

From theu function in Eq.~C8!, it follows that the fluctua-
tions contribute to the imaginary part of the given diagra
only, if e.vK2(0)1Ep(0)1pF,p

2 a0.

From Fig. 15, we see thatvK2(qW ) is a very flat function
of qW 2, and we can, therefore, neglect the momentum dep
dence of theK2 spectrum for 0,uqW u&2 mp . The imaginary
part of the diagram at finitepW is

ImSR~e,pW !

2mL*
52v0

2E
uupW u2q̄0u

upW u1q̄0 duqW uuqW u3

4pupW u
ZqW

K2

G2@mN*

1D2~e,0,0!#u@D2~e,pF,p,0!#

'2
v0

2mN*

2p
Zq̄0

K2

G2~ q̄0!q̄0~ q̄0
21pW 2!

3u@D2~e,pF,p,0!#.

The energy and momentum of theL within the Lp21

loop, contributing to theK2 polarization operator atuqW u50
aree5Ep(pW )1vK2(0) andupW u<pF,p . Therefore, the condi-
tions for nonzerou functions in Eqs.~C8 and C9! are not
fulfilled within the momentum integration interval of th
Lp21 loop.

For ReSR, using Eqs.~B2!, ~B6!, ~C3!, and~C6!, we get
from Eq. ~C2!

ReSR~e,pW !

2mL*
52(

i
E d3qW

~2p!3
v0

2qW 2G2H npW 2qW
p

ZqW
K2,i

D2
i ~e,pW ,qW !

1
npW 1qW

p
ZqW

K1,i

D1
i ~e,pW ,qW !

J . ~C9!
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For relevante, the main contribution is given by the firs
term with the lowestK2 branch. ForupW u50 the integral in
Eq. ~C9! is determined byuqW u;q̄, and we can expand
D2(e,0,qW )'a(q̄22qW 2). If ZqW

K,i andG depend weakly on the
momentum, the remaining integration is straightforward a
gives

ReSR~e,0!

2mL*
'

v0
2G2~ q̄!Zq̄

K2

2p2a
F pF,p

3

3
1q̄2pF,p

2q̄2uq̄u
1

2
lnUuq̄u1pF,p

uq̄u2pF,p
UG . ~C10!

The extension for finitepW can be easily done if we neglec
the qW dependence of the kaon spectrum. This is justified
our numerical analysis foruqW u&2mp . Then,D2(e,pW 2qW ,0)
'@ q̄0

22(pW 2qW )2#/2mN* , and the integration gives

ReSR~e,pW !

2mL*
'

v0
2mN*

p2
G2~ q̄0!Zq̄0

K2F pF,p
3

3
1~ q̄0

21pW 2!pF,p

2~ q̄0
21pW 2!uq̄0u

1

2
lnUuq̄0u1pF,p

uq̄0u2pF,p
UG . ~C11!

Now, we estimate the real part of the hyperon self-energ
pW 50 ande5Ep(0)1vK2(0). Wehaveq̄0→0 and

ReSR

2mL*
'c[v0

2mN* G2~0!Z0
K2

rp;0.3mpG2~0!
rp

r0
,

with mN* .0.6mN andZ0
K2

5Zq̄50
K2

;1/@2vK2(0)#;1/(2me) .
Assuming that the modification of thep-waveKNL vertex is
determined by the graphical equation~66! with Lp21 inter-
mediate states, we can use the corresponding part of Eq.~68!
and write

G~0!.
1

12 f L8 C0FpL„vK2~0!,0…
.

The Lindhard function can be estimated as

FpL„vK2~0!,0…'
2mN* rp

DpL
2
„vK2~0!,0,pF,p…

.
rp

D
, ~C12!

whereD5vK2(0)2EL(0)1Ep(pF,p). The value ofEL(0)
2Ep(pF,p) can be estimated from Fig. 5 where this is sho
by the dashed-dotted line. We estimateD;2mp and there-
fore, FpL;20.5mp

2 rp /r0. Thus, we obtainG(0).1/(1
10.3rp /r0) and

ReSR/~2mL* !&0.2mp , ~C13!
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for rp&3r0. We conclude that the absolute value of t
fluctuation contribution is small forpW →0 and this can be
mimicked by a variation of the weakly constrained para
eters of Lagrangian~2!.

From Eqs.~C10! and ~C11!, one can see that ReSR is
logarithmically divergent atupW u→pF,p when q̄→pF,p . In or-
der to analyze which effects this can produce for theLp21

contribution to the polarization operator, we separate
leading divergent term

S ReSR

2mL*
D

div

.v0
2mN* G2~pF,p!ZpF,p

K2 pF,p
3

p2
ln

pF,p2upW u
pF,p

.3c ln
pF,p2upW u

pF,p
, ~C14!

and estimate the variation of the Lindhard function~29!:

dFpL.E
0

pF,pdupW uupW u2

p2 F 1

D23c ln~12p/pF,p!
2

1

DG .
Using Eq.~C12!, we write

dFpL /FpL.F~3c/D!,

F~a!5aE
0

1

dx~12x!2/~12a ln x!, ~C15!

and find

udFpL /FpLu&0.2 for u3c/Du&0.6.

The above estimations prove that the self-energy cor
tions of theL propagator induced by the kaon fluctuatio
@diagram~C1!# do not modify the properties ofK2 excita-
tions with small energies and momenta, which we consi
in the main part of this paper. The same estimation can
done also for theK̄0n contribution to theL self-energy and
for the S andS* self-energies.

2. Correction of the baryon Green’s functions
due to pion fluctuations

There is another type of diagrams

~C16!

relating to pion fluctuations. Pions are soften in the nucle
matter already at densities;r0. The softening effect may
result in pion condensation at densitiesr.rcp , where the
critical density for pion condensationrcp might be smaller
than that for the kaon condensation@66,21#. However, in this
work, we concentrate only on kaon polarization effec
Thus, we disregard such a possibility assumingr,rcp .
3-25
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The main contribution to Eq.~C16! comes from the width
of soft pions due to the Landau damping. The maximum
the pion spectral function is achieved at a small pion ene
q0,mp and a finite momentumuqW u5uqW mu. In the diagram
with the p0 intermediate states the typical momenta of h
perons are;pFn for Hn21 loops in the theK2 polarization
operator or;pFp for the Hp21 loops. With a simplifying
assumptionuqW mu!2pFn,2pFp , the nucleon Green’s function
can be factorized out from the integral. The result is th
reduced to the calculation of a pionic tadpole@67#

~C17!

At zero temperature, the in-medium contributions from pi
fluctuations given by Eq.~C17! are numerically small for all
densities except in the closest vicinity of the pion conden
tion critical point @67,21#. For finite temperatures such con
tributions are substantially increased@68#.

The fermion self-energy insertions discussed here e
the loop diagrams of the kaon polarization operator. Si
we found them to be rather small, we may still work with t
quasiparticle fermion Green’s functions in the hypero
nucleon-hole loop diagrams treating fermions on the me
field level, as we did it in main part of the text.

3. Fluctuation contributions to the KÀ polarization operator

One of the important fluctuation processes in the ka
polarization operator is given by the diagram

~C18!

The diagram with free vertices was extensively discusse
the context of kaonic atoms@19,20#. In Ref. @19# both verti-
ces were taken constants and equal toV0.4p(1
1mK/mN)A(aK̄N

I50)213(aK̄N
I51)2 for isospin-symmetrical

case, whereaK̄N
I is theK̄N scattering length for isospinI. In

the threshold region, a large value of the vertexV0
;4p/mp was obtained. We will also use the energ
independent bare vertex~hatched box! but estimateV0 using
our amplitudes of Figs. 2 and 3 in the far off-mass-sh
region. In this energy region,V0;1/mp , i.e., a much smaller
value than that in the threshold region. Accordingly, we e
pect a significant suppression of the contribution from t
diagram to the kaon polarization operator. Another supp
sion comes from short-range correlations taken into acco
in the full box ~right vertex!.
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From Eq.~C18!, we obtain the advanced polarization o
erator

dPA~k!5E @2 iP 12~k1q!DA~q!1P A~k1q!iD 12~q!

2P 12~k1q!2ImDA~q!

1 iP A~k1q!iD A~q!#
d4q

~2p!4
, ~C19!

whereP corresponds to theNN21 loop ~including vertices!.
The last term in Eq.~C19! is zero.

Let us consider first the real part of the diagram. Usi
Eqs.~B2!, ~B3!, we obtain

dRePA~k!5E $@11nK~k02q0!#gP~k2q!ReDA~2q!

1@11nK~q0!#AK~q!ReP A~k1q!%
d4q

~2p!4
,

~C20!

where gP52ImP A and in the first term we have replace
q→2q. Using relations 11n2q0

b 52nq0

b and ~C3!, we re-

duce the integration in Eq.~C20! to the positive energies:

dRePA~k!5E d4q

~2p!4
u~q0!$@11nK~k02q0!#

3gP~k2q!ReDK2
A

~q!1@11nK~k01q0!#

3gP~k1q!ReDK1
A

~q!1@11nK~q0!#AK1~q!

3ReP A~k1q!1nK~q0!AK2~q!ReP A~k2q!%.

~C21!

The NN21 loop is suppressed at large frequenciesv

.ukW uvF,N1kW2/2mN* . Therefore, the second and the thi
terms give a small contribution in the energy region of o
interest. The fourth term is identically zero@nK(q0)50 for
q0.0 atT50]. Thus, we may keep only the first term in E
~C21!

dRePA~k!'E d4q

~2p!4
u~q0!V0

2G2@11nK~k02q0!#

3g0~k2q!ReDK2
A

~q!. ~C22!

Here, we introducedgP5V0
2G2g0, using the fact that the

correlation factorG is expressed through the Lindhard fun
tion FA, which leads to aG2 factor. In the spacelike region
g0(k)5g0(k0 ,kW ) has a compact analytic presentation@69#,
which atT50 gives

g0~k0 ,kW !5
mN*

2k0

2pukW u
, 0,k0,V2~kW !, ~C23!
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g0~k0 ,kW !5
mN*

3

4pukW u3
@V2~kW !1k0#@V1~kW !2k0#,

0,V2~kW !,k0,V1~kW !, ~C24!

V6~kW !5
2ukW upF,N6kW2

2mN*
.

Let us discuss the low energy contribution~C23! to the
polarization operator which we label below by subscript ‘‘1
The q0 integration is easily done using

max~n,0!,q0,k0 , n5k02V2~kW2qW !.

We obtain

RedP1
A~k!'

V0
2mN*

2

~2p!2 EukW2qW u,2pF,N

d3qW

~2p!3

G2ZqW
K2

ukW2qW u

3F @k02vK2~qW !# ln
@k02vK2~qW !#

max~n,0!2vK2~qW !

2k01max~n,0!G . ~C25!

This contribution can be easily estimated foruk0

2vK2(0)u/k0!vK2(0) andkW50. We note that due to the
flatness of the kaon spectrumvK2(qW ).vK2(0). Hence, for
k0;vK2(0), we canneglect the first term in Eq.~C25!.
Then,

RedP1
A~k0,0!.2

V0
2mN*

2

~2p!2

3E
0

2pF,NduqW uuqW u

2p2
G2ZqW

K2

min„k0 ,V2~qW !….

~C26!

For k0;vK2(0).pF,N
2 /(2mN* ) there is alwaysk0.V2(qW ),

and we find

RedP1
A~k0,0!.2

V0
2mN*

4p2
G2~0!Z0

K2
rNpF,N[2

CpF,N

4p2
.

~C27!

For k0;vK2(0),pF,N
2 /(2mN* ), the inequalitiesk0.V2(qW )

or k0,V2(qW ) together with 0,uqW u,2pF,n determine three
regions for momentum integration,
01580
RedP1
A~k0,0!

.2
V0

2mN*
2

~2p!2
G2~0!Z0

K2F S E
0

q2(k0)

1E
q1(k0)

2pF,N D duqW uuqW u

2p2
V2~qW !1E

q2(k0)

q1(k0) duqW uuqW u

2p2
k0G ,

bordered byq6(k0)5pF,N6ApF,N
2 22mN* k0 which follows

from the equationk05V2(q6) . The integration results in

RedP1
A~k0,0!.2

CpF,N

4p2 F12S 12
2k0mN*

pF,N
2 D 3/2G .

~C28!

Now, we discuss the contribution from the energy regi
~C24! which we indicate by subscript ‘‘2.’’

RedP2
A~k0,0!.

V0
2mN*

3

~2p!4 E0

2pF,NduqW u

uqW u
G2ZqW

K2

u„k02V2~qW !…

3E
k02V1(qW )

k02V2(qW )
dq0

3
@V2~qW !1k02q0#@V1~qW !2k01q0#

q02vK2

.

For k0;vK2(0) andkW50 this contributes to

RedP2
A~k0,0!.

V0
2mN*

3

~2p!4 E0

2pF,NduqW u

uqW u
G2ZqW

K2

3u„k02V2~qW !…FV2~qW !V1~qW !ln
V2~qW !

V1~qW !

2
3

2
V2

2 ~qW !12V2~qW !V1~qW !2
1

2
V1

2 ~qW !G .

We have neglected terms}@k02vK2(qW )# in the integrand,
since these are small due to the flatness of theK2 spectrum.
For k0;vK2(0).pF,N

2 /(2mN* ), we find

RedP2
A~k0,0!.3

CpF,N

4p2
G~0!, ~C29!

and fork0;vK2(0),pFN
2 /(2mN* ), we have

RedP2
A~k0 ,0!.3

CpF,N

4p2
G~x!, x5A122k0mN* /pF,N

2 .

~C30!

Here, we introduced functions
3-27
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G~x!5
1

16S E
0

12x

1E
11x

2 D dttF ~42t2!ln
22t

21t
24t214t G ,

G~0!52
2

3
, G~x→1!'2

5

4
~12x!. ~C31!

The suppression of the nucleon–nucleon-hole loop in
scalar-isoscalar channel can be taken into account as in
@21# @for recent review, see Ref.@70#, Eqs. ~4!–~8!# G
51/@122( f 1 f 8)C0ANN(v50,q5pF,N)#, whereANN is the
nucleon–nucleon-hole loop~without the spin degenerac
factor 2!, and ANN(v50,q5pF,N).2mNpF,N /(2p2). The
Landau-Migdal parameters of theNN interaction aref .0
and f 8.0.5–0.6 @71#. Thus, we have G;1/@1
10.3(rN /r0)1/3#. For rN&(3 –5)r0 we have C;mp .
When vK2(0).pF,N

2 /(2mN* ), the attractive contribution o
diagram~C18! is estimated to be

2RedPA&0.3mp
2 .

The RedPA remains attractive also for larger densities, wh
vK2(0),pF,N

2 /(2mN* ). However, its absolute value is add
tionally suppressed by the ratiovK2(0)mN* /pF,N

2 .
The imaginary part of the diagram under considerat

describes the processes in which a kaon excitation disso
into multiparticle nucleon–nucleon-hole modes. If theK2

energy meets the electron chemical potential in the reg
where the imaginary part of this diagram is, theK2 conden-
sation does not occur via a second-order phase transitio

Using Eq.~C19!, we obtain

ImdPA5E d4q

~2p!4
@ iP 12~k1q!ImDA~q!

1ImP A~k1q!iD 12~q!#. ~C32!

With the help of relations~B2! and ~B3!, we find

ImdPA5E d4q

~2p!4

1

2
gP~k1q!AK~q!@nb~q0!

2nb~k01q0!#. ~C33!

Using relations 11nb(2q0)52nb(q0) and~C3!, we reduce
the integral in Eq.~C33! to the positive energies:

ImdPA5E u~q0!
d4q

~2p!4

1

2
$gP~k1q!AK1~q!@nb~q0!

2nb~k01q0!#1gP~k2q!AK2~q!@11n~q0!

1n~k02q0!#%. ~C34!

The second term gives the main contribution. Taking in
account that atT50 there is (11nq0

K 1nk02q0

K )5u(k0

2q0), we obtain
01580
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ImdPA5
g

2
5

1

2E0

k0dq0

2p

d3q

~2p!3
V0

2G2g0~k2q!AK2~q!.

~C35!

The K2 spectral function can be presented in the form

AK2~q!52pZq
K2

d„02vK2~qW !…

1
g~q!

@q0
22mK

2 2RePA~q!#21 1
4 g2~q!

,

~C36!

where we separated two different contributions: The fi
term is the ordinaryd function from the spectral branch; th
second term is a possible nonquasiparticle contributi
which can be obtained only by the self-consistent solution
Eq. ~C35!.

Let us now consider the quasiparticle contribution to t
spectral function given by the first term in Eq.~C36!.

g~k0 ,kW !5E
ukW2qW u,2pF,N

d3q

~2p!3

mN*
2V0

2

2pukW2qW u H @k02vK2~qW !#

3u„k02vK2~qW !…u„vK2~qW !1V2~kW2qW !2k0…

1
mN*

2ukW2qW u2
@V2~kW2qW !1k02vK2~qW !#

3@V1~kW2qW !2k01vK2~qW !#u„k02V2~kW2qW !

2vK2~qW !…u„V1~kW2qW !1vK2~qW !2k0…J .

As before, we assume thatvK2(qW ) is a very flat function
in qW 2. Then, we obtain

g5u~z!uS pF,N
2

2mN*
2zD mN*

2V0
2

4p3
zE

q2(z)

q1(z)

ZqW
K
G2uqW uduqW u

1
mN*

3V0
2

8p3 E
2q2(2z)

2pF,N duqW u

uqW u
ZqW

K
G2@V2~qW !1z#@V1~qW !2z#

.u~z!uS pF,N
2

2mN*
2zD mN*

2V0
2

2p3
zZ0

K2
G2pF,NApF,N

2 22mN* z

1u~z!uS 4
pF,N

2

mN*
2zD mN* V0

2

32p3
Z0

K2
G2pF,N

4 H~2mN* z/p F,N
2 !,

H~x!5E
A11x21

2 dt

t
@4t22~ t22x!2#,

H~x→0!'4~11x!,H~x→8!'
1

3
~x28!2, ~C37!
3-28
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where z5k02vK2(0) . As follows from theu functions
there is no width for energiesk0,minq$vK2(qW)%5vK2(qWm)
and for k0,vK2(0). The width exists only above the
branch. Exactly at the branch, i.e., fork05vK2(kW ), the
d-function contributes only forkWÞ0. Thus, the quasiparticle
part of theK2 spectral function generates no width atkW50
at the critical point of the second-order phase transition
the s-waveK2 condensation, andk05me5vK2(0).

At low energies,k0,vK2(kW ), where thed-function term
does not contribute, there might appear another contribu
from the self-consistent solution given by the second term
~C36!. In the following, we find this self-consistent solutio
and demonstrate that the width exists even forkW50 affecting
the critical condition for thes-wave condensation. In order t
avoid rather cumbersome expressions we make several
plifying assumptions. We assume thatk0;vK2(kW )!eFN ,
and (]vK2 /]qW 2)0 is very small in the interval 0,uqW u
,k0 /vFN . Then, the spectral function simplifies as

AK2~q0!.Ā~q0!5
~Z0

K2

!2g~q0!

@q02vK2~0!#21 1
4 @Z0

K2
g~q0!#2

,

~C38!

and the self-consistent solution of Eq.~C35! for the widthg
is determined by

g~k0!'
mN*

2V0
2G2

8p4 E
0

2pF,N
duqW uuqW u E

0

min$k0 ,V2(qW )%
dzzĀ~k02z!

1
mN*

3V0
2G2

16p4 E
0

2pF,N duqW u

uqW u
E

V2(qW )

min$k0 ,V1(qW )%
dz@V2~qW !

1z#@V1~qW !2z#u„k02V2~qW !…Ā~k02z!

5
mN*

2V0
2G2

8p4 H F E
0

q2(k0)

1E
q1(k0)

2pF,N GduqW uuqW u E
0

V2(qW )
dz

1E
q2(k0)

q1(k0)

duqW uuqW u E
0

k0
dzJ zĀ~k02z!

1
mN*

3V0
2G2

16p4 F E
0

q2(k0)

1E
q1(k0)

2pF,N GduqW u

uqW u
E

V2(qW )

min$k0 ,V1(qW )%
dz@V2~qW !1z#

3@V1~qW !2z#Ā~k02z!, ~C39!

where we replacedq05k02z . For k0;vK2!pF,N
2 /2mN* ,

we have q2'k0mN* /pF,N and q1'2pF,N2k0mN* /pF,N .
Then, Eq.~C39! reduces to
01580
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g~k0!5
mN*

2V0
2G2

8p4 F S E
0

[k0mN* ]/ pF,NuqW uduqW u

1E
2pF,N2[k0mN* /pF,N]

2pF,N
uqW uduqW u D E

0

[ uqW upF,N] /mN* 2qW 2/2mN* dz

1E
0

2pF,N
duqW uuqW u E

0

k0
dzGzĀ~k02z!1

mN*
3V0

2G2

16p4

3F E
0

[k0mN* ]/ pF,N1E
2pF,N2[k0mN* /pF,N]

2pF,N G
3

duqW u

uqW u
E

V2(qW )

min$k0 ,V1(qW )%
dz@V2~qW !1z#

3@V1~qW !2z#Ā~k02z!.

To solve this equation, we assumeg(k0).ak0 for small
values ofk0 which we consider here. The main contributio
comes from the third integral of the first line}k0. In the first
integral uqW u;k0 and z;k0. In the second integral 2pF,N

2uqW u;k0 and againz}k0. Thus, the first two integrals}k0
2.

In the fourth integral after the replacementz5uqW upF,N /mN*

2qW 2/(2mN* )1j, we see thatj;qW 2;k0
2 and the integral is

}k0
4. In the fifth integral, besides this replacement, we int

duce uqW u52pF,N2k0mN* /pF,N1y and observe thatj}y
}k0. This integral is}k0

2. Thus, keeping only the third inte
gral, we obtain

ak0.
mN*

2V0
2

4p4
~Z0

K2

!2G2pF,N
2

3E
0

k0 za~k02z!dz

@k02z2vK2~0!#21 1
4 ~Z0

K2

!2a2~k02z!2
,

which has the nontrivial solution

g.ak0.mN* V0GpF,Nk0/p2, ~C40!

for a.2/Z0
K2

. As one may expect, this inequality indee

holds for rather large densities sinceZ0
K2

;1/@2vK2(0)#
@1/mp for small valuesk0;vK2(0).

A principal question is whether there is a width forK2 at
low energies. A second-order phase transition with aK2 con-
densation cannot occur ifvK2(0) crossesme in the energy
region, where imaginary part of the polarization operator
ists. The condensation is possible when the electron chem
potential exceedsvK2(0) reaching the upper border of th
region with the width. At least forvK2(0).pFN

2 /(2mN* ), we
cannot find self-consistent solution forg. We would like to
stress that a second-order phase transition to the s-waveK2

condensation may not occur only ifvK(0)5me

,pFn
2 /(2mN* ). For realistic values of parameters, we ha
3-29
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vK(0)5me.pFn
2 /(2mN* ) and there is no problem for th

s-waveK2 condensation.
Thus, the above examples demonstrate that in spite

many new peculiarities associated with the fluctuation p
cesses we may drop the fluctuation contributions for a ro
analysis and treat baryons on the mean-field level.

A diagram similar to Eq.~C17! ~with kaon lines instead o
hyperon lines and a different vertex! describes the
K2p-pK2 interaction. Within the simplifying assumptio
for the pion momentumuqW mu!2pF,n the diagram is reduced
to
J.
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At zero temperature, the in-medium contribution of pio
fluctuations given by Eq.~C41! is numerically small excep
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@67,21#. For finite temperature such contributions are su
stantially increased in the vicinity of the pion condensati
critical point @68#.
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