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Analysis of a quenched lattice-QCD dressed-quark propagator
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Quenched lattice-QCD data on the dressed-quark Schwinger function can be correlated with dressed-gluon
data via a rainbow gap equation so long as that equation’s kernel possesses enhancement at infrared momenta
above that exhibited by the gluon alone. The required enhancement can be ascribed to a dressing of the
quark-gluon vertex. The solutions of the rainbow gap equation exhibit dynamical chiral symmetry breaking and
are consistent with confinement. The gap equation and related, symmetry-preserving ladder Bethe-Salpeter
equation yield estimates for chiral and physical pion observables that suggest these quantities are materially
underestimated in the quenched the¢(y_pq>| by a factor of 2 and . by 30%.
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[. INTRODUCTION and is observed in lattice estimates of this three-point func-
tion [27-29.

It is a longstanding prediction that the Schwinger func- Herein, we elucidate these points using a concrete model
tions which characterize the propagation of QCD's elemenfOr the gap equation’s kernel. Naturally, since the ultraviolet
tary excitations: gluons, ghosts, and quarks, are strongl ehavior of this kernel is fixed by perturbative QCD and

modified at infrared momentum scales, namely, spacelik@€"C€ is model independent, our study will focus on and
momentak?<2 Ge\? [1-3]. Indeed, this property of as- éxpose aspects of the infrared behavior of the Schwinger

. . . ! functions described above.
ymptotically free theories was elucidated in Re#,5] and Furthermore, as indicated at the outset, DCSB is encoded

could be anticipated from studies of strong coupling QEDjn the chiral-limit behavior of the dressed-quark propagator.
[6]. Such momentum-dependent dressing is a fundament@lowever, contemporary lattice-QCD simulations are re-
feature of strong QCD that is observable in hadronic phestricted to current-quark masses that are too large for unam-
nomend7]. For example: it is the mechanism by which the biguous statements to be made about the magnitude of this
current-quark mass evolves to assume the scale of éffect. With a well-constrained model for the gap equation’s
constituent-quark mass at infrared momenta, and thereby thigrnel, it is straightforward to calculate the dressed-quark

dynamical chiral symmetry breakindCSB) is exhibited; propagator in the chiral limit. Hence our analysis will also

and it may also provide an understanding of confinement, a rovide an informed estimate of the chiral-limit behavior of
\ ﬁwe lattice results.

we canvass in Sec. Il D. These are keystones of hadro : . . S
Finally, we consider two additional questions; namely,

physics[8]. how do Schwinger functions obtained in simulations of

Numerggl’ sgm;\layons ?f Iat.tlce-QCI(:j) provide dldr_ect "’}C'h uenched lattice-QCD differ from those in full QCD, and can
cess to QCD's Schwinger functions, and recent studies of th, ¢ gifference be used to estimate the effect of quenching on

quenched theory yield d‘r‘essed-glwﬁa,—ﬂ] and -quark  physical observables? Our model for the gap equation’s ker-
[13,14 two-point functiong“propagators’) that are in semi-  ej provides a foundation from which we believe these prob-
(DSB calculations[15-21]. However, these dressed-gluon  The paper is organized as follows. In Sec. Il we review

and -quark propagators are not obviously consistent withhe gap equation, the form of its solution and the nature of its
each other in the following sense: use of the lattice dressedernel. Section Ill describes the construction of a model for
gluon two-point function as the sole basis for the kernel ofthe gap equation’s kernel that correlates lattice results for the
QCD’s gap equation cannot yield the lattice dressed-quarkiressed-gluon and -quark two-point functions, and explains
propagator without a material infrared modificatiden-  aspects of the dressed-quark function obtained therewith.
hancementof the dressed-quark-gluon vertE32—-24. For-  The kernel is exploited further in Sec. IV, wherein it provides

tunately, such behavior can be understood to arise owing tthe basis for calculating informed estimates of observable
multiplicative renormalizability of the gap equati¢5,26  quantities in quenched QCD. Section V is an epilog.
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[l. GAP EQUATION Given the form of the dressed gluon propagaf®y,,(p
—q), and dressed-quark-gluon verte)F,'M(q,p), it is
straightforward to determine the corresponding dressed-
quark propagator using well-established numerical methods.

S YP)=Z,(LA)iy-p+Za(Z. M) +3 (p.A), (1 A particularly important characteristic of the nonlinear inte-
(P)=Zo(& M)y pHZ4(6, )M +27(P,A), (1) gral equation in Eq(l) is that it yields a nonzero solution for

wherein the dressed-quark self-energy is M(p?) in the chiral limit[17,30;
Al Z4(L,A)M({)=0, A>{(, (5

A .
E’(p,A)=Zl(§,A)J 9°D,u(P=a) 5 7. S(AT(a.p). _ , , o , _
q if, and only if, there is sufficient infrared support in the in-
2 tegrand. This is dynamical chiral symmetry breaking, which

) ) we discuss further in Sec. IV A. It is noteworthy that for
HereD,,(k) is the renormalized dressed-gluon propagatoriinite ¢ and A —oe, the left hand sidelhs) of Eq. (5) is

I',(q,p) is the renormalized dressed-quark-gluon vertex; ar‘ci’dentically zero, by definition, because the mass term in
Z1(4,A), Z5(¢,A), andZ,(¢,A) are, respectively, Lagrang- QcCD's Lagrangian density is renormalization-point indepen-
ian renormalization constants for the quark-gluon vertexdent. The condition specified in E¢p), on the other hand,
quark wave function, and current-quark mass. effects the result that at th@erturbativé renormalization

In Eq. (2), [4:=f"d*q/(2m)* denotes a translationally point there is no mass scale associated with explicit chiral
invariant ultraviolet regularization of the momentum spacesymmetry breaking, which is the essence of the chiral limit.
integral, with regularization mass scale. In practice, a As will now be clear, the kernel of the gap equation, Eq.
Pauli-Villars scheme is used, in which an additional factor of(1), is formed from the product of the dressed-gluon propa-
A?I[A%+(p—0)?] is included with the gluon propagator. gator and dressed-quark-gluon vertex. The equation is there-
The resulting integral is finit¥ A <o, and develops a loga- fore coupled to the DSEs satisfied by these functions. Those
rithmic divergence when the regularization is removed; i.e.equations, in turn, involve otherpoint functions, and hence
A —o, which is the final stage of any calculation. We em- a tractable problem is only realized once a truncation scheme
phasize that it is only with a translationally invariant regu-is specified. At least one nonperturbative, chiral symmetry-
larization scheme that Ward-Takahashi identities can be presreserving truncation exisf81,32 and the first term in that
served, something that is crucial to ensuring, e.g., axialscheme is the renormalization-group-improved rainbow gap

The renormalized dressed-quark propaga&(p) is the
solution of the DSE,

vector current conservation in the chiral limit. equation, wherein the self-energy, Eg), assumes the form
The general form of the dressed-quark propagator is
A A2 A2
2 free _ R
oy 2D . fq GQIDIHQ) s 7,80 5 . ©)
iy-p+M(p?)’

where Q=p—q and DZE;E(Q) is the Landau gauge free-
where the Lorentz scalar functiod¢p?;£?) andM (p?) are,  gluon propagator.
respectively, referred to as the quark wave function renor- In Eq. (6), G(Q?) is an effective interaction, which ex-
malization and running quark massr dressed-quark mass presses the combined effect of dressing both the gluon
function). The renormalization constan®, andZ, are de- Propagator and quark-gluon vertex consistent with the con-
termined by solving the gap equation, Efj), subject to the straints imposed by, e.g., vector and axial-vector Ward-
renormalization condition that at some large spaceifke Takahashi identities. Asymptotic freedom entails

S Up)|po-p=iy-p+m(2), (4) G(Q%)=4ma(Q?), Q=2 GeV; )

where m(¢) is the renormalized current-quark mass. TheViZ., the effective interaction is proportional to the strong
renormalized dressed-quark propagator is independent of tHgnning coupling in the ultraviolet. However, its form is un-
regularization mass scald, It depends on the renormaliza- known for Q<2 GeV%. An explanation of many diverse
tion point, £, in a manner prescribed by the theory’s dynam_had_ron phenomena ha§ bgen obtamed.by modeling this be-
ics. This dependence is expressed in the calculallepen- hawor[?]_ bujt our goal is dl'fferent. Hereinafter, we explore
dence of the wave function renormalization. The dressedth€ ramifications of employing the dressed-gluon propagator
quark mass-function is independent of the regularizatiori”fe”ed from_nun_wencal ;lmulanons of lattice-QCD in build-
mass scale and of the renormalization point. Once the renol?d the effective interaction.

malization scheme has been faithfully applied, the regular-

ization mass scale may be removed to infinity. I. ANALYZING LATTICE DATA

A. Lattice gluon propagator

'We use a Euclidean metric, wherewith the scalar product of two  In Ref. [9] the Landau gauge dressed-gluon propagator
four-vectors isa-b=3? ,ab;, and Hermitian Diracy matrices ~Was computed using quenched lattice-QCD configurations,
that obey{y, ,v,}=26,,. and the result was parametrized as
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A2a L(K2,Ay) I';, we forcev(Q?) to assume the role of the omitted am-
D(k?) =2, 5 921+ +— : g , (8)  plitudes to the maximum extent possible.
(K*+AQT ko Ag In Eq. (14), so long asw(Q?)=1 for Q=2 Ge\?, Eq.

(12) is satisfied, and consequently the rainbow gap equation

with preserves the renormalization-group flow of QCD at one
o1 loop. We therefore consider a simple ansatz with this prop-
A=9.803  Ay=1.020:0.1+0.025 GeV, erty:
9
v = 5 5
where the first pair of errors are statistical and the second, b+Q?/A]

when present, denotes systematic errors associated with fi-
nite lattice spacing and volume. In the simulation the latticeVhere
spacinga=1/1.885 Ge\]. The numerator in the second
term of Eq.(8) is _ a
av(m) - 2
1+ay[m({)/Agl+as[m()/Ag]

(16)

dp
) , (10 and a; , 3 and b are dimensionless parameters, which are
fitted by requiring that the gap equation yields a solution for

. —[20_Q¢_ - . the dressed-quark propagator that agrees well pointwise with
with dp=[39-9¢~4N]/[2(33-2N;)], an expression tge results obtained in numerical simulations of quenched

which ensures the parametrization expresses the correct one- o i
. ; attice QCD[13,14. It is important to note that a good fit to
loop behavior at ultraviolet momenta. In the quenched,Iattice %ata[ is ir?]]possiblep unless, (m) dependg on the

Landau-gauge studi; =0, £=0, so current-quark mass. While more complicated forms are
dp=13/22. (11) clearly possible, the ansatz of Ed.6) is adequate.

1
L(k2,A9)=<§In

2 2
(K+A2)

1+
K2 a2
K2 A2

. C. Fit to lattice results
B. Effective quark-gluon vertex

. Now, to be explicit, the parameters in Eq$5) and (16)
We have noted that fo*=2 GeV* in Ed. (6), were determined by the following procedure. The rainbow

gap equation, viz., Eq1) simplified via Eq.(6), was solved
L AL (12)  using the effective interaction specified by E¢3)—(16),
In(Q%/ Acp) with D(Q?) exactly as given in Eq(8).

The ultraviolet behavior of the mass functibh(p?) is

wherey,,,=12/(33-2Ns) is the anomalous mass dimension. determined by perturbative QCD and is therefore model in-
To proceed, we therefore write dependent. Hence the current-quark magg) was fixed by

requiring agreement between the DSE and lattice results for

G(Q?)— 4T

1 ) ) ) M(p?) on p?=1 Ge\”. We selected three lattice data sets
EQ(Q )=D(QH)I'1(Q%), (13 from Ref.[14] and, for consistency with Ref§17,18, used
a renormalization poinf=19 GeV, which is well into the
with D(Q?) given in Eq.(8) and perturbative domain. This gave
aMugiice |0.018 0.036 0.072

1 [12In(7+Q%Aj)]%
"Zy [In(r+Q%Adcp)]

(17

ry(Q%)=4my Q?), m(¢)(GeV)[0.030 0.055 0.110
(14) The dimensionless parametesis_; and b were subse-
wherer=e?—1>1 is an infrared cutoff. EquatiofL3) fac- quently determined in a simultaneous least-squares fit of
) : 2
torizes the effective interaction into a contribution from the DSE solutions foM (p?) at these current-quark masses to all
lattice dressed-gluon propagator multiplied by a contributiori€ lattice data. This necessarily required the gap equation to
from the vertex, which we shall subsequently determine pheP€ Solved repeatedly. Nevertheless, the fit required only

nomenologically. hours on a modern workstation, and yielded

We remark that the renormalization-group-improved rain-
bow truncation retains only that single element of the ai | as ‘ as || b
dressed-quark-gluon vertex which is ultraviolet divergent at : (19
one-loop level, and this explains the simple form of Edf). 1.5 ‘ 7.35 ' 63.0 H 0.005

Systematic analyses of corrections to the rainbow truncation

showlI; to be the dominant amplitude of the dressed vertexThese parameters completely determine the “best-fit effec-
the remaining amplitudes do not significantly affect observ4ive interaction,” and hence our lattice-constrained model for
ables[32]. In proceeding phenomenologically solely with the gap equation’s kernel.
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FIG. 1. Data, upper three sets: lattice resultsNtp?) in GeV FIG. 2. Dimensionless vertex dressing factotQ?), defined

at am values in Eq.(17) “O” indicates am=0.072 data, A" via Egs. (15—(18), obtained in the chiral limit(solid curvé and
indicatesam=0.036, and V" indicates am=0.018; lower points  with the current-quark masses in Ed.7)—dash-dot-dotted curve
(boxes: linear extrapolation of lattice resulfd4] to am=0. Solid corresponds tom(£)=0.030 GeV, dash-dotted curveto m(¢)
curves: bestfit-interaction gap equation solutions ¥b¢(p? ob-  =0.055 GeV, anddashed curveo m(Z)=0.110 GeV. v(Q?) is
tained using the current-quark masses in E); dashed-curve: finite atQ?>=0.
gap equation’s solution in the chiral limit, Ep).
_ _ ~_ mediate value of the current-quark mass; namelyn
We empha5|se that because the comparison Is with simu= 0.036, and compares lattice output for bM[QpZ) and the
lations of quenched lattice QCD, we ushg=0 throughout  quark wave function renormalizatioZ(p2), with our re-
and[27-29,33 sults. We emphasize that the form 2fp?) was not used in
_ fitting v(Q?). Hence the pointwise agreement between the
Aquocp=0.234 GeV. (19 gap equation’s solution and the lattice result indicates that

The strength of the running strong coupling is underestioYr simple expression for the effective interaction captures

mated in simulations of quenched lattice QC34]. (Halving "Eir;]e dt(r)urenIsr]jg]c;:%?:;Itc::ncﬁir:a%netsai?]dt’r:g 3?{;222'(?_“ Sg?i—omlé-n
or doublingA 4,ocp has no material quantitative impact on 9 P q 9

the results reported in Sec. IV, nor does it qualitatively affectVertex Is not a serious flaw in this study.

our conclusions.
D. Spectral properties
1. Fidelity and quiddity of the procedure In a quantum field theory defined by a Euclidean measure
In Fig. 1 we compare DSE solutions fit(p?), obtained [35], the Osterwalder-Schrader axiofi6,37] are five con-
using the optimized effective interaction, with lattice results.ditions which any moment of this measuren-goint
In addition, we depict the DSE solution ft(p?) calculated ~ Schwinger functionmust satisfy if it is to have an analytic
in the chiral limit along with the linear extrapolation of the continuation to Minkowski space and hence an association

lattice data toam=0, as described in Ref13]. It is appar-

ent that the lattice-gluon and lattice-quark propagators can be T T L0
correlated via the renormalization-group-improved gap equa- - " ng—um"*‘“*“‘“’"’“ .
tion. That was achieved via(Q?) in Eq. (15), and the re- - }},ﬂ/““’ —H08_
quired form is depicted in Fig. 2. Plainly, consistency be- L1 . ”N&

tween the propagators via this gap equation requires an
infrared enhancement of the vertex, as anticipated in Refs.

o

(2]

T

!
=)
[e)]

[22,23,25,26 Our inferred form is in semiquantitative §0_4 doa
agreement with the result of recent, exploratory lattice-QCD NE i
simulations of the dressed-quark-gluon verfgx—29. =02 N
Dynamical chiral symmetry breaking is another important |
feature evident in Fig. 1; viz., the existence olMgp?)#0 0Ot e i L —
solution of the gap equation in the chiral limit. We deduce 00 10 30 4.0

2.0
that DCSB is manifest in quenched QCD and, in the follow- PGV
ing, quantify the magnitude of that effect. It should be ob- g5 3. Data, quenched lattice-QCD results #(p?) (lower
served that a linear extrapolationaon= 0 of the lattice data circles and Z(p?) (upper circles obtained witham=0.036[14];
obtained with nonzero current-quark masses overestimategshed curvez(p?), and solid curveM (p?), calculated from the
the mass function calculated directly as the solution of thgjap equation with our optimized effective interaction amdy)
gap equation. =55 MeV. [Z(p?) is dimensionless and/l(p?) is measured in
Figure 3 focuses on the lattice simulations for the inter-GeV]
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with observable quantities. One of these is “OS3,” the axiom 10° g
of reflection positivity which is violated if the Schwinger £ 3
function’s Fourier transform to configuration space is not 10 _
positive definite. The space of observable asymptotic states
is spanned by eigenvectors of the theory’s infrared Hamil- 102 NN e e

tonian and no Schwinger function that breaches OS3 has a _
correspondent in this space. Consequently, the violation of & 10°

0S3 is a sufficient condition for confinement. =8 3
This connection has long been of interg38,39, and is 10°F E
discussed at length in Refg10—42, and reviewed in Sec. F 3
6.2 of Ref.[1], Sec. 2.2 of Ref[2] and Sec. 2.4 of Ref3]. 10°F 3
It suggests and admits a practical t¢82] that has been F , . ]
exploited in Refs[20,22,23,43—4p and which for the quark o T T T ]
two-point function, is based on the behavior of 0 5 10 15 20 25 30
, T (Gev?)
d .
AS(T):f d3xf (27:;4elp‘xffs(p2)' (20) FIG. 4. |Ag(T)| obtained from the chiral limit gap equation

solution calculated using our lattice-constrained kernel, solid curve;
Eq. (23) with 0=0.13 GeV, 0= 7/2.46, dotted curve; the model of

zijmds COS(ST)(TS(SZ), (22) Ref.[18], dashed curve.

mJo

whereos is the Dirac-scalar projection of the dressed-quark Ve calculated\(T) using the gap equation solutions dis-

propagator. For a noninteracting fermion with mass cussed above and the form ph(T)| obtained with the
chiral-limit solution is depicted in Fig. 4. The violation of

ree 1 (= m 1. 0S3 is manifest in the appearance of cuspadiT)| is nega-
AgH(T)= ;J decogeT)———=5€ . (22 tive and infinite in magnitude at zeros ak(T). The differ-
0 et p ences evident in a comparison with the result obtained from
The right-hand sidérhs) is positive definite. It is also plainly Ed. (25 indicate that the singularity structure of the dressed-
related via analytic continuationT(~it) to the free-particle quark two-point Schwinger function obtained from the
solution of the Minkowski space Dirac equation. The exis-lattice-constrained kernel is more complicated than just a
tence of an associated asymptotic state is indubitable. single pair of complex conjugate poles. However, the simi-
If, instead, one encountered a theory in whjd,42,49 larities suggest that this picture may serve well as an ideali-
zation[49]. [Qualitatively identical results are obtained using

(p?)= M 1 N 23 ay(p?), the Dirac-vector projection of the dressed-quark
oTs(P) =75 024 u2—ip?  pPtpltip?| propagator, instead afg(p?).]
Figure 4 also portrays the result obtained with the effec-
a function with poles ap?+ o2 exp(=i6)=0, where tive interaction proposed in Rdf18] and used efficaciously
4 4 a4 L, in studies of meson properti€g]. Significantly, the first zero
o'=utp", tanf=pu’, (24) appears at a smaller value Bfin this case. Using the model

of Eq.(23) as a guide, that shift indicates a larger valuerof
This fits well with the fact that the mass scale generated
dynamically by the interaction of R€f18] is larger than that

: (25  produced by the interaction used herein, which is only re-
quired to correlate quenched lattice data for the gluon and

This Fourier transform has infinitely many, regularly spacedduark two-point functions. _ o _

zeros, and hence OS3 is violated. Thus the fermion described From the results and analysis reported in this section, we

by this Schwinger function has no correspondent in the spacgeduce that light quarks do not appear in the space of ob-

of observable asymptotic states. servable asymptotic states associated with quenched QCD,

It is readily apparent that Eq23) evolves to a free- @an outcome anticipated in Re26].

particle propagator whep—0. This limit is expressed in

Eq. (25) via 6—0, o— u, wherewith Eq.(22) is recovered;

a result that is tied to the feature that the first zerd\gfT) IV. CHIRAL AND PHYSICAL PION OBSERVABLES

in Eg. (25) occurs at

then

2 2

~ —UTCO% H o o
AS(T)=%e cog oTsing + =

A. Chiral limit
m=0 0 The scale of DCSB is measured by the value of the
1= 5 7 CSC, (26) renormalization-point dependent vacuum quark condensate,
which is obtained directly from the chiral-limit dressed-
and hencez;—» for p—0 [43,44). quark propagatofl17,3Q:
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sure that the vacuum quark condensate is gauge independent. o
1n >

A\O— i A 0400
—<QQ>4=A“m Zy({, AN tr Jq So(Q), (27) i -3
where “tr” denotes a trace only over Dirac indices and the § 03000
index “0” labels a quantity calculated in the chiral limit, Eq. NZ el
(5). In Eq. (27), the gauge parameter dependence of the 3 L
renormalization constar#, is precisely that required to en- g) -

This constant is fixed by the renormalization condition, Eq.  ~g
(4), which entails =
ZN=-mmz YN, @9 R T T T X T

m({=19 GeV) (GeV)

wherein the rhs is well defined in the chiral linjit7]. (It 5 . i
may also be determined by studying the fully amputated FIG. 5. M(pig 0'38.Ge\'2)’ in Gev, a_s a funCt'on. of the
. . current-quark mass. Solid curve, our result; circles, lattice data for
pseudoscalar-quark-antiquark three-point functi@].) A : , s . )
. . . . . . amin Eq. (17); and dashed line, linear fit to the lattice data, Eq.
straightforward calculation using our chiral limit result; i.e, 32)
the propagator corresponding to the dashed curve in Fig. f

yields M(p2=p,2R), where pg=0.62 GeV, as a function of the

/7 \0 _ 3 current-quark masgolid curve. This value of the argument
o v=(0.22 GeV°. 29 o :
(90)¢=10 Gev=( ey 9 was chosen because it is the smaljgsfor which there are

To evolve the condensate to a “typical hadronic scale,”tWo lattice results fotM (p?) at each current-quark mass in

e.g...=1 GeV, one may usf50] Eqg. (17). Those results are also plotted in the figure. It is
evident that on the domain of current-quark masses directly
—\0 _ / 1/ 4 N0 " N oo\ 0 accessible in lattice simulations, the lattice and DSE results
/_Z H Z 1 - Z I H . . . ' .
(qq)g A(&.02, (&0 (qa); ml € §)<qq>((30) lie on the same linear trajectory, of which
2 _ —
whereZ,, is the gauge invariant mass renormalization con- M[pjz=0.38 GeV*,m({)]=0.18+1.42m({) (32)

stant. Contemporary phenomenological approaches empl
the one-loop expression fdr,, and following this expedient
we obtain, practically as a matter of definition,

oy . . . .
B/rowdes an adequate interpolation. However, as apparent in
the figure, this fit oname[0.018,0.072 provides a poor
extrapolation tan({) =0, giving a result 40% too large.

_ IN[1Aqocol | ™ — In Fig. 6 we repeat this procedure, focusing solely on our
—(Aq)? gev= W) (—(q9)% cev) value of M(p?=0) because directly calculated lattice data

auQch are unavailable at this extreme infrared point and published

=(0.19 GeV?, (31 estimates obtained by extrapolating functions fitted to the

lattice p?> dependence are inconsistéag]. The pattern ob-
which may be compared with a best-fit phenomenologicakerved in Fig. 5 is again visible. On the domain of current-
value [51] of (0.24+0.01 GeV}. It is notable that DSE
models which efficaciously describe light-meson physics; 0.500
e.g., Refs[17,18, give (qQ)J gov= — (0.24 GeVy.

Our gap equation assisted estimate therefore indicates that
the chiral condensate in quenched QCD is a factor of 2 0450
smaller than that which is obtained from analyses of strong 425
interaction observables. These results are in quantitative
agreement with Ref26]. =

Afit to the linear extrapolation of the lattice data; viz., to  “g 0375
the boxes in Fig. 1, gives a significantly larger valud]: =

—{99){ gev=(0.270+0.027 GeV§. However, the error is
purely statistical. The systematic error, to which the linear
extrapolation must contribute, was not estimated. That may 0300 el v b b b
be important given the discrepancy, conspicuous in Fig. 1, 0.000 0025 Or-r?(goz 190(-3097\?) (((3)&/0)0 0.125
between our direct evaluation of the chiral-limit mass func-

0.475

G

& 0.400

0.350

LA LA RARLY RARRN RN LAR
Lowvabvwnn bowoabovan bonna boaa Ny

0.325

tion and the linear extrapolation of the lattice dataatm FIG. 6. Solid curve—calculateM (p?=0), in GeV, as a func-
=0: the linear extrapolation lies well above the result of ourtion of the current-quark masa(¢). The circles mark the current-
chiral-limit calculation. quark masses in Eq17). Dashed line—linear interpolation of our

This point may be illustrated further. In Fig. 5 we plot result forM(p?=0) on this mass domain.
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quark masses for which lattice data are available, the mass KiS(a,k;P)=—g[(k—q)?]x D™ q—k)

dependence oM (p?) is well approximated by a straight a a ’

line: | N A

ine; namely, < S| | T Y| (37)
M[p?=0m({)]=0.37+0.68m(¢), (33 © "

but the value ofM(0) determined via extrapolation to Which provides the renormalization-group-improved ladder
m(¢)=0 is 14% too large. truncation of the BSE. The efficacy of combining the
In all cases our calculated result possesses significant cuienormalization-group-improved rainbow-DSE and ladder-
vature. At fixedp?, M[p2 m(¢)] is a monotonically increas- BSE truncations is exhibited in Réf7]. In particular, it guar-
ing function of m(é") but, while it is concave-down for antees that in the chiral limit the pion is both a Goldstone
m(£)=<0.1 GeV, it inflects thereafter to become concave-upmode and a bound state of a strongly dressed quark and
In addition, at fixedm(¢), M(p?) is a monotonically de- antiquark, and ensures consistency with chiral low energy
creasing function op?. It follows that a linear extrapolation theoremg53,54. _ .
determined by data oame[0.018,0.072 will necessarily All the elements involved in building the kernel of the
overestimateM (p?) at all positive values op?. The figures pion's BSE were determined in the last section, and hence
illustrate that the error owing to extrapolation increases withPn€ can solve for the pion's mass and Bethe-Salpeter ampli-
increasingp?, and hence a significant overestimate can pdude. To complete this exercise practically, we consider
anticipated on the domain in which the condensate was in-
ferred from lattice data. 21T L . -
It is straightforward to understand the behavior evidentin L1~ ¢ (PO s(kiP)]w= fq [x5(9;P) 1sKiy(a,k; P).
Figs. 5 and 6 qualitatively. The existence of DCSB means (38)
that in the neighborhood of the chiral limit a mass scale other

than the current-quark mass determines the magnitude §iis equation has a solution for arbitra?, and solving it
M(p?). As the current-quark mass increases from zero, it§ne gptains a trajectory(P2) whose first zero coincides
magnitude will come to affect that of the mass function. TheWith the bound state’s mass. at which pol?gt(k'P) is the
gap equation is a nonlinear integral equation, and hence thﬁue bound state amplitude. In general, solving §6P?) in

. 2 . .
evolution of the mass dependenceM{p®) will in general the physical domainP?<0, requires that the integrand be

be nonli_nea_r. Only at very large values .Of the Current'qu""rkevaluated at complex values of its argument. However, as
mass will this scale dominate the behavior of the mass func- i

2 2/ . .
tion, as seen in siudies of heavy-quark systga® and the 1= <1 (0 16 T8 MAGTLEE o) e 2orh B T STAle
evolution become linear. y y 9

problem, we avoid complex arguments by adopting the
simple expedient of calculating(P?>0) and extrapolating
to locate its timelike zero. The Bethe-Salpeter amplitude is

The renormalized homogeneous Bethe-Salpeter equatiddentified with theP?=0 solution. Naturally, this expedient
(BSE) for the isovector-pseudoscalar channel, i.e., the pionyields the exact solution in the chiral limit; and in cases
is where a comparison with the exact solution has been made
for realistic, nonzero light-quark masses, the error is negli-
gible [55], as we shall subsequently illustrate.

Once its mass and bound state amplitude are known, it is
straightforward to calculate the pion’s leptonic decay con-
where k is the relative momentum of the quark-antiquark stant[30]:
pair, P is their total momentum, and

B. Pion properties

) A
[T (kP Joy= fq QP I K kP), (30

A
x(0;P)=S(q.)T"(q;P)S(q-), (35 f 012P,=7, trfq 7 ¥5YuXw(0; P). (39
with T (k;P) the pion's Bethe-Salpeter amplitude, which
has the general form In this expression, the factor &, is crucial: it ensures that
. the result is gauge invariant, and cutoff and renormalization-
I (k;P)= 7 yg[iE .(k;P) + y- PF.(k;P) point independeniThe Bethe-Salpeter amplitude is normal-
ized canonically{56].)
+y-kk- PG(k;P) + 0, K, P H (K P) . Table | lists values of pion observables calculated using

(36)  the effective interaction obtained in Sec. Ill C by fitting the
quenched-QCD lattice datd.The nonzero current-quark
In Eq.(34), K(q,k;P) is the fully amputated quark-antiquark mass in the table corresponds to a one-loop evolved value of
scattering kernel, and the axial-vector Ward-Takahashi idenm(1 GeV)=5.0 MeV.] To aid with the consideration of
tity requires that this kernel and that of the gap equation mugthese results, we note that unquenched chiral-limit DSE cal-
be intimately related. The consequences of this are eluciculations that accurately describe hadron observables give
dated in Refs[31,32, and in the present case they entail [18] f?,=0.090 GeV. We infer from these results that the
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TABLE I. Pion-related observables calculated using our lattice- To correlate the lattice’s dressed-gluon and -quark
constrained effective interactiorn({=19 GeV)=3.3 MeV was  Schwinger functions it was necessary for the gap equation’s
chosen to givem,=0.1385 GeV. The index “0" indicates a quan- kernel to exhibit infrared enhancement over and above that

tity obtained in the chiral limit. observed in the gluon function alone. We attributed that to an
- - infrared enhancement of the dressed-quark-gluon vertex. The
Calculations(quencheyl Experiment magnitude of the vertex modification necessary to achieve
m 0.1385 0.1385 the correlation is semiquantitatively consistent with that ob-
f 7 0.066 0.0924 served in quenched lattice-QCD estimates of this three-point
fé; 0.063 function.

With a well-defined effective interaction, the gap equation
provides a solution for the dressed-quark Schwinger function

pion decay constant in quenched lattice QCD is underestt arbitrarily small current-quark masses and, in particular, in

mated by 30%. Quantitatively equivalent results were foundhe chiral limit: no extrapolation is involved. A kernel that
in Ref.[26]. accurately describes dressed-quark lattice data at small

The rainbow-ladder truncation of the gap and Bethe-current-quark masses may therefore be used as a tool with
Salpeter equations is chiral symmetry preserving: withoutVhich to estimate the chiral-limit behavior of the lattice
fine tuning it properly represents the consequences of chiratChwinger function. Our view is that this method is a more
symmetry and its dynamica| breaking_ The truncation eX_rella.ble predlctor than a linear eXtrapOlatlon of lattice data to
presses the model-independent mass formula for flavothe chiral limit. Even failing to accept this perspective, the
nonsinglet pseudoscalar mes®86], a corollary of which, at Material difference between results obtained via the lattice-
small current-quark masses, is the Gell-Mann-Oakes-RennéPnstrained gap equation and those found by linear extrapo-
relation: lation of the lattice data must be the cause for concern in

employing the latter.
(f9)2m2= _2m(§)<aq>g+ o[m4(¢)]. (40) In addition, from a well-defined gap equation it is
straightforward to construct symmetry-preserving Bethe-
Inserting our calculated values on the Ihs and rhs of(EG), Salpeter equations whose bound state solutions describe me-

we have sons. We illustrated this via the pion, and calculated its mass
and decay constants in our DSE model of the quenched
(0.093 GeV* cf. (0.091 GeV* (4D theory.

Finally, assuming that existing lattice-QCD data are not
icted by large systematic errors associated with finite vol-
ume or lattice spacing, we infer from our analysis that
quenched QCD exhibits dynamical chiral symmetry breaking
and dressed-quark two-point functions that violate reflection
V. SUMMARY positivity, but that chiral and physical pion observables are

We studied quenched-QCD using a rainbow-ladder trunSignificantly smaller in the quenched theory than in full
cation of the Dyson-Schwinger equatiofBSE9 and dem-
onstrated that existing results from lattice simulations of
quenphed—QCD for the dress_ed—gluon and .—quark Schwinger ACKNOWLEDGMENTS
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