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Analysis of a quenched lattice-QCD dressed-quark propagator
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Quenched lattice-QCD data on the dressed-quark Schwinger function can be correlated with dressed-gluon
data via a rainbow gap equation so long as that equation’s kernel possesses enhancement at infrared momenta
above that exhibited by the gluon alone. The required enhancement can be ascribed to a dressing of the
quark-gluon vertex. The solutions of the rainbow gap equation exhibit dynamical chiral symmetry breaking and
are consistent with confinement. The gap equation and related, symmetry-preserving ladder Bethe-Salpeter
equation yield estimates for chiral and physical pion observables that suggest these quantities are materially

underestimated in the quenched theory;u^q̄q&u by a factor of 2 andf p by 30%.
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I. INTRODUCTION

It is a longstanding prediction that the Schwinger fun
tions which characterize the propagation of QCD’s elem
tary excitations: gluons, ghosts, and quarks, are stron
modified at infrared momentum scales, namely, space
momentak2&2 GeV2 @1–3#. Indeed, this property of as
ymptotically free theories was elucidated in Refs.@4,5# and
could be anticipated from studies of strong coupling QE
@6#. Such momentum-dependent dressing is a fundame
feature of strong QCD that is observable in hadronic p
nomena@7#. For example: it is the mechanism by which th
current-quark mass evolves to assume the scale o
constituent-quark mass at infrared momenta, and thereby
dynamical chiral symmetry breaking~DCSB! is exhibited;
and it may also provide an understanding of confinement
we canvass in Sec. III D. These are keystones of had
physics@8#.

Numerical simulations of lattice-QCD provide direct a
cess to QCD’s Schwinger functions, and recent studies of
quenched theory yield dressed-gluon@9–12# and -quark
@13,14# two-point functions~‘‘propagators’’! that are in semi-
quantitative agreement with Dyson-Schwinger equat
~DSE! calculations@15–21#. However, these dressed-gluo
and -quark propagators are not obviously consistent w
each other in the following sense: use of the lattice dress
gluon two-point function as the sole basis for the kernel
QCD’s gap equation cannot yield the lattice dressed-qu
propagator without a material infrared modification~en-
hancement! of the dressed-quark-gluon vertex@22–24#. For-
tunately, such behavior can be understood to arise owin
multiplicative renormalizability of the gap equation@25,26#
0556-2813/2003/68~1!/015203~9!/$20.00 68 0152
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and is observed in lattice estimates of this three-point fu
tion @27–29#.

Herein, we elucidate these points using a concrete mo
for the gap equation’s kernel. Naturally, since the ultravio
behavior of this kernel is fixed by perturbative QCD a
hence is model independent, our study will focus on a
expose aspects of the infrared behavior of the Schwin
functions described above.

Furthermore, as indicated at the outset, DCSB is enco
in the chiral-limit behavior of the dressed-quark propaga
However, contemporary lattice-QCD simulations are
stricted to current-quark masses that are too large for un
biguous statements to be made about the magnitude of
effect. With a well-constrained model for the gap equatio
kernel, it is straightforward to calculate the dressed-qu
propagator in the chiral limit. Hence our analysis will als
provide an informed estimate of the chiral-limit behavior
the lattice results.

Finally, we consider two additional questions; name
how do Schwinger functions obtained in simulations
quenched lattice-QCD differ from those in full QCD, and c
that difference be used to estimate the effect of quenching
physical observables? Our model for the gap equation’s
nel provides a foundation from which we believe these pr
lems can fruitfully be addressed.

The paper is organized as follows. In Sec. II we revie
the gap equation, the form of its solution and the nature o
kernel. Section III describes the construction of a model
the gap equation’s kernel that correlates lattice results for
dressed-gluon and -quark two-point functions, and expla
aspects of the dressed-quark function obtained therew
The kernel is exploited further in Sec. IV, wherein it provid
the basis for calculating informed estimates of observa
quantities in quenched QCD. Section V is an epilog.
©2003 The American Physical Society03-1
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II. GAP EQUATION

The renormalized dressed-quark propagatorS(p) is the
solution of the DSE,

S21~p!5Z2~z,L!ig•p1Z4~z,L!m~z!1S8~p,L!, ~1!

wherein the dressed-quark self-energy is1

S8~p,L!5Z1~z,L!E
q

L

g2Dmn~p2q!
l i

2
gmS~q!Gn

i ~q,p!.

~2!

Here Dmn(k) is the renormalized dressed-gluon propaga
Gn

i (q,p) is the renormalized dressed-quark-gluon vertex; a
Z1(z,L), Z2(z,L), andZ4(z,L) are, respectively, Lagrang
ian renormalization constants for the quark-gluon vert
quark wave function, and current-quark mass.

In Eq. ~2!, *q
L
ª*Ld4q/(2p)4 denotes a translationall

invariant ultraviolet regularization of the momentum spa
integral, with regularization mass scaleL. In practice, a
Pauli-Villars scheme is used, in which an additional factor
L2/@L21(p2q)2# is included with the gluon propagato
The resulting integral is finite;L,`, and develops a loga
rithmic divergence when the regularization is removed; i
L→`, which is the final stage of any calculation. We em
phasize that it is only with a translationally invariant reg
larization scheme that Ward-Takahashi identities can be
served, something that is crucial to ensuring, e.g., ax
vector current conservation in the chiral limit.

The general form of the dressed-quark propagator is

S~p!5
Z~p2;z2!

ig•p1M ~p2!
, ~3!

where the Lorentz scalar functionsZ(p2;z2) andM (p2) are,
respectively, referred to as the quark wave function ren
malization and running quark mass~or dressed-quark mas
function!. The renormalization constantsZ2 and Z4 are de-
termined by solving the gap equation, Eq.~1!, subject to the
renormalization condition that at some large spacelikez2

S21~p!up25z25 ig•p1m~z!, ~4!

where m(z) is the renormalized current-quark mass. T
renormalized dressed-quark propagator is independent o
regularization mass scale,L. It depends on the renormaliza
tion point,z, in a manner prescribed by the theory’s dyna
ics. This dependence is expressed in the calculablez depen-
dence of the wave function renormalization. The dress
quark mass-function is independent of the regularizat
mass scale and of the renormalization point. Once the re
malization scheme has been faithfully applied, the regu
ization mass scale may be removed to infinity.

1We use a Euclidean metric, wherewith the scalar product of
four-vectors isa•b5( i 51

4 aibi , and Hermitian Dirac-g matrices
that obey$gm ,gn%52dmn.
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Given the form of the dressed gluon propagator,Dmn(p
2q), and dressed-quark-gluon vertex,Gm

i (q,p), it is
straightforward to determine the corresponding dress
quark propagator using well-established numerical metho
A particularly important characteristic of the nonlinear int
gral equation in Eq.~1! is that it yields a nonzero solution fo
M (p2) in the chiral limit @17,30#:

Z4~z,L!m~z![0, L@z, ~5!

if, and only if, there is sufficient infrared support in the in
tegrand. This is dynamical chiral symmetry breaking, wh
we discuss further in Sec. IV A. It is noteworthy that fo
finite z and L→`, the left hand side~lhs! of Eq. ~5! is
identically zero, by definition, because the mass term
QCD’s Lagrangian density is renormalization-point indepe
dent. The condition specified in Eq.~5!, on the other hand
effects the result that at the~perturbative! renormalization
point there is no mass scale associated with explicit ch
symmetry breaking, which is the essence of the chiral lim

As will now be clear, the kernel of the gap equation, E
~1!, is formed from the product of the dressed-gluon prop
gator and dressed-quark-gluon vertex. The equation is th
fore coupled to the DSEs satisfied by these functions. Th
equations, in turn, involve othern-point functions, and hence
a tractable problem is only realized once a truncation sche
is specified. At least one nonperturbative, chiral symme
preserving truncation exists@31,32# and the first term in that
scheme is the renormalization-group-improved rainbow g
equation, wherein the self-energy, Eq.~2!, assumes the form

E
q

L

G~Q2!Dmn
free~Q!

la

2
gmS~q!

la

2
gn , ~6!

where Q5p2q and Dmn
free(Q) is the Landau gauge free

gluon propagator.
In Eq. ~6!, G(Q2) is an effective interaction, which ex

presses the combined effect of dressing both the gl
propagator and quark-gluon vertex consistent with the c
straints imposed by, e.g., vector and axial-vector Wa
Takahashi identities. Asymptotic freedom entails

G~Q2!54pa~Q2!, Q2*2 GeV2; ~7!

viz., the effective interaction is proportional to the stro
running coupling in the ultraviolet. However, its form is un
known for Q2&2 GeV2. An explanation of many diverse
hadron phenomena has been obtained by modeling this
havior @7# but our goal is different. Hereinafter, we explo
the ramifications of employing the dressed-gluon propaga
inferred from numerical simulations of lattice-QCD in build
ing the effective interaction.

III. ANALYZING LATTICE DATA

A. Lattice gluon propagator

In Ref. @9# the Landau gauge dressed-gluon propaga
was computed using quenched lattice-QCD configuratio
and the result was parametrized as

o

3-2
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D~k2!5ZgF ALg
2a

~k21Lg
2!11a

1
L~k2,Lg!

k21Lg
2 G , ~8!

with

A59.820.9
10.1, Lg51.02060.160.025 GeV,

~9!
a52.220.220.3

10.110.2, Zg52.0120.05
10.04,

where the first pair of errors are statistical and the seco
when present, denotes systematic errors associated wi
nite lattice spacing and volume. In the simulation the latt
spacing a51/@1.885 GeV#. The numerator in the secon
term of Eq.~8! is

L~k2,Lg!5S 1

2
lnF ~k21Lg

2!S 1

k2
1

1

Lg
2D G D 2dD

, ~10!

with dD5@3929j24Nf #/@2(3322Nf)#, an expression
which ensures the parametrization expresses the correct
loop behavior at ultraviolet momenta. In the quench
Landau-gauge study,Nf50, j50, so

dD513/22. ~11!

B. Effective quark-gluon vertex

We have noted that forQ2*2 GeV2 in Eq. ~6!,

G~Q2!5
4p2gm

ln~Q2/LQCD
2 !

, ~12!

wheregm512/(3322Nf) is the anomalous mass dimensio
To proceed, we therefore write

1

Q2
G~Q2!5D~Q2!G1~Q2!, ~13!

with D(Q2) given in Eq.~8! and

G1~Q2!54p2gm

1

Zg

@1/2 ln~t1Q2/Lg
2!#dD

@ ln~t1Q2/LQCD
2 !#

v~Q2!,

~14!

wheret5e221.1 is an infrared cutoff. Equation~13! fac-
torizes the effective interaction into a contribution from t
lattice dressed-gluon propagator multiplied by a contribut
from the vertex, which we shall subsequently determine p
nomenologically.

We remark that the renormalization-group-improved ra
bow truncation retains only that single element of t
dressed-quark-gluon vertex which is ultraviolet divergent
one-loop level, and this explains the simple form of Eq.~14!.
Systematic analyses of corrections to the rainbow trunca
showG1 to be the dominant amplitude of the dressed vert
the remaining amplitudes do not significantly affect obse
ables @32#. In proceeding phenomenologically solely wi
01520
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G1, we forcev(Q2) to assume the role of the omitted am
plitudes to the maximum extent possible.

In Eq. ~14!, so long asv(Q2).1 for Q2*2 GeV2, Eq.
~12! is satisfied, and consequently the rainbow gap equa
preserves the renormalization-group flow of QCD at o
loop. We therefore consider a simple ansatz with this pr
erty:

v~Q2!5
av~m!1Q2/Lg

2

b1Q2/Lg
2

, ~15!

where

av~m!5
a1

11a2@m~z!/Lg#1a3@m~z!/Lg#2
~16!

and a1,2,3 and b are dimensionless parameters, which a
fitted by requiring that the gap equation yields a solution
the dressed-quark propagator that agrees well pointwise
the results obtained in numerical simulations of quench
lattice QCD@13,14#. It is important to note that a good fit to
lattice data is impossible unlessav(m) depends on the
current-quark mass. While more complicated forms
clearly possible, the ansatz of Eq.~16! is adequate.

C. Fit to lattice results

Now, to be explicit, the parameters in Eqs.~15! and ~16!
were determined by the following procedure. The rainb
gap equation, viz., Eq.~1! simplified via Eq.~6!, was solved
using the effective interaction specified by Eqs.~13!–~16!,
with D(Q2) exactly as given in Eq.~8!.

The ultraviolet behavior of the mass functionM (p2) is
determined by perturbative QCD and is therefore model
dependent. Hence the current-quark massm(z) was fixed by
requiring agreement between the DSE and lattice results
M (p2) on p2*1 GeV2. We selected three lattice data se
from Ref. @14# and, for consistency with Refs.@17,18#, used
a renormalization pointz519 GeV, which is well into the
perturbative domain. This gave

~17!

The dimensionless parametersa1 –3 and b were subse-
quently determined in a simultaneous least-squares fi
DSE solutions forM (p2) at these current-quark masses to
the lattice data. This necessarily required the gap equatio
be solved repeatedly. Nevertheless, the fit required o
hours on a modern workstation, and yielded

~18!

These parameters completely determine the ‘‘best-fit eff
tive interaction,’’ and hence our lattice-constrained model
the gap equation’s kernel.
3-3
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We emphasise that because the comparison is with s
lations of quenched lattice QCD, we usedNf50 throughout
and @27–29,33#

Lqu-QCD50.234 GeV. ~19!

The strength of the running strong coupling is undere
mated in simulations of quenched lattice QCD@34#. ~Halving
or doublingLqu-QCD has no material quantitative impact o
the results reported in Sec. IV, nor does it qualitatively aff
our conclusions.!

1. Fidelity and quiddity of the procedure

In Fig. 1 we compare DSE solutions forM (p2), obtained
using the optimized effective interaction, with lattice resu
In addition, we depict the DSE solution forM (p2) calculated
in the chiral limit along with the linear extrapolation of th
lattice data toam50, as described in Ref.@13#. It is appar-
ent that the lattice-gluon and lattice-quark propagators ca
correlated via the renormalization-group-improved gap eq
tion. That was achieved viav(Q2) in Eq. ~15!, and the re-
quired form is depicted in Fig. 2. Plainly, consistency b
tween the propagators via this gap equation requires
infrared enhancement of the vertex, as anticipated in R
@22,23,25,26#. Our inferred form is in semiquantitativ
agreement with the result of recent, exploratory lattice-Q
simulations of the dressed-quark-gluon vertex@27–29#.

Dynamical chiral symmetry breaking is another importa
feature evident in Fig. 1; viz., the existence of aM (p2)Þ0
solution of the gap equation in the chiral limit. We dedu
that DCSB is manifest in quenched QCD and, in the follo
ing, quantify the magnitude of that effect. It should be o
served that a linear extrapolation toam50 of the lattice data
obtained with nonzero current-quark masses overestim
the mass function calculated directly as the solution of
gap equation.

Figure 3 focuses on the lattice simulations for the int

0.0 1.0 2.0 3.0 4.0
p  (GeV)

0.0

0.1

0.2

0.3

0.4

0.5
M

(p
2 ) 

(G
eV

)

FIG. 1. Data, upper three sets: lattice results forM (p2) in GeV
at am values in Eq.~17! ‘‘ s ’’ indicates am50.072 data, ‘‘n ’’
indicatesam50.036, and ‘‘, ’’ indicates am50.018; lower points
~boxes!: linear extrapolation of lattice results@14# to am50. Solid
curves: best-fit-interaction gap equation solutions forM (p2) ob-
tained using the current-quark masses in Eq.~17!; dashed-curve:
gap equation’s solution in the chiral limit, Eq.~5!.
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mediate value of the current-quark mass; namely,am
50.036, and compares lattice output for bothM (p2) and the
quark wave function renormalization,Z(p2), with our re-
sults. We emphasize that the form ofZ(p2) was not used in
fitting v(Q2). Hence the pointwise agreement between
gap equation’s solution and the lattice result indicates t
our simple expression for the effective interaction captu
the dominant dynamical content and, in particular, that om
ting the subdominant amplitudes in the dressed-quark-gl
vertex is not a serious flaw in this study.

D. Spectral properties

In a quantum field theory defined by a Euclidean meas
@35#, the Osterwalder-Schrader axioms@36,37# are five con-
ditions which any moment of this measure (n-point
Schwinger function! must satisfy if it is to have an analyti
continuation to Minkowski space and hence an associa

0 2 4 6 8 10
p

2
  (GeV

2
)

1.0

1.2

1.4

1.6

1.8

2.0

v(
p2 )

FIG. 2. Dimensionless vertex dressing factor:v(Q2), defined
via Eqs. ~15!–~18!, obtained in the chiral limit~solid curve! and
with the current-quark masses in Eq.~17!—dash-dot-dotted curve
corresponds tom(z)50.030 GeV, dash-dotted curveto m(z)
50.055 GeV, anddashed curveto m(z)50.110 GeV. v(Q2) is
finite at Q250.

0.0 1.0 2.0 3.0 4.0
p  (GeV)

0.0

0.2

0.4

0.6

M
(p

2 ) 
(G

eV
)

0.4

0.6

0.8

1.0

Z
(p

2 )

FIG. 3. Data, quenched lattice-QCD results forM (p2) ~lower
circles! and Z(p2) ~upper circles! obtained witham50.036 @14#;
dashed curve,Z(p2), and solid curve,M (p2), calculated from the
gap equation with our optimized effective interaction andm(z)
555 MeV. @Z(p2) is dimensionless andM (p2) is measured in
GeV.#
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with observable quantities. One of these is ‘‘OS3,’’ the axio
of reflection positivity, which is violated if the Schwinge
function’s Fourier transform to configuration space is n
positive definite. The space of observable asymptotic st
is spanned by eigenvectors of the theory’s infrared Ham
tonian and no Schwinger function that breaches OS3 h
correspondent in this space. Consequently, the violation
OS3 is a sufficient condition for confinement.

This connection has long been of interest@38,39#, and is
discussed at length in Refs.@40–42#, and reviewed in Sec
6.2 of Ref.@1#, Sec. 2.2 of Ref.@2# and Sec. 2.4 of Ref.@3#.
It suggests and admits a practical test@22# that has been
exploited in Refs.@20,22,23,43–49#, and which for the quark
two-point function, is based on the behavior of

DS~T!5E d3xE d4p

~2p!4
eip•xsS~p2!, ~20!

5
1

pE0

`

d« cos~«T!sS~«2!, ~21!

wheresS is the Dirac-scalar projection of the dressed-qu
propagator. For a noninteracting fermion with massm,

DS
free~T!5

1

pE0

`

d« cos~«T!
m

«21m2
5

1

2
e2mT. ~22!

The right-hand side~rhs! is positive definite. It is also plainly
related via analytic continuation (T→ i t ) to the free-particle
solution of the Minkowski space Dirac equation. The ex
tence of an associated asymptotic state is indubitable.

If, instead, one encountered a theory in which@41,42,49#

sS~p2!5
m

2 F 1

p21m22 ir2
1

1

p21m21 ir2G , ~23!

a function with poles atp21s2 exp(6iu)50, where

s45m41r4, tanu5r2/m2, ~24!

then

DS~T!5
m

2s
e2sT cos

u
2 cosS sT sin

u

2
1

u

2D . ~25!

This Fourier transform has infinitely many, regularly spac
zeros, and hence OS3 is violated. Thus the fermion descr
by this Schwinger function has no correspondent in the sp
of observable asymptotic states.

It is readily apparent that Eq.~23! evolves to a free-
particle propagator whenr→0. This limit is expressed in
Eq. ~25! via u→0, s→m, wherewith Eq.~22! is recovered;
a result that is tied to the feature that the first zero ofDS(T)
in Eq. ~25! occurs at

z15
p2u

2s
csc

u

2
, ~26!

and hencez1→` for r→0 @43,44#.
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We calculatedDS(T) using the gap equation solutions di
cussed above and the form ofuDS(T)u obtained with the
chiral-limit solution is depicted in Fig. 4. The violation o
OS3 is manifest in the appearance of cusps: lnuDS(T)u is nega-
tive and infinite in magnitude at zeros ofDS(T). The differ-
ences evident in a comparison with the result obtained fr
Eq. ~25! indicate that the singularity structure of the dresse
quark two-point Schwinger function obtained from th
lattice-constrained kernel is more complicated than jus
single pair of complex conjugate poles. However, the sim
larities suggest that this picture may serve well as an ide
zation@49#. @Qualitatively identical results are obtained usin
sV(p2), the Dirac-vector projection of the dressed-qua
propagator, instead ofsS(p2).#

Figure 4 also portrays the result obtained with the eff
tive interaction proposed in Ref.@18# and used efficaciously
in studies of meson properties@7#. Significantly, the first zero
appears at a smaller value ofT in this case. Using the mode
of Eq. ~23! as a guide, that shift indicates a larger value ofs.
This fits well with the fact that the mass scale genera
dynamically by the interaction of Ref.@18# is larger than that
produced by the interaction used herein, which is only
quired to correlate quenched lattice data for the gluon
quark two-point functions.

From the results and analysis reported in this section,
deduce that light quarks do not appear in the space of
servable asymptotic states associated with quenched Q
an outcome anticipated in Ref.@26#.

IV. CHIRAL AND PHYSICAL PION OBSERVABLES

A. Chiral limit

The scale of DCSB is measured by the value of
renormalization-point dependent vacuum quark condens
which is obtained directly from the chiral-limit dresse
quark propagator@17,30#:

0 5 10 15 20 25 30

T  (GeV
-1

)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

|∆
S(T

)|

FIG. 4. uDS(T)u obtained from the chiral limit gap equatio
solution calculated using our lattice-constrained kernel, solid cu
Eq. ~23! with s50.13 GeV,u5p/2.46, dotted curve; the model o
Ref. @18#, dashed curve.
3-5
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2^q̄q&z
05 lim

L→`

Z4~z,L!Nc tr E
q

L

S0~q!, ~27!

where ‘‘tr’’ denotes a trace only over Dirac indices and t
index ‘‘0’’ labels a quantity calculated in the chiral limit, Eq
~5!. In Eq. ~27!, the gauge parameter dependence of
renormalization constantZ4 is precisely that required to en
sure that the vacuum quark condensate is gauge indepen
This constant is fixed by the renormalization condition, E
~4!, which entails

Z4~z,L!52
1

m~z!

1

4
tr S8~z,L!, ~28!

wherein the rhs is well defined in the chiral limit@17#. ~It
may also be determined by studying the fully amputa
pseudoscalar-quark-antiquark three-point function@30#.! A
straightforward calculation using our chiral limit result; i.
the propagator corresponding to the dashed curve in Fig
yields

2^q̄q&z519 GeV
0 5~0.22 GeV!3. ~29!

To evolve the condensate to a ‘‘typical hadronic scal
e.g.,z51 GeV, one may use@50#

^q̄q&z8
0

5Z4~z8,z!Z2
21~z8,z! ^q̄q&z

05:Zm~z8,z!^q̄q&z
0 ,
~30!

whereZm is the gauge invariant mass renormalization co
stant. Contemporary phenomenological approaches em
the one-loop expression forZm , and following this expedien
we obtain, practically as a matter of definition,

2^q̄q&1 GeV
0 5S ln@1/Lqu-QCD#

ln@19/Lqu-QCD# D
gm

~2^q̄q&19 GeV
0 !

5~0.19 GeV!3, ~31!

which may be compared with a best-fit phenomenolog
value @51# of (0.2460.01 GeV)3. It is notable that DSE
models which efficaciously describe light-meson physi
e.g., Refs.@17,18#, give ^q̄q&1 GeV

0 52(0.24 GeV)3.
Our gap equation assisted estimate therefore indicates

the chiral condensate in quenched QCD is a factor o
smaller than that which is obtained from analyses of stro
interaction observables. These results are in quantita
agreement with Ref.@26#.

A fit to the linear extrapolation of the lattice data; viz.,
the boxes in Fig. 1, gives a significantly larger value@14#:
2^q̄q&1 GeV

0 5(0.27060.027 GeV)3. However, the error is
purely statistical. The systematic error, to which the line
extrapolation must contribute, was not estimated. That m
be important given the discrepancy, conspicuous in Fig
between our direct evaluation of the chiral-limit mass fun
tion and the linear extrapolation of the lattice data toam
50: the linear extrapolation lies well above the result of o
chiral-limit calculation.

This point may be illustrated further. In Fig. 5 we pl
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M (p25pIR
2 ), where pIR50.62 GeV, as a function of the

current-quark mass~solid curve!. This value of the argumen
was chosen because it is the smallestp2 for which there are
two lattice results forM (p2) at each current-quark mass
Eq. ~17!. Those results are also plotted in the figure. It
evident that on the domain of current-quark masses dire
accessible in lattice simulations, the lattice and DSE res
lie on the same linear trajectory, of which

M @pIR
2 50.38 GeV2,m~z!#50.1811.42m~z! ~32!

provides an adequate interpolation. However, as appare
the figure, this fit onamP@0.018,0.072# provides a poor
extrapolation tom(z)50, giving a result 40% too large.

In Fig. 6 we repeat this procedure, focusing solely on o
value of M (p250) because directly calculated lattice da
are unavailable at this extreme infrared point and publis
estimates obtained by extrapolating functions fitted to
lattice p2 dependence are inconsistent@13#. The pattern ob-
served in Fig. 5 is again visible. On the domain of curre

0.000 0.025 0.050 0.075 0.100 0.125
m(ζ=19 GeV)   (GeV)

0.100

0.200

0.300

0.400

M
(p

2 =
 0

.3
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G
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2 ) 
 (

G
eV

)

FIG. 5. M (pIR
2 50.38 GeV2), in GeV, as a function of the

current-quark mass. Solid curve, our result; circles, lattice data
am in Eq. ~17!; and dashed line, linear fit to the lattice data, E
~32!.
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FIG. 6. Solid curve—calculatedM (p250), in GeV, as a func-
tion of the current-quark massm(z). The circles mark the current
quark masses in Eq.~17!. Dashed line—linear interpolation of ou
result forM (p250) on this mass domain.
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quark masses for which lattice data are available, the m
dependence ofM (p2) is well approximated by a straigh
line; namely,

M @p250,m~z!#50.3710.68m~z!, ~33!

but the value ofM (0) determined via extrapolation t
m(z)50 is 14% too large.

In all cases our calculated result possesses significant
vature. At fixedp2, M @p2,m(z)# is a monotonically increas
ing function of m(z) but, while it is concave-down for
m(z)&0.1 GeV, it inflects thereafter to become concave-
In addition, at fixedm(z), M (p2) is a monotonically de-
creasing function ofp2. It follows that a linear extrapolation
determined by data onamP@0.018,0.072# will necessarily
overestimateM (p2) at all positive values ofp2. The figures
illustrate that the error owing to extrapolation increases w
increasingp2, and hence a significant overestimate can
anticipated on the domain in which the condensate was
ferred from lattice data.

It is straightforward to understand the behavior eviden
Figs. 5 and 6 qualitatively. The existence of DCSB mea
that in the neighborhood of the chiral limit a mass scale ot
than the current-quark mass determines the magnitud
M (p2). As the current-quark mass increases from zero,
magnitude will come to affect that of the mass function. T
gap equation is a nonlinear integral equation, and hence
evolution of the mass dependence ofM (p2) will in general
be nonlinear. Only at very large values of the current-qu
mass will this scale dominate the behavior of the mass fu
tion, as seen in studies of heavy-quark systems@52#, and the
evolution become linear.

B. Pion properties

The renormalized homogeneous Bethe-Salpeter equa
~BSE! for the isovector-pseudoscalar channel, i.e., the p
is

@Gp
j ~k;P!# tu5E

q

L

@xp
j ~q;P!#sr Ktu

rs~q,k;P!, ~34!

where k is the relative momentum of the quark-antiqua
pair, P is their total momentum, and

xp
j ~q;P!5S~q1!Gp

j ~q;P!S~q2!, ~35!

with Gp
j (k;P) the pion’s Bethe-Salpeter amplitude, whic

has the general form

Gp
j ~k;P!5t jg5@ iEp~k;P!1g•PFp~k;P!

1g•kk•PGp~k;P!1smnkmPnHp~k;P!#.

~36!

In Eq. ~34!, K(q,k;P) is the fully amputated quark-antiquar
scattering kernel, and the axial-vector Ward-Takahashi id
tity requires that this kernel and that of the gap equation m
be intimately related. The consequences of this are el
dated in Refs.@31,32#, and in the present case they entail
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Ktu
rs~q,k;P!52G@~k2q!2#3Dmn

free~q2k!

3Fla
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gmG
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Fla

2
gnG
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, ~37!

which provides the renormalization-group-improved ladd
truncation of the BSE. The efficacy of combining th
renormalization-group-improved rainbow-DSE and ladd
BSE truncations is exhibited in Ref.@7#. In particular, it guar-
antees that in the chiral limit the pion is both a Goldsto
mode and a bound state of a strongly dressed quark
antiquark, and ensures consistency with chiral low ene
theorems@53,54#.

All the elements involved in building the kernel of th
pion’s BSE were determined in the last section, and he
one can solve for the pion’s mass and Bethe-Salpeter am
tude. To complete this exercise practically, we consider

@12,~P2!#@G5
j ~k;P!# tu5E

q

L

@x5
j ~q;P!#srKtu

rs~q,k;P!.

~38!

This equation has a solution for arbitraryP2, and solving it
one obtains a trajectory,(P2) whose first zero coincides
with the bound state’s mass, at which pointG5

j (k;P) is the
true bound state amplitude. In general, solving for,(P2) in
the physical domain:P2,0, requires that the integrand b
evaluated at complex values of its argument. However,
mp

2 !M2(0); i.e., the magnitude of the zero is much smal
than the characteristic dynamically generated scale in
problem, we avoid complex arguments by adopting
simple expedient of calculating,(P2.0) and extrapolating
to locate its timelike zero. The Bethe-Salpeter amplitude
identified with theP250 solution. Naturally, this expedien
yields the exact solution in the chiral limit; and in cas
where a comparison with the exact solution has been m
for realistic, nonzero light-quark masses, the error is ne
gible @55#, as we shall subsequently illustrate.

Once its mass and bound state amplitude are known,
straightforward to calculate the pion’s leptonic decay co
stant@30#:

f pd i j 2Pm5Z2 trE
q

L

t ig5gmxp
j ~q;P!. ~39!

In this expression, the factor ofZ2 is crucial: it ensures tha
the result is gauge invariant, and cutoff and renormalizati
point independent.~The Bethe-Salpeter amplitude is norma
ized canonically@56#.!

Table I lists values of pion observables calculated us
the effective interaction obtained in Sec. III C by fitting th
quenched-QCD lattice data.@The nonzero current-quar
mass in the table corresponds to a one-loop evolved valu
m(1 GeV)55.0 MeV.# To aid with the consideration o
these results, we note that unquenched chiral-limit DSE
culations that accurately describe hadron observables
@18# f p

0 50.090 GeV. We infer from these results that t
3-7
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pion decay constant in quenched lattice QCD is undere
mated by 30%. Quantitatively equivalent results were fou
in Ref. @26#.

The rainbow-ladder truncation of the gap and Beth
Salpeter equations is chiral symmetry preserving: with
fine tuning it properly represents the consequences of ch
symmetry and its dynamical breaking. The truncation
presses the model-independent mass formula for fla
nonsinglet pseudoscalar mesons@30#, a corollary of which, at
small current-quark masses, is the Gell-Mann-Oakes-Re
relation:

~ f p
0 !2mp

2 522m~z!^q̄q&z
01O@m2~z!#. ~40!

Inserting our calculated values on the lhs and rhs of Eq.~40!,
we have

~0.093 GeV!4 cf. ~0.091 GeV!4; ~41!

viz, the same accuracy seen in exemplary coupled DSE-B
calculations; e.g., Ref.@17#. This establishes the fidelity o
our expedient for solving the BSE.

V. SUMMARY

We studied quenched-QCD using a rainbow-ladder tr
cation of the Dyson-Schwinger equations~DSEs! and dem-
onstrated that existing results from lattice simulations
quenched-QCD for the dressed-gluon and -quark Schwin
functions can be correlated via a gap equation that emplo
renormalization-group-improved model interaction. A
usual, the ultraviolet behavior of this effective interaction
fully determined by perturbative QCD. For the infrared b
havior we employed an ansatz whose parameters were
in a least-squares fit of the gap equation’s solutions to lat
data on the dressed-quark mass functionM (p2) at available
current-quark masses. With our best-fit parameters the m
functions calculated from the gap equation were indis
guishable from the lattice results. The gap equation simu
neously yields the dressed-quark renormalization func
Z(p2) and, without tuning, our results agreed with those o
tained in the lattice simulations.

TABLE I. Pion-related observables calculated using our latti
constrained effective interaction.m(z519 GeV)53.3 MeV was
chosen to givemp50.1385 GeV. The index ‘‘0’’ indicates a quan
tity obtained in the chiral limit.

Calculations~quenched! Experiment

mp 0.1385 0.1385
f p 0.066 0.0924
f p

0 0.063
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To correlate the lattice’s dressed-gluon and -qu
Schwinger functions it was necessary for the gap equatio
kernel to exhibit infrared enhancement over and above
observed in the gluon function alone. We attributed that to
infrared enhancement of the dressed-quark-gluon vertex.
magnitude of the vertex modification necessary to achi
the correlation is semiquantitatively consistent with that o
served in quenched lattice-QCD estimates of this three-p
function.

With a well-defined effective interaction, the gap equati
provides a solution for the dressed-quark Schwinger func
at arbitrarily small current-quark masses and, in particular
the chiral limit: no extrapolation is involved. A kernel tha
accurately describes dressed-quark lattice data at s
current-quark masses may therefore be used as a tool
which to estimate the chiral-limit behavior of the lattic
Schwinger function. Our view is that this method is a mo
reliable predictor than a linear extrapolation of lattice data
the chiral limit. Even failing to accept this perspective, t
material difference between results obtained via the latt
constrained gap equation and those found by linear extra
lation of the lattice data must be the cause for concern
employing the latter.

In addition, from a well-defined gap equation it
straightforward to construct symmetry-preserving Beth
Salpeter equations whose bound state solutions describe
sons. We illustrated this via the pion, and calculated its m
and decay constants in our DSE model of the quenc
theory.

Finally, assuming that existing lattice-QCD data are n
afflicted by large systematic errors associated with finite v
ume or lattice spacing, we infer from our analysis th
quenched QCD exhibits dynamical chiral symmetry break
and dressed-quark two-point functions that violate reflect
positivity, but that chiral and physical pion observables a
significantly smaller in the quenched theory than in f
QCD.
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