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Relativistic quantum mechanics: Particle production and cluster properties
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This paper constructs relativistic quantum mechanical models of particles satisfying cluster properties and
the spectral condition which do not conserve particle number. The treatment of particle production is limited to
systems with a bounded number of bare-particle degrees of freedom. This paper focuses on the realization of
cluster properties in these theories.
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I. INTRODUCTION subsystem Hamiltonians to interactions in the system Hamil-
tonian. Cluster properties provide the connection between
The purpose of this paper is to formulate a class of quanthe few- and many-body problem and the justification for
tum theories of interacting particles with the following prop- experiments that are performed on isolated targets at modern
erties. They are Poincarevariant, they satisfy cluster prop- accelerators.
erties, the four-momentum operator has a spectrum The spectral condition is essential for the stability of mat-
supported in the future-pointing light cone, and they allowter. The mathematical requirement is that the eigenvalue
particle production. These theories are applicable to probspectrum of Hamiltonian is bounded from below.
lems in strong interaction physics where relativistic invari- Theories must be able to model reactions that change par-
ance is an important symmetry. Cluster properties can b#cle number. These reactions are observed in experiments at
used to systematically build many-particle models from few-almost all modern accelerators.
body models that are constrained by experiment. Relativistic While the above discussion makes a case that the physical
quantum theories with cluster properties are essential to theonstraints discussed above are essential requirements for

relevance of the few-body program at accelerators such any reasonable quantum theory of strongly interacting par-
TINAF. ticles, it is surprisingly difficult to formulate mathematically

The formulation of Poincarénvariant quantum theories Wwell-defined theories that are consistent with all of these
satisfying cluster properties for systems of a fixed number oproperties.
particles has been discussed in Réis-5]. This paper dis- Even in quantum field theory, the problem of identifying
cusses the modifications to the fixddeonstruction, needed the physical Hilbert spacé( and finding a set of ten self-
to extend that construction to treat a class of models witidjoint operators on this space that satisfy the Poincame-
particle production. The theories discussed in this paper ar@utation relations is an unsolved problem, except for the
limited to systems with a finite number of bare-particle de-case of free quantum fields. These are the minimal require-
grees of freedom. A complete treatment of particle producments for realizing the Poincargymmetry in a quantum
tion, with no restrictions on the number of bare-particle de-theory.
grees of freedom, is beyond the scope of this paper. Some of the difficulties in formulating theories that are
The physical properties mentioned in the first paragraptgonsistent with these physical constraints are discussed be-
are the minimal physical requirements for a realistic descriplow. i
tion of a system of strongly interacting particles. The physi- The Poincaregroup provides an infinite number of inde-
cal motivation for each of these requirements is discussefendent paths to the future and each path involves the dy-
below. namics. If one starts with a given state and transforms it to a
Poincareinvariance is the requirement that the group offuture time using different combinations of Poincarans-
continuous Poincaréransformations is a symmetry of the formations, consistency requires that the resulting states are
theory. In 1939 Wignef6] showed that this is equivalent to identical. For example, time evolution can be expressed in
the existence of a unitary representation of the Poincaréerms of rotationless Lorentz transformations and spatial
group on the Hilbert space of the quantum theory. translations. Consistency of the quantum initial value prob-
Poincareinvariance is essential for a consistent interpre-lem requires that if there are interactions in the Hamiltonian
tation of any reaction with strong binding or particle produc-then there must be interactions in the infinitesimal generators
tion. For reactions where the initial and final states haveof rotationless Lorentz transformations and/or spatial trans-
different inertial masses, momentum conservation cannot bitions. This is a consequence of the commutation relation
simultaneously satisfied in the laboratory and center of mo- i
mentum frames in a Galilean invariant quantum theory. [Pi,Kj]=id;H, @
Cluster properties require that isolated subsystems have, o )
the same properties as the system. They relate interactions {f1ich relates the Hamiltoniaf to the linear momentum
generatord® and generators of rotationless Lorentz transfor-
mations, K. The Poincarecommutation relations impose
*Email address: polyzou@uiowa.edu nonlinear constraints on these interactions.
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Cluster properties impose independent nonlinear coning from composite targets. Some recent applications can be
straints on the interactions. To see this, note that in the thredound in Refs[10—13. Extending these theories to Poincare
body problem, cluster properties fix the two-body interac-invariant theories with cluster properties that allow particle
tions in each of the Poincargenerators up to an overall production provides a more robust class of models.
three-body interaction. However, because interactions in- The following section discusses the assumptions that are
volving different pairs of particles appear in more than oneused to limit the number of bare-particle degrees of freedom.
generator, the operators obtained by adding the required twd-€ structure of the model Hilbert space is given in Sec. III.
body interactions to the noninteracting generators fail to satt differs from the Hilbert space for a systemMfparticles in
isfy the commutation relations without additional three-bodyhOW it factors into subsystem spaces. This factorization and

interactions. For example, if the generators of rotationles§°Me ©f its properties are discussed in Sec. IV. In Sec. V the

L= . ) cluster property is formulated in a manner that is consistent
Lorentz transformations, have interactions between par- i the modified factorization into subsystems. The formu-

ticles 1 and 2 and the Hamiltonian has interactions betweepytion of scattering theory for reactions that do not conserve
particles 2 and 3, then the commutatdd,K]=iP will particle number is discussed in Sec. VI. Modification of the
have three-body interactions involving particles 1, 2, and 3C* algebra of asymptotic constants, which is a central ele-

unlessH and/or K have three-body interactions that are ment of the construction of a dynamics satisfying cluster

designed to cancel the three-body operators generated IByoperties in Ref[5], is discussed in Sec. VII. The unitary
the commutator. elements of this algebra preserve the scattering observables,

While the spectral condition is not difficult to satisfy, @nd can be used to restore cluster properties. The modifica-
negative energy states have historically appeared when claons to the general construction in RE5] to treat a variable
sical relativistic field theories, like the Klein-Gordon- Number of particles are summarized in Sec. V. Rather than
Schrainger and Dirac equations, are treated as quantum m&iVing & systematic description of the general construction,
chanical equations. The negative energy eigenstates of ti#$ Was done in Ref5], the essential elements of the general
Hamiltonian disappear when these equations are proper|c§onstruct|on are illustrated in Secs. IX-XI using a nontrivial
treated as equations for quantum fields. éxample.

Particle production requires a more critical analysis of
cluster properties. For theories with a fixed numbeiof Il. MOTIVATION AND ASSUMPTIONS

particles there is an ordering on particle number, and clust(_ar General features of the class of theories studied in this

theK <N-body Poincargenerators and the-body Poincare of particles to theories that change particle number. The

generators. This leads to important relations between the d’(:’onstruction in this paper extends the general fiXeden-

namics of the system and its proper subsystems. These reIg‘t'ruction in Ref.[5]. In all that follows, we use notation
tions provide the justification for both theory and experimentfrom Ref. [5] '

on few-body systems. Consider a relativistic theory of-interacting particles

in ;Z%rli)erg?llveitr x::cﬁgr?rglgﬂggoﬁ iﬁsfgglggiztﬁgecg?gnf'g\?v following the construction of Ref5]. Relativistic invariance
body problem that puts useful constraints on the many-bodIs realized by a dynamical unitary representatifn\, Y] of

dynamics. Specifically, in theories with particle production YnhomogeneousL(z,C) [ISL(2.C)] on theN-particle Hil

states with a few physical particles generally involve an in'-bert spacét. ISL(2,C) is the covering group of the Poincare
phy P 9 y group; it is used because the relevant representations

finite number of bare particles. . . ; :
The difficulties with formulating quantum theories with z:gtr?éggle valued and computations are easier using 2

an infinite number of degrees of freedom are well known o .
[7-9]. These difficulties are distinct from the specific prob- The_S L(Z;LC) matrix A is related to a finite Lorentz trans-
lems that arise from particle production. In this paper theséormatlonAV by
problems are deliberately separated by restricting consider- 1
ations to a class of theories with a finite number of bare- A’V‘=—Tr(aMAaVAT), (2
particle degrees of freedom. This is achieved using conser- 2
vation Iaws_that "”.‘“ the number of bare-particle Qeg.rees Ofand the X2 Hermitian matrixY parametrizes a space-time
freedom. It is possible to formulate cluster properties in thes‘?ranslationyf‘ by
theories without having to confront the specific problems
that arise due to the infinite number of degrees of freedom. 1
The class of models considered in this paper is designed Y=yto,, y'=35T(Yo,). (©)
to complement models based on formal quantum field theory.
Quantum mechanical models of interacting particles have thgne group product is
advantage thatfor systems of strongly interacting particles
they are mathematically well defined and can, in principle, (Aszz)(Alle):(A2A11A2Y1A£+Y2)- (4)
be solved using convergent algorithms. It is for this reason
that quantum theories of particles are often used to modelhe resultingU[ A,Y] satisfies cluster properties and the
few-body reactions involving composite systems or scatterspectrum of the Hamiltoniahl is bounded from below.
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Assume that in this model some isolated subsystems caantineutron pairs. This paper only considers theories where
form bound states. Then cluster properties imply that theconditions(b) and(e) are enforced. With these restrictions it
isolated bound subsystems have the same Poininsfor-  is possible to define a meaningful “few-charge” problem.
mation properties as elementary particles with the same mass
and spin. With respect to their Poincaransformation prop- Ill. HILBERT SPACE
ggtlseitse, ;g?{iil(lass_no distinction between elementary and com The Hilbert spacéi,y , corresponding tP the .valu{eN}

Treating the asymptotically stable subsystems as physica"_r(nl’ - Ng) of the conser_ved c_harges, Is a direct sum of
particles, the relativistic theory described in Rf] can be tensor products of bare-particle Hilbert spaces,
interpreted as a theory of fixed number of bare particles with
a variable number of physical particles. The physical par-
ticles in the above sense are needed to formulate scatterin ] o . ]
asymptotic conditions and cluster properties. where Hp,; is the massm, spinj wreduublg representation

This can be compared to local quantum field theorySPace ofISL(2,C). Each term of the direct sum has a
where physical particles, defined as discrete eigenstates 8ffferent bare-particle contentout the same value of total
the mass and spin, also have a composite bare-particle cofbarge{N}. _
tent. An important distinction is that in local field theory the ~ In the Lee model example the Hilbert space,
physical particles involve an infinite number of bare-particle
degrees of freedom, while in the relativistic quantum me- Hiy=(Hn®H ) ©Hy 6)
chanics case discussed above, the composite systems involve . .

a fixed finite number of bare-particle degrees of freedom. '° the direct sum of the two-particle- space and the one-

In this paper the fixedNd construction is generalized by particleA space._Note that mclung a batepariicle in the.
replacing theN-constituent particles by a set of conserV(:;dmOdeI dpes not imply that thi will exist as a stable physi-
additive quantum numbers. These quantum numbers have r?@l part|_cle. . .
physical interpretation; they are introduced to provide a The irreducible representation spack,; of ISL(2.C)

mechanism to control the number of degrees of freedom@re spaces of square integrable functions of the eigenvalues

These quantum numbers are called charges and they are e?é-a maXimal set of commuting self—adjoint funct.ions of the
sumed to satisfy the following: single-particle generators. In general, this set includes the

(a) There areK types of charges invariant mass and spin operators, and four additional func-

(b) Charges can have onhlyon-negativanteger values. tions[5] of the ISL(2.C) ge_ngrators, denoted 1. A typi-
(c) Each bare particle of the model has a set of chargegal choice of the operatng' is the three components of the
labeled by am-tuple of integers ff;, . .. ,nk) labeling the linear momentum and thecomponent of the canonical spin.

number of each of th& types of charges. Denoting the eigenvalues &F, m, j by f, m, andj(j
(d) The charge of a composite system is the sum of the1) gives basis vectors on eaét),; of the form
charges of the constituents. _
(e) Each bare particle of the theory has as least one non- [f:m,j) (7)
zero charge.
(f) Interactions conserve al types of charges.
The charge of a bare particle msinimal if it cannot be
expressed as a sum of smaller charges corresponding to at |:f [f:m,j)du(f)(f;m,j],
least two bare particles.
The relativistic Lee mode[2,14—164 provides a well- ) ]
known example of a theory with this structure. The Lee (fim,j[f";m,j)=a[f,']. 8

model has three types of bare particles that can be sugges- . . ,
tively called , N, and A, with a vertex interactionm In this expressiorf du(f) denotes an integral over the con-

+N<A. There are two conserved chargeg, (q,) where tinuous eigenvalues and a sum over the discrete eigenvalues
the 7 has chargé0,1), theN has chargél,0), and ?heA has ©f F'. Likewise, 5[ f,f'] indicates a product of Dirac delta
charge(1,1). In this model the charges of theand theN are functions in the continuous variables and Kronecker delta
minimal.,The charge of thé is not minimal because the functions in the discrete variables. This basis of the single-
7-N system has the same charge asAhén this model the Particle Hilbert space is called tHebasis. ,
A is called acompositebare particle. The vertex interaction ~ BY assumptionJSL(2,C) acts irreducibly on this space.
conserves charge. Many isobar models also fall into thidn thef basis the action o[ A,Y] is given by
class.

Theories with an infinite number of degrees of freedom U[A,Y]|f;m,j):f |f’;m,j)dM(f’)D;“,"f[A,Y], (9)
are obtained by dropping the assumptidbs and (e). For
example, if a neutral pion is assigned a charge zero and a
neutron is assigned a charge equal to its baryon number, eatf{1ere
fixed-charge subspace of the Hilbert space has subspaces mi L )
with arbitrarily large numbers of pions and neutron- Dol A Y]=(F";m,j[ULA,Y][fim,]) (10)

H{N}’=@P:1(®EL1Hmikjik), 5)

with resolution of the identity and normalization given by
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is the massn, spinj irreducible representation é§L(2,C) erties lead to an asymptotic factorization of the interacting
in the f basis. What is relevant for this paper is that therepresentationlJ[A,Y], into a tensor product of subsystems
irreducible representatior®{4[A,Y] are known for each U,[A,Y]'s that act on each factor of the tensor product.
value ofm andj. Explicit formulas for Poincar® functions For models with conserved charg@d} a similar, but
D'lejf[A,Y], are given in Refs[3,5,17. slightly more complicated, relationship exists. To define this
The irreducible representatidsy, [ A,Y] of ISL(2,C) on  relationship, begin by labeling each charge. In this paper the
each of the subspacédy, ; can be used to construct a charges are initially treated as distinguishable. Proper sym-

. . . metry under exchange of identical particles can be restored
ngtural noninteracting representationUs[ A, Y] on My, afterythe Poincérgengerators are conpstructed
given by '

Let H;, be the Hilbert space for a given set of charges.
n Partitionsa of the labeled charges are identified with equiva-
U[A,Y]=> (®Ei:1Uik[A1Y])- (11)  lence relations on the charges. Tik equivalence class is
=1 denoted bya;, called theith cluster ofa. The set of all
partitions of the charges is denoted By -
To each partitiora of the conserved charges, the Hilbert
paceH,y, can be decomposed as an orthogonal direct sum
f the form

The Hilbert spacéy, has two natural bases. The first is
the tensor product of single bare-particle basis vectors. Ther,
are distinct basis functions corresponding to each orthogon%
subspace in the direct su(h).

The second is a basis that transforms irreducibly with re-
spect toUg[ A,Y]. The irreducible basis is constructed, using Hiny=Ha®H?, (16)
thelSL(2,C) Clebsch-Gordan coefficienf8—5,18—-20, as a
linear combination of the tensor product of irreducible rep-where
resentations. As in the case of the tensor product basis, there
is a distinct orthogonal subspace corresponding to each term n
in the direct sum®5). Ha=® 2 Hin, } (17)

The two types of basis vectors Gt ,, are denoted by

|®F;:];,m) (12) is the tensor product of the subsystem Hilbert spaces associ-
trar ated with the charges in thi¢h cluster ofa and H? is the
and orthogonal_ complement dft, in Hyy, - N
The residual spack ® appears because for each partition
f,d;j,m), (13 a the Hilbert spaceH;\» may have a subspace with bare
N

particles having nonzero chargesdifferentclusters of the
respectively, wherel denotes a set of invariant degeneracypartition a.

guantum numbers. Thain Eq. (13) is the invariant mass of In the case of th¢l,1} sector of the Lee mod¢R,14—1§
the system of noninteracting bare particles in the tensor proche factorization16) has the form
uct.
The second basis transforms irreducibly with respect to
Y P Hipy=(Hy@H ) Hy, (18)
Uo[A,Y],
o S yoami where fora=(N)(7), Ha=HN®H, andH?="H,. TheA
UO[A’Y]“’d'm’J)_f [F7,dim,)du(f) Dl ALY, subspace is unimportant for understanding clustering into an
(149 asymptotically separategt and N.
. . The appearance and treatment of the residual space is the
which has the same form as the transformation law for anain technical difference between models of a fixed number
single particle of mass and spinj, while basis(12) trans-  of particles and models with production.

forms like The partition of the conserved charges into disjoint
equivalence classes has an obvious partial ordering given by
Uo[A,Y]|®F ;i ,mi>:J |&f:ji,m) agl_) if and only if ponserved charg_e labels in the same
equivalence class with respect boare in the same equiva-

, lence class with respect @ This means that the clusters of
xIT du(f)D7VA,Y]. b are obtained by breaking up the clustersaof
' H Given the partial ordering oy, , it is possible to define
(15)  zeta and Mbius functiong22,23 for the partial ordering:

IV. TENSOR PRODUCTS/FACTORIZATION 1 for adb

f(a2b)= 0 otherwise (19

In nonrelativistic many-particle quantum mechanics the
N-particle Hilbert space can be decomposed into a tensor
product of Hilbert spaces with fewer particles. Cluster prop-and
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w(adb)=¢ L(adb) U[A,Y]=€, (24)
N Ma . whereG=GJ[ A,Y] is a fixed linear combination of the gen-
=) .Hl (=)"(n, —1)!  for adb eratorsISL(2,C) on H.
) The limiting form required by cluster properties when the
0 otherwise, clusters ofa are asymptotically separated is
20 UL[A,Y]=€/(®i6s) = gCa (25
Wherena is the number of CIL_JSterS_Of the partitiarandny, To formulate the cluster condition define the residual inter-
is the number of clusters df in theith cluster ofa. action by
It is a consequence of the definitions that the subspaces
'H, and’H ? satisfy the relations Vi=G-G,. (26)
bDa=H,DH, and H3DHP". (21)  Consider
This is equivalent to the observation that if a bare particle F(a):=€'*Ce1Ca, (27

has nonzero charges in two different clusters of a partéion
then this is also true for any refinementaofThis means that

for the purpose of studying cluster properties, the residu
spacesH? can be ignored when making refinements of «

partitions. Fla)=I +if0 F(a')V3a')da’, (28

where e '“Ca is extended to be the identity oK 2. This
a§atisﬁes the integral equation

V. CLUSTER PROPERTIES where

In.order tp formulate clqster properties, assume that it is VA( ) =i ®Gay/ag19Gq, 29
possible to find the dynamics

Uai[A,Y] (22 The cluster condition is equivalent to
, , y lim  [F(1)—1]®"=, U, [1,Y ]I, §)]=0.
associated with the conserved charges inithesluster ofa. min(y; - yj) 2
TheinteractingrepresentatioJ[ A, Y] of the system sat- (30)
isfies spacelike cluster properties if for each partitiosf the
conserved charges the following strong limits vanish: This limit is bounded by

. 1
lim  (U[A,Y]-@" U,[A,Y]) lim IVa(a') @2 Uall, Y L, &)l da.
min(yifyj)zﬁoc min(yifyj)zﬂoc
®m Uy [1,Yn]l,=0, (23 @D
The integrand is uniformly bounded i’ by
wherell, is the orthogonal projection onto the subspate

of H. This projection is needed becau@éjlual[A,Y] and

®”ma:1Uam[l ,Ym] are only defined orf{,. For successive and each term in the integrand has the limit
limits the projections should be on the largest subspace that ) an , ,
allows the charges to be asymptotically separated. lim v ®|31Ua|[| Y G[¢)]=0, (33
Equation(23) contains two conditions. First, it requires min(y; —y;)%—e
that when the interaction terms between particles with
charges in different clusters afare turned off, the projection Where
of U[A,Y] on H, becomes a tensor product of subsystem
representations. This property is referred to as the algebraic
cluster property. This condition is nontrivial; when it fails, 5,4
either the cluster limit does not exist, or interactions between
partic[le]s in thesame cluster of a vanish in the cluster |§'>:e_iaGa|§>_ (35)
limit [3].
The second condition is that the interaction betweerin this expressiom\,Y is the ISL(2,C) transformation de-
particles with charges in different clusters satisfy the shortfined byU[A,Y]=e"'?C.
range condition specified above. This can be reformulated as It follows from the Lebesgue dominated convergence
a “Cook-like” condition on the range of the residual inter- theorem([24] that the cluster limit vanishes, provided condi-
actions[21]. To see this, lefA,Y] denote a fixedSL(2,C)  tion (33) holds for all|¢') and all asymptotic spacelike sepa-
transformation. To formulate the range condition, assume rations, —yj’)zﬂoc. This is the desired “Cook-like” con-

VAT )] <o (32

Y/ =AY, AT+Y (34)
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dition on the range of the intercluster interactigh. This is A
analogous to the cluster condition in nonrelativistic quantum U[A,Y]|f;m,j)=f du(f)|f;m YDA Y] (39)
models.

The difficult aspect of the cluster problem in relativistic The functionD?",jf[A,Y] is the known massa and spinj
quantum mechanics is to construdfA,Y] so it satisfies jrreducible representation ¢8L(2,C).
algebraic cluster properties. In this case algebraic cluster Normalizable eigenstates of physical mass and spin can
properties mean that be expressed in the form

U[A,Y]—=U,AY 36

LA Ul A Y] (%9 |¢>:J [f5m,jdu(F)x(f) (40)

when the interactions between particles in different clusters

are turned off, where for square integrable functiong(f).

Each irreducible bound subspace defines a bound-state

channela. The channel Hilbert spacel, is the space of

(37 square integrable functiong(f) over the joint spectrum
o(F) of the commuting operatof8'. Equation(40) can be
interpreted as a mapping, from the bound channel Hilbert

on H=H,dH?2. Extending@[‘gluai[A,Y] to all of # by  space}, to the physical Hilbert spack,

extending it as the identity on the subspa¢@ is one of the

modifications introduced because of factorizati@é). The [ ) =D | x)- (41

identity term is consistent with setting the correspondin

®2 U.[AY] 0

UJA,Y]:= . |

YThis can be done for each bound channel. Note that, in gen-

teé . .
L . X A ral, has components in all bare-particle sectorg+of
condition because the identity term is eliminated by the pro- In|;/,h>is notatior? Eq(39) can be exgressed in the form

jectorIl,.
This formulation of cluster properties has the property U[A,Y]®, =d U[A,Y], (42)

that if the system is further sub-divided hHyCa then

I1,I1,=1I1,. This is because all of the refinementsaoére =~ whereU [ A,Y] is the irreducible unitary representation of

defined on™,. This property of the model Hilbert space ISL(2,C) with kernel D[ A,Y].

ensures that system can continue to be subdivided until all |ndividual subsystem bound states are used to formu-

that remains is a system of bare particles with minimaliate the asymptotic condition for multiparticle scattering

charges. channels.
For a partitiona of conserved charges the physical Hilbert
VI. SCATTERING space has the factorizatidm{N}:Ha@Ha, where

The formulation of scattering theory with particle produc- Ha=®aHn, - (43
tion is identical to the two-Hilbert-space formulation used in %
Refs.[2,5] for a fixed number of particles. Assume that there is a subsystem dynamics,

To formulate the scattering theory assume that the dy-
namical representatiod[ A,Y] of ISL(2,C) on H is given. Uai[A,Y]:H{Na}HH{Na} (44
Assume that the representatitff A,Y] has the following i ‘
properties, which are consistent with the fixsctase. for the charges in thigh cluster of the partitior. There is a

(& There are simultaneous eigenstatesfj,F' with  scattering channet associated with the partitiomif there is
positive discrete mass eigenvalues that transform irreducibly hound channel for each of the subsystdgi{ A, Y]'s.

with respect tJ[ A, Y]. Following Eq.(42), for each bound subsystem there is an

(b) Thgre are S|mgltaneous elgenstates[\bIJ,F with asymptotic Hilbert spac@{,. and an injection operatcb , ,
positive eigenvalues in the absolutely continuous spectrum i [

of M. These satisfy scattering asymptotic conditions.

(c) The bound and scattering eigenstates are complete on q)“i:H“iHH{Na.} “9
the model Hilbert space, with the incoming and outgoing .
wave scattering states each spanning the orthogonal compl¥ith the property
ment of the subspace spanned by the bound states. Uai[AiY](Dai:q)aani[A!Y]' (46)

A bound state is a simultaneous eigenstat&,gM, and
i 2
% Define the channel Hilbert spaéé, and the channel injec-

tion operatord ,:'H,— H,CH by

[fim,j) (39)
Ho=82 My, 4
with discrete mass eigenvalua. It transforms irreducibly =17 “47
under the action of thedynamical representation of n,
ISL(2,C) Q=02 D, (48)
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Define

®" U [AY] 0

UJ[A,Y]:= 0 s

(49

wherel acts on the residual subspake. Also define
UJAY]H,—H, (50
by

U [A,Y]:=0" U, [A,Y]. (51)

With these definitions, relationg6) can be compactly ex-
pressed in the form

UJJA,Y]®,=® U[A,Y]. (52)

Following the case of a fixed number of particles, a scatter-

ing state is a solution

| (1) =UL1L Ty (0) (53

of the time-dependent Schiimger equation satisfying the

asymptotic condition

im {47, ()= Ual 1, TI® | x,) =0

t—*+ow

(54)
for all | x,) € H, . Using the intertwining relation&?2), this
can be expressed as

lim ||‘//c:;(0)>_ UT[I 1T](Daua[| vT]|Xa>||:O

t—+o

(59)

PHYSICAL REVIEW C 68, 015202 (2003

HA:: D aeAHa . (60)
A two-Hilbert-space injection operatob 4 is a mapping
from H 4 to ‘H defined by

(I).A:z EA CDa! (61)

where eachb , acts on the subspadé, of H 4.
There is a natural unitary representationl81L(2,C) on
H 4 defined by

uA[A,Y]:a}E‘,A U,A,Y]. (62)

The two-Hilbert-space wave operators can be expressed by

the strong limits

Q. (H,® 4, Hy:= lim UTI,T]® U [I,T],

t—tow

(63

whereT=to,.

In what follows, the dynamical model is assumed to have
two-Hilbert-space wave operators that exist and are asymp-
totically complete in the sense that tl$is unitary. With
these assumptions and some restrictions on the interactions
[5] the two-Hilbert-space wave operators are unitary opera-
tors from’H _4— H 4 satisfying the intertwining property:

ULAY]QL(H, @ H)=Q o (H,® 4, H YU A, Y].
(64)

VIl. SCATTERING EQUIVALENCES

As in the fixed number of particles case, this is automatically For a fixed number of particles, a scattering equivalence is
satisfied for the system bound states. When this limit existsa unitary operatoA satisfying

channel wave operators are defined by the strong limits

Q2= lim U1, T]® U [I,T].

t—*+oo

(56)

s— lim (A—=1)Uq[I, T]=0

t—-*+ow

(65

for T:=toy. The physical significance of asymptotic condi-

Cook’s condition[21] for scattering provides a sufficient tion (65) is that the unitary transformatioh transforms the
condition for the existence of the channel wave operators, Hamiltonian in a manner that leaves the spectrum and scat-

fc_mllvaua[l,T]|w>|\dt<w, (57)

where
V,=H®_ —®_H,. (58

The scattering operator for scattering from chanpgeto
channela is the mapping fron#,— H, defined by

Sup=Q), Qp . (59)

tering observables unchangealithout changing the repre-
sentation of a free particleised to formulate the asymptotic
condition[5].

What this means is that if the relevant observables are
S matrix elements and spectral properties, and the dynamics
is defined by adding interactions to a free-particle dynamics,
there is a large class of interactions that give the same
Smatrix elements and spectral properties.

Specifically, ifU'[A,Y]:=AU[A,Y]AT, condition(65) is
equivalent to

Qi(H’1®:41HA):AQi(H1¢A1HA) (66)

This can be compactly expressed in the two-Hilbert-space , .
formulation. The asymptotic Hilbert space is the direct sumWith @, =@, whenay is theN-body breakup channel.
of all of the channel subspaces, including all bound state Equation(66) ensures that al&matrix elements are pre-

channels,

served,
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S(H’,q)A,HA):QI(H L HHQ (H, D) HY) qombine interactions that appear in. different asymptotip con-
figurations. What makes this work is that tNeparticle Hil-
=01 (H,®4,H)Q _(H,®,H, bert space can be factored into a tensor product of subsystem
_ spaces.
=S(H, @ 4,H ). (67) What is different for the models under consideration is

The distinction between minimally charged bare particlesthat the tensor product ofs_gbsystem Hilbert_spaces is not the
and “composite” bare particles is relevant for generalizingWh°|e Hilbert space. Specifically, for a partitiarof charges

condition (65). The special property of minimally charged the Hilbert space has the decomposititi=7,©7{* and

bare particles is that they exist as asymptotically separateﬁilbert space for. .the 'gensor product of the_ supsystems de-
stable bare particles. ined by the partitiora is H,. The construction in Ref5]

The generalization of Eq65) is easy to formulate. First Naturally leads to a scattering equivalentg on 7,. In
consider only those channels, where each asymptotic par- order to treat cluster prope~rt|e>¢ir.@1 must be extended to all of
ticle is a “minimum-charge” particle. Consider the class of H. The obvious extensioA, that preserves all of the re-
unitary transformationg\ on { with the property that they quired properties oA, is
preserve the fuls matrix

_ (A, O
H'=AHA", (69) Aa==(o |a>’ (76)

S=g', (69) whereA, : H,— H, and|? is the identity or 2. In addition,
becausé,~,C H,, the H? is not relevant for cluster prop-
erties. In all that follows, the symbd\, is used to denote

S=QL(H,®_,H)Q_(H,® ,H ). (700 bothA, and the extensioA, .
When the Hilbert space is extended to include composite
The equality of the scattering operators and asymptotic cCompyare particles, the range df,, , corresponding taninimal

pleteness imply charge channelsis orthogonal to all of the subspaces asso-

where

QL (H®, H)O (H ®'H ciated with composite bare particles. The condition on the
+ aHAQ( HA scattering equivalences is that in addition to being unitary
=Q_(H',® 4 H QT (H',®'H . (71)  operators that preserve all scattering matrix elements, they
' satisfy condition(75) for each minimal-charge channe},.
A sufficient condition for this to be true is The C* algebra of asymptotic constants defined in Ref.
, [5] is replaced by the a ne@* algebra of operator& sub-
QL (H, Py HA=AQL(H, P HY (72) ject to the asymptotic conditions
for both asymptotic conditions. It is a nontrivial condition T _
that there is a single solutio® to Eq. (72) for both S tﬂTwZ(D“mU“m[I’T] 0, (77
asymptotic conditions. This is equivalent to the condition
— i t -
s— lim [AD ,—®'JU {1,t]=0. 73 s= lim Zio, U, [1,T1=0 (78

t—*+ow
t—*+ow

In general, given a unitanf, it is possible to defineb’, fc;r eactf: mlnlln:qu-chﬁrg_e chgnneh. This algebraflsh_corr;—

:=A® ,; however for minimal charge channels,, which b ete_d y including the identity. T € Importance of this alge-

have “;‘16 asvmptotic bound clusters. an reaso,nable modbra is that unitary elements of this algebra are scattering
ymp » any gquivalences. Operations on the algebra provide a functional

must also require . . .
0 Teq calculus for constructing new scattering equivalences that are

(bam:q);m' (74) functions of noncommuting scattering equivalences.
This requirement puts a nontrivial condition éngiven by VIIl. SUMMARY
s— lim (A—)®, U, [I,T]=0, (75) In the previqus sections the modifications of the fixed
s 00 m- “m number of particles constructid]| necessary to treat par-

ticle production were discussed. The first new feature is that
which must hold for each minimal-charge chanag| and the Hilbert space does not factor into a tensor product of
both time limits. subsystems Hilbert spaces. Instead, for any decomposition

For systems of a fixed number of particles, scatteringnto subsystems, there is a residual subspdéeof Eq. (16)

equivalences are used to relate tensor product representationbere the factorization is not compatible with the bare par-
of ISL(2,C), which are useful cluster limits of a satisfactory ticle content on these subspaces. This led to modifications of
dynamical model, with representations where the mass conthe formulation of cluster properti€g3), the asymptotic dy-
mutes with the spin and a maximal set of functions of thenamics[Egs.(37) and(49)], and the structure of the algebra
noninteracting generators. Both representations are neededdd scattering equivalencd€qgs. (75—(78)]. Charges were
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introduced to replace particles and cluster properties were-p.j. Vectors in the bare particle Hilbert spaces for a bare-
formulated with respect to partitions of Charges. The partlabartide of massn and Spinj are represented by square inte-

ordering on charges had important consequences. The magiaple functionsj(,\) of the eigenvaluea of the helicity
important was that subsequent refinements of clusters neVﬁr:zf)_J? and of the linear momentum:

affected the residual component of the Hilbert space. Subse-
guent refinements only acted nontrivially on the tensor prod- j

uct subspace associated with _the prepe_d_ing refinement. While )= > . f 5.3 M, Yd3py(B,\). (80)

in the general case the addition of fictitious charges has no A=

consequence, the requirement that all particles have positive _ )

charge limits the class of theories to theories with a bounded e bare-particle Hilbert spaces are denotedHyy, M.,
number of bare-particle degrees of freedom. The theorie&la and,, . _
consistent with this requirement have structures like the Lee There are three two-charge problems corresponding to the
model and Isobar models. The value of this restriction is thdotal chargesd; ,q,) =(2,0),(1,1), and(0,2). The(2,0) prob-
existence of a meaningful few-body dynamics. Specifically/em corresponds to twdl particles, and is an ordinary two-
the dynamics of theN-charge system is determined by the body problem that can be treated using the methods of Refs.
dynamics of theK <N charge systems up fg-charge inter- [5,17]. The model Hilbert space for thd,1) and (0,2 sec-
actions. While the ultimate goal is to remove the restrictiontors €ach include a composittal charge>1) bare particle.

to positive charges, the bounded charge theories exhibit all of The Hilbert spaces for thél,1) and (0,2 sectors are
required properties.

The modifications discussed are adequate to allow the H(lvl):(HmN,iN®Hm,T,J,T)@HmAJA (81)
general methods used in REE] to be extended to treat the
class of models discussed in this paper. In the next threand
sections the modifications to the general construction are il-
lustrated with an example in the three charge sector. Ho2y=(Hm,_ i, ®Hm_ i )EHm, j,- (82

The bare-particle spacég,,; are irreducible representation

spaced 3,5] of ISL(2,C). Noninteracting basis vectors on
The general construction of a dynamical representation othe charge-two Hilbert spacé¢ have the general form:

the Poincaregroup satisfying cluster properties is inductive,

IX. THE TWO-CHARGE SYSTEM

starting with the simplest system. The construction is illus- B2 A 1;mMy, ) ® P2, A2imy,j2)
trated with a theory having two minimally charged bare par- 0 (83)
ticles and two additional composite-bare particles. In this
example the induction starts with the two-charge sector. They the two-particle sectott, and
first step is to specify the bare particles of the theory.
(@) There are two minimally charged bare particles, la- 0

beledN and =, with charges ¢,,9,)=(1,0) and(0,1), re- ( " } . ) (84)
s ; |p1,>\1,mc,Jc>

pectively.

(b) There are two composite bare particles labelednd the one-particle sectdk 2.

p with charges(1,1) and(0,2), respectively. There is a noninteracting unitary representatibfiA, Y]

The charge conservation condition means that in additiore)f ISL(2,C) onH corresponding to Eq11), defined by
to reactions that preserve particle number, the following ba- ' T

sic reactions that change particle number are also possible U,[A,Y]®U,[A,Y] 0

Ug[A,Y] :z(

7+ m—p, N+mA. (79 0 UcA,Y]
: . . _where

The composite bare particles of this model do not necessarily
correspond to stable physical particles. That will be true only UiLA, YT ML) (86)
if there are point eigenstates of the mass operator with the
same charge as the bare particle. In a given model there j w0 (p)_ .
could be zero, one, or several physicalor p particles. In = [B/ \";m; i) l—Di\r)\[RH(Aap)]eip/.y
addition, the dynamics could lead to new composite par- \'=-j wi(p)
ticles, such as a composite system of two or mirear- (87)
ticles, which have different charges than any composite bare.
particle. These are analogous to bound states in th@’Ith

N-particle case. ——
The second step is to choose a representation to label wi(p):=ym;+p-p, (88
the states of the bare particles of the theory. In this example

the single-particle observablds are chosen as the three

1
N Typht= A ¥ pk
components of the linear momentupgnand the helicityh P 2Tr(g”Ag“A JpE=ALpY, (89)
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Ry(A,p):=H L(py)AH(p), (90) is a rotation obtained by composing a helicity-Melosh rota-
tion with a helicity-Wigner rotatioi3]. The other quantities
whereH(p) is the helicity boosf18] given by in Eq. (96) are defined by
—R(7 B 3|5 1
H(p)=R(z=PIB([pI2) oy Ks=5 T H (P H (P To, (97)

The matrixR(z— p) is the SU(2) matrix corresponding to a

rotation about the axis parallel #=2x (p/|zx p|) through B AR L

an angled define by cosf)=2-p. It rotatesz in the direction Be(ki) = aocosh) 5| +ki- gsinh = (98)
parallel top. This matrix has the form

and

R(z_@):aocoS(g)+i6-&sin(§>. (92 ||Z| w;(kj)
sin(7,)="_~, costiz)=

(99
m.
The matrixB.(| p|2) is the SL(2,C) matrix corresponding '

to a rotationless Lorentz transformation in thedirection |n this coefficient the mass,, is related to the continuous

given by variablek?, by

B.(| ﬁ|2):aocosl‘<g +ozsinl-<g), (93) 2 __mi+ mi+m3—2mimj— 2mi;mf— 2mfm;

12 4m12 )
where the rapidityy satisfies (100
15| wi(p) which has a spectrura[0,c]. The Jacobian is
sinh(7)=———,  coslz)= lm : (94 L
i 3(Pr2,Ke(BrP2))| _ w1(ky) wa(ko) @1(pa) + @a(Py)]

The matrixD!,, [R] is the SU(2) WigneD function of R (P12 | wl(pl)“’p(pZ)[“’l(kl)+wz(kz()l]m)

The tensor product basis is not a useful basis for including
interactions. It is more useful to work in an equivalent b""S'SThese Clebsch-Gordan coefficients define the irreducible
that transforms irreducibly with respect t&y[ A,Y]. noninteracting eigenstates
Clebsch-Gordan coefficien8,5,18 of ISL(2,C) can be
P12, M 12:K12,i123112,512) (102

used to construct linear combinations of the basis elements
on the subspace(;® H,, which transform irreducibly with

respect tdJg[A,Y]. The form of the Clebsch-Gordan coef- as linear superpositions of the tensor product states. The ir-
ficients in the helicity basis depends on the choice of degenreducible noninteracting eigenstates transform as

eracy quantum numbers. Wickl8] uses “body-fixed”

single—partigle helicities_ to label degeneracies. In this model U[AYI®UL[A,Y]|P12: N 12:K12, 12:112,S12)

we use “spin” and “orbital” angular momentum labels that j

are more natural for formulating two-body interactions. For _ 212 5 N Keo oo

this choice the Clebsch-Gordan coefficients are _x, = [Pr2" MoKz, f121112/812)
127 12

(P, A 1My, j1:P2, 2 My, j 2l P12, M 12; K1z, 123 112,512) w1(plo) o
X m )\1,2 Ay [RH(A plz)]e'p e
= 2 3(P12—P1—P2)
N Nghggpm (103

12 This has the same structure as a single-particle transforma-

S(ky,—K(P1,P2)) 3(ﬁ121k1(f’1,52))‘ _ : _ ! '
X 2 . tion, except that the noninteracting two-body invariant mass
K1z 9(P1.,P2) ‘ rr1212 is replaced by the more convenient continuous variable
[ ki,. The transformed four-momentum’ is related to the
<Y (kl)Dk A’[RHMW(plZ’kl)]DA WA original momentum by Eq(89). The quantum numbers;,
o, and |, are invariant degeneracy quantum numbers, which
X[Rumw(P12:K2)1(j 1M1 ,i 2, M 2[S12. N 6121) are needed because multiple copies ofrthe, j;, represen-

X (S19 N 1ol ! i 10 N 95 tation appear in the tensor product.
(S12 Mzl a2 M) 9 The irreducible free eigenstates,

where R .
[P12:M 12 K12, 12:112,512)

Rew(P.ki) :=H = X(p)H(p12) Be(ki), (96) 0 (104
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and In the free-particle irreducible basis the noninteracting
0 mass operator has the form
A -

De NeiMe, ]
Perkeimerle mp O VmZ+k2,+\ms+ki, O
are a basis that can be used to solve the two-charge dynam- o=l 9 m, = 0 me
ics. 106

The dynamics is defined by adding an interactbto the (106

free mass operatdvl, that commutes with and is indepen-
dent of py, andA 5. and the interaction is assumed to have a kernel of the form:

(kqg,l 121512|\Vj||k12:| 12,512 (Kap,l 121512||Vj||mc>) (107)

ﬁlk;fl"‘vp),lhl;f,l"' :5(ﬁ_ﬁ,)5'5 '( i ! ! ! j
< VI ) S T VT (meVimey

The term(m¢||V!|m,) is a constant which could be absorbed (m—mg)(Ki2,l12,S1m,j)
in the bare masa,.

For an interaction of the formil07) the dynamical mass - Koo | LY 17 o \LI2A L’
= 112,819 K K7s,175,8750k 5d K
operator 0 3512 < 125112 12| | 12,712 12> 12 12
M:=My+V (108 X (K1p,115,515mM,j), (112

commutes with and is independent@andh. It follows that  \yhere
M,B,h,j? can be simultaneously diagonalized by diagonal-
izing M in the free-particle irreducible bas{&04), (105). In

ie! ’ !
this basis the mass eigenfunctions have the form (kiz:l12: 912K [Kiz,112,515)

=(Kyp,l 12,512||Vj||k121| 12:512)

N (Ki2, 12,81 VM) (me[ VI a1,155,51,)
m-—mg— <mc||vj||mc>

BNy PN M)y =8(P—P ") &}/ Shn
<k12'|121312|m',j>)
(me|m’,j) '

X

(109 (113

where the components of the reduced wave functionThe componen{mc|m,j) can be obtained by quadrature
(k12,112,812 m,j) and(m¢|m,j), are solutions of the coupled o
equations N (M| VI[kip, 112,812

0 m_mc_<mc||v ||mc>

’ ’
|

(m—Mg)(K1z,l12,512m,]) S22
o _ ) xki5dKi(Kip,l12,51dm,j). (114
= > f (Ka2,112,812 V! [[K12,1 12,8120 k120K,
11251, 7 © For scattering states, Eqel12) and (114 must be solved
P . - . with incoming or outgoing asymptotic conditiong)—m
i
X (kizul12,81dm. )+ (kazul 12,81 VV [ me)(mel m. ), +i0+. This dynamical equation is of comparable difficulty

(110  to solving the two-body Lippmann-Schwinger equation.
For a self-adjointM with a well-behaved short-ranged in-
(m—mg){m¢|m,j) teractionV the simultaneous eigenstatd99), |p,\;m,j) of
M, p=pg, h=hg, j2=j(2) are a complete set of eigenstates

_ 2 J'°°<m IVI[KL, 1 s’2>k’2d K that transform irreducibly with respect to a dynamical repre-
v o 120712>2127125 2 sentationU[ A, Y] of ISL(2,C). The transformation proper-
12z ties of these eigenstates follow because the operbtgrsp,

X (Kiz, 112,51 m, ) +(me[[VI[me){me|m,j) (112) iV, andM, B, ], iV}, have identical commutation relations.
Note that in both cases the partipl derivatives are per-
for the eigenvaluen. These equations can be combined intoformed holding the helicity constant.
a single dynamical equation fdk;,,l1,,51,/m,j), It follows thatU[ A,Y] is defined in the basi€L09) by
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: H=(HN®H . QH . )B(Hy, ®H,)
ULAYIIBm )= 2 [\ im,j) N Py @ Fm)) © LT O T,
A

!

==] O (Ha,®H7 )& (HN®H,). (118
wm(p,) ] ip’-y .. .. .. A
wr(D) Dy [Ru(A,p)]e® 7, The nontrivial partitions? of the minimal charges of this
" system area=(N)(m71)(73), (N,m1)(72), (N,72)(71),
(115 and (q,5)(N). For each partitiora e P there is a decom-
position of the Hilbert space of the forfd6). For example,
where for a=(N)(4)(7,) the orthogonal subspaces are
1 Ha=HNOH, @Hy,, (119
p'?:ETr(o',,Ao'MAT )pH=Alp* (116)
HO=(Hp,®@Hp)®(Hy,®Hy )O(HNOH,) (120
with p:=\p-p+m?. and fora= (N, ;)(7,) the orthogonal subspaces are
This is identical to the transformation properties of a
single particle, except themass parameter is the eigenvalue Ho=(HNOH, OH, ) B (Ha ©H,,.)
m of mass operatof109). ! 2 ! 2
The action ofU[A,Y] on an arbitrary state with wave =[(Hn®H, )0 Hy JOH,,
function ¢(p,\) is given by completeness:
:H(Nw1)®Hw21 (121)
j
U[A,Y]l¢>=; > | IpAsmj) H2=(Hy,8Hy ) & (Hy@H,) (122
NN =—]
on(p’)_ with similar expressions for the two other nontrivial parti-
o (D) D)\ [Ru(A,p)] tions a.
m The goal of the three-body construction is to find a
Xeip,'y:,//mj(ﬁ,)\)d%dm (117 U[A,Y] that asymptotically factorizes into a tensor product

of subsystem representations when charges in different clus-
ters ofa are separated. As mentioned in Sec. V, the formu-
lation of cluster properties differs from the fixed-particle
number case becaukq A,Y] acts onH while ®ani[A,Y]

Solutions of the dynamical equations with<m;+m, in
the pure point spectrum d¥l correspond to stablg or A
particles. Solutions wittm=m,; +m, in the absolutely con-
. . : acts onH, .
tinuous spectrum oM correspond to scattering eigenstates. Foll a Eq.(37) it | ful t tend th ot
We assume that all of the eigenstates fall into one of thes ollowing Eq.(37) it is useful to exten € asymptotic
two classifications. In addition, we assume that the incomingOrms onH to operators ort,
and outgoing wave scattering solutions each span the sub- U ALY
space ofH orthogonal to the bound state subspace. (N)("’l)("’z)[ Y]

This representation satisfies algebraic cluster properties
because the operatdi[ A,Y] is a function of single bare- UnlAY]@Un[AY]@UL[AY] 0
particle operators an¥. In the limit thatV vanishes, this 0 I
representation becomes the noninteracting representation (123
Ug[A,Y].
tor'l;?:i)c(;)rnzg!%t.es the\V|=2 construction for the charge sec for a=(N)(r,)(,) and

Uyl A, YI®U L [A,Y] o)

0 |

The next step in the construction of the dynamics in the (124
three-charge sector is to consider the problem of two inter- i o ]
acting charges and a spectator charge. This problem defindd @=(Nm1)(m2), with similar expression for the two-
the asymptotic behavior of the three-charge system in thgluster partitions N5) (1) and (N)(m, ;). These opera-
limit that one charge is asymptotically separated from arfors are tensor products of subsystem representations of
interacting pair. This form is used in the mathematical for-'SL(2,C) onH, and are extended so they are the identity on
mulation of cluster properties. the subspac_é{a. _

To be specific, consider the three-charge system with In the first expression the factor&) [A,Y] and
(d1,92) =(1,2). For this set of charge quantum numbers theJ\[ A,Y] are single-particle irreducible representations. The
Hilbert space is factorU,)[A,Y] in the second expression is theeract-

X. THE {2,1} SECTOR U Ny (mp)[ AL Y] ==(
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ing two-charge representatidi17) constructed in the pre- The projection and translation operators that appear in the
ceding section. It acts on the two-charge spdtg,, asymptotic condition in each of these three cases are
=(HNOH, )®Hy, .

i DO, " Tinm)(m) YN Y e VI (N ()

To formulate cluster conditioni23), for eachae P, we 2Ty 28 M 2T
definell, to be the orthogonal projector onto the subspace
Ha of H,a 9 proj P XT(Nwl)(ﬂ'z)(YNwleﬂ'z)H(Nﬂ'l)(ﬂ'z) ’ (128)

I 0 TNy () YNy Y ) I (N ()
Ha:=( 0 O) (125

XT Ny () YNy Y e ) Ny () (129
and the cluster translation operators

and
Ual[l ,Y1]® T ®Uana[| aYna] 0
TaY1, .o Yp )= 0 o) T ) (YN Y Y ) Ny () - (130)
(126 respectively.

which independently translate the charges in each cluster of N the representation used in this example, if all of the
the partition a by displacementsyy, . ...y, where (; cluster displacementg; are space vectors with no time com-

_ a ponent, then the translation operators have no two-body
=ylo,). In this examplea=(Nmy)(7;), (Nm,)(my), terms and

(7175)(N), or (N)(7q)(7,). Formally, for the partitiora
=(N, ) (7,), the formulation of cluster properti€23) for

the three-charge problem is Tenmy) (m) YNy Y o) Ty () (Y oY o)

lim  JLULA, YT = Unm [ AL Y] =T (m) YNy T Yy Y, Yy o Yoy + Vi)

(y1-y2)2oe (1321
X TNy () (Y1, YD) Ty (e | )] and
=0, (127
(N () L (N () = TL (N () () » (132

where the limit corresponds to a large spacelike separation.
The projection operatoH(NWl)(Wz) projects on the sub- etc. In this case all three limits have the same form. For the

space of the Hilbert space where independent translations §8S€ that the relative displacements are spacelike, but the

the (N7r,) and 7, subsystems are defined. individual displacements have nonvanishing time compo-
One term that is not eliminated by the projection operato€nts, the space of initial vectors differs in all three cases.
is the part ofU[A,Y] that mapsH(y () tO H(N7)(m)  For example,T(n. ), has components that map vectors

This contribution involves the interactions of the generalffomHa @ Hy, 10 Hiny(x,)(x, » While for the other two con-
type p« m,+ m, and A, N+ m,. These should vanish in figurations the ranges of the initial projections are orthogonal
the limit that 77, is asymptotically separated from tiNer;  to the subspacé{AlébH,Tz.

system, provided the interactions have sufficiently short |n this case the contribution of the Subspaﬁggl®Hﬂz

range. Conditior(127) provides a range condition on these o, pe gliminated at the outset by insisting that the sequential

production interactions. I limits should give the same result only on the common sub-
In the three- and many-charge systems it is also necessagy,, .o \yhere all of the limits are defined. Effectively, this
to consider cluster properties for sequential limits. In the eans that the limit should only be applied to vectors in the
fixed charge case, sequential limits require care because dg%nge ofll
ferent cluster operators are defined on different subspaces. To (N)(mry)(m3) -
illustrate the problem, consider the following three limits.
(1) First take the limit corresponding to the partition of
charges N,) (), followed by (N7;) (7).
(2) First take the limit corresponding to the partition of TN () (YN Y ) L (N ()
charges N4)(7,), followed by (N5) (7).
(3) Take the limit corresponding to the partition of

Mathematically, this means that EqL28) should be re-
placed by

KT (Nary) () YNy Y e ) I (N ) ()

charges N) () (). . . = TNy (m) YN Y e )L Ny () ()
Intuitively, one expects that all three limits should give 24 2 T2
the free dynamics ORL(N) () () - The problem is that the XT(NTrl)(TrZ)(YNwleTrZ)H(N)(ﬂrl)(wz)' (133

first two limits are defined on the larger subspaces

H Ny () 2 H(N) () () and HNmy (m) 2 HNy(my)(mp) » T€=  Cluster properties in the two-charge sector allow the replace-
spectively. ment of
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T (YN Yo )II For each of the 21 charge problems discussed, there is
(Np) ()L T Nargs Targ /22 (N) (779) (773) . !
an alternate construction that leads to the s&meatrix.
XTNm) () (YN Y e )y () () (139) To see this recall that the irreducible free-particle basis
1 2 1 2 1 2 . .. .
constructed using the Clebsch-Gordan coefficients in Eg.
by (104 have the form
T (YN, P YNe ) Ty (Ya ) Ty (Ynm, T Y ) ( [P12N12:Ki2,] 121|121512>) ( 0 )
0 l)\' ; !m 1 j '
XNy () () TNy YN )Ny () () 0 (139 [Pr2:hzi: Mo o)

(136)

which is equivalent to formulating the cluster limit with the ¢ tensor product of this basis with a spectator basis defines
noninteracting translation operators. Similar remarks apply, asis on the subspae s, of H:

for representations where the dynamical translation operators
have interactions. | . i . i
. o P12 12:K12:)12,112,512) P3N 3 Mg, ] 3)
This shows that by projecting on the largest subspace (
where all cluster translations are defined, cluster proper- 0
ties can be formulated in a manner that is similar to the

) (137

fixed number of particles case. These observations genera- 0 (138
lize to sequential limits of systems with more than three [P12. N 125, Me i) Pahsims,js) )
charges.

The tensor product representations constructed satisf§ince Eqs(137) and(138) are tensor products of irreducible
cluster properties by definition. These tensor product reprerepresentations, the Clebsch-Gordan coefficients can be used
sentations are important building blocks for the full three-to transform the tensor product basis to a three-charge irre-
charge dynamics. ducible basis:

IPN;A(12)(3) (12)3) L (12)(3)» S(12)(3) K121 1241 12,512, M3, ] 3)
0 , (139
( 0 ) (140
[P, N5 d(12)(3)+ i (12)(3): L (12)3) S12)(3) Me vi e M3 ja) )

The free two-charge mass operator is a multiplication operator in each of the represenrif8idn€l38) and (139, (140),

M2+ K2+ ymi+k3, 0
1 12 2 12 (141)

Mg.1o= .
0:12 ( 0 m,

Natural extensions of the two-charge interacti¢®?) are defined in each of the representatiti®y7), (138), and(139), (140
by

(P12 N 123012, - - - B3 NasMajalvlPr’ Nipiita - - - Pa ' N5Mb,j5)

= 8(P12—P12") 5)\12}\i25j(12) ,j(’12)5( B3~ P3 ')5x3x’

1051}

(<k12a|12a312||Vj12||k12a|12a312> (K12, 12,514V me) (142
(M VI119k1,,115,57) (m[|VI12)my)
and
L R ., 8(d(12)(3)~ A(12)(3)
(B.N;), - olp/ N5, . ) =68(p—P )5)\}\’5j(12)(3),j(’12)(3) o (143
(12)(3)
(Ki2:l12,81dIVI19Kip, 115,515 (Kia,l 12,510 VI mc)
X6 Ll 08 SRR i i (144
(12)(3)'-(12)(3) 2(12)(3)'(12)(3) *(12)')(12) (mc||V112||k12,|12,S£2> <mc||vl12||mc>
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Since both of the above interactions only differ in the choiceS matrix, and are thus related by a unitary scattering equiva-
of multiplicative § functions, which are asymptotically lenceA, on’H,. Since the interaction in the tensor product

equivalent, it follows that both representation satisfies cluster properties by construction, it
_ - follows that scattering equivalences do not necessarily pre-
Mi2:=Mg.1otv, Mx=Mg.otv (145 serve cluster properties. The simplest way to construct the

. , ) unitary transformatio, is to use the Clebsh-Gordan coef-
give the same two-charge mass eigenvaluesSmatrix el-  ficients of ISL(2,C) to transform the eigenstates o 5,
ements. These ardifferent operators, becaus®l;, com-  \yhich transform like a tensor product of an interacting two-
mutes withps and M, commutes withdj(15)3), Which is  charge representation and a spectator representation, to a su-
defined analogously to Eq497). The operatoM ;, has the  perposition of irreducible representationsI&L(2,C). The
additional important property that it commutes wifiy  eigenstates
j(12)(3) @ndh 123y and is independent qf andh ;) (s)-

The interesting property is that the interactiorsatisfies |P12:N12,M12,j 12BN 3: M5, ) 3), (146
[v,p3]# 0. This means that # is a short-ranged interaction,
then it vanishesin the limit that thespectatorparticle 3 is
translated infinitely far from the interacting 12 pair. This is
not the e>§pected behavior when a ngninterqcting spectator Sucible eigenstates of the form
asymptotically separated from an interacting pair of par-
ticles. This type of violation of cluster properties is charac- o -
teristic of how cluster properties typically fail in improperly 1B.M T2 @) ) L@y Saze),Masiiz), (147
formulated relativistic models.

The dynamics given bl 1, andM , are both defined on yvhere"q_(zlz)(3) is related_to the mass operatdr ;,)(s) of this
the subspace{, of H, give the same spectral properties andirreducible representation by

which transform as a product of irreducible representations
with respect tdJ 15[ A, Y]®U 5[ A, Y], are mapped to irre-

4 4 2 2 2 2
o ~ Mg ietM 12+ M3 —2M 1 Pm5—2M (123M 17— 2M (12)(3yM3
Ada2)3)~ M2 ,

(12)(3)

(148

where M ,, is the interacting two-body mass operator. This same Poincaransformation properties if the eigenvalues of
irreducible representation is obtained by first solving thep are replaced by the ei envaluesl@f) This
- o 0(12)(3) p y g (12)(3)-
two-charge problem followed by using Poinca@debsch-  |eads to a complete set of eigenstates
Gordan coefficients to construct a superposition of irreduc-
ible representations.
The mass operatd¥l ;,)(3) has the form

8.\ G123y 0 - L(12)(3), Sazy 3y, M 12) (159

M (12)3)= VM Tt Tligy @yt VM3 + G010y 3y (149
o ) ) ) , that transform irreducibly with respect to the representation
which is the invariant mass operator associated with the te ol Y]
sor productU 1o A,Y]®U3[ A,Y] of the interacting two- e .
bod}? represefrlﬁt)zgtion ]anda[the ]spectator represe%tation on The difference bet\_/vee_n the barred representation and the
2 u_nbarred representation is thie o_rder of_addlng interac-
(12)(3)- _ _ tions and coupling to three-charge irreducible representation
It is also possible to use the operatdr, to construct a s reversed In the unbarred representation, interactions are
three-charge mass operator in the barred representation, g4ded to the two-charge system. The interacting two-charge
_ — system is decomposed into irreducible representation of
M (12)3)= VM 5 Q10 3t VM3 + 001z 3y (150 1SL(2,C) and these are coupled to the spectator representa-
tion using ISL(2,C) Clebsch-Gordan coefficients. In the
where in this casq(zlz)(g) is the noninteracting operator that barred representation the spectator is coupled tontren-
replaces the mass in the Clebsch-Gordan coefficients for theracting two-charge system using th&L(2,C) Clebsch-
noninteracting three-charge system, Et89). The operators  Gordan coefficients. The two-charge interactions intro-
M (12)(3) 1(212)(3)213, B(12)(3)= Po. h(12)3=ho, satisfy the QUced _directly in this reprgsentation. In thg absence of
same commutation relations ablo12s), 1?12)(3)218' interactions both representations become equivalent.
P12)3)=Po, N(a2)3)=ho WhereM (123, is the noninteract- Both sets of irreducible eigenstates are complete on
ing invariant mass of the three-charge system. It follows thatt(n=)(r, @nd the operators whose eigenvalues label the ir-
simultaneous eigenstates of both sets of operators have theducible eigenstates in both representations have identical
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spectra. If follows that the scattering equivalentg: H, Xl. THREE-CHARGE SECTOR
— ", can be expressed as the identity in this mixed repre- g construction of the dynamics in the three-charge sec-
sentation, tor is similar to the three-particle dynamics in the fixid
case.
A= f 5N gL 'S M.jqd The construction starts with the mass operators in the
=2 | s Yzl tazae Suae M2 dp barred representation. The reason for introducing the barred

(BT e T 3 . 152 operators, which violate cluster properties, is that they com-
(PN Taz)s) 0 i Laze) Suae Miwnl, (152 mute with and are independent of the total three-charge mo-

. . mentum and helicity of th@on-interactingsystem. In addi-
where the sum and integral are over the common elgenvaluqﬁm they commute with the square of the spin of the
of the corresponding observables. The sum over the two: '

X ) non-interacting three-charge system, independent of the

charge mass eigenstates includes a bound state sum and tition a.
integral over the incoming- or outgoing-wave scattering — —
states in both representations. Either choice of asymptotig. Mass operatorMa for .eachUa'[A,Y] are constructed as
condition(+) gives the same operatér, because the repre- iscussed in t_he preceding section. This is done for each of
sentations are scattering equival¢ht. The operatord, is the four partitions of charges,
nontrivial if it is evaluated in a single representation. By
construction, all of the\,’s for two-cluster partitions become a=(Ny)(13),(N7) (), (m172)(N),(N)(7r)(775).
the identity when interactions are turned off. (158

Because the Hilbert spat¢, is a proper subspace of the
three-charge Hilbert space for each partit&iit is necessary

to extend the definitions dfl [ A, Y], Ua[A,Y], andA, to
all of H following

These operators are easily expressed in terms of their kernels
in free three-charge irreducible bases7@g. Note that even
thoughU [ A,Y] was extended to all o, the generators
and mass operators are nonvanishing only on the sub-

UTA Y] 0 spaceH, .
U.[A Y]—>( alA.Y] ) (153 A mass operator oft{ is defined by the linear combina-
anr 0 1)’ tion of operators using the Mus function of the lattice of
partitions
_ Ua[A,Y] O :
UJAY]— , (154 o o
' M:= >, CaMa+V, (159
aeP
A, O
Al | (159 Cai=— 5= — 83, = = (—1)"a(n,— 1)1,
Thus the solution of the three421-charge problems gives Where the sum is over all partitions with at least two disjoint
for each partitiora, into at least two clusters, operators ~ Clusters of charge. For two-cluster partitioasof charges,
like a=(Nr,)(7,), the relation to the mass operator of the
Ui[A,Y], Ua[A,Y], A, (156) two-chargeN# system,My,., is of the general forn§150).
The combinatorial coefficients ensure the each two-charge
satisfying interaction appears only once. The three-charge kinetic en-
ergy onH(ny(«,,) appears once for each of the three two-
Ua[A,Y]=AaUa[A,Y]A;, (157) cluster partitions and is subtracted twice in the three-cluster

partition. This ensures that it appears once in the final ex-

tations on, and the mass operath_/ta for Ua[A,Y] com- this property is preserved for any number of charges and any

mutes with and is independent of the noninteracting threet-ype of interaction.

charge operatorsg and h, and commutes with the The operatol is an analog of a three-body interaction. It -
noninteractingj?. The operatorsA, become the identity vanishes Whgn any pair Qf charges IS separa_ted. In addition, it
when the interactions are turned off. Equatidi$6 and Ccommutes with the noninteracting three-bodyand com-
(157) also hold for the extended representatifBgs.(153, Mutes with and is independent of the noninteracting three-
(154), and(155] on H. body p and h. In this example,V includes the following

The representatioris,[A,Y] andU[A,Y] are scattering  tyPes of interactions.
equivalent, but only the unbarred representation satisfies (1) Three-body interaction ob\®H, @ H,.

cluster properties. (2) p-N interactions orHy®H,, .

The computations ofl [ A,Y], U,[A,Y], andA, can all (3) A-m interactions ory ® H, fori#].
be expressed in terms of the solution to the mass eigenvalue (4) Connected interactions that couple different subspaces
problems in two-charge sectors. in the direct sum, such gsN+« 7,-A, interactions, etc.

015202-16



RELATIVISTIC QUANTUM MECHANICS: PARTICLE . .. PHYSICAL REVIEW C 68, 015202 (2003

Since each of the operatoké,, andV commute withj2 ~ erator, the individual mass operators need to be put in a
for the noninteracting three-charge system and commutéommon representation. This is done using the Racah coef-
with and are independent of the linear momentgmand  ficients of ISL(2,C) which can be computed using four
helicity h, for the noninteracting three-charge system, the SL(2,C), Clebsch-Gordan coefficients in the same manner
combined operatoM also has this property. It follows that as they are used to compute @JRacah coefficientéRefs.

— 3,5,18). The Racah coefficients do not depend pwor h,
simultaneous eigenstates M, j2, p, and h transform as L 8 P I

o ; ) they only act on the “-"in (---| in Eq. (164) above. Fad-
massm, spinj irreducible representations 6BL(2.C). deev equations with interactions of the general

The simultaneous eigenstatesMf fo, j3, andhy, form (162 have been solved numerically for realistic
o interactiong 13].

[B.A:].m) (160 In representatiof161), all of the interactions are iM. In
generally have components in all of the cluster subspaces c?:f'e limit that a given interaction is simply turned off, we
‘H. A dynamical representatiotd[ A,Y] of ISL(2,C) is ave
given by M —s MazA;M Aa (167)

j

U[A,Y]|ﬁ,)\;j,m)= E 16’ \";m,j) which is related to the mass operator of the desired tensor
N =] product representation by the scattering equivalefgceln-

teractions in the operators which have domain or range on
! . -, a
om(p )D', [Ru(A.p)]e® . H 2 are set to zero. .
w(p) AN ' In order to recover the desired tensor product representa-
tion, it is enough to construct an operafowith the property
(161 thatA— A, in the limit that the charges in different clusters

_ ) _ — of a are asymptotically separated. This can be done follow-
As in the three-particle case, the eigenstated/ofire ob- ing Refs.[3,5], which use Cayley transforms:
tained by solving generalized Faddeev equations. The scat- i

tering solutions must be solved with the appropriate 1-A,
asymptotic condition. The two-charge interactions in the aa==lm, (168
three-charge Hilbert space have the form 1
Va‘: \/q§+ (Mot )%= \/qezri- m%zo (162 Q= ANy (,) T ANy) (79) T ANy ) » (169
I+ia
and the mass operat@t59 has the form A . (170

M=VNr) =@ VN () T V(mm)m My V- , ,
(163  The operatorA has the desired algebraic cluster property;
which follows because each of the operatatsvanishes in
The Faddeev equations have the same form as the corrghe limit that charges in the same clusteracére separated.
sponding nonrelativistic equations in terms of the internalThe individual operatoré and a, can be obtained by solv-
kinetic energy, the interactions, and three-charge forces. Thieg nonsingular integral equations,
form of the eigenstates in a noninteracting irreducible basis
is I=As 1-Aq
O

a,. (171
(Po.Nosio B Nim,j) = 8(Bo—P) Sy o\ Gy i - - - [M).
(164  The operatoA can be obtained by solving the integral equa-

_ tion
The Faddeev equatioris1 the absence o¥) have the form
_ B2 (ltia)+i—2 3 B (172
m=2 [m;a), (169 l-iag |—iag 67 "
a
_— 1 o — A=(1+ia)+i B,. (173
m;a>=——V m;b), 166 b
| i a2 |m;b) (166

In the case that the,’'s are bounded operators the resulting
where the indices,b correspond to two-cluster partitions. solution is in theC* algebra of asymptotic constants, which
These equations must be solved in a fixed representatiomeans tha# is a scattering equivalence. While the bound-
The representations that are natural for the different partiedness of thex, has not been established in general, this
tions differ by the choice of degeneracy parameters, whiclproperty is strongly suggested by the structure of the expan-
are dictated by the spectator charge. To diagonalize this ogsion of the operatoré,, in the N-particle casg?2].
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The operator body problems; even the simplest systems necessarily in-
. volve an infinite number of degrees of freedom.
U[A,Y]:=AU[A,Y]AT 179 This paper illustrates a large class of theories with all of

) ) ) the desired properties. The underlying assumption in these
defines the desired solution of the (2,1) charge sector of thighegries is that number of bare-particle degrees of freedom is
model. The dynamics is scattering equivalent tothe\, Y] bounded. This is achieved by introducing fictitious conserved
dynamics and has the property that when the interactionsharges in the theory. The assumption that these charges can
between charges in different clusters of a partit@rare  take on only non-negative values and each particle has at
turned off, the result is the tensor product of subsystem repleast one positive charge limits the number of degrees of
resentationgon H,). The effect of the operatord is to  freedom. If these conditions are relaxed, the resulting theory
introduce nontrivial three-charge interactions into the theorywill involve an infinite number of degrees of freedom.

These interactions will not affect the spectrum or cross sec- The theories constructed in this paper have meaningful
tions in the three-charge problem, but they are importanfew-body problems. In the three-charge model it was shown
contributions when the three-charge dynamics is used as inhat the two-charge models determine the interactions in the
put to a many-charge problem. For example, they generatéree-charge sector up to a three-charge interaction. In gen-
important exchange currents in electron scattering off of thisral, K-charge interactions in thN-charge problem are de-
three-charge system, and these interactions are also neededimined from thek-charge problem using cluster properties.
to embed this model in a four-charge sector. Unlike the in-Like the fixed particle number case, cluster properties intro-

teractionsV, the three-charge operators generated by clustefuce nontrivial many-charge interactions into the dynamics.

properties are not optional. These interactions are determined recursively by the fewer-
charge interactions in the absence of an explititharge
XIl. CONCLUSION interaction likeV. In general, just like with the fixed number

] ) . of particles case, the few- and many-charge interactions mix
In this paper it was shown how to extend the construction,nqer change of representation. The construction in this pa-

of Ref. [5] to formulate a class of relativistic theories with nor can e used to formulate relativistic isobar models and
cluster properties, a spectral condition, that allow particleyggels with a dynamics dominated by resonances.
production. Particle production requires modifications to the |1 is desirable to go beyond the restrictions imposed by
general construction discussed in REB]. The necessary charge conservation. The requirement of having a meaning-
modifications were discussed in Secs. II-VIl. Rather than fe\-body problem puts strong constraints on how cluster
reproving all of the results of Ref5] using this modified  yroperties should be implemented in the general theory. One
framework, the general construction was illustrated using &yay to control the number of degrees of freedom and have a
nontrivial example in Secs. IX-XI. meaningful few-body problem is to reformulate the theory so

_ Cluster properties in relativistic models are not commonlyie relevant degrees of freedom are physical-particle degrees
discussed, but constitute a very important topic for the eXyf freedom. In this way the center of momentum energy

perimental program at laboratories like TINAF. The reasoonirols the number of degrees of freedom. In this picture
for emphasizing experiments on few-body systems at sucBpysical particles play the same role as minimally charged
laboratories is that one expects that what is learned fromyarticles. The mechanics of coupling the physics on different

few-body experiments will constrain the structure of theoriessnergy scales provides an interesting challenge that needs to
that can be applied to more complex experiments. This répe addressed to extend the construction of this paper.

quires that the many-body theories cluster to the few-body The models discussed in this paper are valuable precisely
theories that are used to model the few-body physics. Thigecayse they are quantum models with an exact Pdincare
expectation is trivially realized in nonrelativistic quantum gy mmetry which also satisfies cluster properties. In the ab-
mechanics. When the reactions have sufficient energy 10 prasance of a more fundamental theory, cluster properties and
duce particles, a relativistic treatment is necessary and th@xperiments on subsystems put strong constraints on the

realization of cluster properties becomes nontrivial. relativistic many-charge dynamics, which can then be used
Relativistic quantum field theory provides a formal solu- 5 make predictions of the theory.

tion to these problems, although it is difficult to find math-
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