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Relativistic quantum mechanics: Particle production and cluster properties

W. N. Polyzou*
Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, USA
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This paper constructs relativistic quantum mechanical models of particles satisfying cluster properties and
the spectral condition which do not conserve particle number. The treatment of particle production is limited to
systems with a bounded number of bare-particle degrees of freedom. This paper focuses on the realization of
cluster properties in these theories.

DOI: 10.1103/PhysRevC.68.015202 PACS number~s!: 03.30.1p, 11.30.Cp, 11.80.2m
an
p-
-
u
w

o
ri
b

w
st
t

s
r o

it
a
e
uc
e

p
rip
si
se

o
e
o
a

re
c
v
t
o

a
ns

il-
een
for
dern

at-
lue

par-
ts at

sical
s for
ar-
y
se

g
-

the
ire-

re
be-

-
dy-
o a

are
in

tial
b-

ian
tors
ns-
n

or-
e

I. INTRODUCTION

The purpose of this paper is to formulate a class of qu
tum theories of interacting particles with the following pro
erties. They are Poincare´ invariant, they satisfy cluster prop
erties, the four-momentum operator has a spectr
supported in the future-pointing light cone, and they allo
particle production. These theories are applicable to pr
lems in strong interaction physics where relativistic inva
ance is an important symmetry. Cluster properties can
used to systematically build many-particle models from fe
body models that are constrained by experiment. Relativi
quantum theories with cluster properties are essential to
relevance of the few-body program at accelerators such
TJNAF.

The formulation of Poincare´ invariant quantum theorie
satisfying cluster properties for systems of a fixed numbe
particles has been discussed in Refs.@1–5#. This paper dis-
cusses the modifications to the fixed-N construction, needed
to extend that construction to treat a class of models w
particle production. The theories discussed in this paper
limited to systems with a finite number of bare-particle d
grees of freedom. A complete treatment of particle prod
tion, with no restrictions on the number of bare-particle d
grees of freedom, is beyond the scope of this paper.

The physical properties mentioned in the first paragra
are the minimal physical requirements for a realistic desc
tion of a system of strongly interacting particles. The phy
cal motivation for each of these requirements is discus
below.

Poincare´ invariance is the requirement that the group
continuous Poincare´ transformations is a symmetry of th
theory. In 1939 Wigner@6# showed that this is equivalent t
the existence of a unitary representation of the Poinc´
group on the Hilbert space of the quantum theory.

Poincare´ invariance is essential for a consistent interp
tation of any reaction with strong binding or particle produ
tion. For reactions where the initial and final states ha
different inertial masses, momentum conservation canno
simultaneously satisfied in the laboratory and center of m
mentum frames in a Galilean invariant quantum theory.

Cluster properties require that isolated subsystems h
the same properties as the system. They relate interactio
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subsystem Hamiltonians to interactions in the system Ham
tonian. Cluster properties provide the connection betw
the few- and many-body problem and the justification
experiments that are performed on isolated targets at mo
accelerators.

The spectral condition is essential for the stability of m
ter. The mathematical requirement is that the eigenva
spectrum of Hamiltonian is bounded from below.

Theories must be able to model reactions that change
ticle number. These reactions are observed in experimen
almost all modern accelerators.

While the above discussion makes a case that the phy
constraints discussed above are essential requirement
any reasonable quantum theory of strongly interacting p
ticles, it is surprisingly difficult to formulate mathematicall
well-defined theories that are consistent with all of the
properties.

Even in quantum field theory, the problem of identifyin
the physical Hilbert spaceH and finding a set of ten self
adjoint operators on this space that satisfy the Poincare´ com-
mutation relations is an unsolved problem, except for
case of free quantum fields. These are the minimal requ
ments for realizing the Poincare´ symmetry in a quantum
theory.

Some of the difficulties in formulating theories that a
consistent with these physical constraints are discussed
low.

The Poincare´ group provides an infinite number of inde
pendent paths to the future and each path involves the
namics. If one starts with a given state and transforms it t
future time using different combinations of Poincare´ trans-
formations, consistency requires that the resulting states
identical. For example, time evolution can be expressed
terms of rotationless Lorentz transformations and spa
translations. Consistency of the quantum initial value pro
lem requires that if there are interactions in the Hamilton
then there must be interactions in the infinitesimal genera
of rotationless Lorentz transformations and/or spatial tra
lations. This is a consequence of the commutation relatio

@Pi ,K j #5 id i j H, ~1!

which relates the HamiltonianH to the linear momentum
generatorsPW and generators of rotationless Lorentz transf
mations, KW . The Poincare´ commutation relations impos
nonlinear constraints on these interactions.
©2003 The American Physical Society02-1
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Cluster properties impose independent nonlinear c
straints on the interactions. To see this, note that in the th
body problem, cluster properties fix the two-body intera
tions in each of the Poincare´ generators up to an overa
three-body interaction. However, because interactions
volving different pairs of particles appear in more than o
generator, the operators obtained by adding the required
body interactions to the noninteracting generators fail to
isfy the commutation relations without additional three-bo
interactions. For example, if the generators of rotationl

Lorentz transformations,KW , have interactions between pa
ticles 1 and 2 and the Hamiltonian has interactions betw

particles 2 and 3, then the commutator@H,KW #5 iPW will
have three-body interactions involving particles 1, 2, an

unless H and/or KW have three-body interactions that a
designed to cancel the three-body operators generate
the commutator.

While the spectral condition is not difficult to satisf
negative energy states have historically appeared when
sical relativistic field theories, like the Klein-Gordon
Schrödinger and Dirac equations, are treated as quantum
chanical equations. The negative energy eigenstates o
Hamiltonian disappear when these equations are prop
treated as equations for quantum fields.

Particle production requires a more critical analysis
cluster properties. For theories with a fixed numberN of
particles there is an ordering on particle number, and clu
properties define the relationship between the interaction
theK,N-body Poincare´ generators and theN-body Poincare´
generators. This leads to important relations between the
namics of the system and its proper subsystems. These
tions provide the justification for both theory and experime
on few-body systems.

The problem with formulating a useful cluster conditio
in theories with particle production is the absence of a fe
body problem that puts useful constraints on the many-b
dynamics. Specifically, in theories with particle productio
states with a few physical particles generally involve an
finite number of bare particles.

The difficulties with formulating quantum theories wit
an infinite number of degrees of freedom are well kno
@7–9#. These difficulties are distinct from the specific pro
lems that arise from particle production. In this paper th
problems are deliberately separated by restricting consi
ations to a class of theories with a finite number of ba
particle degrees of freedom. This is achieved using con
vation laws that limit the number of bare-particle degrees
freedom. It is possible to formulate cluster properties in th
theories without having to confront the specific proble
that arise due to the infinite number of degrees of freedo

The class of models considered in this paper is desig
to complement models based on formal quantum field the
Quantum mechanical models of interacting particles have
advantage that~for systems of strongly interacting particle!
they are mathematically well defined and can, in princip
be solved using convergent algorithms. It is for this reas
that quantum theories of particles are often used to mo
few-body reactions involving composite systems or scat
01520
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ing from composite targets. Some recent applications can
found in Refs.@10–13#. Extending these theories to Poinca´
invariant theories with cluster properties that allow partic
production provides a more robust class of models.

The following section discusses the assumptions that
used to limit the number of bare-particle degrees of freedo
The structure of the model Hilbert space is given in Sec.
It differs from the Hilbert space for a system ofN particles in
how it factors into subsystem spaces. This factorization
some of its properties are discussed in Sec. IV. In Sec. V
cluster property is formulated in a manner that is consist
with the modified factorization into subsystems. The form
lation of scattering theory for reactions that do not conse
particle number is discussed in Sec. VI. Modification of t
C* algebra of asymptotic constants, which is a central e
ment of the construction of a dynamics satisfying clus
properties in Ref.@5#, is discussed in Sec. VII. The unitar
elements of this algebra preserve the scattering observa
and can be used to restore cluster properties. The modi
tions to the general construction in Ref.@5# to treat a variable
number of particles are summarized in Sec. VIII. Rather th
giving a systematic description of the general constructi
as was done in Ref.@5#, the essential elements of the gene
construction are illustrated in Secs. IX-XI using a nontriv
example.

II. MOTIVATION AND ASSUMPTIONS

General features of the class of theories studied in
paper are motivated by comparing theories of a fixed num
of particles to theories that change particle number. T
construction in this paper extends the general fixed-N con-
struction in Ref.@5#. In all that follows, we use notation
from Ref. @5#.

Consider a relativistic theory ofN-interacting particles
following the construction of Ref.@5#. Relativistic invariance
is realized by a dynamical unitary representationU@L,Y# of
inhomogeneousSL(2,C) @ ISL(2,C)# on theN-particle Hil-
bert spaceH. ISL(2,C) is the covering group of the Poincar´
group; it is used because the relevant representat
are single valued and computations are easier using 232
matrices.

TheSL(2,C) matrix L is related to a finite Lorentz trans
formationLn

m by

Ln
m5

1

2
Tr~smLsnL†!, ~2!

and the 232 Hermitian matrixY parametrizes a space-tim
translationym by

Y5ymsm , ym5
1

2
Tr~Ysm!. ~3!

The group product is

~L2 ,Y2!~L1 ,Y1!5~L2L1 ,L2Y1L2
†1Y2!. ~4!

The resultingU@L,Y# satisfies cluster properties and th
spectrum of the HamiltonianH is bounded from below.
2-2
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Assume that in this model some isolated subsystems
form bound states. Then cluster properties imply that
isolated bound subsystems have the same Poincare´ transfor-
mation properties as elementary particles with the same m
and spin. With respect to their Poincare´ transformation prop-
erties, there is no distinction between elementary and c
posite particles.

Treating the asymptotically stable subsystems as phys
particles, the relativistic theory described in Ref.@5# can be
interpreted as a theory of fixed number of bare particles w
a variable number of physical particles. The physical p
ticles in the above sense are needed to formulate scatte
asymptotic conditions and cluster properties.

This can be compared to local quantum field theo
where physical particles, defined as discrete eigenstate
the mass and spin, also have a composite bare-particle
tent. An important distinction is that in local field theory th
physical particles involve an infinite number of bare-parti
degrees of freedom, while in the relativistic quantum m
chanics case discussed above, the composite systems in
a fixed finite number of bare-particle degrees of freedom

In this paper the fixed-N construction is generalized b
replacing theN-constituent particles by a set of conserv
additive quantum numbers. These quantum numbers hav
physical interpretation; they are introduced to provide
mechanism to control the number of degrees of freed
These quantum numbers are called charges and they ar
sumed to satisfy the following:

~a! There areK types of charges.
~b! Charges can have onlynon-negativeinteger values.
~c! Each bare particle of the model has a set of char

labeled by ann-tuple of integers (n1 , . . . ,nK) labeling the
number of each of theK types of charges.

~d! The charge of a composite system is the sum of
charges of the constituents.

~e! Each bare particle of the theory has as least one n
zero charge.

~f! Interactions conserve allK types of charges.
The charge of a bare particle isminimal if it cannot be

expressed as a sum of smaller charges corresponding
least two bare particles.

The relativistic Lee model@2,14–16# provides a well-
known example of a theory with this structure. The L
model has three types of bare particles that can be sug
tively called p, N, and D, with a vertex interactionp
1N↔D. There are two conserved charges (qN ,qp) where
thep has charge~0,1!, theN has charge~1,0!, and theD has
charge~1,1!. In this model the charges of thep and theN are
minimal. The charge of theD is not minimal because th
p-N system has the same charge as theD. In this model the
D is called acompositebare particle. The vertex interactio
conserves charge. Many isobar models also fall into
class.

Theories with an infinite number of degrees of freedo
are obtained by dropping the assumptions~b! and ~e!. For
example, if a neutral pion is assigned a charge zero an
neutron is assigned a charge equal to its baryon number,
fixed-charge subspace of the Hilbert space has subsp
with arbitrarily large numbers of pions and neutro
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antineutron pairs. This paper only considers theories wh
conditions~b! and~e! are enforced. With these restrictions
is possible to define a meaningful ‘‘few-charge’’ problem.

III. HILBERT SPACE

The Hilbert spaceH$N% , corresponding to the value$N%
5(n1 , . . . ,nK) of the conserved charges, is a direct sum
tensor products of bare-particle Hilbert spaces,

H$N%ª% i 51
n ~ ^ k51

ni Hmik j ik
!, ~5!

whereHm j is the massm, spin j irreducible representation
space of ISL(2,C). Each term of the direct sum has
different bare-particle content, but the same value of tota
charge,$N%.

In the Lee model example the Hilbert space,

H$1,1%5~HN^ Hp! % HD ~6!

is the direct sum of the two-particleN-p space and the one
particleD space. Note that including a bareD particle in the
model does not imply that theD will exist as a stable physi-
cal particle.

The irreducible representation spacesHm j of ISL(2,C)
are spaces of square integrable functions of the eigenva
of a maximal set of commuting self-adjoint functions of th
single-particle generators. In general, this set includes
invariant mass and spin operators, and four additional fu
tions @5# of the ISL(2,C) generators, denoted byFi . A typi-
cal choice of the operatorsFi is the three components of th
linear momentum and theẑ component of the canonical spin

Denoting the eigenvalues ofFi , m, j 2 by f, m, and j ( j
11) gives basis vectors on eachHm j of the form

u f ;m, j & ~7!

with resolution of the identity and normalization given by

I 5E u f ;m, j &dm~ f !^ f ;m, j u,

^ f ;m, j u f 8;m, j &5d@ f , f 8#. ~8!

In this expression*dm( f ) denotes an integral over the con
tinuous eigenvalues and a sum over the discrete eigenva
of Fi . Likewise, d@ f , f 8# indicates a product of Dirac delt
functions in the continuous variables and Kronecker de
functions in the discrete variables. This basis of the sing
particle Hilbert space is called thef basis.

By assumption,ISL(2,C) acts irreducibly on this space
In the f basis the action ofU@L,Y# is given by

U@L,Y#u f ;m, j &5E u f 8;m, j &dm~ f 8!D f 8 f
m j

@L,Y#, ~9!

where

D f 8 f
m j

@L,Y#ª^ f 8;m, j uU@L,Y#u f ;m, j & ~10!
2-3
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is the massm, spin j irreducible representation ofISL(2,C)
in the f basis. What is relevant for this paper is that t
irreducible representationsD f 8 f

m j
@L,Y# are known for each

value ofm and j. Explicit formulas for Poincare´ D functions
D f 8 f

m j
@L,Y#, are given in Refs.@3,5,17#.

The irreducible representationUik@L,Y# of ISL(2,C) on
each of the subspacesHmik j ik

can be used to construct

natural noninteracting representationU0@L,Y# on H$N%
given by

U0@L,Y#5(
i 51

n

~ ^ k51
ni Uik@L,Y# !. ~11!

The Hilbert spaceH$N% has two natural bases. The first
the tensor product of single bare-particle basis vectors. Th
are distinct basis functions corresponding to each orthog
subspace in the direct sum~5!.

The second is a basis that transforms irreducibly with
spect toU0@L,Y#. The irreducible basis is constructed, usi
the ISL(2,C) Clebsch-Gordan coefficients@3–5,18–20#, as a
linear combination of the tensor product of irreducible re
resentations. As in the case of the tensor product basis, t
is a distinct orthogonal subspace corresponding to each
in the direct sum~5!.

The two types of basis vectors onH$N% are denoted by

u ^ f i ; j i ,mi& ~12!

and

u f ,d; j ,m&, ~13!

respectively, whered denotes a set of invariant degenera
quantum numbers. Them in Eq. ~13! is the invariant mass o
the system of noninteracting bare particles in the tensor p
uct.

The second basis transforms irreducibly with respec
U0@L,Y#,

U0@L,Y#u f ,d;m, j &5E u f 8,d;m, j &dm~ f 8!D f 8 f
m j

@L,Y#,

~14!

which has the same form as the transformation law fo
single particle of massm and spinj, while basis~12! trans-
forms like

U0@L,Y#u ^ f i ; j i ,mi&5E u ^ f i8 ; j i ,mi&

3)
l

dm~ f l8!D
f
l8 f l

ml j l@L,Y#.

~15!

IV. TENSOR PRODUCTSÕFACTORIZATION

In nonrelativistic many-particle quantum mechanics
N-particle Hilbert space can be decomposed into a ten
product of Hilbert spaces with fewer particles. Cluster pro
01520
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erties lead to an asymptotic factorization of the interact
representation,U@L,Y#, into a tensor product of subsystem
Uai

@L,Y# ’s that act on each factor of the tensor product.
For models with conserved charges$N% a similar, but

slightly more complicated, relationship exists. To define t
relationship, begin by labeling each charge. In this paper
charges are initially treated as distinguishable. Proper s
metry under exchange of identical particles can be resto
after the Poincare´ generators are constructed.

Let H$N% be the Hilbert space for a given set of charge
Partitionsa of the labeled charges are identified with equiv
lence relations on the charges. Thei th equivalence class is
denoted byai , called thei th cluster ofa. The set of all
partitions of the charges is denoted byP$N% .

To each partitiona of the conserved charges, the Hilbe
spaceH$N% can be decomposed as an orthogonal direct s
of the form

H$N%5Ha% H a, ~16!

where

Haª^ i 51
na H$Nai

% ~17!

is the tensor product of the subsystem Hilbert spaces ass
ated with the charges in thei th cluster ofa and H a is the
orthogonal complement ofHa in H$N% .

The residual spaceH a appears because for each partiti
a the Hilbert spaceH$N% may have a subspace with ba
particles having nonzero charges indifferent clusters of the
partition a.

In the case of the$1,1% sector of the Lee model@2,14–16#
the factorization~16! has the form

H$1,1%5~HN^ Hp! % HD , ~18!

where fora5(N)(p), Ha5HN^ Hp andH a5HD . The D
subspace is unimportant for understanding clustering into
asymptotically separatedp andN.

The appearance and treatment of the residual space i
main technical difference between models of a fixed num
of particles and models with production.

The partition of the conserved charges into disjo
equivalence classes has an obvious partial ordering give
a$b if and only if conserved charge labels in the sam
equivalence class with respect tob are in the same equiva
lence class with respect toa. This means that the clusters o
b are obtained by breaking up the clusters ofa.

Given the partial ordering onP$N% , it is possible to define
zeta and Mo¨bius functions@22,23# for the partial ordering:

z~a$b!5H 1 for a$b

0 otherwise
~19!

and
2-4
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m~a$b!5z21~a$b!

5H ~2 !na)
i 51

na

~2 !nbi~nbi
21!! for a$b

0 otherwise,

~20!

wherena is the number of clusters of the partitiona andnbi

is the number of clusters ofb in the i th cluster ofa.
It is a consequence of the definitions that the subspa

Ha andH a satisfy the relations

b.a⇒Hb.Ha and H a.H b. ~21!

This is equivalent to the observation that if a bare parti
has nonzero charges in two different clusters of a partitiona,
then this is also true for any refinement ofa. This means that
for the purpose of studying cluster properties, the resid
spacesH a can be ignored when making refinements
partitions.

V. CLUSTER PROPERTIES

In order to formulate cluster properties, assume that i
possible to find the dynamics

Uai
@L,Y# ~22!

associated with the conserved charges in thei th cluster ofa.
The interactingrepresentationU@L,Y# of the system sat-

isfies spacelike cluster properties if for each partitiona of the
conserved charges the following strong limits vanish:

lim
min(yi2yj )

2→`

~U@L,Y#2 ^ l 51
na Ual

@L,Y# !

^ m51
na Uam

@ I ,Ym#Pa50, ~23!

wherePa is the orthogonal projection onto the subspaceHa

of H. This projection is needed because^ l 51
na Ual

@L,Y# and

^ m51
na Uam

@ I ,Ym# are only defined onHa . For successive
limits the projections should be on the largest subspace
allows the charges to be asymptotically separated.

Equation~23! contains two conditions. First, it require
that when the interaction terms between particles w
charges in different clusters ofa are turned off, the projection
of U@L,Y# on Ha becomes a tensor product of subsyst
representations. This property is referred to as the algeb
cluster property. This condition is nontrivial; when it fail
either the cluster limit does not exist, or interactions betwe
particles in thesame cluster of a vanish in the cluster
limit @3#.

The second condition is that the interaction betwe
particles with charges in different clusters satisfy the sh
range condition specified above. This can be reformulate
a ‘‘Cook-like’’ condition on the range of the residual inte
actions@21#. To see this, let@L,Y# denote a fixedISL(2,C)
transformation. To formulate the range condition, assume
01520
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whereG5G@L,Y# is a fixed linear combination of the gen
eratorsISL(2,C) on H.

The limiting form required by cluster properties when t
clusters ofa are asymptotically separated is

Ua@L,Y#5ei (( iGai
)5eiGa. ~25!

To formulate the cluster condition define the residual int
action by

Va5G2Ga . ~26!

Consider

F~a!ªeiaGe2 iaGa, ~27!

where e2 iaGa is extended to be the identity onH a. This
satisfies the integral equation

F~a!5I 1 i E
0

a

F~a8!Va~a8!da8, ~28!

where

Va~a!ªeiaGaVae2 iaGa. ~29!

The cluster condition is equivalent to

lim
min(yi2yj )

2→`

i@F~1!2I # ^ l 51
na Ual

@ I ,Yl #Pauj&i50.

~30!

This limit is bounded by

lim
min(yi2yj )

2→`

E
0

1
iVa~a8! ^ l 51

na Ual
@ I ,Yl #Pauj&ida8.

~31!

The integrand is uniformly bounded ina8 by

iVaiiPauj&i,` ~32!

and each term in the integrand has the limit

lim
min(yi82yj8)2→`

iVa
^ l 51

na Ual
@ I ,Yl8#Pauj8&i50, ~33!

where

Yl85LYlL
†1Y ~34!

and

uj8&5e2 iaGauj&. ~35!

In this expressionL,Y is the ISL(2,C) transformation de-
fined byU@L,Y#5e2 iaG.

It follows from the Lebesgue dominated convergen
theorem@24# that the cluster limit vanishes, provided cond
tion ~33! holds for all uj8& and all asymptotic spacelike sep
rations, (yi82yj8)

2→`. This is the desired ‘‘Cook-like’’ con-
2-5
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W. N. POLYZOU PHYSICAL REVIEW C68, 015202 ~2003!
dition on the range of the intercluster interactionVa. This is
analogous to the cluster condition in nonrelativistic quant
models.

The difficult aspect of the cluster problem in relativist
quantum mechanics is to constructU@L,Y# so it satisfies
algebraic cluster properties. In this case algebraic clu
properties mean that

U@L,Y#→Ua@L,Y# ~36!

when the interactions between particles in different clus
are turned off, where

Ua@L,Y#ªS ^ l 51
na Uai

@L,Y# 0

0 I
D ~37!

on H5Ha% H a. Extending^ l 51
na Uai

@L,Y# to all of H by

extending it as the identity on the subspaceH a is one of the
modifications introduced because of factorization~16!. The
identity term is consistent with setting the correspond
generators to zero. This choice does not affect the clu
condition because the identity term is eliminated by the p
jector Pa .

This formulation of cluster properties has the prope
that if the system is further sub-divided byb,a then
PaPb5Pb . This is because all of the refinements ofa are
defined onHa . This property of the model Hilbert spac
ensures that system can continue to be subdivided unti
that remains is a system of bare particles with minim
charges.

VI. SCATTERING

The formulation of scattering theory with particle produ
tion is identical to the two-Hilbert-space formulation used
Refs.@2,5# for a fixed number of particles.

To formulate the scattering theory assume that the
namical representationU@L,Y# of ISL(2,C) on H is given.
Assume that the representationU@L,Y# has the following
properties, which are consistent with the fixedN case.

~a! There are simultaneous eigenstates ofM , j ,Fi with
positive discrete mass eigenvalues that transform irreduc
with respect toU@L,Y#.

~b! There are simultaneous eigenstates ofM , j ,Fi with
positive eigenvalues in the absolutely continuous spect
of M. These satisfy scattering asymptotic conditions.

~c! The bound and scattering eigenstates are complet
the model Hilbert space, with the incoming and outgoi
wave scattering states each spanning the orthogonal com
ment of the subspace spanned by the bound states.

A bound state is a simultaneous eigenstate ofFi ,M , and
j 2,

u f ;m, j & ~38!

with discrete mass eigenvaluem. It transforms irreducibly
under the action of thedynamical representation of
ISL(2,C)
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U@L,Y#u f ;m, j &5E dm~ f 8!u f 8;m, j &D f 8 f
m j

@L,Y#. ~39!

The functionD f 8 f
m j

@L,Y# is the known mass-m and spin-j
irreducible representation ofISL(2,C).

Normalizable eigenstates of physical mass and spin
be expressed in the form

uc&5E u f ;m, j &dm~ f !x~ f ! ~40!

for square integrable functionsx( f ).
Each irreducible bound subspace defines a bound-s

channela. The channel Hilbert spaceHa is the space of
square integrable functionsx( f ) over the joint spectrum
s(F) of the commuting operatorsFi . Equation~40! can be
interpreted as a mappingFa from the bound channel Hilber
spaceHa to the physical Hilbert spaceH,

uc&5Faux&. ~41!

This can be done for each bound channel. Note that, in g
eral, uc& has components in all bare-particle sectors ofH.

In this notation, Eq.~39! can be expressed in the form

U@L,Y#Fa5FaUa@L,Y#, ~42!

whereUa@L,Y# is the irreducible unitary representation
ISL(2,C) with kernelD f 8 f

m j
@L,Y#.

Individual subsystem bound states are used to form
late the asymptotic condition for multiparticle scatterin
channels.

For a partitiona of conserved charges the physical Hilbe
space has the factorizationH$N%5Ha% H a, where

Ha5 ^ ai
H$Nai

% . ~43!

Assume that there is a subsystem dynamics,

Uai
@L,Y#:H$Nai

%→H$Nai
% ~44!

for the charges in thei th cluster of the partitiona. There is a
scattering channela associated with the partitiona if there is
a bound channel for each of the subsystemUai

@L,Y# ’s.
Following Eq.~42!, for each bound subsystem there is

asymptotic Hilbert spaceHa i
and an injection operatorFa i

,

Fa i
:Ha i

→H$Nai
% ~45!

with the property

Uai
@L,Y#Fa i

5Fa i
Ua i

@L,Y#. ~46!

Define the channel Hilbert spaceHa and the channel injec
tion operatorFa :Ha→Ha,H by

Haª^ i 51
na Ha i

, ~47!

Faª^ i 51
na Fa i

. ~48!
2-6
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Define

Ua@L,Y#ªS ^ i 51
na Uai

@L,Y# 0

0 I D , ~49!

whereI acts on the residual subspaceH a. Also define

Ua@L,Y#:Ha→Ha ~50!

by

Ua@L,Y#ª^ i 51
na Ua i

@L,Y#. ~51!

With these definitions, relations~46! can be compactly ex
pressed in the form

Ua@L,Y#Fa5FaUa@L,Y#. ~52!

Following the case of a fixed number of particles, a scat
ing state is a solution

uca
6~ t !&5U@ I ,T#uca

6~0!& ~53!

of the time-dependent Schro¨dinger equation satisfying th
asymptotic condition

lim
t→6`

ica
6~ t !&2Ua@ I ,T#Fauxa&i50 ~54!

for all uxa&PHa . Using the intertwining relations~52!, this
can be expressed as

lim
t→6`

ica
6~0!&2U†@ I ,T#FaUa@ I ,T#uxa&i50. ~55!

As in the fixed number of particles case, this is automatica
satisfied for the system bound states. When this limit exi
channel wave operators are defined by the strong limits

Va
65 lim

t→6`

U†@ I ,T#FaUa@ I ,T#. ~56!

Cook’s condition @21# for scattering provides a sufficien
condition for the existence of the channel wave operator

E
c

6`

iVaUa@ I ,T#uc&idt,`, ~57!

where

VaªHFa2FaHa . ~58!

The scattering operator for scattering from channelb to
channela is the mapping fromHa→Hb defined by

SabªVa1
† Vb2 . ~59!

This can be compactly expressed in the two-Hilbert-sp
formulation. The asymptotic Hilbert space is the direct s
of all of the channel subspaces, including all bound st
channels,
01520
r-

y
s,

e

te

HAª% aPAHa . ~60!

A two-Hilbert-space injection operatorFA is a mapping
from HA to H defined by

FAª (
aPA

Fa , ~61!

where eachFa acts on the subspaceHa of HA .
There is a natural unitary representation ofISL(2,C) on

HA defined by

UA@L,Y#ª (
aPA

Ua@L,Y#. ~62!

The two-Hilbert-space wave operators can be expresse
the strong limits

V6~H,FA ,HA!ª lim
t→6`

U†@ I ,T#FAUA@ I ,T#, ~63!

whereT5ts0.
In what follows, the dynamical model is assumed to ha

two-Hilbert-space wave operators that exist and are asy
totically complete in the sense that theS is unitary. With
these assumptions and some restrictions on the interac
@5# the two-Hilbert-space wave operators are unitary ope
tors fromHA→HA satisfying the intertwining property:

U@L,Y#V6~H,FA ,HA!5V6~H,FA ,HA!UA@L,Y#.
~64!

VII. SCATTERING EQUIVALENCES

For a fixed number of particles, a scattering equivalenc
a unitary operatorA satisfying

s2 lim
t→6`

~A2I !U0@ I ,T#50 ~65!

for Tªts0. The physical significance of asymptotic cond
tion ~65! is that the unitary transformationA transforms the
Hamiltonian in a manner that leaves the spectrum and s
tering observables unchanged,without changing the repre-
sentation of a free particleused to formulate the asymptoti
condition @5#.

What this means is that if the relevant observables
S-matrix elements and spectral properties, and the dynam
is defined by adding interactions to a free-particle dynam
there is a large class of interactions that give the sa
S-matrix elements and spectral properties.

Specifically, ifU8@L,Y#ªAU@L,Y#A†, condition~65! is
equivalent to

V6~H8,FA8 ,HA!5AV6~H,FA ,HA! ~66!

with Fa0
8 5Fa0

whena0 is theN-body breakup channel.

Equation~66! ensures that allS-matrix elements are pre
served,
2-7
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S~H8,FA8 ,HA!5V1
† ~H8,FA8 ,HA!V2~H8,FA8 ,HA!

5V1
† ~H,FA ,HA!V2~H,FA ,HA!

5S~H,FA ,HA!. ~67!

The distinction between minimally charged bare partic
and ‘‘composite’’ bare particles is relevant for generalizi
condition ~65!. The special property of minimally charge
bare particles is that they exist as asymptotically separ
stable bare particles.

The generalization of Eq.~65! is easy to formulate. Firs
consider only those channelsam where each asymptotic pa
ticle is a ‘‘minimum-charge’’ particle. Consider the class
unitary transformationsA on H with the property that they
preserve the fullS matrix

H85AHA†, ~68!

S5S8, ~69!

where

SªV1
† ~H,FA ,HA!V2~H,FA ,HA!. ~70!

The equality of the scattering operators and asymptotic c
pleteness imply

V1~H,FA ,HA!V1
† ~H8,F ,8HA!

5V2~H8,FA ,HA!V2
† ~H8,F ,8HA!. ~71!

A sufficient condition for this to be true is

V6~H8,FA ,HA!5AV6~H,F ,HA! ~72!

for both asymptotic conditions. It is a nontrivial conditio
that there is a single solutionA to Eq. ~72! for both
asymptotic conditions. This is equivalent to the condition

s2 lim
t→6`

@AFA2FA8 #UA@ I ,t#50. ~73!

In general, given a unitaryA, it is possible to defineFA8
ªAFA ; however for minimal charge channelsam , which
have no asymptotic bound clusters, any reasonable m
must also require

Fam
5Fam

8 . ~74!

This requirement puts a nontrivial condition onA given by

s2 lim
t→6`

~A2I !Fam
Uam

@ I ,T#50, ~75!

which must hold for each minimal-charge channelam and
both time limits.

For systems of a fixed number of particles, scatter
equivalences are used to relate tensor product representa
of ISL(2,C), which are useful cluster limits of a satisfacto
dynamical model, with representations where the mass c
mutes with the spin and a maximal set of functions of
noninteracting generators. Both representations are need
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combine interactions that appear in different asymptotic c
figurations. What makes this work is that theN-particle Hil-
bert space can be factored into a tensor product of subsy
spaces.

What is different for the models under consideration
that the tensor product of subsystem Hilbert spaces is no
whole Hilbert space. Specifically, for a partitiona of charges
the Hilbert space has the decompositionH5Ha% H a and
Hilbert space for the tensor product of the subsystems
fined by the partitiona is Ha . The construction in Ref.@5#
naturally leads to a scattering equivalenceAa on Ha . In
order to treat cluster properties,Aa must be extended to all o
H. The obvious extensionÃa that preserves all of the re
quired properties ofAa is

ÃaªS Aa 0

0 I aD , ~76!

whereAa :Ha→Ha andI a is the identity onH a. In addition,
becauseHaùb#Ha , theH a is not relevant for cluster prop
erties. In all that follows, the symbolAa is used to denote
both Aa and the extensionÃa .

When the Hilbert space is extended to include compo
bare particles, the range ofFam

, corresponding tominimal

charge channels, is orthogonal to all of the subspaces ass
ciated with composite bare particles. The condition on
scattering equivalences is that in addition to being unit
operators that preserve all scattering matrix elements, t
satisfy condition~75! for each minimal-charge channelam .

The C* algebra of asymptotic constants defined in R
@5# is replaced by the a newC* algebra of operatorsZ sub-
ject to the asymptotic conditions

s2 lim
t→6`

ZFam
Uam

@ I ,T#50, ~77!

s2 lim
t→6`

Z†Fam
Uam

@ I ,T#50 ~78!

for each minimal-charge channelam . This algebra is com-
pleted by including the identity. The importance of this alg
bra is that unitary elements of this algebra are scatte
equivalences. Operations on the algebra provide a functio
calculus for constructing new scattering equivalences that
functions of noncommuting scattering equivalences.

VIII. SUMMARY

In the previous sections the modifications of the fix
number of particles construction@5# necessary to treat par
ticle production were discussed. The first new feature is t
the Hilbert space does not factor into a tensor product
subsystems Hilbert spaces. Instead, for any decompos
into subsystems, there is a residual subspaceH a of Eq. ~16!
where the factorization is not compatible with the bare p
ticle content on these subspaces. This led to modification
the formulation of cluster properties~23!, the asymptotic dy-
namics@Eqs.~37! and~49!#, and the structure of the algebr
of scattering equivalences@Eqs. ~75!–~78!#. Charges were
2-8
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introduced to replace particles and cluster properties w
formulated with respect to partitions of charges. The par
ordering on charges had important consequences. The
important was that subsequent refinements of clusters n
affected the residual component of the Hilbert space. Su
quent refinements only acted nontrivially on the tensor pr
uct subspace associated with the preceding refinement. W
in the general case the addition of fictitious charges has
consequence, the requirement that all particles have pos
charge limits the class of theories to theories with a boun
number of bare-particle degrees of freedom. The theo
consistent with this requirement have structures like the
model and Isobar models. The value of this restriction is
existence of a meaningful few-body dynamics. Specifica
the dynamics of theN-charge system is determined by th
dynamics of theK,N charge systems up toN-charge inter-
actions. While the ultimate goal is to remove the restrict
to positive charges, the bounded charge theories exhibit a
required properties.

The modifications discussed are adequate to allow
general methods used in Ref.@5# to be extended to treat th
class of models discussed in this paper. In the next th
sections the modifications to the general construction ar
lustrated with an example in the three charge sector.

IX. THE TWO-CHARGE SYSTEM

The general construction of a dynamical representatio
the Poincare´ group satisfying cluster properties is inductiv
starting with the simplest system. The construction is illu
trated with a theory having two minimally charged bare p
ticles and two additional composite-bare particles. In t
example the induction starts with the two-charge sector.
first step is to specify the bare particles of the theory.

~a! There are two minimally charged bare particles,
beledN and p, with charges (q1 ,q2)5(1,0) and~0,1!, re-
spectively.

~b! There are two composite bare particles labeledD and
r with charges~1,1! and ~0,2!, respectively.

The charge conservation condition means that in addi
to reactions that preserve particle number, the following
sic reactions that change particle number are also possi

p1p↔r, N1p↔D. ~79!

The composite bare particles of this model do not necess
correspond to stable physical particles. That will be true o
if there are point eigenstates of the mass operator with
same charge as the bare particle. In a given model th
could be zero, one, or several physicalD or r particles. In
addition, the dynamics could lead to new composite p
ticles, such as a composite system of two or moreN par-
ticles, which have different charges than any composite b
particle. These are analogous to bound states in
N-particle case.

The second step is to choose a representation to l
the states of the bare particles of the theory. In this exam
the single-particle observablesFi are chosen as the thre
components of the linear momentumpW and the helicityh
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5p̂• jW. Vectors in the bare particle Hilbert spaces for a ba
particle of massm and spinj are represented by square int
grable functionsc(pW ,l) of the eigenvaluesl of the helicity
hª p̂• jW andpW of the linear momentum:

uc&ª (
l52 j

j E upW ,l;m, j &d3pc~pW ,l!. ~80!

The bare-particle Hilbert spaces are denoted byHN , Hp ,
HD , andHr .

There are three two-charge problems corresponding to
total charges (q1 ,q2)5(2,0),~1,1!, and~0,2!. The~2,0! prob-
lem corresponds to twoN particles, and is an ordinary two
body problem that can be treated using the methods of R
@5,17#. The model Hilbert space for the~1,1! and ~0,2! sec-
tors each include a composite~total charge.1! bare particle.

The Hilbert spaces for the~1,1! and ~0,2! sectors are

H(1,1)ª~HmN , j N
^ Hmp , j p

! % HmD , j D
~81!

and

H(0,2)ª~Hmp1
, j p1

^ Hmp2
, j p2

! % Hmr , j r
. ~82!

The bare-particle spacesHm, j are irreducible representatio
spaces@3,5# of ISL(2,C). Noninteracting basis vectors o
the charge-two Hilbert spacesH have the general form:

S upW 1 ,l1 ;m1 , j 1& ^ upW 2 ,l2 ;m2 , j 2&

0 D ~83!

in the two-particle sectorHa and

S 0

upW 1 ,l1 ;mc , j c&
D ~84!

in the one-particle sectorH a.
There is a noninteracting unitary representationU0@L,Y#

of ISL(2,C) on H corresponding to Eq.~11!, defined by

U0@L,Y#ªS U1@L,Y# ^ U2@L,Y# 0

0 Uc@L,Y#
D , ~85!

where

Ui@L,Y#upW ,l;mi , j i& ~86!

5 (
l852 j

j

upW 8,l8;mi , j i&Av i~p8!

v i~p!
Dl8l

j
@RH~L,p!#eip8•y

~87!

with

v i~p!ªAmi
21pW •pW , ~88!

p8n
ª

1

2
Tr~snLsmL†!pm5Lm

n pm, ~89!
2-9
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RH~L,p!ªH21~pL!LH~p!, ~90!

whereH(p) is the helicity boost@18# given by

H~p!ªR~ ẑ→ p̂!Bc~ upW uẑ!. ~91!

The matrixR( ẑ→ p̂) is the SU(2) matrix corresponding to
rotation about the axis parallel toû5 ẑ3( p̂/uẑ3 p̂u) through
an angleu define by cos(u)5ẑ•p̂. It rotatesẑ in the direction
parallel topW . This matrix has the form

R~ ẑ→ p̂!5s0cosS u

2D1 iu•sW sinS u

2D . ~92!

The matrixBc(u pW uẑ) is the SL(2,C) matrix corresponding
to a rotationless Lorentz transformation in theẑ direction
given by

Bc~ u pW uẑ!5s0coshS h

2 D1szsinhS h

2 D , ~93!

where the rapidityh satisfies

sinh~h!5
u pW u
mi

, cosh~h!5
v i~p!

mi
. ~94!

The matrixDl8l
j

@R# is the SU(2) WignerD function of R.
The tensor product basis is not a useful basis for includ
interactions. It is more useful to work in an equivalent ba
that transforms irreducibly with respect toU0@L,Y#.

Clebsch-Gordan coefficients@3,5,18# of ISL(2,C) can be
used to construct linear combinations of the basis elem
on the subspaceH1^ H2, which transform irreducibly with
respect toU0@L,Y#. The form of the Clebsch-Gordan coe
ficients in the helicity basis depends on the choice of deg
eracy quantum numbers. Wick@18# uses ‘‘body-fixed’’
single-particle helicities to label degeneracies. In this mo
we use ‘‘spin’’ and ‘‘orbital’’ angular momentum labels tha
are more natural for formulating two-body interactions. F
this choice the Clebsch-Gordan coefficients are

^pW 1 ,l1;m1 , j 1 :pW 2 ,l2 ;m2 , j 2upW 12,l12;k12, j 12; l 12,s12&

5 (
l18 ,l28 ,ls128 ,m l8

d~pW 122pW 12pW 2!

3
d„k122k~pW 1 ,pW 2!…

k12
2 U]„pW 12,kW1~pW 1,pW 2!…

]~pW 1 ,pW 2!
U1/2

3Ym l

l ~ k̂1!D
l1,l

18

j 1 @RHMW~p12,k1!#D
l2,l

28

j 2

3@RHMW~p12,k2!#^ j 1 ,l18 , j 2 ,l28us12,ls128&

3^s12,ls128 ,l ,m l8u j 12,l12& ~95!

where

RHMW~p,ki !ªH21~pi !H~p12!Bc~ki !, ~96!
01520
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is a rotation obtained by composing a helicity-Melosh ro
tion with a helicity-Wigner rotation@3#. The other quantities
in Eq. ~96! are defined by

ki
n
ª

1

2
Tr@snH21~p12!sm„H

21~p12!…
†#pi

m , ~97!

Bc~ki !5s0coshS h i

2 D1 k̂i•sW sinhS h i

2 D ~98!

and

sinh~h i !5
ukW i u
mi

, cosh~h i !5
v i~ki !

mi
. ~99!

In this coefficient the massm12 is related to the continuou
variablek12

2 by

k12
2
ª

m12
4 1m1

41m2
422m1

2m2
222m12

2 m1
222m12

2 m2
2

4m12
2

,

~100!

which has a spectrumP@0,̀ #. The Jacobian is

U]„pW 12,kW1~pW 1,pW 2 !…

]~pW 1 ,pW 2!
U5

v1~k1!v2~k2!@v1~p1!1v2~p2!#

v1~p1!vp~p2!@v1~k1!1v2~k2!#
.

~101!

These Clebsch-Gordan coefficients define the irreduc
noninteracting eigenstates

upW 12,l12;k12, j 12; l 12,s12& ~102!

as linear superpositions of the tensor product states. Th
reducible noninteracting eigenstates transform as

U1@L,Y# ^ U2@L,Y#upW 12,l12;k12, j 12; l 12,s12&

5 (
l128 52 j 12

j 12

upW 128,l128 ;k12, j 12; l 12,s12&

3Av12~p128 !

v12~p12!
D

l
128 ,l12

j 12 @RH~L,p12!#e
ip8•y.

~103!

This has the same structure as a single-particle transfor
tion, except that the noninteracting two-body invariant ma
m12 is replaced by the more convenient continuous varia
k12

2 . The transformed four-momentump8 is related to the
original momentum by Eq.~89!. The quantum numberss12
and l 12 are invariant degeneracy quantum numbers, wh
are needed because multiple copies of them12, j 12 represen-
tation appear in the tensor product.

The irreducible free eigenstates,

S upW 12,l12;k12, j 12; l 12,s12&

0 D ~104!
2-10
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and

S 0

upW c ,lc ;mc , j c&
D , ~105!

are a basis that can be used to solve the two-charge dyn
ics.

The dynamics is defined by adding an interactionV to the
free mass operatorM0 that commutes with and is indepen
dent ofpW 12 andl12.
ed

al

on
d

to

01520
m-

In the free-particle irreducible basis the noninteracti
mass operator has the form

M05S m12 0

0 mc
D 5S Am1

21k12
2 1Am2

21k12
2 0

0 mc
D
~106!

and the interaction is assumed to have a kernel of the fo
^pW ,l; jW, . . . uVupW 8,l8; jW8, . . . &5d~pW 2pW 8!d j j 8dll8S ^k12,l 12,s12iVj ik128 ,l 128 ,s128 & ^k12,l 12,s12iVj imc&

^mciVj ik128 ,l 128 ,s128 & ^mciVj imc&
D . ~107!
ty

-

es
re-
-

.

The term^mciVj imc& is a constant which could be absorb
in the bare massmc .

For an interaction of the form~107! the dynamical mass
operator

MªM01V ~108!

commutes with and is independent ofpW andh. It follows that
M ,pW ,h, j 2 can be simultaneously diagonalized by diagon
izing M in the free-particle irreducible basis~104!, ~105!. In
this basis the mass eigenfunctions have the form

^pW ,l; j , . . . upW 8l8;m8, j 8&5d~pW 2pW 8!d j j 8dll8

3S ^k12,l 12,s12um8, j &

^mcum8, j &
D ,

~109!

where the components of the reduced wave functi
^k12,l 12,s12um, j & and^mcum, j &, are solutions of the couple
equations

~m2M0!^k12,l 12,s12um, j &

5 (
l 128 ,s128

E
0

`

^k12,l 12,s12iVj ik128 ,l 128 ,s128 &k128
2dk128

3^k128 ,l 128 ,s128 um, j &1^k12,l 12,s12iVj imc&^mcum, j &,

~110!

~m2mc!^mcum, j &

5 (
l 128 ,s128

E
0

`

^mciVj ik128 ,l 128 ,s128 &k128
2dk128

3^k128 ,l 128 ,s128 um, j &1^mciVj imc&^mcum, j & ~111!

for the eigenvaluem. These equations can be combined in
a single dynamical equation for^k128 ,l 128 ,s128 um, j &,
-

,

~m2m0!^k12,l 12,s12um, j &

5E
0

`

(
s128 ,l 128

^k12,l 12,s12uK j uk128 ,l 128 ,s128 &k128
2dk128

3^k128 ,l 128 ,s128 um, j &, ~112!

where

^k12,l 12,s12uK j uk128 ,l 128 ,s128 &

ª^k12,l 12,s12iVj ik128 ,l 128 ,s128 &

1
^k12,l 12,s12iVj imc&^mciVj iq128 ,l 128 ,s128 &

m2mc2^mciVj imc&
.

~113!

The component̂mcum, j & can be obtained by quadrature

^mcum, j &5E
0

`

(
s128 ,l 128

^mciVj ik128 ,l 128 ,s128 &

m2mc2^mciVj imc&

3k128
2dk128 ^k128 ,l 128 ,s128 um, j &. ~114!

For scattering states, Eqs.~112! and ~114! must be solved
with incoming or outgoing asymptotic conditions,m→m
6 i01. This dynamical equation is of comparable difficul
to solving the two-body Lippmann-Schwinger equation.

For a self-adjointM with a well-behaved short-ranged in
teractionV the simultaneous eigenstates~109!, upW ,l;m, j & of
M, pW 5pW 0 , h5h0 , j 25 j 0

2 are a complete set of eigenstat
that transform irreducibly with respect to a dynamical rep
sentationU@L,Y# of ISL(2,C). The transformation proper
ties of these eigenstates follow because the operatorsM0 , pW ,
jW, i¹Wp andM, pW , jW, i¹Wp have identical commutation relations
Note that in both cases the partialp derivatives are per-
formed holding the helicity constant.

It follows that U@L,Y# is defined in the basis~109! by
2-11
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U@L,Y#upW ,l;m, j &5 (
l852 j

j

upW 8,l8;m, j &

3Avm~p8!

vm~p!
Dl8l

j
@RH~L,p!#eip8•y,

~115!

where

p8n
ª

1

2
Tr~snLsmL†!pm5Lm

n pm ~116!

with p0
ªApW •pW 1m2.

This is identical to the transformation properties of
single particle, except themass parameter is the eigenvalu
m of mass operator~108!.

The action ofU@L,Y# on an arbitrary state with wav
function c(pW ,l) is given by completeness:

U@L,Y#uc&5(
j

(
l,l852 j

j E upW 8,l8;m, j &

3Avm~p8!

vm~p!
Dl8l

j
@RH~L,p!#

3eip8•ycm, j~pW ,l!d3pdm. ~117!

Solutions of the dynamical equations withm,m11m2 in
the pure point spectrum ofM correspond to stabler or D
particles. Solutions withm>m11m2 in the absolutely con-
tinuous spectrum ofM correspond to scattering eigenstate
We assume that all of the eigenstates fall into one of th
two classifications. In addition, we assume that the incom
and outgoing wave scattering solutions each span the
space ofH orthogonal to the bound state subspace.

This representation satisfies algebraic cluster prope
because the operatorU@L,Y# is a function of single bare
particle operators andV. In the limit that V vanishes, this
representation becomes the noninteracting represent
U0@L,Y#.

This completes theuNu52 construction for the charge se
tor ~1,1! or ~0,2!.

X. THE ˆ2,1‰ SECTOR

The next step in the construction of the dynamics in
three-charge sector is to consider the problem of two in
acting charges and a spectator charge. This problem de
the asymptotic behavior of the three-charge system in
limit that one charge is asymptotically separated from
interacting pair. This form is used in the mathematical f
mulation of cluster properties.

To be specific, consider the three-charge system w
(q1 ,q2)5(1,2). For this set of charge quantum numbers
Hilbert space is
01520
.
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H5~HN^ Hp1
^ Hp2

! % ~HD1
^ Hp2

!

% ~HD2
^ Hp1

! % ~HN^ Hr!. ~118!

The nontrivial partitionsP of the minimal charges of this
system area5(N)(p1)(p2), (N,p1)(p2), (N,p2)(p1),
and (p1 ,p2)(N). For each partitionaPP there is a decom-
position of the Hilbert space of the form~16!. For example,
for a5(N)(p1)(p2) the orthogonal subspaces are

Ha5HN^ Hp1
^ Hp2

, ~119!

H a5~HD1
^ Hp2

! % ~HD2
^ Hp1

! % ~HN^ Hr! ~120!

and fora5(N,p1)(p2) the orthogonal subspaces are

Ha5~HN^ Hp1
^ Hp2

! % ~HD1
^ Hp2

!

5@~HN^ Hp1
! % HD1

# ^ Hp2

5H(Np1) ^ Hp2
, ~121!

H a5~HD2
^ Hp1

! % ~HN^ Hr! ~122!

with similar expressions for the two other nontrivial par
tions a.

The goal of the three-body construction is to find
U@L,Y# that asymptotically factorizes into a tensor produ
of subsystem representations when charges in different c
ters of a are separated. As mentioned in Sec. V, the form
lation of cluster properties differs from the fixed-partic
number case becauseU@L,Y# acts onH while ^ iUai

@L,Y#

acts onHa .
Following Eq. ~37! it is useful to extend the asymptoti

forms onHa to operators onH,

U (N)(p1)(p2)@L,Y#

ªS UN@L,Y# ^ Up1
@L,Y# ^ Up2

@L,Y# 0

0 I
D
~123!

for a5(N)(p1)(p2) and

U (Np1)(p2)@L,Y#ªS U (Np1)@L,Y# ^ Up2
@L,Y# 0

0 I
D
~124!

for a5(Np1)(p2), with similar expression for the two
cluster partitions (Np2)(p1) and (N)(p1p2). These opera-
tors are tensor products of subsystem representation
ISL(2,C) on Ha and are extended so they are the identity
the subspaceH a.

In the first expression the factorsUp i
@L,Y# and

UN@L,Y# are single-particle irreducible representations. T
factor U (Np1)@L,Y# in the second expression is theinteract-
2-12
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ing two-charge representation~117! constructed in the pre
ceding section. It acts on the two-charge spaceH(Np1)

ª(HN^ Hp1
) % HD1

.

To formulate cluster condition~23!, for eachaPP, we
definePa to be the orthogonal projector onto the subspa
Ha of H,

PaªS I 0

0 0D ~125!

and the cluster translation operators

Ta~Y1 , . . . ,Yna
!ªS Ua1

@ I ,Y1# ^ •••^ Uana
@ I ,Yna

# 0

0 0
D ,

~126!

which independently translate the charges in each cluste
the partition a by displacementsy1 , . . . ,yna

where (Yi

ªyi
msm). In this example a5(Np1)(p2), (Np2)(p1),

(p1p2)(N), or (N)(p1)(p2). Formally, for the partitiona
5(N,p1)(p2), the formulation of cluster properties~23! for
the three-charge problem is

lim
(y12y2)2→`

i†U@L,Y#2U (Np1)(p2)@L,Y#‡

3T(Np1)(p2)~Y1 ,Y2!P (Np1)(p2)uc&i

50, ~127!

where the limit corresponds to a large spacelike separat
The projection operatorP (Np1)(p2) projects on the sub

space of the Hilbert space where independent translation
the (Np1) andp2 subsystems are defined.

One term that is not eliminated by the projection opera
is the part ofU@L,Y# that mapsH(Np1)(p2) to H (Np1)(p2).
This contribution involves the interactions of the gene
type r↔p11p2 and D2↔N1p2. These should vanish in
the limit that p2 is asymptotically separated from theNp1
system, provided the interactions have sufficiently sh
range. Condition~127! provides a range condition on thes
production interactions.

In the three- and many-charge systems it is also neces
to consider cluster properties for sequential limits. In t
fixed charge case, sequential limits require care because
ferent cluster operators are defined on different subspace
illustrate the problem, consider the following three limits.

~1! First take the limit corresponding to the partition
charges (Np2)(p1), followed by (Np1)(p2).

~2! First take the limit corresponding to the partition
charges (Np1)(p2), followed by (Np2)(p1).

~3! Take the limit corresponding to the partition o
charges (N)(p1)(p1).

Intuitively, one expects that all three limits should giv
the free dynamics onH(N)(p1)(p2) . The problem is that the
first two limits are defined on the larger subspac
H(Np1)(p2).H(N)(p1)(p2) and H(Np2)(p1).H(N)(p1)(p2) , re-
spectively.
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The projection and translation operators that appear in
asymptotic condition in each of these three cases are

T(Np2)(p1)~YNp2
,Yp1

!P (Np2)(p1)

3T(Np1)(p2)~YNp1
,Yp2

!P (Np1)(p2) , ~128!

T(Np1)(p2)~YNp1
,Yp2

!P (Np1)(p2)

3T(Np2)(p1)~YNp2
,Yp1

!P (Np2)(p1) , ~129!

and

T(N)(p1)(p2)~YN ,Yp1
,Yp2

!P (N)(p1)(p2) , ~130!

respectively.
In the representation used in this example, if all of t

cluster displacementsYi are space vectors with no time com
ponent, then the translation operators have no two-b
terms and

T(Np1)(p2)~YNp1
,Yp2

!T(Np2)(p1)~YNp2
8 ,Yp1

8 !

5T(N)(p1)(p2)~YNp1
1YNp2

8 ,YNp1
1Yp1

8 ,Yp2
1YNp2

8 !

~131!

and

P (Np1)(p2)P (Np2)(p1)5P (N)(p1)(p2) , ~132!

etc. In this case all three limits have the same form. For
case that the relative displacements are spacelike, but
individual displacements have nonvanishing time com
nents, the space of initial vectors differs in all three cas
For example,T(Np1)(p2) has components that map vecto

from HD1
^ Hp2

to H(N)(p1)(p2) , while for the other two con-
figurations the ranges of the initial projections are orthogo
to the subspaceHD1

^ Hp2
.

In this case the contribution of the subspaceHD1
^ Hp2

can be eliminated at the outset by insisting that the seque
limits should give the same result only on the common s
space where all of the limits are defined. Effectively, th
means that the limit should only be applied to vectors in
range ofP (N)(p1)(p2) .

Mathematically, this means that Eq.~128! should be re-
placed by

T(Np2)(p1)~YNp2
,Yp1

!P (Np2)(p1)

3T(Np1)(p2)~YNp1
,Yp2

!P (Np1)(p2)

→T(Np2)(p1)~YNp2
,Yp1

!P (N)(p1)(p2)

3T(Np1)(p2)~YNp1
,Yp2

!P (N)(p1)(p2) . ~133!

Cluster properties in the two-charge sector allow the repla
ment of
2-13
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T(Np2)(p1)~YNp2
,Yp1

!P (N)(p1)(p2)

3T(Np1)(p2)~YNp1
,Yp2

!P (N)(p1)(p2) ~134!

by

T(N)~YNp2
1YNp1

!T(p1)~Yp1
!T(p2)~YNp2

1Yp2
!

3P (N)(p1)(p2)T(Np1)~YNp1
!P (N)(p1)(p2) , ~135!

which is equivalent to formulating the cluster limit with th
noninteracting translation operators. Similar remarks ap
for representations where the dynamical translation opera
have interactions.

This shows that by projecting on the largest subsp
where all cluster translations are defined, cluster prop
ties can be formulated in a manner that is similar to
fixed number of particles case. These observations gen
lize to sequential limits of systems with more than thr
charges.

The tensor product representations constructed sa
cluster properties by definition. These tensor product rep
sentations are important building blocks for the full thre
charge dynamics.
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For each of the 211 charge problems discussed, there
an alternate construction that leads to the sameS matrix.

To see this recall that the irreducible free-particle ba
constructed using the Clebsch-Gordan coefficients in
~104! have the form

S up12l12;k12, j 12,l 12,s12&

0 D S 0

up12,l12;,mc , j c&
D .

~136!

The tensor product of this basis with a spectator basis defi
a basis on the subspaceH(12)(3) of H:

S up12l12;k12, j 12,l 12,s12&up3l3 ;m3 , j 3&

0 D , ~137!

S 0

up12,l12;,mc , j c&up3l3 ;m3 , j 3&
D . ~138!

Since Eqs.~137! and~138! are tensor products of irreducibl
representations, the Clebsch-Gordan coefficients can be
to transform the tensor product basis to a three-charge
ducible basis:
S upl;q(12)(3) , j (12)(3) ,L (12)(3) ,S(12)(3) ,k12, j 12,l 12,s12,m3 , j 3&

0 D , ~139!

S 0

up,l;q(12)(3) , j (12)(3) ,L (12)(3) ,S(12)(3) ,mc , j c ,m3 , j 3&
D . ~140!

The free two-charge mass operator is a multiplication operator in each of the representations~137!, ~138! and ~139!, ~140!,

M0:125S Am1
21k12

2 1Am2
21k12

2 0

0 mc
D . ~141!

Natural extensions of the two-charge interactions~107! are defined in each of the representations~137!, ~138!, and~139!, ~140!
by

^pW 12,l12; jW12, . . . ,pW 3 ,l3 ,m3 , j 3uvupW 128,l128 ; jW128 , . . . ,pW 3 8,l38 ,m38 , j 38&

5d~pW 122pW 128!dl12l128
d j (12) , j

(12)8 d~pW 32pW 3 8!dl3l
38
d j 3 , j

38

3S ^k12,l 12,s12iVj 12ik128 ,l 128 ,s128 & ^k12,l 12,s12iVj 12imc&

^mciVj 12ik128 ,l 128 ,s128 & ^mciVj 12imc&
D ~142!

and

^pW ,l; jW, . . . uv̄upW 8,l8; jW8, . . . &5d~pW 2pW 8!dll8d j (12)(3) , j
(12)(3)8

d~q(12)(3)2q(12)(3)8 !

q(12)(3)
2

~143!

3dL(12)(3) ,L
(12)(3)8 dS(12)(3) ,S

(12)(3)8 d j (12) , j
(12)8 S ^k12,l 12,s12iVj 12ik128 ,l 128 ,s128 & ^k12,l 12,s12iVj 12imc&

^mciVj 12ik128 ,l 128 ,s128 & ^mciVj 12imc&
D . ~144!
2-14
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Since both of the above interactions only differ in the cho
of multiplicative d functions, which are asymptoticall
equivalent, it follows that both

M12ªM0:121v, M̄12ªM0:121 v̄ ~145!

give the same two-charge mass eigenvalues andS-matrix el-
ements. These aredifferent operators, becauseM12 com-
mutes withpW 3 and M̄12 commutes withqW (12)(3) , which is
defined analogously to Eq.~97!. The operatorM̄12 has the
additional important property that it commutes withpW ,
j (12)(3) andh(12)(3) and is independent ofpW andh(12)(3) .

The interesting property is that the interactionv̄ satisfies
@ v̄,p3#Þ0. This means that ifv̄ is a short-ranged interaction
then it vanishesin the limit that thespectatorparticle 3 is
translated infinitely far from the interacting 12 pair. This
not the expected behavior when a noninteracting spectat
asymptotically separated from an interacting pair of p
ticles. This type of violation of cluster properties is chara
teristic of how cluster properties typically fail in improper
formulated relativistic models.

The dynamics given byM12 andM̄12 are both defined on
the subspaceHa of H, give the same spectral properties a
s
th

uc

te

,

t
t

ha

01520
e
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Smatrix, and are thus related by a unitary scattering equ
lenceAa onHa . Since the interactionv in the tensor product
representation satisfies cluster properties by constructio
follows that scattering equivalences do not necessarily p
serve cluster properties. The simplest way to construct
unitary transformationAa is to use the Clebsh-Gordan coe
ficients of ISL(2,C) to transform the eigenstates ofM12,
which transform like a tensor product of an interacting tw
charge representation and a spectator representation, to
perposition of irreducible representations ofISL(2,C). The
eigenstates

up12,l12,m12, j 12;pW ,l3 ;m2 , j 3&, ~146!

which transform as a product of irreducible representati
with respect toU (12)@L,Y# ^ U (3)@L,Y#, are mapped to irre-
ducible eigenstates of the form

upW ,l;q̃(12)(3) , jW,L̃ (12)(3) ,S̃(12)(3) ,m12, j 12,&, ~147!

whereq̃(12)(3)
2 is related to the mass operatorM (12)(3) of this

irreducible representation by
q̃(12)(3)
2 5

M (12)(3)
4 1M12

41m3
422M12

2m3
222M (12)(3)

2 M12
222M (12)(3)

2 m3
2

4M (12)(3)
2

, ~148!
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whereM12 is the interacting two-body mass operator. Thi
irreducible representation is obtained by first solving
two-charge problem followed by using Poincare´ Clebsch-
Gordan coefficients to construct a superposition of irred
ible representations.

The mass operatorM (12)(3) has the form

M (12)(3)5AM12
2 1q̃(12)(3)

2 1Am3
21q̃(12)(3)

2 , ~149!

which is the invariant mass operator associated with the
sor productU (12)@L,Y# ^ U3@L,Y# of the interacting two-
body representation and the spectator representation
H(12)(3) .

It is also possible to use the operatorM̄12 to construct a
three-charge mass operator in the barred representation

M̄ (12)(3)5AM̄12
2 1q(12)(3)

2 1Am3
21q(12)(3)

2 , ~150!

where in this caseq(12)(3)
2 is the noninteracting operator tha

replaces the mass in the Clebsch-Gordan coefficients for
noninteracting three-charge system, Eq.~139!. The operators
M̄ (12)(3) , j (12)(3)

2 5 j 0
2 , pW (12)(3)5pW 0 , h(12)(3)5h0, satisfy the

same commutation relations asM0(12)(3), j (12)(3)
0 5 j 0

0 ,
pW (12)(3)5pW 0 , h(12)(3)5h0 whereM0(12)(3) is the noninteract-
ing invariant mass of the three-charge system. It follows t
simultaneous eigenstates of both sets of operators have
e

-

n-

on

he

t
the

same Poincare´ transformation properties if the eigenvalues
M0(12)(3) are replaced by the eigenvalues ofM̄0(12)(3). This
leads to a complete set of eigenstates

upW ,l;q(12)(3) , jW,L̃ (12)(3) ,S̃(12)(3) ,m̄, j 12& ~151!

that transform irreducibly with respect to the representat
Ū (12)(3)@L,Y#.

The difference between the barred representation and
unbarred representation is thatthe order of adding interac-
tions and coupling to three-charge irreducible representati
is reversed. In the unbarred representation, interactions
added to the two-charge system. The interacting two-cha
system is decomposed into irreducible representation
ISL(2,C) and these are coupled to the spectator represe
tion using ISL(2,C) Clebsch-Gordan coefficients. In th
barred representation the spectator is coupled to thenonin-
teracting two-charge system using theISL(2,C) Clebsch-
Gordan coefficients. The two-charge interactionv̄ is intro-
duced directly in this representation. In the absence
interactions both representations become equivalent.

Both sets of irreducible eigenstates are complete
H(np1)(p2) and the operators whose eigenvalues label the
reducible eigenstates in both representations have iden
2-15
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spectra. If follows that the scattering equivalenceAa :Ha
→Ha can be expressed as the identity in this mixed rep
sentation,

Aa5( E upW ,l;q(12)(3) , jW,L (12)(3) ,S(12)(3) ,m̄, j 12&dp

3^pW ,l;q̃(12)(3) , jW,L̃ (12)(3) ,S̃(12)(3) ,m, j 12,u, ~152!

where the sum and integral are over the common eigenva
of the corresponding observables. The sum over the t
charge mass eigenstates includes a bound state sum a
integral over the incoming- or outgoing-wave scatteri
states in both representations. Either choice of asympt
condition~6! gives the same operatorAa because the repre
sentations are scattering equivalent@5#. The operatorAa is
nontrivial if it is evaluated in a single representation. B
construction, all of theAa’s for two-cluster partitions becom
the identity when interactions are turned off.

Because the Hilbert spaceHa is a proper subspace of th
three-charge Hilbert space for each partitiona, it is necessary
to extend the definitions ofUa@L,Y#, Ūa@L,Y#, andAa to
all of H following

Ua@L,Y#→S Ua@L,Y# 0

0 I D , ~153!

Ūa@L,Y#→S Ūa@L,Y# 0

0 I
D , ~154!

Aa→S Aa 0

0 I D . ~155!

Thus the solution of the three 211-charge problems give
for each partitiona, into at least two clusters, operators

Ua@L,Y#, Ūa@L,Y#, Aa ~156!

satisfying

Ūa@L,Y#5AaUa@L,Y#Aa
† , ~157!

whereUa@L,Y# is a tensor product of subsystem repres
tations onHa and the mass operatorM̄a for Ūa@L,Y# com-
mutes with and is independent of the noninteracting thr
charge operators,pW and h, and commutes with the
noninteracting j 2. The operatorsAa become the identity
when the interactions are turned off. Equations~156! and
~157! also hold for the extended representations@Eqs.~153!,
~154!, and~155!# on H.

The representationsUa@L,Y# andŪa@L,Y# are scattering
equivalent, but only the unbarred representation satis
cluster properties.

The computations ofUa@L,Y#, Ūa@L,Y#, andAa can all
be expressed in terms of the solution to the mass eigenv
problems in two-charge sectors.
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XI. THREE-CHARGE SECTOR

The construction of the dynamics in the three-charge s
tor is similar to the three-particle dynamics in the fixedN
case.

The construction starts with the mass operators in
barred representation. The reason for introducing the ba
operators, which violate cluster properties, is that they co
mute with and are independent of the total three-charge
mentum and helicity of thenon-interactingsystem. In addi-
tion, they commute with the square of the spin of t
non-interacting three-charge system, independent of
partition a.

Mass operatorsM̄a for eachŪa@L,Y# are constructed as
discussed in the preceding section. This is done for eac
the four partitions of charges,

a5~Np1!~p2!,~Np2!~p1!,~p1p2!~N!,~N!~p1!~p2!.
~158!

These operators are easily expressed in terms of their ke
in free three-charge irreducible bases onHa . Note that even
thoughUa@L,Y# was extended to all ofH, the generators
and mass operators are nonvanishing only on the s
spaceHa .

A mass operator onH is defined by the linear combina
tion of operators using the Mo¨bius function of the lattice of
partitions

M̄ª (
aPP

8

CaM̄a1V̄, ~159!

Caª2m1.a52d1.a
21 52~21!na~na21!!,

where the sum is over all partitions with at least two disjo
clusters of charge. For two-cluster partitionsa of charges,
like a5(Np1)(p2), the relation to the mass operator of th
two-chargeNp system,M̄Np , is of the general form~150!.
The combinatorial coefficients ensure the each two-cha
interaction appears only once. The three-charge kinetic
ergy onH(N)(p1p2) appears once for each of the three tw
cluster partitions and is subtracted twice in the three-clu
partition. This ensures that it appears once in the final
pression for the mass. The Mo¨bius function is defined so tha
this property is preserved for any number of charges and
type of interaction.

The operatorV̄ is an analog of a three-body interaction.
vanishes when any pair of charges is separated. In additio
commutes with the noninteracting three-bodyj 2 and com-
mutes with and is independent of the noninteracting thr
body pW and h. In this example,V̄ includes the following
types of interactions.

~1! Three-body interaction onHN^ Hp1
^ Hp2

.

~2! r-N interactions onHN^ Hr .
~3! D-p interactions onHD i

^ Hp j
for iÞ j .

~4! Connected interactions that couple different subspa
in the direct sum, such asr-N↔p2-D1 interactions, etc.
2-16
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Since each of the operatorsM̄a , andV̄ commute withj 0
2

for the noninteracting three-charge system and comm
with and are independent of the linear momentumpW and
helicity h, for the noninteracting three-charge system,
combined operatorM̄ also has this property. It follows tha
simultaneous eigenstates ofM̄ , j 2, pW , and h transform as
massm, spin j irreducible representations ofISL(2,C).

The simultaneous eigenstates ofM̄ , pW 0 , j 0
2, andh0,

upW ,l; j ,m̄& ~160!

generally have components in all of the cluster subspace
H. A dynamical representationŪ@L,Y# of ISL(2,C) is
given by

Ū@L,Y#upW ,l; j ,m̄&5 (
l852 j

j

upW 8,l8;m̄, j &

3Avm̄~p8!

vm̄~p!
Dl8l

j
@RH~L,p!#eip8•y.

~161!

As in the three-particle case, the eigenstates ofM̄ are ob-
tained by solving generalized Faddeev equations. The s
tering solutions must be solved with the appropria
asymptotic condition. The two-charge interactions in t
three-charge Hilbert space have the form

V̄aªAqa
21~m1201 v̄ !22Aqa

21m120
2 ~162!

and the mass operator~159! has the form

M̄5V̄(Np1)(p(2)1V̄(Np2)(p1)1V̄(p1p2)(N)1M̄ (N)(p1)(p2)1V̄.
~163!

The Faddeev equations have the same form as the c
sponding nonrelativistic equations in terms of the inter
kinetic energy, the interactions, and three-charge forces.
form of the eigenstates in a noninteracting irreducible ba
is

^pW 0 ,l0 ; j 0•••upW ,l;m, j &5d~pW 02pW !dl0ld j 0 j^•••um̄&.
~164!

The Faddeev equations~in the absence ofV̄) have the form

um̄&5(
a

um;a&, ~165!

um;a.5
1

l2M̄a

V̄a(
bÞa

um;b&, ~166!

where the indicesa,b correspond to two-cluster partitions.
These equations must be solved in a fixed representa

The representations that are natural for the different pa
tions differ by the choice of degeneracy parameters, wh
are dictated by the spectator charge. To diagonalize this
01520
te

e

of

at-

e

re-
l

he
is

n.
ti-
h
p-

erator, the individual mass operators need to be put i
common representation. This is done using the Racah c
ficients of ISL(2,C) which can be computed using fou
ISL(2,C), Clebsch-Gordan coefficients in the same man
as they are used to compute SU~2! Racah coefficients~Refs.
@3,5,18#!. The Racah coefficients do not depend onpW or h,
they only act on the ‘‘̄ ’’ in ^•••u in Eq. ~164! above. Fad-
deev equations with interactions of the gene
form ~162! have been solved numerically for realist
interactions@13#.

In representation~161!, all of the interactions are inM̄ . In
the limit that a given interaction is simply turned off, w
have

M̄→M̄a5Aa
†MaAa , ~167!

which is related to the mass operator of the desired ten
product representation by the scattering equivalenceAa . In-
teractions in the operators which have domain or range
H a are set to zero.

In order to recover the desired tensor product represe
tion, it is enough to construct an operatorA with the property
that A→Aa in the limit that the charges in different cluste
of a are asymptotically separated. This can be done follo
ing Refs.@3,5#, which use Cayley transforms:

aaª i
I 2Aa

I 1A1
, ~168!

aªa (Np1)(p2)1a (Np2)(p1)1a (N)(p1p2) , ~169!

A5
I 1 ia

12 ia
. ~170!

The operatorA has the desired algebraic cluster proper
which follows because each of the operatorsaa vanishes in
the limit that charges in the same cluster ofa are separated
The individual operatorsA andaa can be obtained by solv
ing nonsingular integral equations,

aa5 i
I 2Aa

2
1

I 2Aa

2
aa. ~171!

The operatorA can be obtained by solving the integral equ
tion

Ba5
aa

I 2 iaa
~ I 1 ia!1 i

aa

I 2 iaa
(
bÞa

Bb , ~172!

A5~ I 1 ia!1 i(
b

Ba . ~173!

In the case that theaa’s are bounded operators the resultin
solution is in theC* algebra of asymptotic constants, whic
means thatA is a scattering equivalence. While the boun
edness of theaa has not been established in general, t
property is strongly suggested by the structure of the exp
sion of the operatorsAa in the N-particle case@2#.
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The operator

U@L,Y#ªAŪ@L,Y#A† ~174!

defines the desired solution of the (2,1) charge sector of
model. The dynamics is scattering equivalent to theŪ@L,Y#
dynamics and has the property that when the interact
between charges in different clusters of a partitionA are
turned off, the result is the tensor product of subsystem r
resentations~on Ha). The effect of the operatorsA is to
introduce nontrivial three-charge interactions into the theo
These interactions will not affect the spectrum or cross s
tions in the three-charge problem, but they are import
contributions when the three-charge dynamics is used a
put to a many-charge problem. For example, they gene
important exchange currents in electron scattering off of
three-charge system, and these interactions are also ne
to embed this model in a four-charge sector. Unlike the
teractionsV̄, the three-charge operators generated by clu
properties are not optional.

XII. CONCLUSION

In this paper it was shown how to extend the construct
of Ref. @5# to formulate a class of relativistic theories wi
cluster properties, a spectral condition, that allow parti
production. Particle production requires modifications to
general construction discussed in Ref.@5#. The necessary
modifications were discussed in Secs. II–VII. Rather th
reproving all of the results of Ref.@5# using this modified
framework, the general construction was illustrated usin
nontrivial example in Secs. IX–XI.

Cluster properties in relativistic models are not commo
discussed, but constitute a very important topic for the
perimental program at laboratories like TJNAF. The reas
for emphasizing experiments on few-body systems at s
laboratories is that one expects that what is learned f
few-body experiments will constrain the structure of theor
that can be applied to more complex experiments. This
quires that the many-body theories cluster to the few-b
theories that are used to model the few-body physics. T
expectation is trivially realized in nonrelativistic quantu
mechanics. When the reactions have sufficient energy to
duce particles, a relativistic treatment is necessary and
realization of cluster properties becomes nontrivial.

Relativistic quantum field theory provides a formal so
tion to these problems, although it is difficult to find mat
ematically well-defined examples that have all of the pro
erties that are dictated the physical constraints. This mak
very difficult to find ab initio methods to control errors in
applications involving strong interactions. In addition, wh
cluster properties are realized elegantly, there are no f

@1# S.N. Sokolov, Dokl. Akad. Nauk USSR233, 575 ~1977!.
@2# F. Coester and W.N. Polyzou, Phys. Rev. D26, 1348~1982!.
@3# B.D. Keister and W.N. Polyzou,Advances in Nuclear Physics,

edited by J.W. Negele and E. Vogt~Plenum, New York, 1991!,
Vol. 20.
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body problems; even the simplest systems necessarily
volve an infinite number of degrees of freedom.

This paper illustrates a large class of theories with all
the desired properties. The underlying assumption in th
theories is that number of bare-particle degrees of freedo
bounded. This is achieved by introducing fictitious conserv
charges in the theory. The assumption that these charges
take on only non-negative values and each particle ha
least one positive charge limits the number of degrees
freedom. If these conditions are relaxed, the resulting the
will involve an infinite number of degrees of freedom.

The theories constructed in this paper have meanin
few-body problems. In the three-charge model it was sho
that the two-charge models determine the interactions in
three-charge sector up to a three-charge interaction. In g
eral, K-charge interactions in theN-charge problem are de
termined from theK-charge problem using cluster propertie
Like the fixed particle number case, cluster properties int
duce nontrivial many-charge interactions into the dynam
These interactions are determined recursively by the few
charge interactions in the absence of an explicitN-charge
interaction likeV̄. In general, just like with the fixed numbe
of particles case, the few- and many-charge interactions
under change of representation. The construction in this
per can be used to formulate relativistic isobar models
models with a dynamics dominated by resonances.

It is desirable to go beyond the restrictions imposed
charge conservation. The requirement of having a mean
ful few-body problem puts strong constraints on how clus
properties should be implemented in the general theory. O
way to control the number of degrees of freedom and hav
meaningful few-body problem is to reformulate the theory
the relevant degrees of freedom are physical-particle deg
of freedom. In this way the center of momentum ener
controls the number of degrees of freedom. In this pict
physical particles play the same role as minimally charg
particles. The mechanics of coupling the physics on differ
energy scales provides an interesting challenge that nee
be addressed to extend the construction of this paper.

The models discussed in this paper are valuable preci
because they are quantum models with an exact Poin´
symmetry which also satisfies cluster properties. In the
sence of a more fundamental theory, cluster properties
experiments on subsystems put strong constraints on
relativistic many-charge dynamics, which can then be u
to make predictions of the theory.

ACKNOWLEDGMENTS

This work was supported in part by the Department
Energy, Nuclear Physics Division, under Contract No. D
FG02-86ER40286.

@4# W.H. Klink and W.N. Polyzou, Phys. Rev. C54, 1189~1996!.
@5# W.N. Polyzou, J. Math. Phys.43, 6024~2002!.
@6# E.P. Wigner, Ann. Math.40, 149 ~1939!.
@7# R. Haag, K. Dan. Vidensk. Selsk. Mat. Fys. Medd.29, 1

~1955!.
2-18



d

. C

l

s.

nd

RELATIVISTIC QUANTUM MECHANICS: PARTICLE . . . PHYSICAL REVIEW C 68, 015202 ~2003!
@8# F. Coester and R. Haag, Phys. Rev.117, 1137~1960!.
@9# H. Araki, J. Math. Phys.1, 492 ~1964!.

@10# Y. Elmessiri and M.G. Fuda, Phys. Rev. C60, 044001~1999!.
@11# E. Pace, G. Salme, and A. Molochkov, Nucl. Phys.A699, 156

~2002!.
@12# S. Boffi, L.Y. Glozman, W. Klink, W. Plessas, M. Radici, an

R.F. Wagenbrunn, Eur. Phys. J. A14, 17 ~2002!.
@13# H. Kamada, W. Glockle, J. Golak, and C. Elster, Phys. Rev

66, 044010~2002!.
@14# T.D. Lee, Phys. Rev.95, 1329~1959!.
@15# B. de Dormale, J. Math. Phys.20, 1229~1979!.
@16# M.G. Fuda, Phys. Rev. D41, 534 ~1990!.
@17# W. Polyzou, Ann. Phys.~N.Y.! 193, 367 ~1989!.
01520
@18# G.C. Wick, Ann. Phys.~N.Y.! 18, 65 ~1962!.
@19# H. Joos, Fortschr. Phys.10, 65 ~1962!.
@20# F. Coester, Helv. Phys. Acta38, 7 ~1965!.
@21# M. Reed and B. Simon,Methods in Modern Mathematica

Physics~Academic, New York, 1979!, Vol. III.
@22# K.L. Kowalski, W.N. Polyzou, and E.F. Redish, J. Math. Phy

22, 1965~1981!.
@23# Gian Carlo-Rota on Combinatorics—Introductory Papers a

Commentaries, edited by J.P.S. Kung~Birkhäuser, Boston,
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