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Comparison of exact and approximate cross sections in relativistic Coulomb excitation
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We present a new method of obtaining time-dependent matrix elements of the electromagnetic pulse pro-
duced by a highly relativistic projectile. These matrix elements are used in a coupled-channel calculation to
predict the cross sections for population of one- and two-phonon states of the giant dipole resonance. Com-
parisons are made with the predictions of the long-wavelength and Born approximations.
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I. INTRODUCTION

The subject of relativistic Coulomb excitation has be
studied extensively in the two decades since its theore
foundations were established in the classic work of Alder a
Winther @1#. In the semiclassical approach to relativis
nuclear Coulomb excitation, the relative motion of the p
jectile and target is treated classically. Indeed, it is usu
assumed to be straight-line motion at a constant speedv. The
evolution of the internal degrees of freedom of each nucle
under the influence of the classical electromagnetic field p
duced by the other nucleus, is then followed using quan
mechanics.

There exists a wide literature devoted to the use of re
tivistic Coulomb excitation for the study of several aspects
nuclear structure that cannot be explored through the nuc
interaction@2–8#. In recent years, this subject has also be
shown to be relevant to the practical question of the stab
of beams of relativistic heavy ions, since some of the p
cesses that lead to loss of beam ions are initiated by C
lomb excitation@2,9–11#.

The situations that are easiest to interpret are those
can be described in terms of the Coulomb excitation o
single level. If this level is unbound, the Coulomb excitati
will be followed by particle emission. Methods have be
developed to extract from the particle emission cross sec
the part that is associated with the Coulomb excitation of
emitting state, as opposed to excitation via nuclear for
@12,13#. The Fermi-Williams-Weizsa¨cker ~FWW! method of
virtual quanta@14# is frequently used to analyze processes
which Coulomb excitation is followed by particle emissio
~see, e.g., Refs.@5,12,15,16#!. Here one simulates the elec
tromagnetic pulse by an equivalent flux of virtual photon
and uses experimentally determined photonuclear cross
tions to describe the effect of these virtual photons on
target. However, most of the FWW applications to relativ
tic Coulomb excitation at energies of spectroscopic inte
have not usedexperimentallydetermined photonuclear cros
sections, but have usedcalculated electromagnetic matrix
elements. Thus, in effect, these calculations really amoun
the use of the Born approximation as developed in Ref.@1#,
although they are expressed in the language of the metho
virtual photons.
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Analyses of experimental data based on the Born appr
mation imply that the final state is weakly coupled to
states other than the initial state. The Born approximation
just the first term of the Born~or Fredholm! series, which
constitutes a formal solution of the time-dependent Sch¨-
dinger equation. In dealing with multichannel process
some workers@17# have attempted to include a few high
terms of this series. Other approaches, based on coup
channel methods, Refs.@5,6#, have attempted a numerica
solution of the Schro¨dinger equation which, in principle
sums all terms of the Born series. The harmonic vibra
method allows for complete coupling of all the states o
vibrational band, if some simplifying assumptions are ma
concerning the ratios of interaction matrix elements.

All these calculations require matrix elements of the el
tromagnetic interaction between the nuclei, defined with
spect to the eigenstates of internal motion. If the relat
velocity of the nuclei is relativistic, the interaction is strong
retarded, which introduces difficulties into the evaluation
its matrix elements. The long-wavelength approximati
~LWLA ! has proven to be a very useful device for overco
ing these difficulties@5,6#.

We see then that two approximations have been ex
sively used in this field: the Born approximation to solve t
Schrödinger equation and the long-wavelength approxim
tion to evaluate matrix elements. These approximations h
been found to be effective below bombarding energies o
GeV per nucleon, which has been adequate for most nuc
structure investigations done so far. At higher energ
which could be of interest in future studies, and for energ
presently considered in colliders, these approximations m
not be adequate.

Much of the recent effort in the theoretical study of rel
tivistic Coulomb excitation is devoted to the nuclear stru
ture aspects of the problem. For example, in the study
giant resonances, one must take into account the spreadi
the resonance amongst the background states~see, e.g., Refs
@5,8,18–21#!, and the anharmonicity of the oscillatio
@4,6,22–24#. Of course, these studies must also incorpor
the interaction of the nuclear motion with the electroma
netic pulse, and this is generally done by means of the B
approximation and/or the the LWLA. For this reason, w
believe it is important to understand the limitations of the
©2003 The American Physical Society05-1
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approximations, even in Coulomb excitation studies wh
primary emphasis is on nuclear structure.

The purpose of this paper is to assess the ranges of v
ity of the LWLA and the Born approximation. We accom
plish this by comparison with a general numerical solution
the time-dependent Schro¨dinger equation, expressed as a
of coupled differential equations. The energy range con
ered here extends from energies currently used for nuc
structure studies~see, e.g., Refs.@5,6#!, up to about 10 GeV
per nucleon. The methods employed are quite general,
could be used at a still higher energy.

In Sec. II, a general survey of methods and approxim
tions is given. In Sec. III, we present our method for nume
cal evaluation of the Fourier transform of interaction mat
elements. In Secs. IV and V, we illustrate our procedure
investigating the relativistic Coulomb excitation~RCE! of
giant dipole resonance~GDR! phonons. We present numer
cal results for the particular case of208Pb projectiles exciting
GDR states of40Ca. These results are compared with tho
produced by approximate approaches. Our main results
summarized in Sec. VI.

II. SURVEY OF METHODS USED IN RCE

In the semiclassical theory of relativistic Coulomb exci
tion, the electromagnetic field between the projectile and
get is treated classically, but their internal degrees of freed
are treated according to the principles of quantum mech
ics. The time-dependent Schro¨dinger equation is written

i\
]c~ t !

]t
5@H01V~ t !#c~ t ! ~1!

with H0 referring only to the target1 degrees of freedom, an
V(t) the interaction between the target and the electrom
netic field of the projectile,

V~ t !5E FwC

ret~r 8,t !r~r 8!2
1

c
A

C

ret~r 8,t !• j ~r 8!Gd3r 8. ~2!

The scalar and the vector potentials associated with the
jectile electromagnetic field arewC

ret(r 8,t), AC
ret(r 8,t), and

r~r 8!, j ~r 8! are the target transition charge and current de
ties, respectively.

The projectile is assumed to have a spherically symme
charge distribution, with total chargeZPe. Because of its
large momentum, it can be assumed to follow a straight-
trajectory at constant speedv. Thus its center is located a
time t by

r5bŷ1vt ẑ. ~3!

1For simplicity, we restrict our discussion to the situation in whi
only the target is excited, but the argument is easily generalize
allow for projectile excitation as well.
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The constantb is the impact parameter. Excitation probabi
ties are calculated as functions ofb. The scalar and vecto
potentials of the projectile field, at the target pointr 8, are
given by @14#

w
C

ret~r 8,t !5
Z

P
eg

Ax821~y82b!21g2~z82vt !2
,

A
C

ret~r 8,t !5
v
c

w
C

ret~r 8,t !ẑ. ~4!

Because of the factorg2 in the denominator of Eq.~4!, these
potentials are not spherically symmetric about the projec
center.

The Schro¨dinger equation~1! is conveniently expressed i
terms of an expansion in eigenstatesfa of the nuclear
HamiltonianH0,

c~ t !5(
a

aa~ t !e2( i /\)eatfa ~5!

with

H0fa5eafa , ^faufb&5dab ; ~6!

Vab~ t !5^fauwC
ret~ t !r2

1

c
AC

ret~ t !• j ufb&. ~7!

If Eq. ~5! is substituted into Eq.~1!, the result is a set of
coupled ordinary differential equations for the amplitud
aa(t):

i\
dab~ t !

dt
5(

a
e( i /\)(eb2ea)tVba~ t !aa~ t !. ~8!

These equations must be solved subject to initial conditio

aa~2`!5da,0 .

The probability that the target will be in statefb after the
collision is given byuab(1`)u2, and the cross section fo
the population offb is given by

sb5E
bmin

`

2puab~1`!u2bdb. ~9!

Here bmin is usually taken to be somewhat larger than t
sum of the target and projectile radii@3#.

The first step in the solution of Eq.~8! is the computation
of the interaction matrix elementsVba(t). This is a formi-
dable task, since the retardation of the interaction introdu
a directional asymmetry, which means that the interaction
not invariant under rotations of the internal coordina
alone. Fortunately, Alder and Winther have found a con
nient multipole expansion of theFourier transformof the
Vba(t),

Vba~v![E
2`

` dt

\
eivtVba~ t !. ~10!to
5-2
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The Vba(v) defined in Eq.~10! can be used directly in a
coupled integral equation formulation of the Schro¨dinger
equation, as was done in Ref.@25#. However, this approach i
difficult to implement when many statesfa have to be in-
cluded in the calculation. Another alternative is to proce
by inverting Fourier transform~10!,

Vba~ t !5
\

2pE2`

`

dve2 ivtVba~v!, ~11!

to convert theVba(v) obtained from the Alder-Winther ex
pansion intoVba(t) which can be used in the time-depende
formulation ~8! of the Schro¨dinger equation.

There is no known closed expression for the Four
transform ~11!. In Ref. @6# Lanza et al. replaced the exac
Alder-Winther expression forVba(v) by its LWLA. Here
one assumes that the important Fourier components of
electromagnetic pulse correspond to wavelengths that
large compared to target dimensions. In this case, the sm
argument limit of the spherical Bessel function,

j lS v

c
r 8D;

S v

c
r 8D l

~2l11!!!
, ~12!

can be used. With this approximation, Lanzaet al. @6# were
able to obtain explicit approximate expressions, in terms
hypergeometric functions, for theVba(t), which they used in
their analyses of multiphonon Coulomb excitation. Th
tested the validity of the LWLA by comparing a fewVba(t)
calculated using the LWLA with numerical evaluations
Fourier transform~11! of the exactVba(v). They concluded
that the LWLA was adequate for their analysis of the208Pb
1208Pb collision atElab5641 MeV.

Bertulaniet al. @5# approached the problem of finding a
proximate Vba(t) by expressing potential~4! in a Taylor
expansion aroundx85y85z850. This formally exact ex-
pansion was truncated in a manner that caused the rema
terms to be precisely equal to those given by the LW
expressions in Ref.@6#. However, the advantage of the tru
cated Taylor expansion is that it yields simple expressions
the Vba(t) which, although equal to the hypergeomet
functions used in Ref.@6#, are much more transparent. Th
general proof of the equivalence of these methods can
found in Ref.@26#.

The approach to be followed in this paper is the use o
quick and accurate method for the numerical evaluation
Fourier transform~11!, using exactVba(v). TheVba(t) cal-
culated in this way will be used in the numerical solution
coupled time-dependent equations~8!. We will thus be able
to obtain essentially exact Coulomb-excitation cross sect
at any bombarding energy. These exact cross sections ca
used to explore the limits of validity of the LWLA and othe
approximations.
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III. NUMERICAL EVALUATION OF THE FOURIER
TRANSFORM

The difficulty of evaluating Eq.~11! as a numerical inte-
gral is the rapid oscillation of the integrand for high values
t. Our approach to this problem is a generalization of the id
behind the use of Simpson’s rule in the evaluation
*xi

xf f (x)dx. We first divide thev-integration range of Eq.

~11! into an even number of steps of lengthd. We assume
that these steps are small enough so that, over every adja
pair of steps,Vba(v) can be approximated by a quadrat
function of v. Thus for the intervalv12d<v<v11d, we
make the approximation

Vba~v!;S v2v1

d D 2

u1S v2v1

d D v1w.

We can make this approximation exact atv5v1 , v16d by
definingu,v, andw to be

u5
Vba~v12d!1Vba~v11d!

2
2Vba~v1!,

v5
Vba~v11d!2Vba~v12d!

2
,

w5Vba~v1!.

Note that since the quadratic approximation is applied
Vba(v), its validity is independent oft. Then thev12d
<v<v11d part of integration~11! can be approximated by

E
v12d

v11d
dve2 ivtVba~v!

;E
v12d

v11d
dve2 ivtF S v2v1

d D 2

u1S v2v1

d D v1wG .
~13!

Now an exact integration of the right-hand side of Eq.~13!
yields

E
v12d

v11d
dve2 ivtVba~v!

.
2

d2t3
ˆdt cos~dt !@2u cos~v1t !1vdt sin~v1t !#

1sin~dt !$@22u1d2t2~u1w!#cos~v1t !

2vdt sin~v1t !%‰2
2i

d2t3
$dt cos~dt !@2usin~v1t !

2vdtcos~v1t !#1sin~dt !$@22u1d2t2~u1w!#

3sin~v1t !1vdtcos~v1t !%%. ~14!

This approximation is used for every adjacent pair of step
the v integration.
5-3
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Equation~14! cannot be used att50, since it takes the
form 0/0 there. By expanding the quantities in bold cu
brackets aboutt50, we can show that

lim
t→0

E
v12d

v11d
dve2 ivtVba~v!

.
2

3
d~u13w!2

t2

15
@d2~3u15w!110dvv1

15~u13v !v1
2#2

2i

3
dt@dv1~u13w!v1#. ~15!

The only circumstance where the quadratic representa
of Vba(v) is inadequate occurs whenVba(v) is singular at
v50. In these casesVba(v) has the form

Vba~v!5 f ~v!K0S uvub
gv D , ~16!

with f (0)Þ0. SinceK0(uvub/gv) diverges logarithmically
as v→0, numerical integration of Eq.~16! requires specia
precautions. In this case, we work with the identity

Vba~v!5@ f ~v!2 f ~0!#K0S uvub
gv D1 f ~0!K0S uvub

gv D .

~17!

The first term in Eq.~17! is regular atv50, and its Fourier
transform can be evaluated without difficulty using Eqs.~14!
and ~15!. The Fourier transform of the second term in E
~17! can be evaluated exactly,

\

2p
E

2`

`

dve2 ivt f ~0!K0S uvub

gv
D 5

f ~0!\v

2AS b

g
D 2

1~vt !2

.

~18!

This term dominates the interaction matrix elementVba(t) at
large values ofutu.

IV. BRINK’S MODEL FOR THE GIANT DIPOLE
RESONANCE

A. The GDR phonon states

The giant dipole resonance can be regarded as a colle
oscillation of the protons in a nucleus relative to the neutr
@27#. The one-phonon GDR state also has a simple inter
tation in terms of an isovector linear combination of on
particle one-hole excitations of the ground state@28#. It was
shown by Brink@29# that states of the GDR have a simp
interpretation within the harmonic oscillator shell model,
terms of harmonic oscillations of the vectorRpn connecting
the centers of unexcited proton and neutron spheres. We
this representation of the GDR to provide the transit
charge and current densities needed for the calculation o
Vba(v) ~see Appendix A!.
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An individual GDR state is described by the three qua
tum numbersN, L, M , in whichN(50,1,2, . . . ) is theprin-
cipal quantum number. The number of GDR phonons as
ciated with this state is 2N1L. Thus theb,a in Vba(v)
stand for Nb , Lb , Mb and Na , La , Ma , respectively.
These states are denotedCM

NL .

B. Structure of the matrix elements

The algebraic details of the construction of the GD
states, and the derivations of the formulas for the associ
Vba(v), are given in the Appendixes. In order to facilita
our discussion of the long-wavelength approximation, and
the features that lead to convergence of thev integral, we
summarize here the general structure of the result.

Vba(v) can be expressed in terms of the Fourier tra
forms of the scalar and vector potentials as follows:

Vba~v!5^CMb

NbLbuV~v!uCMa

NaLa&

5Ed3r 8Frba~r 8!w
C

ret~r 8,v!2
1

c
jba~r 8!•A

C

ret~r 8,v!G ,
~19!

where

w
C

ret~r 8,v!5E
2`

` dt

\
eivtw

C

ret~r 8,t !,

A
C

ret~r 8,v!5
v
c

w
C

ret~r 8,v!ẑ. ~20!

The multipole expansion ofw
C

ret(r 8,v), given first by Alder
and Winther@1#, can be written in the form

w
C

ret~r 8,v!5(
l,m

KmS uvub
gv DCl,m~v! j lS uvu

c
r 8DYm

l ~ r̂ 8!

~21!

with

Cl,m~v![e2 im(p/2)
2ZPe

\v
Gl,m ,

where

Gl,m5
i l1m

~2g!m S v

uvu D
l2mS c

v D l

3A4p~2l11!~l2m!! ~l1m!!

3(
n

1

~2g!2n~n1m!!n! ~l2m22n!!
.

It is shown in Appendix B that the*wr part of the matrix
element can be expressed in the form
5-4
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E d3r 8wC
ret~r 8,v!rba~r 8!

5(
lm

Cl,m~v!KmS uvub
gv D

3E d3r 8rba~r 8! j lS uvu
c

r 8DYm
l ~ r̂ 8! ~22!

.e(v/c)2/8ZTn (
n8,,8

2~2,811!E
0

`

j 0S v

c
r 8D

3un8,8
2

~r 8!r 82dr8

3 (
n,NL

An,NLKmS uvub
gv D ũNLS v/c

2A2 D , ~23!

whereAn,NL are suitable coefficients. The functionsun,(r )
are the harmonic oscillator radial functions associated w
the individual nucleons moving in the shell-model potenti

un,~r !5A2,2n12~2,12n11!!! n3/2

Apn!
~Anr !,e2nr 2/2

3(
k

~22!kn!

k! ~n2k!! ~2,12k11!!!
~nr 2!k, ~24!

wheren5mvsm/\, with vsm representing the frequency a
sociated with the shell-model harmonic oscillator potent
The tilde in the corresponding Fourier transformed stateũ
signifies that the size parameter is taken to be 2/(ZTn). The
matrix elements of the2(1/c)* jba•A

C

ret part of the electro-
magnetic interaction are easily represented in terms
above formulas~see Appendix C!.

The advantage of this approach is that it yields expl
functions for the matrix elementsVba(v), with only the
single parametern ~which is related to the nuclear radius!.
Of course, the representation of GDR states in terms
eigenstates of the independent particle shell model with
cillator radial functions is highly schematic. Some importa
features of the real GDR, such as the spreading of the G
among background states, are missing from this mo
However, the states we use give a realistic picture of
collective oscillation of the nuclear protons and neutro
relative to each other, and we believe they provide su
ciently accurateVba(v) to enable us to test the dynamics
the Coulomb excitation process.

C. The long-wavelength approximation

1. Expression of the LWLA in Brink’s model of the GDR

We can get the result of using long-wavelength appro
mation~12! in Eq. ~22! by keeping only the lowest powers o
uvu/c in Eq. ~23!, apart from the v dependence o
K uMb2Mau(uvub/gv). This implies the following replace
ments in Eq.~23!:
01490
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-

i-

e(uvu/c)2/8Zn→1,

E
0

`

j 0S uvu
c

r 8Dun,
2 ~r 8!r 82dr8→ E

0

`

un,
2 ~r 8!r 82dr851,

ũNLS uvu/c

2A2
D→A 2L2N12~2L12N11!!!

~Zn/2!3/2Ap@~2L11!!! #2S uvu/c

2AZn
D L

.

If these replacements are made, our calculated results
equal to those obtained with the LWLA. In Sec. V we w
test the adequacy of the long-wavelength approximation,
varying bombarding energies and impact parameters.

2. General conditions for the validity of the LWLA

If the integral representation~11! of Vba(t) is to con-
verge, it is necessary thatVba(v) should decrease suffi
ciently rapidly asuvu→`. We use the termdampingto refer
to the phenomena responsible for this decrease. It is evi
from Eq. ~22! that the decrease ofVba(v) with increasing
uvu has two causes.

~1! Kinematic damping. The factorKm(uvub/gv) has a
large-uvu limit of

KmS uvub
gv D uvu@gv/b→ A p

2S uvub
gv De2uvub/gv.

This decrease occurs because the time-width of the elec
magnetic pulse at the target is of the order of@(b/g)/v#,
which contains frequency components up to, but not gre
exceeding,vmax;gv/b. It can also be said that the impuls
is too adiabatic to contain frequency components withv
.vmax.

~2! Dynamic damping. If ( uvu/c)R@1, the factor
j l@(uvu/c)r 8# in Eq. ~22! will go through many oscillations
asr 8 is integrated from 0 toR. These oscillations will lead to
cancellations between different parts of ther 8 integration
range, which will lead to a decrease ofVba(v) when uvu
.c/R. This phenomena can also be calledretardationdamp-
ing, because it is associated with the finite speedc of propa-
gation of electromagnetic signals. Because of this fin
speed, different parts of the target nucleus, at one timet, are
influenced by the projectile at different points along its orb
This implies that ther 8 integration needed for the evaluatio
of Vba(v) effectively produces a time average over the p
jectile history, which smooths out sharper features of t
history. ThusVba(t) will not vary as rapidly witht as it
would if there had been no retardation. Equivalently, t
presence of high-uvu components inVba(v) is diminished.

It is worth remarking that the criterion for dynamic dam
ing, uvu.c/R, is opposite to the validity condition for the
LWLA, uvu,c/R. Thus if we remain within the regime o
validity of the LWLA, we will not experience dynamic
damping; in this regime, the only phenomenon that can l
to the damping required for the convergence of integral~11!
is kinematic damping. Hence we conclude that the LWL
can only be applied ifuvu,c/R for theentire uvu range from
v50 up to vmax;gv/b, the frequency at which kinemati
damping becomes effective. This implies that
5-5
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vmax;
gv
b

,
c

R
,

b

R
.

gv
c

5Ag221,

must be true if the LWLA is to be trusted.

V. NUMERICAL RESULTS IN 40Ca-208Pb COLLISIONS

A. Comparison of excitation amplitudes

The coupled differential equations~8! for the ab(t) were
numerically integrated using the fourth-order Runge-Ku
method. We have included all states with fewer than
equal to two phonons, i.e., the states with (NLM)5~000!,
~010!,~011!,~020!,~021!,~022!,~100! (M51,2 here represent
the reflection-symmetric combinations of theM561,62
states!. A test of the numerical accuracy of the integrati
procedure is the extent to which the total normalization
the state,(buab(t)u251, is preserved. It was not difficult to
satisfy this condition to eight decimal places, even in sit
tions when there was strong coupling between the differ
ab(t).

The only free parameter in our model is the size para
eter,n5mvsm/\, that characterizes the shell-model pote
tial. For simplicity, we follow the usual prescription

LWLA
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FIG. 1. ~a! V0002011(v) for a bombarding energy of 10A GeV
and an impact parameter of 12 fm. The peak atv50 is narrower
for the exact curve than for the long-wavelength approximat
because the exact curve shows the effect of dynamic damping~b!
V0002011(t) corresponding to theV0002011(v) of ~a!. The narrower
v dependence of the exact curve results in a broadert dependence.
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\vsm;40A21/3 MeV,

which, in the case of40Ca, leads to\vsm511.7 MeV, n
50.281 77 fm22.

We illustrate the criterion of validity of the LWLA with
the example of208Pb projectiles of kinetic energy 10A GeV,
on a 40Ca target. Theng51110/0.938;11.66, and the con-
dition of validity of LWL is

b.A~11.66!2213R;50 fm.

Figures 1~a! and 1~b! show Vba(v) and Vba(t) for b
512 fm, with a referring to the ground state andb referring
to the one-phonon state withM51. It is evident that the
exact expression forVba(v), which includes dynamic as
well as kinematic damping, has less high-uvu content than
does the LWLA expression. Correspondingly,Vba(t) calcu-
lated with the LWLA is more sharply peaked than is t
exactVba(t). Figures 2~a! and 2~b! show the same compari
son, but forb550 fm, where the above argument sugge
that the LWLA should be adequate. While it is clear that t
LWLA does a better job atb550 fm than atb512 fm, the
approximation atb550 fm is still only fair.

The calculation of the total excitation probability requir
an integration overb. Thus the inadequacy of the LWLA fo
small b will have serious consequences only if the smalb
part of the integration range makes an important contribut
to the totalb integration. We will see in Sec. V C 3 that th
bombarding energy determines whether or not this occur

Some typical plots ofPb(t)[uab(t)u2 are shown in Figs.
3–6.

Figure 3 shows the occupation probability ofC1
01 for an

impact parameter of 200 fm. The horizontal line indicates
Born approximation prediction. It is seen that, beginni
near t50 fm/c, the occupation probability rises almo
monotonically to the Born value, and then remains there. T
occupation probability ofC0

01 shown in Fig. 4 has a very
different behavior. The coupling betweenC0

00 andC0
01 has a

long range, because thel5m50 term in thej•A part of the
interaction can connect these states. It is seen in Fig. 4
the occupation probability rises to a maximum neart
50 fm/c, and then strongly decreases. The asymptotic pr
ability in this case is 0.631025, compared to the Born pre
diction of ;1028. The rise and fall of theC0

01 occupation
probability is associated with the fact thatC0

01 represents a
longitudinal oscillation~with reference to the direction of th
projectile motion!, and the coupling to the ground sta
changes sign during the encounter.C1

01, on the other hand, is
a transverse oscillation, and the coupling to the ground s
has a constant sign.

The Born prediction for the excitation probability ofM
50 states is always very small at high bombarding ene
~see Sec. V C 1!.

The corresponding curves for a grazing collisionb
512 fm) are shown in Figs. 5 and 6. Again, theC1

01 occu-
pation probability rises almost monotonically to a consta
value, but in this case the constant value is significantly l
than the Born probability. The population ofC0

01 shows a

n
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rather complicated time structure. The asymptotic occupa
probability is again much greater than the Born probabili

The small-amplitude oscillation of the occupation pro
ability of C0

01 shown in Fig. 6 for b512 fm and t
.100 fm/c is a consequence of the long range of thel
5m50 coupling term.

B. Evaluation of the cross section

Figures 7 and 8 show the asymptotic probabilities forC0
01

andC1
01, plotted as functions of impact parameterb.

In the C1
01 case, it is seen that the Born expression giv

a very good representation of the exact probability wheb
*100 fm. In this situation, the most convenient way

LWLA
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FIG. 2. ~a! The same as Fig. 1~a!, but for an impact paramete
of 50 fm. ~b! The same as Fig. 1~b!, but for an impact parameter o
50 fm.
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FIG. 3. Excitation probability of the state (1/A2)@C1
011C21

01 #
as a function oft, for a bombarding energy of 10A GeV and an
impact parameter of 200 fm. The Born approximation excitat
probability is shown for comparison.
01490
n
.
-

s

evaluate the cross section is to break the impact-param
integral ~9! into two terms:

sb5E
bmin

b8
2puab~1`!u2bdb1E

b8

`

2puab~1`!u2bdb,

where b8*100 fm. The first integral is evaluated numer
cally using uab(1`)u2 calculated by integrating the Schro¨-
dinger equation for a range ofb values betweenbmin andb8.
The second integral can be calculated exactly, because tb
dependence of the Born probability is given b
@Km(uvub/gv)#2, and one can take advantage of the ex
formula

E
j

`

@Km~x!#2xdx5
j2

2 F @Km11~j!#22@Km~j!#2

2
2m

j
Km11~j!Km~j!G .

Thus the contribution to the cross section fromb8<b,`
will be

s5pq2b82
j2

2 F @Km11~j!#22@Km~j!#2

2
2m

j
Km11~j!Km~j!G ,

0.00

0.01

0.02

P
01

0 
(t

)

-400 -200 0 200 400

t  (fm/c)

FIG. 4. The same as Fig. 3, except that the state isC0
01. The t

→` prediction is 0.631025, compared to a Born approximatio
prediction of about 1028.
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BORN

-50 0 50 100 150

t  (fm/c)
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0.1

0.2

P
01

1(
t)

FIG. 5. The same as Fig. 3, but for an impact parameter
12 fm.
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where

j[
b8von-shell

gv

and

q2[
Born probability atb8

@Km~j!#2
.

In a situation such as that shown in Fig. 8, where the B
formula does not give an adequate approximation to the
act result even at largeb, it is necessary to do a numeric
integration of Eq.~9! over the entireb range.

C. Comparison of cross sections

We use the term ‘‘exact’’ to refer to calculations in whic
the interaction matrix elements are evaluated without
proximation, and full account is taken of coupling betwe
zero-, one-, and two-phonon states. The LWLA calculatio
also include full coupling between zero-, one-, and two- p
non states, but the interaction matrix elements are evalu
approximately@Eq. ~12! and Sec. IV C#. The Born approxi-
mation uses the correct on-shell interaction matrix eleme
but assumes that the transition to any final state is acc

0.0

0.1

0.2

0.3

0.4
P 0

10
 (t

)

0.5

-100 0 100 200 300 400

t  (fm/c)

FIG. 6. The same as Fig. 4, but for an impact paramete
12 fm.
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FIG. 7. The asymptotic excitation probability of the sta
(1/A2)@C1

011C21
01 # as a function of impact parameter, for a bom

barding energy of 10A GeV.
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plished in a direct, single-step process. Of course, our ‘‘
act’’ calculation is not really exact, since it leaves out t
effect of coupling with states of 3,4, . . . phonons. For this
reason, we have chosen to restrict our attention to bomb
ing energies of<10A GeV, with the expectation that below
this energy a description involving only zero, one, and t
phonons will be adequate. This is probably a fairly go
approximation for the excitation cross sections of the o
phonon states. It is difficult to assess the effect of our gre
than or equal to three-phonon truncation on the calculation
the two-phonon cross sections. This will be investigated i
future publication.

1. The Born approximation

A striking disagreement between the predictions of
Born approximation and the exact calculation is displayed
Fig. 9. At bombarding energy below about 2A GeV, the
Born approximation and exact calculation yield nearly t
same cross section for population of the one-phononM50
state. However, at higher bombarding energy, the Born
proximation cross section becomes vanishingly sm
whereas the exact calculation predicts appreciable cross
tion. It must be recalled that the Born approximation i

f

P 022 
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FIG. 8. The same as Fig. 7, except that the state is (1/A2)
3@C2

021C22
02 # . Because of the importance of multistep process

in the excitation of this state, the Born approximation undere
mates the excitation probability even at large impact parameter

σ0 1 0  (mb)

EXACT

LWLA
BORN
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0

1000
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3000

FIG. 9. Cross section for excitation of the stateC0
01 as a func-

tion of the bombarding energy.
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COMPARISON OF EXACT AND APPROXIMATE CROSS . . . PHYSICALREVIEW C 68, 014905 ~2003!
volves only theon-shellFourier component of the interac
tion, Vba@v5(Eb2Ea)/\#. It was shown in Ref.@25# that
DM50 on-shell interaction matrix elements vanish at hi
bombarding energy in proportion to 1/g2, as a result of can-
cellation between the contributions of the scalar and ve
potentials. This accounts for the strong decrease at high b
barding energy of the BornDM50 cross section. However
off-shell interaction matrix elementsVba@vÞ(Eb2Ea)/\#
do not vanish at highg; rather they diverge in proportion t
ln g. In the exact calculation, off-shell interaction matrix e
ements contribute to the population of the one-phononM
50 state, as do multistep processes. Thus the strong B
approximation selection rule against population of the o
phononM50 state is not exhibited by the exact calculatio

On the other hand, Fig. 10 shows that the Born appro
mation and exact calculations are in fairly good agreem
for the population of the one-phononuM u51 state over the
entire energy range. This suggests that most of the pop
tion of this state occurs in a single-step process. The fact
the exact calculation predicts a slightly smaller cross sec
can be interpreted as a result of the loss of flux from
uM u51 state associated with the coupling to other availa
states.

Figure 11 shows the cross section for the total popula
of the one-phonon level, including both theM50 and the
uM u51 states. It is seen that as a result of the Born appr
mation underprediction for theM50 state, and overpredic
tion for the uM u51 state, there is fairly good agreement f

LWLA
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FIG. 10. Cross section for excitation of the state (1/A2)@C1
01

1C21
01 # as a function of the bombarding energy.
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FIG. 11. Total cross section for excitation of the one-phon
states~the sums of the curves in Figs. 9 and 10!.
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the total one-phonon cross section over the entire ene
range. Thus measurements of the total one-phonon cross
tion cannot distinguish between the predictions of the B
approximation and exact calculations, and our exact calc
tion has little to contribute to the many analyses of to
one-phonon cross sections performed with the Born appr
mation. However, if the separateM50 and uM u51 cross
sections could be measured, then a clear choice could
made between the predictions of the Born approximation
the exact calculation.

Figures 12–16 show our results for the two-phonon sta
In all cases, the cross section predicted by the exact calc
tion far exceeds the predictions of the Born approximati
The natural explanation is that these states are predomina
excited by multistep processes.

2. Comparison with the harmonic vibrator model

Some analyses of multiphonon excitations have used
harmonic vibrator model, in which it is assumed that the to
effect of the interaction on the target protons can be imita
by an operator that is linear in the components of the coll
tive variable Rpn. This has the consequence that mu
tiphonon states are populated by a series of on-shell tra
tions, and thus the fact that theDM50 on-shell transition
matrix element becomes small at high bombarding ene
implies that theDM50 matrix elements will play little role
in multiphonon excitation. It was shown in Ref.@2# that the

n
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EXACT
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FIG. 12. Cross section for excitation of the stateC0
02 as a func-

tion of the bombarding energy. The maximum Born cross sec
is 0.038 mb.
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FIG. 13. Cross section for excitation of the state (1/A2)@C1
02

1C21
02 # as a function of the bombarding energy.
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ratios of the cross sections for the two-phonon states~020!,
~021!, ~022!, ~100! are predicted by this model to be 1/0/3/
The absence of population of the state~021! is due to the fact
that this state consists of phonons withm50 andm51, and
the m50 phonon is inaccessible. The predictions of the
act calculation, as shown in Figs. 12–16, are quite differe
At a bombarding energy of 10A GeV, the ratios are approxi
mately 4.1/0.3/0.1/1.6. The important role of theDM50 ma-
trix elements in these numbers is evident from t
bombarding-energy dependence shown in Figs. 12–16.
example, of these four states, only~022! shows a cross sec
tion that decreases with bombarding energy, and this is
state that could be expected to be least affected byDM50
matrix elements. Thus, our microscopic treatment of the
teraction, which follows the effect of the external pulse
each proton, gives quite different results from the assump
that the interaction is linear in the collective variables. Ho
ever, it must be borne in mind that the error we make
truncating our phonon space at two phonons may introd
significant errors into our two-phonon predictions. This
quires further investigation.

3. The long-wavelength approximation

It is seen in the cross-section comparisons, Figs. 9–
that at high bombarding energy the LWLA prediction e
ceeds the result of exact calculation, except for the o
phononuM u51 state and the two-phononuM u52 state. The

0 2 4 6 8
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10
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15

20

σ 0
22
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m
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EXACT

BORN
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FIG. 14. Cross section for excitation of the state (1/A2)@C2
02

1C22
02 # as a function of the bombarding energy.
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FIG. 15. Cross section for excitation of the stateC0
10 as a func-

tion of the bombarding energy. The maximum Born cross sec
is 0.0006 mb.
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common characteristic of these two states is that they invo
only oscillation in the transverse (x̂,ŷ) directions, whereas
all the other final states involve oscillation in theẑ direction.
We have already noted in connection with Figs. 4 and 6 t
the excitation of theẑ oscillation takes place rapidly in th
vicinity of t50. The LWLA matrix elements are mor
strongly peaked in the vicinity oft50 @see Figs. 1~b! and
2~b!# due to absence of LWLA dynamic damping. Thus it
not surprising that the LWLA gives enhanced predictions
states involvingẑ excitation. On the other hand, the excit
tion of thex̂,ŷ oscillation is a more gradual process, coveri
a largert range, and so is more sensitive to the time region
which the exact matrix elements are greater than the LW
matrix elements@Figs. 1~b! and 2~b!#.

VI. CONCLUSIONS

Although we have used a somewhat schematic repre
tation of the GDR nuclear states, we can draw some con
sions about the extent to which the LWLA and Born appro
mation reproduce the results of our exact calculations. Th
conclusions may also apply to calculations that use m
realistic nuclear states.

It is apparent from Figs. 9–16 that at bombarding energ
below about 3A GeV, the LWLA and the exact calculation
predict essentially the same cross sections, state by s
This observation supports the validity of several RCE inv
tigations that have used the LWLA@5,6#. It is shown in Fig.
12 that the agreement between the LWLA and exact calc
tions of the total one-phonon cross section extends up
about 5A GeV. Above 5A GeV, however, there are signifi
cant deviations between the LWLA and exact cross sectio
Thus at higher bombarding energies, the LWLA ceases to
a reliable approximation, especially if it is important to kno
the cross sections for population of individualM states.

Not surprisingly, the Born approximation is unable to pr
dict the cross section for population of two-phonon states
performance with respect to the one-phonon states is an
gous to that of the LWLA. At bombarding energies belo
2A GeV, it does well with bothM50 anduM u51 states. At
higher energies, it underpredicts theM50 cross section~Fig.
9!, and overpredicts theuM u51 cross section~Fig. 10!. The

n
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FIG. 16. Total cross section for excitation of the two-phon
states~the sums of the curves in Figs. 12–15!. The maximum Born
cross section is 0.65 mb.
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net result is in good agreement with the exact prediction
the total one-phonon cross section up to about 8A GeV ~Fig.
11!.
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APPENDIX A: BRINK’S REPRESENTATION OF THE GDR
PHONON STATES

We first construct the states of the GDR which are au
matically contained in the independent particle harmonic
cillator shell model. For simplicity, we restrict our attentio
to N5Z closed-shell nuclei. We start by locating theZ pro-
tons and theZ neutrons relative to the fixed harmonic osc
lator origin by p1 , . . . ,pZ , n1 , . . . ,nZ . To construct GDR
states, we introduce new position variables

R5
p11•••1pZ1n11•••1nZ

2Z
,

Rpn5S p11•••1pZ

Z D2S n11•••1nZ

Z D ~A1!

and relative variablesp1 , . . . ,pZ21 , n1 , . . . ,nZ21. The
p1 , . . . ,pZ21 specify the location of theZ protons relative
to their mass center. It is clear from Fig. 17 that thej th
proton is located relative to the origin by

pj5R1
1

2
Rpn1f j~p1 , . . . ,pZ21!. ~A2!

We will not have to specify the p1 , . . . ,pZ21 ,
n1 , . . . ,nZ21 or the f j any further; we will only need theR
and theRpn dependence ofpj .

R

Rpn

pj

fj

NEUTRONS

PROTONS

O

FIG. 17. Rpn locates the position of the proton mass center re
tive to the neutron mass center, whereasR locates the total mas
center. Thej th proton is located relative to the proton mass cen
by f j .
01490
r
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-

If the independent-particle harmonic oscillator Ham
tonian is expressed in terms of these new variables, it se
rates as follows

H5S 2
\2

2~2Zm!
¹R

2 1
2Zmvsm

2

2
R2D

1S 2
\2

2S Z

2
mD ¹Rpn

2 1

Z

2
mvsm

2

2
Rpn

2 D
1H8~p1 , . . . ,pZ21 , n1 , . . . ,nZ21!. ~A3!

Here m is the nucleon mass andvsm is the single-nucleon
oscillator frequency. Corresponding to this separability,
can write our harmonic oscillator eigenstates in the form

Ca5CM1

N1 ,L1~R!CM2

N2 ,L2~Rpn!

3x~p1 , . . . ,pZ21 , n1 , . . . ,nZ21!. ~A4!

The spin degrees of freedom are incorporated inx, in such a
way as to produce a state that is antisymmetric with resp
to the exchange of any two protons or any two neutro
Note that changingN1 , L1 , M1 or N2 , L2 , M2 has no effect
on the antisymmetry, since the variablesR andRpn are sym-
metric with respect to the exchange of any two protons
any two neutrons.

It is clear that the state of lowest energy, consistent w
the Pauli principle, will have zero quanta in the variablesR
andRpn:

Cground-state5C0
0,0~R!C0

0,0~Rpn!

3x0~p1 , . . . ,pZ21 , n1 , . . . ,nZ21!.

~A5!

Now let us consider a series of states of the form

CM
N,L5C0

0,0~R!CM
N,L~Rpn!

3x0~p1 , . . . ,pZ21 , n1 , . . . ,nZ21!. ~A6!

These states all have no quanta of center-of-mass mo
The relative motions of the protons to each other, and of
neutrons to each other, are exactly the same as they are i
shell-model ground state. The only feature distinguishing
states~A6! is the motion of the proton mass center relative
the neutron mass center. Brink@29# identified these states a
belonging to the GDR, because this collective oscillation
the protons relative to the neutrons was the original interp
tation given by Goldhaber and Teller@27# to the phenomenon
now known as the GDR@30#.

It can be seen from Eq.~A3! that the energy associate
with theRpn quanta is\vsm, the same as the energy asso
ated with the individual oscillator quanta. It was sugges
by Wilkinson @28#, and proved by Brown and Bolsterli@31#,
that the residual interaction between the nucleons will
crease the GDR phonon energy.

-

r
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The harmonic oscillator radial functions associated w
the individual nucleons were specified in Eq.~24!. The same
radial functions are used for the GDR statesCM

N,L(Rpn), ex-
cept thatm is replaced byZm/2, which is the reduced mas
for the relative motion of the proton and neutron spheres

Electromagnetic properties of states are normally d
cussed in the long-wavelength approximation, in which
electric dipole operator has the form

M5A 3

4p (
j 51

Z

pj .

Equation~A2! can be used to express this operator in ter
of R, Rpn, pj . The only part of this operator that has matr
elements between states of the GDR band~A6! is

M5A 3

4p

Z

2
Rpn,

which can only connect states that differ by one GDR p
non. Thus theE1 transition between the ground state and
one-phonon Brink level exhausts theE1 sum rule.

APPENDIX B: CONTRIBUTION OF THE SCALAR
POTENTIAL

It is shown in Ref.@25# that if the nuclear statesfa , fb
are defined with ‘‘time-reversal’’ phases,

~fMa

I a !* 5~21! I a2MafM2a

I a , ~B1!

then theVba(v) will be purely real. We will use this phas
convention.

The charge densityrba(r 8) is defined in terms of the
nuclear eigenstatesfb , fa by

rba~r 8!5eE d3p1 , . . . ,d3nZ(
j 51

Z

d~r 8Àpj !fb* fa .

~B2!

The sum extends over the protons only. By using Eqs.~B2!
and ~21! in Eq. ~19!, we see that the scalar potential cont
bution toVba(v) is

E d3r 8wC
ret~r 8,v!rba~r 8!

5(
lm

Cl,m~v!KmS uvub
vg D

3E d3r 8rba~r 8! j lS uvu
c

r 8DYm
l ~ r̂ 8!. ~B3!

The integral required here also occurs in the Fourier tra
form of rba(r 8),
01490
-
e

s

-
e

s-

rba~k![E eik•r8rba~r 8!d3r 8

54p(
lm

i lYm
l* ~ k̂!E d3r 8rba~r 8! j l~kr8!Ym

l ~ r̂ 8!

~B4!

if we setk5uvu/c. Thus we turn our attention to the evalu
ation of rba(k):

rba~k![E eik"r8rba~r 8!d3r 8

5E d3r 8eik•r8^fbue(
j 51

Z

d~r 82pj !ufa&

5^fbue(
j 51

Z

eik•pj8ufa&. ~B5!

We now choose states in the GDR band~A6! for thefb and
fa , and use Eq.~A2! to expresspj in terms of the new
variables:

rba~k!5eE d3RuC0
0,0u2

3E d3RpnCMb
* Nb ,Lb~Rpn!CMa

Na ,La~Rpn!

3E d3p1 , . . . ,d3nZ21

3ux0~p1 , . . . ,pZ21 , n1 , . . . ,nZ21!u2

3(
j 51

Z

eik•[R1(1/2)Rpn1 f j (p1 , . . . ,pZ21 , n1 , . . . ,nZ21)]

5QE d3RpnCMb
* Nb ,Lb~Rpn!e

i (k/2)•RpnCMa

Na ,La~Rpn!

~B6!

with

Q[eE d3RuC0
0,0u2eik•RE d3p1 , . . . ,d3nZ21

3ux0~p1 , . . . ,pZ21 , n1 , . . . ,nZ21!u2

3(
j 51

Z

eik•f j (p1 , . . . ,pZ21 , n1 , . . . ,nZ21). ~B7!

Note that the factorQ is independent of the GDR quantum
numbers. This is a consequence of our assumption that
proton and neutron spheres remain unexcited during theRpn
oscillation. Thus we can calculateQ by considering the
ground-state proton density
5-12
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r00~k!5eE d3r 8eik•r8
1

4p (
n8,

2~2,11!un8,
2

~r 8!

5e(
n8,

2~2,11!E
0

`

un8,
2

~r 8! j 0~kr8!r 82dr8.

~B8!

Then8, sum extends over the single-particle levels occup
in the ground state~for example, 00, 01, 02, 10 for40Ca).
Using Eq.~B6! to evaluater00(k) yields

r00~k!5e2k2/8Zn3Q, ~B9!

so that

Q5ek2/8Zn3e(
n,

2~2,11!E
0

`

un,
2 ~r 8! j 0~kr8!r 82dr8.

~B10!

To evaluate theRpn integral in Eq.~B6!, we write

CMb
* Nb ,Lb~Rpn!CMa

Na ,La~Rpn!

5(21)Lb2MbC
2Mb

Nb ,Lb~Rpn!CMa

Na ,La~Rpn!

5~21!Lb2Mb(
L

~LbLa2MbMauLMa2Mb!

3@CNb ,Lb~Rpn!C
Na ,La~Rpn!#Ma2Mb

L . ~B11!

We then use the Talmi-Moshinsky coefficients, defined b

@cn1 ,1~r1!cn2 ,2~r2!#M
L

5 (
n,l,N,L

i ,11,22l2L~n1 ,1 ,n2 ,2unl,NL!L

3FcnlS r12r2

A2
D cNLS r11r2

A2
D G

M

L

~B12!

with r15r25Rpn, to write

@CNb ,Lb~Rpn!C
Na ,La~Rpn!#Ma2Mb

L

5 (
n,l,N,L

i La1Lb2l2L~NbLb ,NaLaunl,NL!L

3@Cnl~0!cNL~A2Rpn!#Ma2Mb

L

5 i ,11,22LS Zn

2p D 3/4

(
n,N

~NbLb ,NaLaun0,NL!L

3A~2n11!!!

~2n!!!
CMa2Mb

NL ~A2Rpn!. ~B13!

The extra factori ,11,22l2L is due to our use of time
reversal phases. Then,N sum in Eq.~B13! is restricted by
01490
d

the quanta-preserving condition 2(n1N)1L52(Nb1Na)
1Lb1La , which in turn requires thatLb1La2L be even.

To Fourier transformCMa2Mb

NL (A2Rpn) we use the gen-

eral harmonic oscillator result

1

~2p!3/2E2`

`

eik•rcm
n,~r !d3r 5 i 2n1,c̃m

n,~k!,

wherec̃m
n,(k) has a size parameterñ which is the reciprocal

of the size parameter ofcm
n,(r ). Then

E
2`

`

ei (k/2)•RpnCMa2Mb

NL ~A2Rpn!d
3Rpn

5 i 2N1L p3/2C̃Ma2Mb

NL S k

2A2
D

5~21!N1Lp3/2YMa2Mb

L ~ k̂!ũNLS k

2A2
D .

~B14!

By combining Eqs.~B6!, ~B8!, ~B13!, and~B14!, we get

rba~k!5~21!Mb i La2LbS Znp

2 D 3/4

ek2/8Zn (
n8,,

2~2,11!

3E
0

`

j 0~kr8!un8,
2

~r 8!r 82dr8

3 (
n,N,L

i 2N1L~LbLa 2MbMauLMa2Mb!

3~NbLb ,NaLaun0,NL!L

3A~2n11!!!

~2n!!!
ũNLS k

2A2
D YMa2Mb

L ~ k̂!. ~B15!

Finally, comparison with Eqs.~B3! and ~B4! shows that

E d3r 8w
C

ret~r 8,v!rba~r 8!

5
~21!Mai La2Lb

4p S Znp

2 D 3/4

e(uv/c)2/8ZnKmS uvub
vg D

3(
n,,

2~2,11!E
0

`

j 0S uvu
c

r 8Dun,
2 ~r 8!r 82dr8

3(
L

CL,Mb2Ma
~LbLa2MbMauLMa2Mb!

3(
n,N

~21!N~NbLb ,NaLaun0,NL!L

3A~2n11!!!

~2n!!!
ũNL

S uvu
c

2A2
D , ~B16!
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which gives us an explicit expression for the contribution
the scalar potential toVba(v). This expression is summa
rized in Eq.~23!.

APPENDIX C: CONTRIBUTION OF THE VECTOR
POTENTIAL

The analysis is similar to the one presented in Appendi
for the scalar potential. We need

2
1

cE d3r 8jba~r 8!•A
C

ret~r 8,v!

52
v

c2E d3r 8@ jba~r 8!#zwC

ret~r 8,v!

52
v

c2 (
l,m

Cl,mE d3r j l~kr8!Ym
l ~ r̂ 8!@ jba~r 8!#z .

~C1!

To obtain these integrals we study the Fourier transform
@ jba(r 8)#z ,

@ jba~k!#z[E eik•r8@ jba~r 8!#zd
3r 8

54p(
l,m

i lYm*
l~ k̂!E d3r 8 j l~kr8!

3@ jba~r 8!#zYm
l ~ r̂ 8!

5E d3r 8eik•r8E d3p1 , . . . ,d3nZ

e\

2mi

3(
j 51

Z

d~r 8Àpj !S fb*
]

]pj ,z
fa2fa

]

]pj ,z
fb* D

5
e\

2miE d3p1 , . . . ,d3nZ(
j 51

Z

eik•pj

3S fb*
]

]pj ,z
fa2fa

]

]pj ,z
fb* D . ~C2!

We now takefb , fa to be states in the GDR band~A6!,
and transform to the variablesR,Rpn,p1 , . . . ,pZ21 ,
n1 , . . . ,nZ21. To do this, we use Eq.~A2! to obtain

]

]pj ,z
5

1

2Z

]

]Rz
1

1

Z

]

]Rpn,z

1 (
k51→ j 21;m5x,y,z

S ]

]pj ,z
pk,mD ]

]pk,m
.

Since thepk involve only the relative positions of thepj , the
quantities (]/]pj ,z)pk,m are independent ofR andRpn.

Equation~C2! now takes the form
01490
f

B

f

@ jba~k!#z5
e\

2~Zmi!
Q3E d3Rpn ei (k•Rpn/2)

3S CMb
* NbLb~Rpn!

]

]Rpn,z
CMa

NaLa~Rpn!

2CMa

NaLa
]

]Rpn,z
CMb

* NbLb~Rpn! D , ~C3!

whereQ is the quantity defined in Eq.~B7! and evaluated in
Eq. ~B10!. Note that Eq.~C3! vanishes for diagonal matrix
elements (Nb5Na , Lb5La , Mb5Ma). The derivatives in
Eq. ~C3! can be expressed as linear combinations of h
monic oscillator wave functions using the relation

]

]Z
Cm

n,,~R!

5An

2 FA ~,2m!~,1m!

~2,21!~2,11!
@A2n12,11Cm

n,,21~R!

1A2n12Cm
n11,,21~R!#2A~,112m!~,111m!

~2,11!~2,13!

3@A2nCm
n21,,11~R!1A2n12,13Cm

n,,11~R!#G .
This converts Eq.~C3! into a linear combination of terms
such as Eq.~B6!, which can be evaluated exactly as w
done in Appendix B.

APPENDIX D: SYMMETRIES

Since the projectile moves in they-z plane, its scalar and
vector potentials will be invariant under reflection across
y-z plane. Therefore, only reflection-symmetric target sta
will be excited from the reflection-symmetric ground sta
These are

C0
NL or

1

A2
~C uM u

NL 1C2uM u
NL !.

Thus if MaÞ0 andMbÞ0, we must calculate

K 1

A2
~CMb

NbLb1C
2Mb

NbLb!UV~v!U 1

A2
~CMa

NaLa1C
2Ma

NaLa!L
5^C uMbu

NbLbuV~v!uC uMau
NaLa&1^C uMbu

NbLbuV~v!uC2uMau
NaLa &.

If MbÞ0 andMa50, we must calculate

K 1

A2
~CMb

NbLb1C
2Mb

NbLb!UV~v!UC0
NaLaL

5A2^C uMbu
NbLbuV~v!uC0

NaLa&.

It can be verified that Eq.~B3! of Ref. @25#,

^CMb

NbLbuV~v!uCMa

NaLa&5^CMa

NaLauV~2v!uCMb

NbLb&,

is satisfied by the matrix elements discussed in Appendixe
and C.
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