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Comparison of exact and approximate cross sections in relativistic Coulomb excitation
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We present a new method of obtaining time-dependent matrix elements of the electromagnetic pulse pro-
duced by a highly relativistic projectile. These matrix elements are used in a coupled-channel calculation to
predict the cross sections for population of one- and two-phonon states of the giant dipole resonance. Com-
parisons are made with the predictions of the long-wavelength and Born approximations.
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I. INTRODUCTION Analyses of experimental data based on the Born approxi-
mation imply that the final state is weakly coupled to all
The subject of relativistic Coulomb excitation has beenstates other than the initial state. The Born approximation is
studied extensively in the two decades since its theoreticglst the first term of the Borrior Fredholm series, which
foundations were established in the classic work of Alder andtonstitutes a formal solution of the time-dependent Schro
Winther [1]. In the semiclassical approach to relativistic dinger equation. In dealing with multichannel processes,
nuclear Coulomb excitation, the relative motion of the pro-some workerg17] have attempted to include a few higher
jectile and target is treated classically. Indeed, it is usuallfterms of this series. Other approaches, based on coupled-
assumed to be straight-line motion at a constant spe@the  channel methods, Ref$5,6], have attempted a numerical
evolution of the internal degrees of freedom of each nucleussolution of the Schrdinger equation which, in principle,
under the influence of the classical electromagnetic field prosums all terms of the Born series. The harmonic vibrator
duced by the other nucleus, is then followed using quantunmethod allows for complete coupling of all the states of a
mechanics. vibrational band, if some simplifying assumptions are made
There exists a wide literature devoted to the use of relaconcerning the ratios of interaction matrix elements.
tivistic Coulomb excitation for the study of several aspects of All these calculations require matrix elements of the elec-
nuclear structure that cannot be explored through the nuclearomagnetic interaction between the nuclei, defined with re-
interaction[2—8J. In recent years, this subject has also beerspect to the eigenstates of internal motion. If the relative
shown to be relevant to the practical question of the stabilitwelocity of the nuclei is relativistic, the interaction is strongly
of beams of relativistic heavy ions, since some of the proretarded, which introduces difficulties into the evaluation of
cesses that lead to loss of beam ions are initiated by Colits matrix elements. The long-wavelength approximation
lomb excitation[2,9—-11]. (LWLA) has proven to be a very useful device for overcom-
The situations that are easiest to interpret are those thatg these difficultieg5,6].
can be described in terms of the Coulomb excitation of a We see then that two approximations have been exten-
single level. If this level is unbound, the Coulomb excitationsively used in this field: the Born approximation to solve the
will be followed by particle emission. Methods have beenSchralinger equation and the long-wavelength approxima-
developed to extract from the particle emission cross sectiotion to evaluate matrix elements. These approximations have
the part that is associated with the Coulomb excitation of théseen found to be effective below bombarding energies of 2
emitting state, as opposed to excitation via nuclear force§eV per nucleon, which has been adequate for most nuclear
[12,13. The Fermi-Williams-Weizszker (FWW) method of  structure investigations done so far. At higher energies,
virtual quantg14] is frequently used to analyze processes inwhich could be of interest in future studies, and for energies
which Coulomb excitation is followed by particle emission presently considered in colliders, these approximations may
(see, e.g., Refd5,12,15,18). Here one simulates the elec- not be adequate.
tromagnetic pulse by an equivalent flux of virtual photons, Much of the recent effort in the theoretical study of rela-
and uses experimentally determined photonuclear cross setivistic Coulomb excitation is devoted to the nuclear struc-
tions to describe the effect of these virtual photons on theure aspects of the problem. For example, in the study of
target. However, most of the FWW applications to relativis-giant resonances, one must take into account the spreading of
tic Coulomb excitation at energies of spectroscopic interesthe resonance amongst the background statss e.g., Refs.
have not use@xperimentallydetermined photonuclear cross [5,8,18—-21), and the anharmonicity of the oscillation
sections, but have usechlculated electromagnetic matrix [4,6,22—24. Of course, these studies must also incorporate
elements. Thus, in effect, these calculations really amount tthe interaction of the nuclear motion with the electromag-
the use of the Born approximation as developed in REf.  netic pulse, and this is generally done by means of the Born
although they are expressed in the language of the method approximation and/or the the LWLA. For this reason, we
virtual photons. believe it is important to understand the limitations of these
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approximations, even in Coulomb excitation studies whos&he constanb is the impact parameter. Excitation probabili-

primary emphasis is on nuclear structure. ties are calculated as functions lof The scalar and vector
The purpose of this paper is to assess the ranges of valighotentials of the projectile field, at the target poirif are

ity of the LWLA and the Born approximation. We accom- given by[14]

plish this by comparison with a general numerical solution of

the time-dependent Schtimger equation, expressed as a set Z.ey

of coupled differential equations. The energy range consid- (prCEI(I”,t)= > — =)

ered here extends from energies currently used for nuclear VX'2+(y' —b)2+ 442’ —vt)
structure studie¢see, e.g., Ref$5,6]), up to about 10 GeV

per nucleon. The methods employed are quite general, and ret o r gy O retir 5

could be used at a still higher energy. Act(r D "Dct(r bz @)

In Sec. Il, a general survey of methods and approxima-
tions is given. In Sec. IlI, we present our method for numeri-Because of the factoy? in the denominator of Eq4), these
cal evaluation of the Fourier transform of interaction matrix Potentials are not spherically symmetric about the projectile
elements. In Secs. IV and V, we illustrate our procedure bycenter. B
investigating the relativistic Coulomb excitatidfRCE) of The Schrdinger equatiorfl) is conveniently expressed in
giant dipole resonanc&DR) phonons. We present numeri- terms of an expansion in eigenstates, of the nuclear
cal results for the particular case #Pb projectiles exciting HamiltonianH,,
GDR states of*%Ca. These results are compared with those
produced by approximate approaches. Our main results are w(t)=2 a,(t)e (Medtgp (5)
summarized in Sec. VI. a

with
Il. SURVEY OF METHODS USED IN RCE
i i L i H0¢a:6a¢a! <¢a|¢ﬁ>:5¢yﬁ; (6)
In the semiclassical theory of relativistic Coulomb excita-
tion, the electromagnetic field between the projectile and tar- e 1 . _
get is treated classically, but their internal degrees of freedom Vas(t) =(daleC(t)p— EAct(t) ‘ilpg)- (7
are treated according to thg principles of quantum mechan-
ics. The time-dependent Scldiager equation is written If Eq. (5) is substituted into Eq(1), the result is a set of
coupled ordinary differential equations for the amplitudes
oyt a(1):
ih ——=[Ho+V(t)]s(t) (o
at dag(t) et
h—gr =2 e DV (hayt). ()

with H referring only to the targétlegrees of freedom, and
V(t) the interaction between the target and the electromagthese equations must be solved subject to initial conditions

netic field of the projectile,
aa(_oo): 5(1,0'

1 . The probability that the target will be in stadg; after the
— ’ N _ ’ ’ 3,7
V(t)_f [ﬁprcet(r Dp(r’) CArcet(r DDA @) oision is given by|ag(+)[?, and the cross section for
the population ofg 4 is given by

The scalar and the vector potentials associated with the pro- o

jectile electromagnetic field areSi(r’,t), AS{(r’,t), and O'B:f 2m|ag(+)[*bdb. ©)

p(r’), j(r") are the target transition charge and current densi- min

ties, respectively. Here by, is usually taken to be somewhat larger than the
The projectile is assumed to have a spherically symmetrigym of the target and projectile radg].

charge distribution, with total chargépe. Because of its The first step in the solution of E¢) is the computation

large momentum, it can be assumed to follow a straight-lingf the interaction matrix elementég,(t). This is a formi-
trajectory at constant speed Thus its center is located at gaple task, since the retardation of the interaction introduces

time t by a directional asymmetry, which means that the interaction is

not invariant under rotations of the internal coordinates
r=by+ovt2. (3y  alone. Fortunately, Alder and Winther have found a conve-
nient multipole expansion of thEBourier transformof the
Vﬁa(t)i
For simplicity, we restrict our discussion to the situation in which
. ) : ) . o dt
only the target is excited, but the argument is easily generalized to \/Ba(w)E ¢ “’tVBa(t). (10)
allow for projectile excitation as well. —w
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The Vg,(w) defined in Eq.(10) can be used directly in a I1l. NUMERICAL EVALUATION OF THE FOURIER
coupled integral equation formulation of the Sadtfirger TRANSFORM

equation, as was done in RE25]. However, this approach is
difficult to implement when many states, have to be in-
cluded in the calculation. Another alternative is to proceec{J
by inverting Fourier transforni10), .

The difficulty of evaluating Eq(11) as a numerical inte-
ral is the rapid oscillation of the integrand for high values of

Our approach to this problem is a generalization of the idea
behind the use of Simpson’s rule in the evaluation of
fii’f(x)dx. We first divide thew-integration range of Eq.

* it (12) into an even number of steps of lengthWe assume
Via(t)= ﬂf_mdwe Vol @), (11 that these steps are small enough so that, over every adjacent
pair of stepsVgs,(w) can be approximated by a quadratic
function of w. Thus for the intervalv, — d<w=<w,+ 5, we

to convert theV,(w) obtained from the Alder-Winther ex- make the approximation

pansion intdV 5, (t) which can be used in the time-dependent w—w;)2 —

formulation (8) of the Schrdinger equation. Vgal®)~ 5 ) u+( 5
There is no known closed expression for the Fourier

transform(11). In Ref. [6] Lanzaet al. replaced the exact - P +

Alder-Winther expression foW z,(w) by its LWLA. Here \c?sirfiig Lr}]jkzrt]gfvztig)%rgmmatlon exactat o1, w19 by

one assumes that the important Fourier components of the e

electromagnetic pulse correspond to wavelengths that are Vga(@1— 8)+ V(w1 + )

large compared to target dimensions. In this case, the small- u= > —Vgo(01),

argument limit of the spherical Bessel function,

v+Ww.

e Vgo(w1+8) =V (w1—9)

A 2 ’
® (Er’)
“(Ef )”W . W=Veel o0
Note that since the quadratic approximation is applied to
Vgo(w), its validity is independent of. Then thew;— 45
can be used. With this approximation, Laretaal. [6] were < w<w;+ § part of integration(11) can be approximated by
able to obtain explicit approximate expressions, in terms of
hypergeometric functions, for thés,,(t), which they used in ‘”1+5d ~iaty
their analyses of multiphonon Coulomb excitation. They 5 we pal®)
tested the validity of the LWLA by comparing a fe,(t)
calculated using the LWLA with numerical evaluations of J“’l”
Fourier transforn(11) of the exacWg,(w). They concluded -
that the LWLA was adequate for their analysis of t&Pb
+2%pp collision atE,,,=641 MeV. (13
Bertulaniet al.[5] approached the problem of finding ap-
proximate Vg, (t) by expressing potential4) in a Taylor
expansion around’=y’'=z'=0. This formally exact ex-
pansion was truncated in a manner that caused the remaining J*w1+§

wq—

dwefiwt

w1— 36

Now an exact integration of the right-hand side of Ef)
yields

terms to be precisely equal to those given by the LWLA dwe™ 'V g,(w)
expressions in Ref6]. However, the advantage of the trun-
cated Taylor expansion is that it yields simple expressions for
%he \(Ba(t) whic_h, although equal to the hypergeometric :?{& cog 8t)[2u coq w1t) + v St sin(wqt)]
unctions used in Ref.6], are much more transparent. The ot

general proof of the equivalence of these methods can be
found in Ref.[26].

The approach to be followed in this paper is the use of a 2i
quick and accurate method for the numerical evaluation of —vtsinwqt)}}— 2—3{& cog ot)[ 2usin( w4t)
Fourier transforn(11), using exacV,(w). TheVg,(t) cal- ot
culated in this way will be used in the numerical solution of . 2,2
coupled time-dependent equatiof®. We will thus be able ~vdtcogd w )]+ sin(S{[ - 2u+ St (u+w)]
to obtain essentially exact Coulomb-excitation cross sections Xsin(wqt) +v dtcoq wqt)}}. (14
at any bombarding energy. These exact cross sections can be
used to explore the limits of validity of the LWLA and other This approximation is used for every adjacent pair of steps in
approximations. the w integration.

wq— S5

+sin(8t){[ — 2u+ 6%t?(u+w)]cog w4t)
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Equation(14) cannot be used dt=0, since it takes the An individual GDR state is described by the three quan-
form 0/0 there. By expanding the quantities in bold curlytum number$N, L, M, in whichN(=0,1,2 .. .) is theprin-

brackets about=0, we can show that cipal quantum number. The number of GDR phonons asso-
ciated with this state isI2+L. Thus theg,a in Vg, ()
w1+d . stand for Ng, Lgz, Mgz and N, L,, M respectively.
: —iot prLps Mp ar bar Mas
tlmfwlﬁ dwe " Vga(w) These states are denotdd)".

_ E S(u+3w)— E[52(3u+ 5w) + 1060, B. Structure of the matrix elements
3 15 The algebraic details of the construction of the GDR
2i states, and the derivations of the formulas for the associated
+5(u+3v)wi]— 3&[5v+(u+3w)wl]_ (15  Vg.(w), are given in the Appendixes. In order to facilitate
our discussion of the long-wavelength approximation, and of

. . . the features that lead to convergence of théntegral, we
The only circumstance where the quadratic representatiog , \marize here the general structure of the result.

Of_VBa(‘*’) is inadequate occurs wheéfy,(w) is singular at Vg.(w) can be expressed in terms of the Fourier trans-
»=0. In these case¥,(w) has the form forms of the scalar and vector potentials as follows:
|w|b — (yNpLs Nol
V'Ba(w):f(w)Ko('y_v s (16) Vﬁa(w) <\I,MB |V(w)|\PMa >
1 1 ’ !
with f(0)#0. SinceKq(|w|b/yv) diverges logarithmically :fdgr' PpalT @S 0) = Zjgalr)-AZ(T o)),
as w—0, numerical integration of Eq.16) requires special
precautions. In this case, we work with the identity (19
|w|b |w|b where
Vo) =[f(w)—1(0)]K, T +f(0)Kp o ) a
(17 @[:e‘(r’,w)=ﬁ Z e,

The first term in Eq(17) is regular atw=0, and its Fourier

transform can be evaluated without difficulty using E(sl) v .

and (15). The Fourier transform of the second term in Eq. Arceﬁ(r’,w)z —<prce‘(r',w)z. (20
(17) can be evaluated exactly, ¢

The multipole expansion cxfarcet(r’,w), given first by Alder

o[ , |w|b f(0)hv ) i .
- dwe ' (0)K, = ) and Winther{1], can be written in the form
27) - YU b\?2
2\/|—| +(t)? |w|b |o| .
re ! — K v H Lt Y)\ ’
(18) rot(r ,(1)) % p,( yv )C)\,,u(w)])\< c r ) #(r )
(21)
This term dominates the interaction matrix elemépg(t) at
large values oft|. with
, : 27Zpe
IV. BRINK'S MODEL FOR THE GIANT DIPOLE = in(m2) P
RESONANCE Crulw)=e ho I

A. The GDR phonon states
where
The giant dipole resonance can be regarded as a collective

oscillation of the protons in a nucleus relative to the neutrons iNa w \A B[\
[27]. The one-phonon GDR state also has a simple interpre- Grpy=—— (_ <_)
tation in terms of an isovector linear combination of one- o @2yr el v

particle one-hole excitations of the ground stg18]. It was

shown by Brink[29] that states of the GDR have a simple XVAT(2N+ 1) (A= ) (A + p)!

interpretation within the harmonic oscillator shell model, in 1
terms of harmonic oscillations of the vectgy, connecting X 2 )
the centers of unexcited proton and neutron spheres. We use n(29)2"(n+p)!'nl(N—w—2n)!

this representation of the GDR to provide the transition
charge and current densities needed for the calculation of the It is shown in Appendix B that théep part of the matrix
V.(w) (see Appendix A element can be expressed in the form
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wl|ic)%i8Zy

(I
fdsr,%et(r/'“’)PBa(r') e 1,
= (|l .
5 o2 e e [
=S Cy (@)K, 22
Lz Yv
o o - (lelc _}\/2L_N+2(2L+2N+1)!! [ lolic|"
xfd3r/Pﬂa(r’)JA(Tl”)Yﬂ(rf) (22) NH o2 (202l (2L+ DI P\ 2420,

If these replacements are made, our calculated results are
(0l0) 21821 , » o, equal to those obtained with the LWLA. In Sec. V we will
=e ™y 2(2¢ +1)f Jo| & T test the adequacy of the long-wavelength approximation, for
n’.¢' 0 varying bombarding energies and impact parameters.

2 ! ! !
XUy (1)1 2dr 2. General conditions for the validity of the LWLA
|w|b wlc If the integral representatiofiLl) of Vg,(t) is to con-
o U2z ) (23 verge, it is necessary that,(w) should decrease suffi-
ciently rapidly ag w|— . We use the terndampingto refer
to the phenomena responsible for this decrease. It is evident

whereA,y, are suitable coefficients. The functiong,(r)  from Eq. (22) that the decrease af 5,(w) with increasing
are the harmonic oscillator radial functions associated with| has two causes.

the individual nucleons moving in the shell-model potential, (1) Kinematic dampingThe factorK ,(|w|b/yv) has a
largejw| limit of

207220 +2n+ 1)1 p32
un((r): \/ ( ) (\/;r)(,e—erIZ M(|0)|b)w|>7v/b w e—\w|b/7U.

o N
(=2)™n! ()%, (24) "

2 kH(N—=r)N(2€+ 2k +1)!! This decrease occurs because the time-width of the electro-
magnetic pulse at the target is of the order[@b/y)/v],
wherev=mwg,/#, With o, representing the frequency as- which contains frequency components up to, but not greatly
sociated with the shell-model harmonic oscillator potential.exceedingwma~ yv/b. It can also be said that the impulse

The tilde in the corresponding Fourier transformed states IS 00 adiabatic to contain frequency components with
signifies that the size parameter is taken to b&24j. The =~ ©@max- ) .
matrix elements of the- (1/c) [j .- A part of the electro- (2) Dynamic damping If (|w|/c)R>1, the factor

magnetc mrscton e easly reresented i terms bl %1190 )% €6 (22 vl 0 1ot meny cselatons
above formulagsee Appendix € 9 '

The advantage of this approach is that it yields expIicitcance"atio.nS b_etween different parts of the integration
functions for the matrix element¥z,(w), with only the r>an/g§, 'IY\;:ICthIrl\I lrﬁag to id?criase ﬁféér“c’i) t‘i’Vaanf]"|_
single parameter (which is related to the nuclear radjus c/ik. This phenomena can aiso be calietaraationdamp

Of course, the representation of GDR states in terms o9 because it Is associated with the finite speed propa-

eigenstates of the independent particle shell model with osgaggg g{ﬁ:rlgﬁirog?sggftt'ﬁe ?:frnzltsﬁuileecuasusz; Oorl:etth:w:nlte
cillator radial functions is highly schematic. Some important; peed, P 9 ' '

features of the real GDR, such as the spreading of the GD his implies that the ' intearation needed for the evaluation
among background states, are missing from this model. IS Impl integrat valuatl

However, the states we use give a realistic picture of thé?f \t{fga(ﬁ)teﬁecmﬁlﬁ produiﬁs at[[mehavera%e civer thefptrhq—
collective oscillation of the nuclear protons and neutron gctle [?horyi/w ItC glrlnoot S outs arp%rl egtl;]:es O't IS
relative to each other, and we believe they provide suffi- istory. ThusVg,(t) will not vary as rapidly witht as i

ciently accurate/z,(w) to enable us to test the dynamics of would if there_ had been no ret_ardatlon._qulv_a!ently, the
the Coulomb excitation process. presence of highe| components iV g, () is diminished.
It is worth remarking that the criterion for dynamic damp-

ing, |w|>c/R, is opposite to the validity condition for the
C. The long-wavelength approximation LWLA, |o|<c/R. Thus if we remain within the regime of
1. Expression of the LWLA in Brink’s model of the GDR validit_y Of, the, LWL,A' we will not experience dynamic
_ _damping; in this regime, the only phenomenon that can lead
We can get the result of using long-wavelength approxiq the damping required for the convergence of inte¢ta)
mation(12) in Eq. (22) by keeping only the lowest powers of s kinematic damping. Hence we conclude that the LWLA
lwl/c in Eq. (23), apart from the » dependence of can only be applied ifw|<c/R for theentire|w| range from
K|MB—Ma|(|w|b/7’U)- This implies the following replace- =0 up to wyg,~ /b, the frequency at which kinematic
ments in Eq.(23): damping becomes effective. This implies that

X E AnentK,
n¢NL

fluenced by the projectile at different points along its orbit.
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FIG. 1. (8 Vggo-o11(w) for a bombarding energy of 20GeV
and an impact parameter of 12 fm. The peakwatO is narrower
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hog~40A" 13 Mev,

which, in the case of%Ca, leads tohwsy=11.7 MeV, v
=0.28177 fm 2.

We illustrate the criterion of validity of the LWLA with
the example of%%b projectiles of kinetic energy 20GeV,
on a *°Ca target. Therny=1+10/0.938-11.66, and the con-
dition of validity of LWL is

b> \/[(11.662— 1 X R~50 fm.

Figures 1a) and Xb) show Vg, (w) and Vg, (t) for b
=12 fm, with « referring to the ground state agreferring
to the one-phonon state withl =1. It is evident that the
exact expression foWg,(w), which includes dynamic as
well as kinematic damping, has less higl-content than
does the LWLA expression. Corresponding¥,(t) calcu-
lated with the LWLA is more sharply peaked than is the
exactVg,(t). Figures 2a) and 2b) show the same compari-
son, but forb=50 fm, where the above argument suggests
that the LWLA should be adequate. While it is clear that the
LWLA does a better job ab=50 fm than atb=12 fm, the
approximation ab=>50 fm is still only fair.

The calculation of the total excitation probability requires
an integration oveb. Thus the inadequacy of the LWLA for
small b will have serious consequences only if the snhall-
part of the integration range makes an important contribution

for the exact curve than for the long-wavelength approximationto the totalb integration. We will see in Sec. V C 3 that the

because the exact curve shows the effect of dynamic damfing.

Vooo_o011(t) corresponding to th®yyp_g11(w) of (a). The narrower
o dependence of the exact curve results in a broadependence.

Yyuo C
“me” R

b v
A 2__
R ¢ r-L

must be true if the LWLA is to be trusted.

V. NUMERICAL RESULTS IN “%Ca-?°%Pb COLLISIONS
A. Comparison of excitation amplitudes

The coupled differential equatiort8) for the a4(t) were

numerically integrated using the fourth-order Runge-Kutt

bombarding energy determines whether or not this occurs.

Some typical plots oP 5(t)=|ag(t)|* are shown in Figs.
3-6.

Figure 3 shows the occupation probability‘{ﬂ‘l’1 for an
impact parameter of 200 fm. The horizontal line indicates the
Born approximation prediction. It is seen that, beginning
near t=0 fm/c, the occupation probability rises almost
monotonically to the Born value, and then remains there. The
occupation probability oflfgl shown in Fig. 4 has a very
different behavior. The coupling betwedf® and ¥ 5" has a
long range, because the=u=0 term in thej-A part of the
interaction can connect these states. It is seen in Fig. 4 that
the occupation probability rises to a maximum ndar
=0 fm/c, and then strongly decreases. The asymptotic prob-
ability in this case is 0.8 10 °, compared to the Born pre-
diction of ~1078. The rise and fall of thel'J* occupation

aprobability is associated with the fact thé) represents a

method. We have included all states with fewer than odongitudinal oscillation(with reference to the direction of the

equal to two phonons, i.e., the states withL(M)=(000),

projectile motion, and the coupling to the ground state

(010),(011),(020),(021),(022,(100 (M =1,2 here represents changes sign during the encount®f?, on the other hand, is

the reflection-symmetric combinations of ti=*+1,+2

a transverse oscillation, and the coupling to the ground state

state. A test of the numerical accuracy of the integration has a constant sign.

procedure is the extent to which the total normalization of

The Born prediction for the excitation probability &

the state glag(t)|?=1, is preserved. It was not difficult to =0 states is always very small at high bombarding energy
satisfy this condition to eight decimal places, even in situa{see Sec. VCiL _ .
tions when there was strong coupling between the different The corresponding curves for a grazing collisiob (

ag(t).

=12 fm) are shown in Figs. 5 and 6. Again, tH&* occu-

The only free parameter in our model is the size parampation probability rises almost monotonically to a constant
eter, v=mogy,/#, that characterizes the shell-model poten-value, but in this case the constant value is significantly less

tial. For simplicity, we follow the usual prescription

than the Born probability. The population &' shows a
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FIG. 4. The same as Fig. 3, except that the statéJ5. Thet
—o prediction is 0.6<10° %, compared to a Born approximation
prediction of about 108.

evaluate the cross section is to break the impact-parameter
integral (9) into two terms:

b! o
e e oﬁzf 27r|a,3(+oo)|2bdb+f 27-r|aﬁ(+oo)|2bdb,
30 20 -10 0 10 20 30 Brmin b’
t (fvc) o _ _
whereb’=100 fm. The first integral is evaluated numeri-
FIG. 2. (a) The same as Fig.(4), but for an impact parameter cally using|az(+)|? calculated by integrating the Schro
of 50 fm. (b) The same as Fig.(h), but for an impact parameter of dinger equation for a range bfvalues betweeb,,;, andb’.
50 fm. The second integral can be calculated exactly, becaude the
dependence of the Born probability is given by

rather complicated time structure. The asymptotic occupatioh.(|@|b/yv)]? and one can take advantage of the exact
probability is again much greater than the Born probability. formula
The small-amplitude oscillation of the occupation prob-

o 2
ability of \I.fgl shown in Fig. 6 forb=12fm and t f [K#(x)]zxdx:% (K, 1(6)2—[K (6]
>100 fm/c is a consequence of the long range of the é
= u=0 coupling term. 2u
—?K,LH(E)K,L(E) -
B. Evaluation of the cross section
) ) Thus the contribution to the cross section frirh<b<o
Figures 7 and 8 show the asymptotic probabll|t|es\lt3r1 will be
and W9, plotted as functions of impact parameter
In the \Iftl)1 case, it is seen that the Born expression gives ) ,252 5 )
a very good representation of the exact probability when o=mq°b 2 [Kur2(O] —[KL(E)]

=100 fm. In this situation, the most convenient way to

2u
—?KM+1(§)K#(§) :
0.0002 +— 0.2
= EXACT
9T — — — BORN — - - - -
o L
08'00177 EXACT
. = | — — — BORN
= 01+
L & I
0.0000 S I B R B -
-100 100 300 500 700 L
t (fm/c) 00+ ———rd v
-50 0 50 100 150
FIG. 3. Excitation probability of the state ({2)[ W5 +Ww?,] t (fm/c)

as a function oft, for a bombarding energy of 20GeV and an
impact parameter of 200 fm. The Born approximation excitation FIG. 5. The same as Fig. 3, but for an impact parameter of
probability is shown for comparison. 12 fm.
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05T Poz22
04l 10"31 ;
[ 10_5 ¥ EXACT
= 03L 10'6 ;:g\ — — —BORN
< I 10° £
§ 02+ 10”7 jg )
i 107 AN
01t 10° % >
. 10%° ji ~
00+ R e L S 10 £ \\
-100 0 100 200 300 400 102 & S
t (fmic) o R
0 100 200 300 400
FIG. 6. The same as Fig. 4, but for an impact parameter of b (fm)
12 fm.
FIG. 8. The same as Fig. 7, except that the state i§2)L/
where ><[\If22+ ‘11(122] . Because of the importance of multistep processes
in the excitation of this state, the Born approximation underesti-
_ b’ won-shell mates the excitation probability even at large impact parameter.
v : . . .
plished in a direct, single-step process. Of course, our “ex-
and act” calculation is not really exact, since it leaves out the
effect of coupling with states of 3,4.. phonons. For this
, Born probability ab’ reason, we have chosen to restrict our attention to bombard-
qQ = [K.(6)]2 ing energies of<10A GeV, with the expectation that below
o

this energy a description involving only zero, one, and two

In a situation such as that shown in Fig. 8, where the BorPhonons will be adequate. This is probably a fairly good

formula does not give an adequate approximation to the ex@Pproximation for_ thg _excitation cross sections of the one-
act result even at largh, it is necessary to do a numerical phonon states. It is difficult to assess the effect of our greater

integration of Eq(9) over the entireb range. than or equal to three—phon_on trungatio'n on t'he ca!culatio_n of
the two-phonon cross sections. This will be investigated in a

, . future publication.

C. Comparison of cross sections

We use the term “exact” to refer to calculations in which 1. The Born approximation

the interaction matrix elements are evaluated without ap- A striking disagreement between the predictions of the
proximation, and full account is taken of coupling betweengorm approximation and the exact calculation is displayed in
zero-, one-, and two-phonon states. The LWLA calculatlonq:ig_ 9. At bombarding energy below abouA eV, the
also include full coupling between zero-, one-, and two- phoggrn approximation and exact calculation yield nearly the
non states, but the interaction matrix elements are evaluated, e cross section for population of the one-phokiba0

approximately{Eq. (12) and Sec. IV.q. The Born approxi-  giate. However, at higher bombarding energy, the Born ap-
mation uses the correct on-shell interaction matrix elementﬁ)roximation cross section becomes vanishingly small

but assumes that the transition to any final state is accomMynereas the exact calculation predicts appreciable cross sec-
tion. It must be recalled that the Born approximation in-

Po11
10t £\ 0010 (mb)
F EXACT
-2 R _
10 3 —BORN 3000 ————— EXACT
U N BT LWLA /
1()'3 = r — — —BORN /
£ /
4T 2000 1- ’
10" = /
F | /
F /
-5
10° £ 1000 1 s
r 7/
T 2 S S r - -
0 100 200 300 400 04—t T L ,
b (fm) 0 2 4 6 8 10
E/A (GeV)

FIG. 7. The asymptotic excitation probability of the state
(1/\/5)[\1'21+ \If(lll] as a function of impact parameter, for a bom-  FIG. 9. Cross section for excitation of the stalt@l as a func-
barding energy of 1A GeV. tion of the bombarding energy.
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800
600 -
= I
= 400
8 L
200 T
ol N Ly 0:
0 2 4 6 8 10 0
E/A (GeV) E/A (GeV)
: Lo o1
FIG. 10. Cross section for excitation of the state\@) 7 FIG. 12. Cross section for excitation of the stdt§ as a func-
+W¥=;] as a function of the bombarding energy. tion of the bombarding energy. The maximum Born cross section
is 0.038 mb.

volves only theon-shell Fourier component of the interac- ] )
tion, Vg,[w=(Eg—E,)/%]. It was shown in Ref[25] that the total one-phonon cross section over the entire energy
AM=0 on-shell interaction matrix elements vanish at highfange. Thus measurements of the total one-phonon cross sec-
bombarding energy in proportion toy#, as a result of can- tion ca_nnot_d|st|ngU|sh between Fhe predictions of the Born
cellation between the contributions of the scalar and vectofPProximation and exact calculations, and our exact calcula-
potentials. This accounts for the strong decrease at high borfion has little to contribute to the many analyses of total
barding energy of the BorAM =0 cross section. However, one_—phonon Cross _sectlons performed with the Born approxi-
off-shell interaction matrix elementés,[w# (Ez—E,)/#] ~ Mation. However, if the separatd =0 and IM[=1 cross
do not vanish at highy; rather they diverge in proportion to Sections could be mea_sulred, then a clear ch0|_ce c.ould be
In y. In the exact calculation, off-shell interaction matrix el- made between the predictions of the Born approximation and
ements contribute to the population of the one-phohbn the exact calculation.
=0 state, as do multistep processes. Thus the strong Born Figures 12—16 show our results forthe two-phonon states.
approximation selection rule against population of the one!n all cases, the cross section predicted by the exact calcula-
phononM =0 state is not exhibited by the exact calculation.fion far exceeds the predictions of the Born approximation.
On the other hand, Fig. 10 shows that the Born approxi—The_ natural exp'lananon is that these states are predominantly
mation and exact calculations are in fairly good agreemen@xcited by multistep processes.
for the population of the one-phondM|=1 state over the
entire energy range. This suggests that most of the popula-
tion of this state occurs in a single-step process. The fact that Some analyses of multiphonon excitations have used the
the exact calculation predicts a slightly smaller cross sectiomarmonic vibrator model, in which it is assumed that the total
can be interpreted as a result of the loss of flux from theeffect of the interaction on the target protons can be imitated
[M|=1 state associated with the coupling to other availabldy an operator that is linear in the components of the collec-
states. tive variable Ry,. This has the consequence that mul-
Figure 11 shows the cross section for the total populatiortiphonon states are populated by a series of on-shell transi-
of the one-phonon level, including both tiM=0 and the tions, and thus the fact that theM =0 on-shell transition
[M|=1 states. It is seen that as a result of the Born approximatrix element becomes small at high bombarding energy
mation underprediction for th1 =0 state, and overpredic- implies that theAM =0 matrix elements will play little role
tion for the|M|=1 state, there is fairly good agreement for in multiphonon excitation. It was shown in Ré2] that the

2. Comparison with the harmonic vibrator model

6000 01
| 40%
3 N -
= 4000 - —
£ I g 30T
1 i = r
p I § 0T
= 2000 1+ r
<] | [
10
O'HWH‘}‘H}H‘}‘H ol 1 f= ‘
0 2 4 6 8 10 0 2 4 6 8 10
E/A (GeV) E/A (GeV)

FIG. 11. Total cross section for excitation of the one-phonon  FIG. 13. Cross section for excitation of the state\{)[¥2?
states(the sums of the curves in Figs. 9 and).10 +\If921] as a function of the bombarding energy.
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20 1200
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15+ S 900
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= 7 +
£ 8
ST § 6001
g | by
S N
51 & 3001
+
R U R § o
0 2 4 6 8 10

FIG. 16. Total cross section for excitation of the two-phonon
stategthe sums of the curves in Figs. 1291%he maximum Born
cross section is 0.65 mb.

FIG. 14. Cross section for excitation of the state\@)[ ¥
+W¥%,] as a function of the bombarding energy.

ratios of the cross sections for the two-phonon stéi@€),

(021), (022), (100 are predicted by this model to be 1/0/3/2. common characteristic of these two states is that they involve
The absence of population of the stéd@1) is due to the fact only oscillation in the transversexy) directions, whereas
that this state consists of phonons with=-0 andm=1, and all the other final states involve oscillation in thelirection.

the m=0 phonon is inaccessible. The predictions of the exA\Ve have already noted in connection with Figs. 4 and 6 that
act calculation, as shown in Figs. 12—-16, are quite differentthe excitation of the& oscillation takes place rapidly in the
At a bombarding energy of 20GeV, the ratios are approxi- vicinity of t=0. The LWLA matrix elements are more
mately 4.1/0.3/0.1/1.6. The important role of th&1 =0 ma-  strongly peaked in the vicinity of=0 [see Figs. (b) and

trix elements in these numbers is evident from the2(b)] due to absence of LWLA dynamic damping. Thus it is
bombarding-energy dependence shown in Figs. 12—-16. Farot surprising that the LWLA gives enhanced predictions for
example, of these four states, ori§22 shows a cross sec- states involvingz excitation. On the other hand, the excita-
tion that decreases with bombarding energy, and this is thgon of the&,§ oscillation is a more gradual process, covering
state that could be expected to be least affectedby=0  a largert range, and so is more sensitive to the time region in
matrix elements. Thus, our microscopic treatment of the inwhich the exact matrix elements are greater than the LWLA
teraction, which follows the effect of the external pulse onmatrix element§Figs. 1b) and 2b)].

each proton, gives quite different results from the assumption
that the interaction is linear in the collective variables. How-
ever, it must be borne in mind that the error we make by
truncating our phonon space at two phonons may introduce .
significant errors into our two-phonon predictions. This re- Although we have used a somewhat schematic represen-
quires further investigation. tg\tlon of the GDR nuclear st.ates, we can draw some conc_lu—
sions about the extent to which the LWLA and Born approxi-
mation reproduce the results of our exact calculations. These

. . i . . conclusions may also apply to calculations that use more
It is seen in the cross-section comparisons, Figs. 9—144istic nuclear states

that at high bombarding energy the LWLA prediction ex- | is apparent from Figs. 9—16 that at bombarding energies

ceeds the result of exact calculation, except for the onepgiow about 2\ GeV, the LWLA and the exact calculations
phonon|M|=1 state and the two-phondM|=2 state. The predict essentially the same cross sections, state by state.
This observation supports the validity of several RCE inves-
tigations that have used the LWLJA,6]. It is shown in Fig.
12 that the agreement between the LWLA and exact calcula-
tions of thetotal one-phonon cross section extends up to
about A\ GeV. Above A GeV, however, there are signifi-
cant deviations between the LWLA and exact cross sections.
Thus at higher bombarding energies, the LWLA ceases to be
a reliable approximation, especially if it is important to know
the cross sections for population of individudl states.
Not surprisingly, the Born approximation is unable to pre-
dict the cross section for population of two-phonon states. Its
EIA (Gev) performance with respect to the one-ph_onon states is analo-
gous to that of the LWLA. At bombarding energies below
FIG. 15. Cross section for excitation of the stdté®as a func-  2A GeV, it does well with botiM =0 and|M[=1 states. At
tion of the bombarding energy. The maximum Born cross sectiothigher energies, it underpredicts thle=0 cross sectiofFig.
is 0.0006 mb. 9), and overpredicts thevl|=1 cross sectioiiFig. 10. The

VI. CONCLUSIONS

3. The long-wavelength approximation

300

200 1~

o100 (mb)

100 +-
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If the independent-particle harmonic oscillator Hamil-
tonian is expressed in terms of these new variables, it sepa-
rates as follows

2 2
He| - h V2+22mwst2
2(2zm) "R 2
z 2
52 ) Emwsm )
| VB AR,
o 5m
+H,(771, ey TT7 1, Vl,...,VZ,l). (A3)

Here m is the nucleon mass andg, is the single-nucleon

FIG. 17. Ry, locates the position of the proton mass center rela-pgcillator frequency. Corresponding to this separability, we

tive to the neutron mass center, wher&agocates the total mass can write our harmonic oscillator eigenstates in the form
center. Theth proton is located relative to the proton mass center

by f;.

net result is in good agreement with the exact prediction for

the total one-phonon cross section up to abouit@eV (Fig.
11).
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APPENDIX A: BRINK’'S REPRESENTATION OF THE GDR
PHONON STATES

We first construct the states of the GDR which are auto-
matically contained in the independent particle harmonic os-
cillator shell model. For simplicity, we restrict our attention

to N=2Z closed-shell nuclei. We start by locating tAepro-

tons and th&Z neutrons relative to the fixed harmonic oscil-

lator origin byp;, ...,pz, N4, ...,Nz. To construct GDR
states, we introduce new position variables

Pt pzEngt 40
B 27 ’

R

pit---+pz
Z

nl+"'+nz

Rpn= Z

pn

(A1)

and relative variablesr, . . .w;_1. The
@y, ..., w7_1 Specify the location of th& protons relative
to their mass center. It is clear from Fig. 17 that ttb
proton is located relative to the origin by

3TT7-1, Vi, ..

1
pj:R+—an+fl‘(1T1, ..

> S Tzo1). (A2)
We will not have to specify the my, ..., 7, 1,
vy, ..., vz_q or thef; any further; we will only need th&

and theR,, dependence qb; .

S

V=Wl RV (R

XX(GT]_, e TT7 1, Vi, ...,szl). (A4)

The spin degrees of freedom are incorporateg,iim such a
way as to produce a state that is antisymmetric with respect
to the exchange of any two protons or any two neutrons.
Note that changin®;, L1, M, orN,, L,, M, has no effect
on the antisymmetry, since the variabRsindR,,, are sym-
Thetric with respect to the exchange of any two protons or
any two neutrons.

It is clear that the state of lowest energy, consistent with
the Pauli principle, will have zero quanta in the varialies
andRg,:

\Ifground-state: 1{/80( R)\Pg'o( an)

Vi, . ,Vz_l).

(A5)

XXO(’TT]_, e TT7 1,

Now let us consider a series of states of the form
Wit =WEAR) W (Ryn

XXO(TT]_, e TT7 1, Vi, ...,VZ,]_). (A6)

These states all have no quanta of center-of-mass motion.
The relative motions of the protons to each other, and of the
neutrons to each other, are exactly the same as they are in the
shell-model ground state. The only feature distinguishing the
stategA6) is the motion of the proton mass center relative to
the neutron mass center. Brifik9] identified these states as
belonging to the GDR, because this collective oscillation of
the protons relative to the neutrons was the original interpre-
tation given by Goldhaber and Tellg27] to the phenomenon
now known as the GDR30].

It can be seen from EqA3) that the energy associated
with the R, quanta ish wg,,, the same as the energy associ-
ated with the individual oscillator quanta. It was suggested
by Wilkinson[28], and proved by Brown and Bolsteff31],
that the residual interaction between the nucleons will in-
crease the GDR phonon energy.
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The harmonic oscillator radial functions associated with o
the individual nucleons were specified in Eg4). The same pBa(k)EJ e pga(r)d3
radial functions are used for the GDR statiefy"(R,), ex-
cept thatm is replaced by m/2, which is the reduced mass
for the relative motion of the proton and neutron spheres.

Electromagnetic properties of states are normally dis-
cussed in the long-wavelength approximation, in which the
electric dipole operator has the form

:47% iw;*(ﬁ)f A3 pga(r)jn(kr)YA(r")
(B4)
if we setk=|w|/c. Thus we turn our attention to the evalu-

\/? z ation of pg,(K):
M= E 121 p] .

ppalk)= f e pga(r)dr’
Equation(A2) can be used to express this operator in terms

of R, Ry, ;. The only part of this operator that has matrix o z
elements between states of the GDR b&h6) is =f d3relkr <¢>B|e21 o(r' —pj)|da)
=
[3z Lo
M= Nzzz R ~(9gle3, e Pl[g,). (85)

which r(]:an ?]nly connect stgtes that ﬂiffer by gne GDdehr?'We now choose states in the GDR baad) for the ¢ 5 and
non. Thus theéE1 transition between the ground state and the :

. , and use Eq(A2) to expressp; in terms of the new
one-phonon Brink level exhausts tBd sum rule. Pa a(A2) Pressp;

variables:
APPENDIX B: CONTRIBUTION OF THE SCALAR
POTENTIAL P,Ba(k):ef d°R| W59
It is shown in Ref[25] that if the nuclear stateg, , ¢
. . Wy ” Ng,L N,.L,
are defined with “time-reversal” phases, ><J' d3an\P’,fABﬁ B(an)\IfMa (Rpn)
lo \x l,—M, 1l
GV =(—=1) e Magho | B1
(¢Ma) ( ) ¢M7a ( ) de3wl’ ...,d3VZfl
then theV,,(w) will be purely real. We will use this phase X|xo(71s « o T7_1, Vi, ... W2o1)|?

convention.
The charge densityg,(r’) is defined in terms of the
nuclear eigenstates;, ¢, by

z
XZ eik-[R+(1/2)an+fj(1rl ..... Tz 1, Vi, .eos vz_1)]

=1
Z Ng.L i(k/2).- N, L,
pBa(r,):ef dgpl, C. ,dsnzz 5(r’—p])¢z¢a :Qf d3an\I,T\(AEﬂ ﬁ(RPN)eI(kIZ) an‘PMa (an)
=1

(B2) (B6)

The sum extends over the protons only. By using E§8)  with

and(21) in Eq. (19), we see that the scalar potential contri-

bution toVg,(w) is '
Qzef d3R|\I'8")|2e""Rf Ay, .. ey

f dsr,(PE:et(r,lw)pﬁa(r,) ><|X0(1Tl, ey TT7 1, V1, oo 1VZ*1)|2
b z
:E C, (@)K (|w| ) XE gik-fi(m, ... M7, V1., vz 1) (B7)
" "M 122 vy =1
Xf d3l"pﬁa(l")j)\(ﬂl">Y)\(F'). (B3) Note that the factoQ is independent of the GDR quantum
c a numbers. This is a consequence of our assumption that the

proton and neutron spheres remain unexcited durindkie
The integral required here also occurs in the Fourier transescillation. Thus we can calculat® by considering the
form of pg.(r'), ground-state proton density
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o, e 1 5 the quanta-preserving condition 2{ N)+L=2(Ng+N,)
Poo(k):ej derre’ In Z 2(2¢+)uy, (') +Lg+L,, which in turn requires that ;+L,—L be even.
ne To Fourier transform/y" _, (\/—R ) we use the gen-
_ez 2(2€+1) ,e(r’)jo(kr’)r’zdr’. eral harmonic oscillator result
n'¢
1 (> o
88) G S =i

Then’¢ sum extends over the single-particle levels occupied
in the ground statéfor example, 00, 01, 02, 10 fot°Ca). wherez,b (k) has a size paramet@rwhlch is the reciprocal

Using Eq.(B6) to evaluatepyo(k) yields of the size parameter q&;‘f(r). Then
_ o k%i8Zv o
podk)=e 7% Q, (B9) f D RN (V2R IRy
so that
. —j2N+L SIZ\I,NL v ( )
Q=e"rxe>, 2(2f+1)f Une(r")jo(kr")r 2dr’. #\2y2
n{ 0
B10 “ o~ k
(B10 :(_1)N+L773/2Y|K/| Mﬁ(k)uNL(_)-
To evaluate thdr, integral in Eq.(B6), we write 2\2
(B14)

‘P*NB,LB(R )‘PN‘,,LQ(R )
Ms P Mg o By combining Eqs(B6), (B8), (B13), and(B14), we get

Zvr 3/4
Ppa(K)=(—1)Msite L5< 5 ) eBZr 3 2(20+1)

_ Lg—M n’.¢
=(—1)‘s ﬂ}L) (Lol a=M M ,|LM ,—M ) )
xf jo(kr')uZ, (r")r'2dr’

0

- Ng,L N, L,
=(—1)s 'V'm[fjwﬁﬁ(an)lIfMa (Rpn)

X[WNs La(Ry) WNe bR, Iy e (B11)
We then use the Talmi-Moshinsky coefficients, defined by X > iYL, —MgM /LM ,—My)
n,N,L
[y “a(r ) g2 2(r ) Ty X(NgLg,N,L o[nONL),

= > it A g n, £,5nN NA), (2n+1)“
n, AN, A X 2mh

¢nx(rl—r2>¢NA(rl+r2) :
V2 V2

e
202 Y, m,(K).  (B1Y

X (B12 Finally, comparison with Eq4B3) and (B4) shows that
M
, , f " r @)pgalr’)
with r;=r,=R,,, to write Ba
1 \Maila—L 3/4
[WNs La(Ry) WM e(Ron) Ty —m, _ DT (Zvm | ugazn (11P
A 2 “\ vy

= 2 it A NGL g NoL o[ NA)
n,\,N,A

x}% 2(2€+1)J:j0(@r')uﬁg(r’)r’zdr’
XY™ M (V2R T,

><§L) CuLmym, (Lola—MgMo|LM—M )

Zv 3/4
€+ 0L
=i (27) > (Nl g NaL[nONL),
(2n+1)N! X% (—DN(NgLg,N,L,/nONL),
NL )

XN i Vi, (V2R (B13) .
The extra factori‘1™ ¢ *~A is due to our use of time- y /(2”+1)”5NL c | 616
reversal phases. The N sum in Eq.(B13) is restricted by (2m! 2\/5

014905-13



B. F. BAYMAN AND F. ZARDI PHYSICAL REVIEW C 68, 014905 (2003

which gives us an explicit expression for the contribution of . et, . R
the scalar potential t&,(w). This expression is summa- [Jga(k)]fm(?xf d°Ry, ek Rpr2)
rized in Eq.(23).
J
x| wrNE AR ) ——— Wt a(R )
APPENDIX C: CONTRIBUTION OF THE VECTOR Mg PRz Ma "
POTENTIAL
o . . ) T — *NBLB
The analysis is similar to the one presented in Appendix B \I,Ma aanz Mg (an)> €3

for the scalar potential. We need
1 37 ’ ret s
_E dr Jﬂa(r )'Act(r ,(1))
— v d3 i ’ ret s
== ) Erlipr)ledtr )

T é AE,:L Cx,ﬂf drjx(kr) YL galr)];

(CD

To obtain these integrals we study the Fourier transform of

[iga(r)1z,
[jﬁa(k)]zzf e palr ) 1,03
=4w§ in)(R)J d3r ' (kr")
X[ ga(r)1YN(T")

fd3r glkr’ fd3pl,..

J
xglau —p;<¢ﬁm¢ %p %)

dnzm

z

3 3 ik-p;
2mlepl,...,anjZ:le i
X((b*—ﬁ boa— ¢ —d> ) (€2

B‘?pj,z a&pj A

We now take¢,, ¢, to be states in the GDR bar(é6),

and transform to the variableR,R,,, 7, ..., 771,
vy, ..., wz_q1. TO do this, we use EqA2) to obtain
J 1 9 N 1 4
P, 2Z IR, Z IRy,

N ( d ) d
— _
k=1-j-1;u=xy,z (9pj,z ko (9ka#

Since them involve only the relative positions of thg , the
quantities ¢/dp; ,) my , are independent dR andR,,.
Equation(C2) now takes the form

whereQ is the quantity defined in EqB7) and evaluated in
Eqg. (B10). Note that Eq(C3) vanishes for diagonal matrix
elements Ng=N,, Lz=L,, Mg=M,). The derivatives in
Eqg. (C3) can be expressed as linear combinations of har-
monic oscillator wave functions using the relation

[ (£—m)(£+m) ne—1
m[\/2n+2€+1q’m (R)

(£+1—m)(£+1+m)
(2€+1)(2¢+3)

X[2nen- LRy + \/2n+2€+3‘1’%€+1(R)]}

This converts Eq(CJ) into a linear combination of terms
such as Eq(B6), which can be evaluated exactly as was
done in Appendix B.

_\I,n ((R)

+y2n+ 2w LRy —

APPENDIX D: SYMMETRIES

Since the projectile moves in thez plane, its scalar and
vector potentials will be invariant under reflection across the
y-z plane. Therefore, only reflection-symmetric target states
will be excited from the reflection-symmetric ground state.
These are

vyt or (‘If|M|+\I'N|M|)

5

Thus if M,#0 andM ;#0, we must calculate

(W + W09 V(w)

% 7

= (WP )W) + UV (o) 9 .

('\I} aa+\l}aa>

If Mz#0 andM ,=0, we must calculate

1
—(«Irﬁ‘ﬂf:uqfﬁﬁgg) V(w)| Wt

N
= V2V AV (w) W),
It can be verified that EqB3) of Ref.[25],
W )= (P (— o) W),

is satisfied by the matrix elements discussed in Appendixes B
and C.

(WY ()| W
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