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r propagation and dilepton production at finite pion density and temperature
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We study the propagation properties of ther vector in a dense and hot pion medium. We introduce a finite
value of the chemical potential associated with a conserved pion number and argue that such description is
valid during the hadronic phase of a relativistic heavy-ion collision, between chemical and thermal freeze-out,
where the strong interaction drives pion number to a fixed value. By invoking vector dominance andr
saturation, we also study the finite pion density effects into the low mass dilepton production rate. We find that
the distribution moderately widens and the position of the peak shifts toward larger values of the pair invariant
mass, at the same time that the height of the peak decreases when the value of the chemical potential grows.
We conclude by arguing that for the description of the dilepton spectra at ultrarelativistic energies, such as
those of Relativistic Heavy Ion Collider~RHIC! and Large Hadron Collider~LHC!, the proper treatment of the
large pion density might be a more important effect to consider than the influence of a finite baryon density.
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I. INTRODUCTION

One of the most salient features of the low-mass dilep
spectra in relativistic nucleus-nucleus collisions, fro
BEVALAC/SIS to SPS energies, is the enhancement in
production yields for invariant masses between 0.2 an
GeV, as compared to proton induced reactions@1#. Since
dilepton final states are mediated by electromagnetic curr
and these, in turn, are connected to vector mesons, dile
pairs represent a prime tool to study the evolution of
dense and hot hadronic region formed in this kind of co
sions. For low invariant masses, the vector mesons invo
are ther, v, and f. Among these,r plays a special role
given that its lifetime is smaller than the expected lifetime
the interacting region and thus is able to probe differ
stages during the collision of heavy systems.

The favored explanations, able to account for a great d
of the features of the measured low-mass dilepton spe
can be divided in two categories: thedropping r mass and
the melting of resonances scenarios@2#. The first of these,
connected to the Brown-Rho scaling conjecture@3# and the
decrease of the quiral quark condensate with temperature
baryon density, states that the in-mediumr mass will sweep
the entire low invariant mass region as the system co
down from its initially hot and dense state toward freeze-o
The second scenario@4,5# states that the in-medium spectr
densities of ther and its chiral partner, thea1 ~1260!, be-
come broad and structureless, merging into a flat continu
as the system approaches chiral symmetry restoration.

An important ingredient for the success of the two abo
mentioned scenarios is the presence of finite baryon den
effects~see, for example, Ref.@6#!. In the first case, baryon
act as the source of strongly attractive scalar fields. In
second case, interactions of the vector mesons with bary
resonances, characterized by large coupling constants, o
0556-2813/2003/68~1!/014902~9!/$20.00 68 0149
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whelm the relative strength of the interactions ofr ’s with
pions, despite the fact that at SPS energies, the relative a
dance of the latter is five times that of the former.

Nevertheless, at RHIC and moreover at LHC energies,
central rapidity region is expected to become baryon f
with the relative abundance of pions being larger than at S
energies. Consequently, at ultrarelativistic energies, it is
portant to include in the calculation of the dilepton spectru
the proper treatment of the large pion density, particula
during the hadronic phase of the collision.

Recall that strictly speaking, pion number is not a co
served quantity and that pion decay is driven by all the r
evant interactions, namely, strong, weak, and electrom
netic. However, the characteristic time for electromagne
and weak pion number-changing reactions is very large c
pared to the lifetime of the system created in relativis
heavy-ion collisions and, therefore, these processes are o
relevance for the propagation properties of pions within
lifetime of the collision. As for the case of strong process
it is by now accepted that they drive the pion number
wards chemical freeze-out at a temperature consider
higher than the thermal freeze-out temperature and, th
fore, that from chemical to thermal freeze-out, the pion s
tem evolves with the pion abundance held fixed@7,8#. Under
these circumstances, it is possible to ascribe to the pion d
sity a chemical potential and consider the pion number
conserved@9,10#. In this context, the role of a finite pion
chemical potential into a hadronic equation of state has b
recently investigated in Ref.@11#. The effects of a finite iso-
spin chemical potential on the pion mass have also b
recently studied in Ref.@12#.

The description of hadronic degrees of freedom belo
to the realm of nonperturbative phenomena and therefore
to necessarily rely on effective approaches that implem
the dynamical symmetries of QCD. In a series of recent
©2003 The American Physical Society02-1
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pers@13,14# it has been shown that the linear sigma mo
can be used as one of such effective approaches to des
the pion propagation properties within a pion medium at
ergies, temperatures, and densities small compared to
sigma mass. The sigma degree of freedom can be integr
out in a systematic expansion to obtain an effective theor
like-isospin pions interacting among themselves through
effective quartic term with couplinga56(mp

2 /2f p
2 ), where

mp and f p are the vacuum pion mass and decay const
respectively.

In this paper we extend the use of such effective desc
tion to study the interaction of pions with ther vector, pay-
ing particular attention to the effects that a finite pion dens
introduces on the propagation properties ofr at finite tem-
perature. We find the finite density and temperature mod
cations to ther mass, width, and dispersion relation. B
invoking vector dominance, we also study the effects t
these modifications introduce on the production ofe1 e2

pairs near ther peak.
The work is organized as follows. In Sec. II, we introdu

the r in the description bygauging the original effective
Lagrangian. The theory thus obtained closely resembles
lar electrodynamics. We introduce a chemical potential as
ciated with a conserved number of pions and construct
modifications to the pion propagator andp-r vertex at finite
density. In Sec. III, we use this effective Lagrangian to co
pute the pion self-energy and in Sec. IV ther self-energy
and from it, the modifications to its mass, width, and disp
sion curve at finite density and temperature. In Sec. V,
compute the dilepton rate assuming vector dominance.
finally summarize and conclude in Sec. V.

II. EFFECTIVE LAGRANGIAN

In Refs. @13# it has been shown that starting from th
linear sigma model Lagrangian, including only meson d
grees of freedom and working in the kinematical regim
where the pion momentum, mass, and temperature are s
compared to the sigma mass, the two-loop pion self-ene
can be formally obtained by means of the effective Lagra
ian

L5
1

2
~]mf!22

1

2
mp

2 f22
a

4!
f4, ~1!

wherea56(mp
2 /2f p

2 ) and the factor 6 comes from consid
ering the interaction of like-isospin pions in the vertex

iG4
i jkl 522i S mp

2

2 f p
2 D ~d i j dkl1d ikd j l 1d i l d jk!. ~2!

In essence, the theory thus constructed and summarize
the effective Lagrangian in Eq.~1! can be thought of as a
theory for the effective couplinga that encodes the dynam
ics of low-energy pion interactions. It can also be check
that Eq.~1! reproduces the leading order modification to t
pion mass at finite temperature obtained from chiral per
bation theory@15#.
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In order to introduce ther field, we gauge the theory
@16,17# described by the Lagrangian in Eq.~1!, replacing the
derivative]m by the covariant derivativeDm given by

]mf→Dmf5~]m2 igrm!f, ~3!

where we have introduced thep-r coupling constantg. Also,
by introducing the mass term and kinetic energy for ther
field, the Lagrangian in Eq.~1! becomes

L→L85
1

2
~Dmf!22

1

2
mp

2 f22
a

4!
f41

1

2
mr

2rmrm

2
1

4
rmnrmn. ~4!

Let us now pause briefly to describe the formalism th
allows us to introduce a finite chemical potential associa
with a conserved pion number. To this end, let us furth
modify the Lagrangian in Eq.~4!, writing it in terms of a
complex scalar field and regardingf andf* as independen
fields,

L8→L95~Dmf!~Dmf* !2mp
2 ff* 2

a

4
~ff* !2

1
1

2
mr

2rmrm2
1

4
rmnrmn. ~5!

The effective Lagrangian in Eq.~5! resembles that of sca
lar electrodynamics with the photon field replaced by t
massiver field. Invariance under global phase transform
tions

f→f85e2 ilf ~6!

leads to the conserved current

Jm5 i ~f* ]mf2f]mf* !22grmf* f, ~7!

and to the conserved chargeN that can be identified with the
particle number, given by

N5 i E d3x~f* ]0f2f]0f* 12igr0f* f!. ~8!

Since N is a conserved charge, there exists a chem
potentialm conjugate toN, so that the grand partition func
tion is

Z~b,m!5Tre2b(H2mN), ~9!

whereb51/T is the inverse of the temperatureT. From now
on, let us work explicitly in the imaginary-time formalism o
thermal field theory. It is straightforward to write a path i
tegral representation in Euclidean space of the grand p
tion functionZ(b,m). Care has to be taken by going throug
the Hamiltonian form sinceN depends on the time derivativ
of f and f* . After integration over the conjugate field
p* 5]L9/](]0f* ) andp5]L9/](]0f), one can check tha
in the exponent, there appear the combinations
2-2



th

pa
d
d

ca

he

th
re

-
-

e

d
a
s
l

tive

the
nt
fur-
pt a
the
an

as

he

on
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2f* S ]2

]t2
22m

]

]t
1m22mp

2 D f, ~10!

igr0S f*
]f

]t
2f

]f*

]t D22igmr0f* f, ~11!

wheret is the Euclidean time. Going to frequency space
Euclidean time derivatives get replaced by

]f

]t
→2 ivnf,

]f*

]t
→ ivn8f* , ~12!

where the periodicity of the fields in the interval 0<t<b
makes the~Matsubara! frequenciesvn and vn8 be discrete
and integer multiples of 2pT. The combination in Eq.~10!
translates into a modification of the Matsubara pion pro
gator, which now reads as~hereafter capital letters are use
to denote four-vectors whereas lowercase letters are use
denote the components!

D~ ivn ,p;m!5
1

2~ ivn1m!21p21mp
2

, ~13!

whereas the combination in Eq.~11! goes into a modification
of the p-r vertex, which now becomes

Gpr~Pm ,Pm8 ;m!52 ig$@2~ ivn1m!,p#

1@2~ ivn81m!,p8#%. ~14!

The final outcome is that the introduction of a finite chemi
potential translates into the substitution

ivn→ ivn1m, ~15!

both when this frequency appears in internal pion lines eit
in the Matsubara propagator or in thep-r vertex. Notice that
these substitutions agree with the well known result for
periodicity of the Matsubara propagator in the mixed rep
sentation given by

D~b2t,E;m!5D~t,E;2m!. ~16!

III. p SELF-ENERGY

The effective Lagrangian in Eq.~5! describes the interac
tions between pions andr ’s as well as among pions them
selves. The one-loop diagrams for the pion andr self-
energies are depicted in Figs. 1 and 2. For the pion s
energy, the diagrams contain terms with internalr
propagators. Notice that sincemr@mp ,T, these diagrams
are strongly suppressed at finite temperature compare
those made out exclusively of internal pion lines and c
thus be neglected. This approximation goes along the line
the reasoning used in Refs.@13#, where the heavy interna
sigma modes were systematicallypinched to construct the
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effective vertices and propagators leading to the effec
Lagrangian in Eq.~1!. In this scheme, the pion andr self-
energies decouple and the former gets modified only by
diagram in Fig. 1~a!, leading to a momentum independe
correction of the pion mass. We can thus take one step
ther going beyond the naive perturbation theory and ado
resummation scheme for the pion self-energy to look for
modification of the pion mass beyond leading order. This c
be implemented by writing the pion self-energy explicitly

P05
a

2
T(

n
E d3k

~2p!3

1

K21mp
2 1P0

. ~17!

Equation ~17! represents a self-consistent relation for t
temperature and density dependent quantityP0 . This is the
well known resummation for thesuperdaisydiagrams that
constitute the dominant contribution in the large-N expan-
sion @18# of the Lagrangian in Eq.~1!. The solution to Eq.
~17! is given by the transcendental equation

FIG. 1. ~Color online! Feynman diagrams representing the pi
self-energy at one loop. The wavy lines represent ther, whereas the
solid lines represent the pion. In the approximation wheremr

@mp ,T, only diagram~a! contributes.

FIG. 2. ~Color online! Feynman diagrams representing ther
self-energy at one loop. The wavy lines represent ther, whereas the
solid lines represent the pion.
2-3
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P05S aT

4p2DAmp
2 1P0(

n51

`

K1S nAmp
2 1P0

T
D cosh~nm/T!

n
.

~18!

Figure 3 shows the behavior of the pion thermal massm̃p

5Amp
2 1P0 as a function of~a! T for different values ofm

and ~b! as a function ofm for different values ofT. We use
the valuesmp5135 MeV, f p593 MeV. From Fig. 3, we
notice thatm̃p grows monotonically with bothT andm.

IV. r SELF-ENERGY

The explicit expression for the one-loopr self-energy de-
picted in Fig. 2 is given by

Pmn52g2T(
n
E d3p

~2p!3

~2Pm2Km!~2Pn2Kn!

~P21m̃p
2 !@~K2P!21m̃p

2 #

1dmng2T(
n
E d3p

~2p!3

1

P21m̃p
2

, ~19!
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T (MeV)
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m

π  (
M
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)

µ = 130 MeV
µ = 120 MeV
µ = 100 MeV
µ = 0     MeV

(a)

0 20 40 60 80 100 120
µ  (MeV)

135

137.5

140

142.5

145

147.5

150
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155

m
π (

M
eV

)

T = 150  MeV
T = 100  MeV
T = 50    MeV

(b)

FIG. 3. ~Color online! Thermal pion mass as a function of~a! T
for different values ofm ranging fromm50 to m5130 MeV and as
a function of ~b! m for different values ofT ranging from T
550 MeV to T5150 MeV.
01490
where, according to the discussion in Sec. II, the inter
pion momentumPm and ther momentumKm are

Pm5@2~ ivn1m!,p#,

Km5~2 iv,k!. ~20!

Equation~19! contains vacuum and matter contributions. It
well known that the infinities coming from the vacuu
pieces can be reabsorbed into the redefinition of the b
masses and couplings@16#. In what follows, we will concen-
trate on the matter contributions.

For a massive vector field, the tensor structure of its s
energy can be written in terms of the longitudinalPL

mn and
transversePT

mn projection tensors

Pmn5F~K !PL
mn1G~K !PT

mn . ~21!

In Minkowski space,PT,L
mn are given by

PT
005PT

0i5PT
i050,

PT
i j 5d i j 2kikj /k2,

PL
mn52gmn1KmKn/K22PT

mn . ~22!

From the relation between the self-energy, and the fullDmn

and bareD0
mn r propagators, we have, also in Minkows

space,

2 iD mn5
PL

mn

K22mr
22F

1
PT

mn

K22mr
22G

1
KmKn

mr
2K2

. ~23!

In order to identify the coefficientsF andG of the longitu-
dinal and transverse projectors, we takek along thez axis.
Thus, in Minkowski space, their expressions are

F~K !52
K2

k0k
P03,

G~K !5P11, ~24!

where P03 and P11 are obtained from Eq.~19! with the
analytical continuation

iv→k01 i e, ~25!

which give the retarded functions and which can be p
formed after carrying out the sum over the Matsubara f
quencies.

The sum over frequencies can be obtained by stand
techniques@19,20#. Considering the effects of a finite chem
cal potential, the expressions of interest are
2-4
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T(
n

D~ ivn ,p!D„i ~v2vn!,uk2pu…

52 (
s1s256

s1s2

4EpEuk2pu

3
@11n~s1Ep2m!1n~s2Euk2pu1m!#

~ iv2s1Ep2s2Euk2pu!
,

T(
n

ivnD~ ivn ,p!D„i ~v2vn!,uk2pu…

52 (
s1s256

s1s2~s1Ep2m!

4EpEuk2pu

3
@11n~s1Ep2m!1n~s2Euk2pu1m!#

~ iv2s1Ep2s2Euk2pu!
, ~26!

where

n~x!5
1

ebuxu21
~27!

is the Bose-Einstein distribution,Ep5Ap21m̃p
2 , Euk2pu

5A(k2p)21m̃p
2 , and the functionD is defined in Eq.~13!.

Using Eq.~26! in Eq. ~19! and by means of the analytica
continuation in Eq.~25!, the real and imaginary parts ofP03

andP11 are given by

ReP035
g2

8p2E0

`

dpS p2

Ep
D @n~Ep2m!1n~Ep1m!#

3@k0~A21A1!22Ep~A22A1!#,

ImP035
g2

16p S k0

k2D H E(k02ak)/2

(k01ak)/2

dEp~2Ep2k0!2

3@112n~Ep2k02m!#u~k0!

2E
(2k02ak)/2

(2k01ak)/2

dEp~2Ep1k0!2

3@112n~Ep1k01m!#u~2k0!J ,

ReP115
g2

8p2E0

`

dpS p2

Ep
D @n~Ep2m!1n~Ep1m!#

3F2~k0
21k2!

k2
1~B21B1!G ,
01490
ImP1152
g2

32p S 1

k3D H E(k02ak)/2

(k01ak)/2

dEp

3@4p2k22~k22k0
212k0Ep!2#

3@112n~Ep2k02m!#u~k0!

2E
(2k02ak)/2

(2k01ak)/2

dEp@4p2k22~k22k0
222k0Ep!2#

3@112n~Ep1k01m!#u~2k0!J ,

A65
1

2k2p
S 4kp1@k0

262k0Ep# lnUk0
22k262k0Ep22kp

k0
22k262k0Ep12kp

U D ,

B65S ~k0
22k262k0Ep!224k2p2

4k3p
D

3 lnUk0
22k262k0Ep22kp

k0
22k262k0Ep12kp

U , ~28!

where the functiona is defined as

a5A12
4m̃p

2

~k0
22k2!

. ~29!

It is easy to check that in the limitm→0, Eqs.~28! reduce to
the corresponding expressions found in Ref.@16#.

Figure 4 shows the behavior of ther thermal mass ob-
tained as the solution fork0 of either

k0
22mr

22ReH F~k0 ,k50!

G~k0 ,k50!
J 50, ~30!

as a function of~a! T for different values ofm and ~b! as a
function of m for different values ofT. We use the value
g2/4p52.93 as determined by ther width in vacuum. For
k50 there is no distinction between transverse and long
dinal modes and thus both equations of Eq.~30! lead to the
same solution. For every value of (T,m), the solution is
computed with the corresponding value form̃p(T,m). From
Fig. 4, we see that the thermalr mass grows monotonically
with both T and m and that the growth is larger for large
values ofm.

Figure 5 shows the behavior of ther decay rate~or half-
width! obtained from either

G52

ImH F~mr~T,m!,k50!

G~mr~T,m!,k50!
J

2mr~T,m!
~31!

as a function of~a! T for different values ofm and ~b! as a
function ofm for different values ofT. Again, fork50 there
is no distinction between transverse and longitudinal mod
2-5
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This can be shown analytically from the explicit expressio
of ImF and ImG in Eqs.~28!, which for k50 yield

ImF~k0 ,k50!5ImG~k0 ,k50!

52S g2

48p D k0
2S 12

4m̃p
2

k0
2 D 3/2

3@112n~k0/21m!#. ~32!

For m50, Eq.~32! coincides with the corresponding expre
sion in Ref.@16#.

From Fig. 5~a! we see that for a given value ofm the r
width increases monotonically with temperature. From F
5~b! we observe that the width reaches a minimum at a fin
value of m and that this value increases as the tempera
increases. This behavior can be understood if we recall
when the density increases, so does the pion mass and
the phase space available for the decay products ofr nar-
rows. The situation changes when the density is large eno
so that the increase in the mass of ther becomes steeper tha
the growth in the pion mass, widening the phase space a
able for the decay process.

0 50 100 150
T (MeV)

760

780

800

820

840
m

ρ (
M

eV
)

µ = 130 MeV
µ = 120 MeV
µ = 100 MeV
µ = 0     MeV

(a)

0 50 100
µ (MeV)

780

800

820

840

m
ρ (

M
eV

)

T = 150 MeV
T = 100 MeV
T = 50   MeV

(b)

FIG. 4. ~Color online! Thermalr mass as a function of~a! T for
different values ofm ranging fromm50 to m5130 MeV and as a
function of ~b! m for different values ofT ranging from T
550 MeV to T5150 MeV.
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Figure 6 shows the dispersion relation for~a! longitudinal
and ~b! transverser modes for different values ofT and m
5100 MeV. The main difference between the curves in ea
set can be attributed to the increase of ther mass with both
m andT.

V. DILEPTON RATE

The electromagnetic current can be identified with the
derlying quark structure of hadrons. For invariant mas
below the charm threshold, this current can be decompo
as

j m
em5

2

3
ūgmu2

1

3
d̄gmd2

1

3
s̄gms. ~33!

Using the SU~3! quark content of hadrons, this current, bei
vectorial in nature, can be, in turn, identified with the curre
constructed out of the vector mesonsr, v, andf,

j m
em5 j m

r 1 j m
v1 j m

f . ~34!

0 50 100 150
T (MeV)

80

85

90

Γ 
(M

eV
)

µ = 130 MeV
µ = 120 MeV
µ = 100 MeV
µ = 0     MeV

(a)

0 50 100
µ (MeV)

80

85

90

95

Γ 
(M

eV
)

T = 150 MeV
T = 100 MeV
T =   50 MeV

(b)

FIG. 5. ~Color online! Thermalr half-width as a function of~a!
T for different values ofm ranging fromm50 to m5130 MeV and
as a function of~b! m for different values ofT ranging fromT
550 MeV to T5150 MeV.
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0 500 1000
k (MeV)
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1000

1200

ω
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M
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T = 150 MeV
T = 100 MeV
T =   50 MeV

0 500 1000
k (MeV)

800

1000

1200

T = 150 MeV
T = 100 MeV
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(a) (b)

FIG. 6. ~Color online! r dispersion relation
for ~a! longitudinal and~b! transverse modes fo
m5100 MeV for different values ofT ranging
from T550 MeV to T5150 MeV.
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This is the well-known conjecture namedvector dominance
model~VDM !. Since the pion electromagnetic form factor
almost totally dominated by ther for invariant masses below
1 GeV, a simplified picture to study the decay of this ele
tromagnetic current into low mass dilepton pairs is to co
sider that the current in Eq.~34! is totally dominated by the
r. A further simplification stems from considering the spe
tral density ofr as a simple pole located at its peak which,
turn, dictates that the coupling ofr to the electromagnetic
current isemr

2/g.
Under the assumption of VDM andr saturation, the ex-

pressions for the thermal dilepton rates from longitudinal a
transverser modes are given, respectively, by@16#

E1E2

dR

d3p1d3p2

5
1

~2p!6 S e4

g2D S mr
4

M4D Fq22
~q•k!2

k2 G
3

2ImF

~M22mr
22ReF !21ImF2

3S 1

ebvL21
D ,

E1E2

dR

d3p1d3p2

5
1

~2p!6 S e4

g2D S mr
4

M4D
3F2M22q21

~q•k!2

k2 G
3

2ImG

~M22mr
22ReG!21ImG2

3S 1

ebvT21
D , ~35!

where P1
m 5(E1 ,p1) and P2

m 5(E2 ,p2) are the positron
and electron four-momenta, respectively,Km5P1

m 1P2
m ,
01490
-
-

-

d

Qm5P1
m 2P2

m , M25k0
22k2 is the pair invariant mass,vL,T

are the longitudinal and transverser modes dispersion rela
tions, and we have neglected the electron mass.

Figures 7 and 8 show the dilepton production rates
functions of the pair invariant massM for q•k50 for fixed
values of T5150 MeV and k for two values of m
50,100 MeV for~a! longitudinal and~b! transverse modes
Figure 7 considers a small value ofk550 MeV and Fig. 8 a
larger valuek5250 MeV. In both cases we can see that t
effect of the finite chemical potential is to moderately wid
the distribution and to~also moderately! displace the position
of the peak toward larger values ofM. The most significant
effect is, however, the lowering of the peak for finitem
which is in agreement with the analysis of Ref.@21#.

VI. SUMMARY AND CONCLUSIONS

In this paper we have considered the effects of a fin
pion density on the propagation properties ofr mesons at
finite temperature. Ther has been introduced by gauging a
effective Lagrangian obtained from the linear sigma mode
the kinematical regime where the pion mass and tempera
are small compared to the sigma mass. The finite densit
described in terms of a finite pion chemical potential asso
ated with a conserved pion number. We have argued
such a description is important for ultrarelativistic heavy-i
collisions at RHIC and LCH energies where the central
pidity region is expected to become baryon free. In this s
ation, we expect that the influence of the droppingr mass or
melting of resonances scenarios to describe the dilep
spectra, which rely on the effects of a finite baryon dens
becomes less important than the effects of the expected l
pion density. This is so particularly during the hadron
phase of the reaction, between chemical and thermal fre
out when the strong interaction drives pion number to a fix
value.

We have found that ther thermal mass increases mon
tonically with both the temperature and the pion dens
However, ther width as a function ofm and for fixedT
starts off by decreasing, reaching a minimum at a finite va
2-7
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FIG. 7. ~Color online! Dilep-
ton production rates for~a! longi-
tudinal and~b! transverse modes
for T5150 MeV, k550 MeV,
andm50,100 MeV.
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of m. This behavior can be understood by noticing that as
density increases, the pion mass does too and the phase
available for the decay processr→pp narrows up to
a—temperature dependent—value ofm. From this value, the
increase in the thermalr mass is stronger than the increase
the thermal pion mass and this effect produces a widenin
the phase space for the process, thus producing ther width
to rise.

Under the assumption of VDM andr saturation, we have
also computed the dilepton production rate as a function
the pair invariant mass. We have found that the finite p
density produces a moderate broadening of the distribu
and a moderate increase of the position of the peak.
01490
e
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e

finite pion density also produces a decrease of the distr
tion at the position of the peak compared to them50 case.

The problem posed by the renormalization of theories
volving resummation is by no means a simple one. In fact
recent years this subject has been much actively pursue
the literature~see, for example, Refs.@22–24#!. The consen-
sus is that when the theory is vacuum renormalizable, it w
still be renormalizable after resummation. The solutio
which can be formulated using different languages, has b
shown to require that the counterterms needed for vacu
renormalization in ordinary perturbation theory need also
receive the benefits of resummation and be considered
consistently in the resummation procedure.
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FIG. 8. ~Color online! Dilep-
ton production rates for~a! longi-
tudinal and~b! transverse modes
for T5150 MeV, k5250 MeV,
andm50,100 MeV.
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For the purposes of our work, let us stress that the res
mation we have implemented for the pion self-energy co
sponds to the tadpole approximation~see Sec. III of Ref.
@22#!. In fact, the gap equation that renders the finite te
perature and density corrections to the pion mass in
work, Eq.~18!, is identical to the thermal part of Eq.~24! of
the above reference; we have just gone one step further
panding the integrand as a series that allows us to ana
cally integrate each term. In Eq.~24! of Ref. @22#, the renor-
malization of the vacuum self-energy and four-point functi
have been carried out on the physical mass-shell cond
and have taken into account the self-consistency. In the
guage of this reference, this is so because in the tad
approximation, the renormalized four-point function is co
stant and given just in terms of the original coupling const
on the mass-shell condition.

Had we gone beyond the tadpole approximation, the s
ation would have not been that straightforward. In fact, it h
also been shown in Ref.@22# that the self-consistent resum
mation scheme requires a more complicated renormaliza
of the four-point function to be taken into account alongs
the renormalization procedure for the self-energy. The effe
of this certainly more complete analysis might be interest
e
Ad

s

hy
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with regard to further thermal modifications to the pion ma
in situations where the original coupling constant of thef4

theory is much larger that 1, but is certainly beyond t
scope of the present work where our coupling constanta, as
determined by the scale of the interactions, set by
vacuum pion mass, is of order 1@in fact, what matters, as
shown in Eq.~18!, is the effective coupling constant given b
a/(4p2), which is of order 0.1#.

Finally, in order to predict the final dilepton spectra
RHIC and LHC energies, the results found in this work ha
to be placed into a model for the evolution of the collisio
and also possibly to include the effects of other vector
axial vector mesons. All this is for future.
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