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We study the propagation properties of fheector in a dense and hot pion medium. We introduce a finite
value of the chemical potential associated with a conserved pion number and argue that such description is
valid during the hadronic phase of a relativistic heavy-ion collision, between chemical and thermal freeze-out,
where the strong interaction drives pion number to a fixed value. By invoking vector dominance and
saturation, we also study the finite pion density effects into the low mass dilepton production rate. We find that
the distribution moderately widens and the position of the peak shifts toward larger values of the pair invariant
mass, at the same time that the height of the peak decreases when the value of the chemical potential grows.
We conclude by arguing that for the description of the dilepton spectra at ultrarelativistic energies, such as
those of Relativistic Heavy lon CollidéRHIC) and Large Hadron CollidgtHC), the proper treatment of the
large pion density might be a more important effect to consider than the influence of a finite baryon density.
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[. INTRODUCTION whelm the relative strength of the interactions @ with
pions, despite the fact that at SPS energies, the relative abun-

One of the most salient features of the low-mass dileptordance of the latter is five times that of the former.
spectra in relativistic nucleus-nucleus collisions, from Nevertheless, at RHIC and moreover at LHC energies, the
BEVALAC/SIS to SPS energies, is the enhancement in theentral rapidity region is expected to become baryon free
production yields for invariant masses between 0.2 and With the relative abundance of pions being larger than at SPS
GeV, as compared to proton induced reactiphf Since energies. Consequently, at ultrarelativistic energies, it is im-
dilepton final states are mediated by electromagnetic currentsortant to include in the calculation of the dilepton spectrum
and these, in turn, are connected to vector mesons, dileptdhe proper treatment of the large pion density, particularly
pairs represent a prime tool to study the evolution of theduring the hadronic phase of the collision.
dense and hot hadronic region formed in this kind of colli- Recall that strictly speaking, pion number is not a con-
sions. For low invariant masses, the vector mesons involvederved quantity and that pion decay is driven by all the rel-
are thep, w, and ¢. Among thesep plays a special role evant interactions, namely, strong, weak, and electromag-
given that its lifetime is smaller than the expected lifetime ofnetic. However, the characteristic time for electromagnetic
the interacting region and thus is able to probe differentand weak pion number-changing reactions is very large com-
stages during the collision of heavy systems. pared to the lifetime of the system created in relativistic

The favored explanations, able to account for a great dedleavy-ion collisions and, therefore, these processes are of no
of the features of the measured low-mass dilepton spectraglevance for the propagation properties of pions within the
can be divided in two categories: tldgopping p mass and lifetime of the collision. As for the case of strong processes,
the melting of resonances scenarig2]. The first of these, it is by now accepted that they drive the pion number to-
connected to the Brown-Rho scaling conject[Béand the wards chemical freeze-out at a temperature considerably
decrease of the quiral quark condensate with temperature amigher than the thermal freeze-out temperature and, there-
baryon density, states that the in-medignmass will sweep fore, that from chemical to thermal freeze-out, the pion sys-
the entire low invariant mass region as the system coolgem evolves with the pion abundance held fix@d]. Under
down from its initially hot and dense state toward freeze-outthese circumstances, it is possible to ascribe to the pion den-
The second scenar[d,5] states that the in-medium spectral sity a chemical potential and consider the pion number as
densities of thep and its chiral partner, tha; (1260, be-  conserved9,10]. In this context, the role of a finite pion
come broad and structureless, merging into a flat continuurahemical potential into a hadronic equation of state has been
as the system approaches chiral symmetry restoration. recently investigated in Ref11]. The effects of a finite iso-

An important ingredient for the success of the two abovespin chemical potential on the pion mass have also been
mentioned scenarios is the presence of finite baryon densitgcently studied in Ref.12].
effects(see, for example, Ref6]). In the first case, baryons The description of hadronic degrees of freedom belongs
act as the source of strongly attractive scalar fields. In théo the realm of nonperturbative phenomena and therefore has
second case, interactions of the vector mesons with baryonio necessarily rely on effective approaches that implement
resonances, characterized by large coupling constants, oveahe dynamical symmetries of QCD. In a series of recent pa-
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pers[13,14] it has been shown that the linear sigma model In order to introduce the field, we gaugethe theory
can be used as one of such effective approaches to descrif6,17 described by the Lagrangian in E@), replacing the
the pion propagation properties within a pion medium at enderivatived* by the covariant derivativ®* given by
ergies, temperatures, and densities small compared to the

sigma mass. The sigma degree of freedom can be integrated Hdp—DHp=(d*—igp*) P, 3
out in a systematic expansion to obtain an effective theory of

like-isospin pions interacting among themselves through amvhere we have introduced thep coupling constang. Also,
effective quartic term with couplingu=6(m,27/2f,27), where by introducing the mass term and kinetic energy for phe
m_ and f, are the vacuum pion mass and decay constanfjeld, the Lagrangian in Eq1) becomes

respectively.

In this paper we extend the use of such effective descrip- , 2 2,0 X 4 2 4
tion to study the interaction of pions with tigevector, pay- L—L'= E(D $)° = Equﬁ B H¢ T 5MPpTP
ing particular attention to the effects that a finite pion density
introduces on the propagation propertiespoét finite tem- 1 v
perature. We find the finite density and temperature modifi- g PuP ()

cations to thep mass, width, and dispersion relation. By | et us now pause briefly to describe the formalism that
invoking vector dominance, we also study the effects thagjiows us to introduce a finite chemical potential associated
these modifications introduce on the productionedf e”  wijth a conserved pion number. To this end, let us further
pairs near the peak. modify the Lagrangian in Eq4), writing it in terms of a

The work is organized as follows. In Sec. Il, we introduce complex scalar field and regardiggand ¢* as independent
the p in the description bygaugingthe original effective fig|ds,

Lagrangian. The theory thus obtained closely resembles sca-

lar electrodynamics. We introduce a chemical potential asso- o

ciated with a conserved number of pions and construct the E’—>£”=(DM¢>)(D“¢*)—me¢>¢* — Z(¢¢*)2
modifications to the pion propagator andp vertex at finite

density. In Sec. lll, we use this effective Lagrangian to com- 1, 1

pute the pion self-energy and in Sec. IV theself-energy R LU Py ®)
and from it, the modifications to its mass, width, and disper-
sion curve at finite density and temperature. In Sec. V, w
compute the dilepton rate assuming vector dominance.
finally summarize and conclude in Sec. V.

The effective Lagrangian in E@5) resembles that of sca-

r electrodynamics with the photon field replaced by the
massivep field. Invariance under global phase transforma-
tions

Il. EFFECTIVE LAGRANGIAN b— ' 267”‘({) (6)

In Refs.[13] it has been shown that starting from the
linear sigma model Lagrangian, including only meson de/€@ds to the conserved current
grees of freedom and working in the kinematical regime i
where the pion momentum, mass, and temperature are small JE=i(g* 0" p— pd" ™) —2g9p" d* ¢, @)
compared to the sigma mass, the two-loop pion self-energy

can be formally obtained by means of the effective Lagrangand_to the conserv_ed charfjithat can be identified with the
ian particle number, given by

L= %(aw))z— %midﬁ— 43,¢4, (1) N=if d*x(¢p* P p— pd°p* +2igp°s* ¢).  (8)
' Since N is a conserved charge, there exists a chemical

where =6(m?/2f2) and the factor 6 comes from consid- potential . conjugate taN, so that the grand partition func-
ering the interaction of like-isospin pions in the vertex tion is

2 Z(B,p)="Tre  PH7LN), (€)

iFL{k'z—Zi(m—g)((‘S‘jﬁk'+ skell+816%). (2 _ _
217 whereB=1/T is the inverse of the temperatufe From now

on, let us work explicitly in the imaginary-time formalism of

In essence, the theory thus constructed and summarized itigermal field theory. It is straightforward to write a path in-
the effective Lagrangian in Eq1) can be thought of as a tegral representation in Euclidean space of the grand parti-
theory for the effective coupling that encodes the dynam- tion functionZ(3,u). Care has to be taken by going through
ics of low-energy pion interactions. It can also be checkedhe Hamiltonian form sinc&l depends on the time derivative
that Eq.(1) reproduces the leading order modification to theof ¢ and ¢*. After integration over the conjugate fields
pion mass at finite temperature obtained from chiral perture* = dL£"/9(°¢*) andm=adL"13(°4), one can check that
bation theory[15]. in the exponent, there appear the combinations
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* i d 2 2
—¢ ;—ZMEJFM —mz | ¢, (10
(a)

d dp*
H 0 *x _ 9 0 1%
igp (¢ p ¢ (97) 2igup-¢* ¢, (11
wherer is the Euclidean time. Going to frequency space the
Euclidean time derivatives get replaced by (}
dp .
E_)_Iwn(ﬁ! (b)
ap*
P —lwy d*, (12
where the periodicity of the fields in the intervak@<p ;/"'\'\-L?
makes the(Matsubara frequenciesw,, and w,, be discrete
and integer multiples of 2T. The combination in Eq(10) (c)

translates into a modification of the Matsubara pion propa- . . _ .
gator, which now reads abereafter capital letters are used FIG. 1. (Color online Feynman diagrams representing the pion

to denote four-vectors whereas lowercase letters are used $§!-energy at one loop. The wavy lines represenpthehereas the
denote the components solid lines represent the pion. In the approximation where

>m,,T, only diagram(a) contributes.
1
—(iog+p)?+p2+ms’

Aliw,,p;p)= (13 effective vertices and propagators leading to the effective
Lagrangian in Eq(1). In this scheme, the pion and self-
energies decouple and the former gets modified only by the
diagram in Fig. 1a), leading to a momentum independent

correction of the pion mass. We can thus take one step fur-

whereas the combination in E(L1) goes into a modification
of the 7r-p vertex, which now becomes

PN T (i ther going beyond the naive perturbation theory and adopt a

I, (P,,P iu)=—I lwptu), . ;
mo(Pu i) 9il~(fwntw).p] resummation scheme for the pion self-energy to look for the
+H—(iwy+up),p'l} (14 modification of the pion mass beyond leading order. This can

be implemented by writing the pion self-energy explicitly as
The final outcome is that the introduction of a finite chemical
potential translates into the substitution 3
I _a_l_2 f d°k 1 a7
29 ) emPKAAmE4an,

o, —iw,+ u, (15

both when this frequency appears in internal pion lines eithelrE ion (1 i . lation for th
in the Matsubara propagator or in thep vertex. Notice that =duation (17) represents a self-consistent relation for the

these substitutions agree with the well known result for thd€mperature and density dependent quadiity This is the

periodicity of the Matsubara propagator in the mixed repre el known resummation for theuperdaisydiagrams that
sentation given by constitute the dominant contribution in the lafyeexpan-
sion [18] of the Lagrangian in Eq(1). The solution to Eg.

A(B—7,E;u)=A(1,E;— ). (16)  (17) is given by the transcendental equation

lll. 7= SELF-ENERGY
The effective Lagrangian in E@5) describes the interac- : :

tions between pions ang's as well as among pions them-

selves. The one-loop diagrams for the pion amdself-

energies are depicted in Figs. 1 and 2. For the pion self-

energy, the diagrams contain terms with internal

propagators. Notice that singe,>m_,T, these diagrams

are strongly suppressed at finite temperature compared to

those made out exclusively of internal pion lines and can

thus be neglected. This approximation goes along the lines of FIG. 2. (Color onling Feynman diagrams representing the
the reasoning used in Refsl3], where the heavy internal self-energy at one loop. The wavy lines represenpthwhereas the
sigma modes were systematicafiynchedto construct the solid lines represent the pion.
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FIG. 3. (Color onling Thermal pion mass as a function @ T
for different values ofu ranging fromu=0 to x=130 MeV and as
a function of (b) w for different values ofT ranging from T
=50 MeV to T=150 MeV.
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Figure 3 shows the behavior of the pion thermal mass
=\/m2ﬁ+ I1, as a function ofa) T for different values ofu

and (b) as a function ofu for different values ofl. We use
the valuesm_=135 MeV, f_=93 MeV. From Fig. 3, we

notice thatm,. grows monotonically with botfl and ..

IV. p SELF-ENERGY

The explicit expression for the one-loppself-energy de-
picted in Fig. 2 is given by

5 5p  (2PH—KH)(2P"—K?”)
g TE f (2m)% (P?2+m2)[(K—P)2+m?]

(277 P2+m 19

PHYSICAL REVIEW C 68, 014902 (2003

where, according to the discussion in Sec. Il, the internal
pion momentumP# and thep momentumK* are

PA=[—(lwy+u),p],
KE=(—iwk). (20)

Equation(19) contains vacuum and matter contributions. It is
well known that the infinities coming from the vacuum
pieces can be reabsorbed into the redefinition of the bare
masses and couplingi$6]. In what follows, we will concen-
trate on the matter contributions.

For a massive vector field, the tensor structure of its self-
energy can be written in terms of the longitudirift” and
transverseP4” projection tensors

II#7=F(K)P[+G(K) P4 (21)
In Minkowski spaceP# are given by
PP=pY=pPP=0,
Pi=61—Kkl/Kk?,
P{"=—g""+ KIKYIK2—P&”. (22

From the relation between the self-energy, and the it
and bareD§” p propagators, we have, also in Minkowski
space,

D PL” Pr KHK? 23
—i V— + + .
KZ-m—F KZ2-m’-G miK?

In order to identify the coefficients and G of the longitu-
dinal and transverse projectors, we tdkalong thez axis.
Thus, in Minkowski space, their expressions are

2

K
F(K) = = 11

G(K)=11%, (24)

where I1°% and IT1*! are obtained from Eq(19) with the
analytical continuation

io—kptie, (25

which give the retarded functions and which can be per-
formed after carrying out the sum over the Matsubara fre-
quencies.

The sum over frequencies can be obtained by standard
technique$19,20. Considering the effects of a finite chemi-
cal potential, the expressions of interest are
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T; A(iwg,p)Ai (0= w,),[k—p|)

$1S

s15,- = 4EpEj—p|

LLEN(SiEy— ) + N(SE )]
(| (J)_SlEp_SZE‘k,p‘)

T iwyA(iwy,p)Al(0—w,),|k—p|)

$18:(S1Ep—u)
4EpE k|

S15=+

><[1+n(lep—MHn(szEu(fpr)]
(| w_SlEp_SZE“(*p‘)

. (26)

where

n(x)=

A1 @7

is the Bose-Einstein distributionE,= vp?+m?2, Ejy_p
=/(k—p)?+m2, and the function is defined in Eq(13).

Using Eqg.(26) in Eq. (19) and by means of the analytical

continuation in Eq(25), the real and imaginary parts bf°
andII1'! are given by

- gz o p2
Rl _ﬁ o dp E. [I’](Ep—,LL)-i-n(Ep-l—,u)]
p

X[ko(A-+AL)—2Ex(A_—AL)],

9° Ko (ko+ak)/2
ImI%=——| — f dE,(2E,—ko)?
1677(k2 (ko—ak)/2 p(2Ep~ko)

X[1+2n(Ep—ko— 1) 10(ko)

(—kg+ak)/2
—f dE,(2E,+ko)?
(—kg—ak)/2

X[1+2n(E,+ k0+,u)]0(—ko)],

u g2 % p2
Rell=—= | ‘dp £ [N(Ep— ) +N(Ep+ )]

2(k3+k?)
—_—t

X 2

(B_+B.)
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2
g 1 (ko+ak)/2
ImI'=—- —| — f dE
32w ( k3>{ (ko—ak2  ©
X[4p?k?— (k= K5+ 2koE)?]

X[L+2n(Ey ko= )] 6(Ko)

(—ko+ak)/2
- f dE,[4p?k?— (k?—k§— 2KoE)?]
(—kg—ak)/2

+

=2 4kp+[ k3= 2koE]In

k2~ k2= 2KoE p— 2kp\
k2— K2+ 2KoE,+ 2kp| |

+

(k§— k2= 2koE )%~ 4k?p?
- 4k3p
k32— K2+ 2KoE, — 2kp‘

XIn > ,
K3~ K2+ 2koE, + 2kp|

(28)

where the functiora is defined as

4m?,
a= 1- (kg——kz) (29)

It is easy to check that in the limit— 0, Egs.(28) reduce to
the corresponding expressions found in R&Bb].

Figure 4 shows the behavior of thethermal mass ob-
tained as the solution fd¢, of either

F(ko,kzo)
2_ 2 _
k§—m? Re{ G(ko,k=0)] 0, (30)

as a function of(@) T for different values ofu and(b) as a
function of u for different values ofT. We use the value
9°/4m=2.93 as determined by the width in vacuum. For
k=0 there is no distinction between transverse and longitu-
dinal modes and thus both equations of E2f) lead to the
same solution. For every value off(u), the solution is

computed with the corresponding value an,(T,,u). From
Fig. 4, we see that the thermalmass grows monotonically
with both T and . and that the growth is larger for larger
values of ..

Figure 5 shows the behavior of tiedecay ratgor half-
width) obtained from either

[F(mp(T,,u),k=0)]

~ Mlemy(Te) k=0)
r= 2T ) (31)

as a function ofl@) T for different values ofu and (b) as a
function of u for different values off. Again, fork=0 there
is no distinction between transverse and longitudinal modes.
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FIG. 4. (Color online Thermalp mass as a function @¢&) T for
different values ofu ranging fromu=0 to =130 MeV and as a
function of (b) w for different values of T ranging from T
=50 MeV to T=150 MeV.

FIG. 5. (Color online Thermalp half-width as a function ofa)
T for different values ofu ranging fromu=0 to «=130 MeV and
as a function of(b) x for different values ofT ranging fromT
=50 MeV to T=150 MeV.

This can be shown analytically from the explicit expressions

of IMF and InG in Egs.(28), which fork=0 yield Figure 6 shows the dispersion relation fay longitudinal

and (b) transversep modes for different values of and u
=100 MeV. The main difference between the curves in each
set can be attributed to the increase of phmass with both
pandT.

IMF (Ko, k=0)=ImG(kg,k=0)

~ 3/2
[ g_Z k2 1_4_m727
487 0 k2

X[1+2n(ko/2+ 1)].

V. DILEPTON RATE

2 . . . .
(32 The electromagnetic current can be identified with the un-

derlying quark structure of hadrons. For invariant masses
below the charm threshold, this current can be decomposed
as

For =0, Eq.(32) coincides with the corresponding expres-
sion in Ref.[16].

From Fig. 3a) we see that for a given value of the p
width increases monotonically with temperature. From Fig.
5(b) we observe that the width reaches a minimum at a finite em_2— EE g 1
value of u and that this value increases as the temperature Ju _SUY*‘U 3" Yu 357“5'
increases. This behavior can be understood if we recall that

when the density increases, so does the pion mass and thﬂl§ing the SW3) quark content of hadrons, this current, being

the ph_lglhse space avalilable forhthe rgie(cjay proc_julc'r,s Dar- g(\ﬁe)ctorial in nature, can be, in turn, identified with the current
rows. The situation changes when the density is large enougly - i cted out of the vector mesqmsw, and ¢,

so that the increase in the mass of heecomes steeper than
the growth in the pion mass, widening the phase space avail-
able for the decay process.

(33

Sr=injeie. (34)
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FIG. 6. (Color onling p dispersion relation
for (a) longitudinal and(b) transverse modes for
wn=100 MeV for different values ofl ranging
from T=50 MeV to T=150 MeV.
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This is the well-known conjecture nameector dominance Q#=P4 —P* M2=k§—k2 is the pair invariant massy, t
model(VDM). Since the pion electromagnetic form factor is are the longitudinal and transvergemodes dispersion rela-
almost totally dominated by thefor invariant masses below tions, and we have neglected the electron mass.
1 GeV, a simplified picture to study the decay of this elec- Figures 7 and 8 show the dilepton production rates as
tromagnetic current into low mass dilepton pairs is to con<functions of the pair invariant masé for q- k=0 for fixed
sider that the current in E¢34) is totally dominated by the values of T=150 MeV and k for two values of u
p. A further simplification stems from considering the spec-=0,100 MeV for(a) longitudinal and(b) transverse modes.
tral density ofp as a simple pole located at its peak which, in Figure 7 considers a small value kof50 MeV and Fig. 8 a
turn, dictates that the coupling @f to the electromagnetic |arger valuek=250 MeV. In both cases we can see that the
current ise mﬁ/g. effect of the finite chemical potential is to moderately widen

Under the assumption of VDM ang saturation, the ex- the distribution and téalso moderatelydisplace the position
pressions for the thermal dilepton rates from longitudinal andf the peak toward larger values bf. The most significant
transverse modes are given, respectively, pi6] effect is, however, the lowering of the peak for finite

which is in agreement with the analysis of REZ1].
, (a k>2]

_kZ

4
mﬂ

YE

dR 1 et
== d3p+d3p_ - (277_)6 ; VI. SUMMARY AND CONCLUSIONS

In this paper we have considered the effects of a finite
% —ImF pion density on the propagation propertiespofnesons at
(M?— mi—ReF)er ImF2 finite temperature. Thp has been introduced by gauging an
effective Lagrangian obtained from the linear sigma model in
1 the kinematical regime where the pion mass and temperature
eBoL_1]’ are small compared to the sigma mass. The finite density is
described in terms of a finite pion chemical potential associ-
ated with a conserved pion number. We have argued that
such a description is important for ultrarelativistic heavy-ion
collisions at RHIC and LCH energies where the central ra-
pidity region is expected to become baryon free. In this situ-
(q- k)zl ation, we expect that the influence of the droppingass or
2

4
m,

M4

E.E

dR 1 (e4

TdPp.dp. (2m)°| g2

x| 2M2—q2+ . , ! _
melting of resonances scenarios to describe the dilepton
spectra, which rely on the effects of a finite baryon density,
~ImG becomes less important than the effects of the expected large
pion density. This is so particularly during the hadronic

phase of the reaction, between chemical and thermal freeze-

X
(M2—m’—ReG)?+ImG?

1 out when the strong interaction drives pion number to a fixed
, (35) value. '
ehor—1 We have found that thg thermal mass increases mono-

tonically with both the temperature and the pion density.
where P4 =(E, ,p,) and P£Z=(E_,p_) are the positron However, thep width as a function ofu and for fixed T
and electron four-momenta, respectivel= P4 +P# starts off by decreasing, reaching a minimum at a finite value
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of «. This behavior can be understood by noticing that as thénite pion density also produces a decrease of the distribu-
density increases, the pion mass does too and the phase sp&oe at the position of the peak compared to e 0 case.
available for the decay process— w7 narrows up to The problem posed by the renormalization of theories in-
a—temperature dependent—valuewof From this value, the  volving resummation is by no means a simple one. In fact, in
increase in the thermal mass is stronger than the increase inrecent years this subject has been much actively pursued in
the thermal pion mass and this effect produces a widening dhe literature(see, for example, Ref§22—24]). The consen-
the phase space for the process, thus producing thalth ~ sus is that when the theory is vacuum renormalizable, it will
to rise. still be renormalizable after resummation. The solution,
Under the assumption of VDM ang saturation, we have which can be formulated using different languages, has been
also computed the dilepton production rate as a function ohown to require that the counterterms needed for vacuum
the pair invariant mass. We have found that the finite piorrenormalization in ordinary perturbation theory need also to
density produces a moderate broadening of the distributioreceive the benefits of resummation and be considered self-
and a moderate increase of the position of the peak. Theonsistently in the resummation procedure.
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For the purposes of our work, let us stress that the resumwith regard to further thermal modifications to the pion mass
mation we have implemented for the pion self-energy correin situations where the original coupling constant of tfe
sponds to the tadpole approximati¢see Sec. Il of Ref. theory is much larger that 1, but is certainly beyond the
[22]). In fact, the gap equation that renders the finite temscope of the present work where our coupling constgras
perature and density corrections to the pion mass in ougetermined by the scale of the interactions, set by the
work, Eq.(18), is identical to the thermal part of ER4) of  yacuum pion mass, is of order[in fact, what matters, as
the above reference; we have just gone one step further, exhown in Eq(18), is the effective coupling constant given by
panding the integrand as a series that allows us to analytiy/(442), which is of order 0.1
cally integrate each term. In E(R4) of Ref.[22], the renor- Finally, in order to predict the final dilepton spectra at
malization of the vacuum self-energy and four-point functionRH|C and LHC energies, the results found in this work have
have been carried out on the physical mass-shell conditiogy pe placed into a model for the evolution of the collision

and have taken into account the self-consistency. In the langnd also possibly to include the effects of other vector or
guage of this reference, this is so because in the tadpolgial vector mesons. All this is for future.

approximation, the renormalized four-point function is con-
stant and given just in terms of the original coupling constant
on the mass-shell condition.

Had we gone beyond the tadpole approximation, the situ-
ation would have not been that straightforward. In fact, it has A.A. wishes to thank Centro Brasileiro de Pesquisas Fisi-
also been shown in Ref22] that the self-consistent resum- cas for their kind hospitality during the time when part of
mation scheme requires a more complicated renormalizatiothis work was done. Support for this work has been received
of the four-point function to be taken into account alongsidein part by DGAPA-UNAM under PAPIIT Grant No.
the renormalization procedure for the self-energy. The effecttN108001 and CONACyYT under Grant Nos. 32279-E and
of this certainly more complete analysis might be interestingd0025-F.
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