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Non-Markovian effects on the dynamics of bubble growth in hot asymmetric nuclear matter
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We study the conditions for the generation and the dynamical evolution of embryonic overcritical vapor
bubbles in an overheated asymmetric nuclear matter. We show that the Fermi-surface distortion and memory
effects significantly hinder the growth of the bubbles. Moreover, the growth of the bubble is accompanied by
characteristic oscillations of its radiusR. The characteristic energyE, the damping parameterG, and the
instability growth rate parameterz, depend on the relaxation timet. The characteristic oscillations disappear
in the short relaxation time limitt→0. Our approach ignores the fluctuations of the particle numbers in the
bubble region and the finite diffuse layer of the bubble. The minimum size of the critical radiusR* for which
our approach applies is determined by the conditiona/R* !1, where a50.5–1 fm is the temperature-
dependent surface thickness of the bubble.
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I. INTRODUCTION

The boiling of a liquid is an example of a phase transiti
of the first order. The necessary condition for the boiling
the equilibrium between the liquid and the saturated va
phases. Assuming a fixed external pressureP0 and a plane
surface for the separation of the liquid-vapor phases,
equilibrium conditions for the thermodynamical boilin
point read@1#

Pliq~T,r!5Pvap~T,r!5P0 , m liq~T,r!5mvap~T,r!,
~1!

where P, m, r and T are the pressure, chemical potenti
particle density, and temperature, respectively. Here an
the following, the indices ‘‘liq’’ and ‘‘vap’’ denote the liquid
and vapor phases, respectively. However, the condition
Eq. ~1! are not sufficient for the occurrence of the boilin
process~cavitation!. The boiling, as a process, also mea
the generation and the growth of the vapor phase~vapor
bubbles! inside the liquid phase as a result of the heteroph
fluctuations. In fact, the boiling can only start in a metasta
phase~overheated or extended liquid!. The formation of em-
bryonic bubbles due to the quantum and statistical fluct
tions was studied earlier in Refs.@2–4#. The spontaneous
occurrence of embryonic bubbles caused by the sin
particle fluctuations in hot nuclear matter was considered
Ref. @5#. We also point out that the process of the generat
of vapor bubbles in the nuclear interior is interesting
itself because the expansion of a bubble means a breakd
of the nuclear liquid, i.e., the multifragmentation of th
nucleus@6,7#.

The process of boiling is usually considered for a giv
value of the pressureP0. If at the pressureP0 the equilib-
rium conditions~1! are satisfied for a certain valueT0 of the
temperature, the generation of the critical vapor bubbles
radiusR* , which are in a thermodynamical equilibrium wit
the liquid, will start at a higher temperatureT. The critical
radius R* depends on the overheating temperaturedT5T
2T0 @8#. For a small embryonic bubble, the dynamical ev
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lution of the bubble is influenced significantly by the flu
tuation of the particle number in the bubble region. Th
effect was considered in Refs.@9,10# including a random
force in the macroscopic equation of motion for the bub
radius. However, the macroscopic equation of motion use
Refs.@9,10# and earlier in Ref.@3# does not account for the
effects of the Fermi-surface distortion on the transport co
ficients. The purpose of this work is to study the features
the dynamical evolution of the bubble in the nuclear Fer
liquid, taking into account the influence of the Fermi motio
of nucleons in the surrounding Fermi liquid on the bubb
dynamics. We will consider the dynamical evolution of lar
enough overcritical bubbles (R.R* ) and neglect the single
particle fluctuations. Note that the number particle fluctu
tions play a significant role if the bubble radius is comp
rable with the average interparticle distance@9#.

Our numerical analysis was carried out for the saturat
temperatureT056 MeV, which corresponds to the platea
region in the nuclear caloric curve@11#. In this case, the
lowest value of the critical radiusR* is about 4 fm, which
seems to be too large to be applied directly to the proble
of the heavy ion collisions. We point out, however, that t
inclusion of the Coulomb forces, which is ignored in o
nuclear matter consideration, decreases the value ofR*
@2,3#. Unfortunately, the influence of the Coulomb forces
the formation of the vapor bubbles cannot be assessed fo
case of infinite nuclear matter. Our consideration cannot
extended to very small values ofR* . It is self-evident that
R* cannot be smaller than the average distance betw
neighboring nucleons in the liquid phase. Moreover, fo
small enough bubble the finite size effects, in particular
finite diffuse layer for the vapor density distribution insid
the bubble, can be important@3#. In this respect, the mini-
mum value of the radiusR* , for which our approach is ap
plicable, is determined by the conditiona/R* !1, wherea is
the surface thickness of the bubble. The parametera can be
extracted from the density profiles obtained in a temperatu
dependent Hartree-Fock or Thomas-Fermi calculation, wh
a50.5–1 fm see Ref.@3# and references therein.
©2003 The American Physical Society14-1
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We will mainly focus on the dynamical effects related
the properties of the Fermi liquid. In particular, we will tak
into consideration the Fermi-surface distortion effec
memory effects~non-Markovian dynamics!, and the relax-
ation processes. The dependence of the critical radiusR* on
the overheating temperaturedT for an asymmetric nuclea
matter is considered in Sec. II. The equilibrium conditio
for the heated nuclear matter and the saturated vapor
considered in Sec. III. The time development of the bub
instability in the thermodynamically metastable~overheated!
nuclear matter is studied in Sec. IV. The summary is given
Sec. V.

II. CRITICAL BUBBLES IN OVERHEATED ASYMMETRIC
NUCLEAR MATTER

Let us consider an asymmetric nuclear matter at a t
peratureT and an asymmetry parameterX, defined asX
5(rn2rp)/r, wherern andrp are the neutron and proto
densities, respectively. In the presence of both the liquid
the vapor~vapor bubble! phases, the equilibrium conditio
for the chemical potentials of neutrons,mn , and protons,
mp , in the absence of surface effects~plane boundary sur
face! reads

mq
liq~P0 ,T0 ,X0,liq!5mq

vap~P0 ,T0 ,X0,vap!, ~2!

whereq is the isospin index (q5n for neutron andq5p for
proton!. Let us fix the pressurePliq5P0 and the asymmetry
Xliq5 X0,liq of the liquid phase. The two equilibrium cond
tions of Eq.~2! allow us to determine both the temperatu
T0 and the asymmetryX0,vapof saturated vapor in the case
plane geometry.

The boiling process takes place in the form of the gene
tion of vapor bubbles which then grow to macroscopic
mensions. It thus becomes important to study the equilibr
of the bubble of radiusR with respect to the surroundin
liquid phase. A liquid which is overheated in the usual sen
i.e., with respect to a phase separated from it by a pl
surface, can be underheated with respect to a vapor bubb
a finite radiusR. We will extend equilibrium condition~2! in
such a way that the liquid phase will remain in equilibriu
with the vapor bubble with a given radiusR, see also
Ref. @8#.

The thermodynamical potential of the whole system, c
sisting the liquid and the vapor bubble, is given by

F5Aliqm̄ liq~Pliq ,T,Xliq!1Avapm̄vap~Pvap,T,Xvap!, ~3!

whereA5N1Z is the number of nucleons~with N neutrons
andZ protons! andm̄ is the mean chemical potential, define
as

m̄5
1

r (
q

rqmq5
11X

2
mn1

12X

2
mp . ~4!
01461
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We point out that due to the condition of mechanical eq
librium between the bubble and the surrounding liquid, t
vapor pressurePvap in the bubble must exceed the liquid on
Pliq . Namely,

Pvap5Pliq1Ps , ~5!

wherePs is the capillary pressure,

Ps5
2s

R
, ~6!

and s is the ordinary surface tension corresponding toR
5`, i.e., we neglect the curvature corrections ins. For
fixed values of temperatureT and pressurePliq5P we derive
the critical radius of bubble (R* ) from the condition of the
thermodynamical equilibrium,

dF/dAvap50 at Aliq1Avap5const,

XliqAliq1XvapAvap5const. ~7!

Using Eqs.~3! and ~7!, we obtain

mq
liq~P,T,Xliq!2mq

vapS P1
2s

R*
,T,XvapD 50. ~8!

We point out that in the limit of plane geometry, atR*
→`, Eq. ~8! is reduced to the standard condition of Eq.~2!.

Differentiating both sides of Eq.~8! at fixed Xliq and T
and using the relations

S ]m̄

]P
D

X,T

5
1

r
, S ]m̄

]X
D

P,T

5
mn2mp

2
,

we obtain~see also Ref.@8#!

F 1

r liq~P,T,Xliq!
12DX

]

]Xliq
S 1

r liq~P,T,Xliq! D
P,T

GdP

5
dP12sd~1/R* !

rvap~P12s/R* ,T,Xvap!
, ~9!

where DX5(Xvap2Xliq)/2. Taking into account thatr liq
@rvap, one obtains from Eq.~9!,

dP5P02P5
2s

R*
, ~10!

whereP0 is the pressure of a saturated vapor in the case
plane geometry atR* →`, see Eq.~2!. As seen from Eq.
~10!, the undercompressed liquid withP, P0 produces the
cavitation in the liquid@the existence of the vapor bubb
~critical bubble! in thermodynamical equilibrium with the
surrounding liquid#. A comparison of Eqs.~10! and~5! leads
to the following important relationPvap5P0, i.e., the vapor
pressure inside the critical bubble does not depend
its size@8#.
4-2
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The equilibrium condition~10! defines the bubble radiu
R* in the undercompressed liquid as a function of the diff
ence P02P for a given value of the temperatureT5T0,
where T0 is the boiling temperature in the case of pla
geometry, see Eq.~2!. We will now transform Eq.~10! to a
different form, which describes the occurrence of cavitat
in the overheated liquid for a given value of the extern
pressureP0, whereP0 is the pressure for a saturated vapor
the plane geometry determined by Eq.~10!. Let us establish
the relation between the differencedP5P02P and the over-
heating temperaturedT5T2T0. Both of them are due to the
capillary pressurePs* 52s/R* . We will consider a small
variation ofP, T, andXvap in the equilibrium equation~8!,

mq
liq~P02dP,T1dT,X0,liq!5mq

vap~P0 ,T1dT,X0,vap

1dXvap!. ~11!

We obtain from Eq.~11! the relation

F 1

r liq
1DXS ]Dm liq

]P D
T,X

G
0

dP5F s̄vap2 s̄liq

1DXS ]Dm liq

]T D
P,X

G
0

dT,

~12!

whereDm liq5mn
liq2mp

liq and the subscript ‘‘0’’ means that a
quantities are taken for the plane geometry as in Eq.~2!.
Here s̄ is the entropy per particle given by

s̄vap5
Svap

Avap
52S ]m̄vap

]T
D

P,X

, s̄liq5
Sliq

Aliq
52S ]m̄ liq

]T
D

P,X

,

whereS is the entropy. In deriving Eq.~12!, we have used
the relation

11X

2 S ]mn

]X D
P,T

1
12X

2 S ]mp

]X D
P,T

50.

Let us introduce the latent heat of evaporation

f̄5F s̄vap2 s̄liq1DX~]Dm liq/]T!P,X

rvap/r liq1rvapDX~]Dm liq/]P!T,X
G

0

T0 . ~13!

Using Eqs.~10!, ~12!, and~13!, we obtain the critical radius
of the overheated bubble as

R* 5
2sT0

rvapf̄~T2T0!
. ~14!

We point out that, in general, the surface tension depend
the temperature and the asymmetry parameter, namels
5s(T,Xliq).

Let us consider the change of the free energy of the liq
due to the formation of a bubble of an arbitrary radiusR ~i.e.,
01461
-
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not necessary stable withR5R* ). At fixed P, T, andX, it
is given by the change of the corresponding thermodyna
cal potential,

DF5F2F0 , ~15!

where F05m̄ liq(Aliq1Avap) corresponds to the absence
the bubble. Taking into account that the surface free ene
of the bubble is given by 4pR2s, we obtain from Eq.~15!,

DF5m̄ liqAliq1m̄vapAvap14pR2s2m̄ liq~Aliq1Avap!

5~m̄vap2m̄ liq!
4p

3
R3rvap14pR2s. ~16!

At fixed P, T, andXliq , both chemical potentialsm̄vap and
m̄ liq are also fixed, and they are related to each other by
equilibrium condition~7!. Using

F5m̄ liqAliq1m̄vapAvap14pR2s ~17!

and Eqs.~15!, ~16!, and ~7!, one obtains the well-known
result @8#

DF[DF~R!54psS R22
2R3

3R*
D . ~18!

We point out that we neglect in our consideration t
Coulomb forces because the Coulomb energy contributio
DF is a rapidly decreasing function of the bubble size@2,9#,
and we will restrict ourselves by the bubble growth regime
R.R* .

III. EQUATION OF STATE AND SURFACE
OF EQUILIBRIUM WITHIN THE MEAN FIELD

APPROXIMATION

To evaluate both the equilibrium vapor densityrvap and
the latent heat of evaporationf̄ in Eq. ~14!, we will follow
the temperature-dependent Thomas-Fermi approximation
ing the Skyrme-type force as the effective nucleon-nucle
interaction. The free energy densityF is given by@12,13#

F5T(
q

HAq* FJ3/2~hq!2
5

3
J3/2~hq!G1hqrqJ

1
1

2
t0@~11x0/2!r22~x011/2!~rn

21rp
2!#

1
1

12
t3rs@~11x3/2!r22~x311/2!~rn

21rp
2!#,

~19!

wherexi , t i , ands are the Skyrme force parameters,q is the
isospin index (q5n for neutrons andq5p for protons!, rq is
the nucleon density, andr5rn1rp . The Fermi integral
Jn(hq)5*0

`dz zn/@11exp(z2hq)# in Eq. ~19! depends on
the fugacityhq . The value ofhq can be found from the
condition
4-3
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rq5Aq* J1/2~hq!. ~20!

Here, Aq* 5(1/2p2)(2mq* T/\2)3/2 and mq* is the effective
nucleon mass, given by

\2

2mq*
5

\2

2 mq
1

1

4
@ t1~11x1/2!1t2~11x2/2!#r

1
1

4
@ t2~x211/2!2t1~x111/2!#rq . ~21!

Using Eq.~19!, one can derive the pressureP ~equation of
state! and the chemical potentialsmq . Namely,

P5r2S ]

]r

F
r D

T,X

,

mn5S ]F
]rn

D
T,rp

, mp5S ]F
]rp

D
T,rn

. ~22!

A numerical calculation of the pressureP of Eq. ~22! with
the free energy densityF from Eq. ~19! leads to the van de
Waals–like isothermsP5P(T,X,r), describing both the liq-
uid and the vapor phases in equilibrium@14–17#. Equilib-
rium states of the two-component~neutrons and protons!
liquid-vapor system are located on the three-dimensional
face in the (P,T,X) space@13#. The (P,T,X) surface of equi-
librium can be evaluated using the Gibbs equilibrium con
tions @1# @see also Eq.~1!#:

Pliq~T,X,r!5Pvap~T,X,r!, mq
liq~T,X,r!5mq

vap~T,X,r!.
~23!

Solving Eqs.~23! for certain values ofXliq andT 5T0, one
obtains the equilibrium chemical potentialsmp,n

liq 5mp,n
vap, the

vapor asymmetry parameterXvap, and the vapor density
rvap. Determining these quantities allows us to evaluate
latent heat of evaporationf̄, Eq. ~13!, and the radiusR* of
the critical bubble, Eq.~14!. Figure 1 shows the dependen
of the critical radiusR* on the overheating temperaturedT
5T2T0 for different values of the asymmetry parameterXliq
and a fixed boiling temperatureT056 MeV. The numerical
calculations were performed using the SkM parametersxi ,
t i , ands for the Skyrme force in Eq.~19! ~see Ref.@13# for
more details!, and the surface tension coefficients is given
by @18#

s51.1S TC
2 2T2

TC
2 1T2D 5/4

MeV, ~24!

whereTC514.6 MeV is the critical temperature for infinit
nuclear Fermi liquid, associated with the SkM interacti
@13#. Figure 2 gives an illustration of the dependence of
overheating temperaturedT on the change of the pressu
(dP) in the undercompressed liquid obtained from the eq
librium equation~11!. In the case of small variationsdT and
dP, the results shown in Fig. 2 agrees with those obtai
01461
r-

-

e

e

i-

d

from Eq. ~12!. The dependence of the overheating tempe
turedT on the asymmetry parameterXliq is shown in Fig. 3.
The increase ofdT with Xliq , seen in Fig. 3, is due to the fac
that the increase of the temperature in an asymmetric nuc
matter leads to an increase of the value of the critical as
metry parameterXliq

crit for the liquid-gas phase transition, se
Ref. @13#.

0.0 0.4 0.8 1.2

T (MeV)

0

5

10

15

20

R
*

(f
m

)

T0 = 6 MeV

0.0 0.1 0.2

FIG. 1. Dependence of the critical radiusR* on the overheating
temperaturedT5T2T0 for different values of the asymmetry pa
rameterXliq50, 0.1, and 0.2 and fixed boiling temperatureT0

56 MeV. The numerical calculations were performed for the Sk
force.

0.0 0.1 0.2 0.3 0.4

P (MeV/fm
3
)

0.0

0.4

0.8

1.2

T
(M

eV
)

T0 = 6 MeV

0.0

0.1

0.2

FIG. 2. Dependence of the overheating temperaturedT on the
pressure excessdP @see Eqs.~11! and ~12!# for the values of the
asymmetry parameterXliq50, 0.1, and 0.2 and a fixed boiling tem
peratureT056 MeV. The values of the asymmetry parameterXliq

are shown near the curves.
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The definition of the latent heat of evaporationf̄ implies
a fixed value of the boiling pressureP0, see Eq.~13!. The
numerical estimate of the boiling pressureP0 and the corre-
sponding boiling temperatureT0 can be obtained by studyin
the caloric curve for the case of isobaric heating. Let
consider the temperature dependence of the excitation en
per particle,E* A, which is given by

E*

A
5

l liqEliq~r liq ,Xliq ,T!1lvapEvap~rvap,Xvap,T!

l liqr liq1lvaprvap

2S Eliq~r liq ,Xliq ,T!

r liq
D

T50

, ~25!

whereE5F1TS is the energy density andS is the entropy
density,

S5(
q

S 5

3
Aq* J3/2~hq!2hqrqD . ~26!

The volume fractionsl liq and lvap of the liquid and vapor
phases in Eq.~25! are defined byl liq5Vliq /V and lvap
5Vvap/V, whereVliq andVvap are the volumes of the liquid
and vapor phases, respectively, andV5Vliq1Vvap. Numeri-
cal calculations show@13# that the low temperature depen
dence of the excitation energyE* A corresponds to the hea
ing of the degenerate Fermi liquid withE* A;T2. At high
temperatures, the excitation energyE* A dependence onT is
the same as that of the classical Boltzmann’s gas withE* A
5(3/2)T. The caloric curveT(E* /A) is a continuous func-
tion and has a plateau region for two-phase coexistence.
plateau region is achieved at a certain temperatureT0, which
depends significantly on the pressureP0 . The temperature
T0 can be identified as the boiling temperature~first-order

0.0 0.1 0.2

X

6

7

8
T

=
T

0
+

T
(M

eV
)

T0 = 6 MeV, R
*

= 4 fm

FIG. 3. Dependence of the overheating temperaturedT on the
asymmetry parameterXliq for a fixed boiling temperatureT0

56 MeV and critical radiusR* 54 fm.
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phase transition temperature!. In Fig. 4, the dependence o
the boiling temperatureT0 on the ‘‘external’’ pressureP0 is
shown for different values of the asymmetry parameterXliq .
Experimental observations show a nearly flat~plateau! ca-
loric curve with a temperature of about 7 MeV@11#. If one
could assume the process of isobaric heating for the des
tion of the experimental data, the order of magnitude of
pressureP0 should beP0'1022 MeV/fm3 for this process.
Below we will use this value ofP0 as the external pressur
for the boiling in an overheated Fermi liquid.

IV. HETEROPHASE FLUCTUATIONS AND BOILING

Let us consider the dynamical evolution of overcritic
bubbles in an overheated nuclear matter. As noted earlier
bubble with the critical sizeR5R* exists in a thermody-
namic equilibrium with the liquid. The distribution o
such bubbles with respect to their size is given by Gibb
formula @1,8#

W5const~e2DF(R* )/T!, ~27!

where the potentialDF(R* ) is given by@see Eq.~18!#

DF~R* !5
4

3
psR*

2
. ~28!

We now consider the dynamics of the bubble with an ar
trary overcritical sizeR.R* . In Fig. 5 we have plotted the
thermodynamical potentialDF(R) as a function of the
bubble radiusR @see Eq.~18!# for the overheated liquid with
T.T0 ~solid line! and for a temperatureT below the boiling
temperatureT0 ~dashed line!. The position of the maximum
of the curveDF(R) is located atR5R* , and it is shifted to

0.0 0.1 0.2

P0 (MeV/fm
3
)

5

10

15

T
0

(M
eV

)

0.0
0.2

FIG. 4. Dependence of the boiling temperatureT0 on the equi-
librium liquid-vapor pressureP0 for the isobaric boiling of the
asymmetric nuclear matter~no surface effects! for the values of the
asymmetry parameterXliq50, 0.1, and 0.2.
4-5



,
se
t
t

le

bl
-

,

e
l

-

id
f
int
p

y-
on

o-
ent

e

pa-
m
pli-
c-

-

icle

ing
ar-
r

lid

V. M. KOLOMIETZ, A. I. SANZHUR, AND S. SHLOMO PHYSICAL REVIEW C68, 014614 ~2003!
the left with the increase of the overheating temperaturedT
5T2T0, because of Eq.~14!. As one can see from Fig. 5
the pointR5R* is the critical point for the metastable pha
in the following sense: to start the boiling process, i.e.,
start the process of increasing the size of the bubbles,
system must pass through the barrierDF(R) to reach the
region ofR.R* .

To describe the development of instability of the bubb
with a nonequilibrium sizeR.R* , one needs to know the
equation of motion for the time dependence ofR5R(t). To
obtain the macroscopic equation of motion for the bub
radiusR(t), we will start from the collisional kinetic equa
tion for the phase-space distribution functionf [ f (r ,p;t) in
the following form:

]

]t
f 1

p

m
•“ r f 2“ rU•“pf 52

d f $ l>2%

t
, ~29!

where U[U(r ,p;t) is the self-consistent mean field
2d f $ l>2% /t is the collision integral,t is the relaxation time,
andl is the multipolarity of the Fermi-surface distortion. Th
notationd f $ l>2% in Eq. ~29! means that the collision integra
does not contain the components withl 50 andl 51 for the
distorted distribution functiond f in momentum space be
cause of the conservation of the number of particles and
the total momentum. Note that Eq.~29! can be easily ex-
tended by including the random forces in the right hand s
of the equation, see Ref.@19#. Therefore, the fluctuation o
the particle number in the bubble region can be taken
consideration in our approach in a way similar to the a
proach of Ref.@9#.

The momentum distribution is distorted during the d
namical evolution of the bubble, and the distribution functi
takes the form

0 2 4 6

R (fm)

-50

-25

0

25

50
(M

eV
)

T<T0

T>T0

R
*

T0 = 6 MeV, X = 0.2
T = 1.17 MeV

R
*

= 4 fm

FIG. 5. Dependence of the thermodynamical potentialDF @see
Eq. ~18!# of metastable liquid on the radius of the bubble. The so
line is for the overheated liquid withT.T0 and the dashed line is
for T,T0.
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f ~r ,p;t !5 f sph~r ,p;t !1(
l>1

d f l~r ,p;t !, ~30!

where f sph(r ,p;t) describes the spherical distribution in m
mentum space. We point out that the time-depend
Thomas-Fermi ~TDTF! approximation is obtained from
Eq. ~29! if one takes the distribution functionf (r ,p;t)
in the following restricted form f TF(r ,p;t)5 f sph(r ,p;t)
1d f l 51(r ,p;t), instead of Eq.~30!, see Ref.@20#. Below we
will extend the TDTF approximation taking into account th
dynamic Fermi-surface distortion up to multipolarityl 52.
We will also assume that the collective motion is accom
nied by a small deviation of the momentum distribution fro
the spherical symmetry, i.e., even in the case of large am
tude motion the main contribution to the distribution fun
tion f (r ,p;t) is given by the Thomas-Fermi termf TF(r ,p;t),
and the additional termd f l 52(r ,p;t) provides only a small
correction. The lowest ordersl 50 and 1~which are not nec-
essarily small! of the Fermi-surface distortion do not contrib
ute to the collision integral in Eq.~29! because of the particle
number and momentum conservation in an interpart
collision.

Evaluating the first three moments of Eq.~29! in p space,
we can derive a closed set of equations for the follow
moments of the distribution function, namely, the local p
ticle densityr, the velocity fieldun , and the pressure tenso
Pnm , in the form~for details, see Refs.@20,21#!

]

]t
r52 ¹n~run!, ~31!

mr
]

]t
un1mr~um¹m!un1¹nP1r¹n

depot

dr
52¹mPnm8 ,

~32!

]

]t
Pnm8 1P ]

]t
Lnm52

1

t
Pnm8 . ~33!

Here

r5E dp

~2p\!3
f , un5

1

rE dp

~2p\!3

pn

m
f , ~34!

andP[P(r ,t) is the isotropic part of the pressure tensor,

P~r ,t !5
1

3mE dp

~2p\!3
p2f sph~r ,p;t !5~2/3!ekin . ~35!

Here,ekin'(3/5)reF is the internal kinetic energy andeF is
the Fermi energy. The tensorPnm8 5Pnm8 (r ,t) is the deviation
of the pressure tensor from its isotropic part,P(r ,t), due to
the Fermi-surface distortion,

Pnm8 ~r ,t !5
1

mE dp

~2p\!3
~pn2mun!~pm

2mum!d f l 52~r ,p;t !. ~36!
4-6
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The potential energy densityepot in Eq. ~32! is related to the
self-consistent mean fieldU asU5depot/dr, and the tensor
Lnm in Eq. ~33! is given by

Lnm5¹nxm1¹mxn2
2

3
dnm¹lxl , ~37!

wherexn[xn(r ,t) is the displacement field which is relate
to the velocity field byun[ un(r ,t)5]xn(r ,t)/]t. From Eq.
~33! we find the pressure tensorPnm8 (r ,t) in the form

Pnm8 ~r ,t !5Pnm8 ~r ,t0!expS t02t

t D
2E

t0

t

dt8expS t82t

t DP~r ,t8!
]

]t8
Lnm~r ,t8!.

~38!

A solution of the continuity equation for the spheric
bubble leads to the following displacement fieldx in the
surrounding liquid@3,22#:

xn~r ,t !5
R3

3r 2

r n

r
, r>R. ~39!

Multiplying Eq. ~32! by x̄m5um /Ṙ and integrating overr ,
one obtains the following non-Markovian equation for t
collective variableR(t):

BR̈1
1

2

]B

]R
Ṙ21E

t0

t

dt8Ṙ~ t8!expS t82t

t DK~ t,t8!52
]Epot

]R
.

~40!

The inertial parameterB in Eq. ~40! can be derived from the
definition of the collective kinetic energyEkin . Namely,

Ekin5
m

2 E drru25
1

2
BṘ2.

Assumingrvap!r liq'r5r0u(r 2R), we obtain@3#

B54pmR3r0 . ~41!

The collective potential energyEpot(R) in Eq. ~40! can be
identified with the thermodynamical potential of Eq.~18!.
Namely,

Epot~R!5DF~R!. ~42!

Finally, the memory kernelK(t,t8) in Eq. ~40! is given by

K~ t,t8!5E drP~r ,t8!@¹nx̄m~r ,t !#F¹nxm~r ,t8!

1¹mxn~r ,t8!2
2

3
dnm¹lxl~r ,t8!G . ~43!

Using Eqs.~35!, ~39!, and~43!, we obtain

K~ t,t8!5~32/5!pr0eFR~ t !. ~44!
01461
We point out that the non-Markovian form of Eq.~40! is
due to the effects of the Fermi-surface distortion. T
memory integral in Eq.~40! provides both the friction and
the conservative time-reversible force in Eq.~40!. Also note
that we neglect the quantum and statistical~single-particle!
fluctuations in Eq.~40!. The quantum fluctuations play a
insignificant role for temperaturesT*1 MeV @2,3#. The
single-particle fluctuations can change the bubble dynam
especially forR near the critical valueR* , see Ref.@9#, if the
bubble radiusR is comparable with the average interpartic
distances. Below we will apply Eq.~40! to the regions ofT
andR where the quantum and the single-particle fluctuatio
are negligible.

For a small amplitude motion near the top of the barr
~the starting path for the development of the instability!, Eq.
~40! is reduced forDR5R2R* as

B*
]2

]t2
DR52kDR2k̃E

t0

t

dt8expS t82t

t D ]

]t8
DR~ t8!,

~45!

where

B* 54pmR* 3r0 , k5]2DF~R!/]R2uR5R* 528ps

and k̃5~32/5!pr0eFR* .

We also point out that for two limiting cases of rare (t
→0) and frequent (t→`) collision regimes, Eq.~45! is re-
duced to the standard Newton’s equation. For both limit
cases, we obtain from Eq.~45!,

B*
]2

]t2
DR~ t !52k8DR2g

]

]t
DR~ t !, ~46!

wherek85k if t→0 andk85k1 k̃ if t→`. The friction
coefficientg in Eq. ~46! will be derived and discussed below

We will look for the solution to Eq.~45! in the form

DR5(
i 51

3

Ciexp~l i t !, ~47!

where the coefficientsCi are determined by the initial con
ditions. Differentiating Eq.~45! over time we find that the
eigenvaluesl i can be obtained as solutions to the followin
secular equation:

S l21
k

B*
D S l1

1

t D1
k̃

B*
l50, ~48!

where t is the relaxation time. In the case of the zer
relaxation-time limitt→0, one obtains from Eq.~48! a non-
damped motion withl56Auku/B* , i.e., the time evolution
is derived by the static stiffness coefficientsk. In the opposite
case of rare collisions,t→`, the solution to Eq.~48! leads

to a motion withl56 iA(2uku1k̃)/B* . In contrast to the
4-7
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previous case, the additional contributionk̃ appears at the
stiffness coefficient2uku1k̃ because of the Fermi-surfac
distortion effect.

In a general case of arbitraryt, solution ~47! takes the
form

DR5Cze
zt1Ave2Gt/2\sin~Et/\!1Bve2Gt/2\cos~Et/\!.

~49!

We have evaluated numerically the value ofDR from Eq.
~45! using the secular equation~48! and the initial conditions

DR~ t0!50,
]

]t
DR~ t !u t5t0

5v0 , and

]2

]t2
DR~ t !u t5t0

50,

wherev0 is the initial velocity. In Fig. 6 we show the resul
for two values of the relaxation time,t55 fm/c ~dashed
line! and t550 fm/c ~solid line!. We have usedR*
54 fm, and the initial velocityv0 was derived using the
initial kinetic energyEkin,05(1/2)Bfv0

251 MeV.
In the case of the very short relaxation timet55 fm/c

~frequent collision regime!, the memory effects in Eq.~45!
play only a minor role~Markovian regime!, and the ampli-
tude of motion is approximately an exponentially growi
function, similar to the case of Newton motion from the b
rier in the presence of the friction forces, see the das
curve in Fig. 6. The friction coefficientg was derived here
from Eq. ~45! at vFt!1, and it is given by g5k̃t

5vF
2B* t;t, wherevF5Ak̃/B* is the characteristic fre

quency for the eigenvibrations caused by the Fermi-surf
distortion effect. We also point out that since Eq.~45! is only

0 200 400 600 800

t (fm/c)

0.0

0.01

0.02

R
/

R
*

0.01

FIG. 6. Time variation of the bubble shape parameterR near the
barrier pointR5R* for various values of the relaxation timet. The
dashed and solid curves correspond to the values oft55 fm/c and
t550 fm/c, respectively.
01461
-
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e

applicable for small amplitudeDR, the dashed line in Fig. 6
was obtained using the exact solution of Eq.~40!.

At large enough relaxation time, the bubble growth d
pends essentially on the memory effects~non-Markovian re-
gime!. The solid line in Fig. 6 showsDR(t) obtained from
Eq. ~46! for t550 fm/c. As can be seen from Fig. 6, th
behavior ofDR(t) is changed dramatically with the increas
of the relaxation time. For the large relaxation time, a s
nificant time delay in the increase of the bubble size ari
due to the non-Markovian effects. Moreover, the bub
growth is accompanied by damped oscillations. These os
lations are due to the memory integral in Eq.~45!. The char-
acteristic frequencyvR and the corresponding damping p
rameterv I can be derived from the imaginary and real pa
of the complex conjugate roots of Eq.~48! as l52v I
6 ivR with G52\v I andE5\vR .

In Fig. 7 we show the dependence of the instabil
growth rate parameterz @see Eq.~49!#, the energy of eigen-
vibrations (E), and the damping parameterG on the relax-
ation timet. For small enough values of the relaxation tim
t&8 fm/c, the functionDR(t) does not oscillate with time
and takes the following form@compare with Eq.~49! and see
the dashed lines in Fig. 7#:

DR5Cze
zt1C1e2G1t/2\1C2e2G2t/2\. ~50!

10
0

2 5 10
1

2 5 10
2

2

(fm/c)

0.0

0.2

0.4

0.6

E
,Γ

,ζ

E

Γ/2

ζ

Γ1/2

Γ2/2

FIG. 7. Dependence upon relaxation timet of the dimensionless

values of the characteristic energyĒ5E/eF , width Ḡ5G/eF , and

the instability growth rate parameterz̄5z/eF for the case of Eq.

~49! and for damping parametersḠ15G1 /eF andḠ25G2 /eF in the
case of the solution given by Eq.~50!.
4-8
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We point out that the behavior of the friction coefficientg
in the above mentioned relaxation regimes is essentially
ferent. In the rare collision regimevFt@1, the friction co-
efficient g in the equation of motion~46! is obtained from
Eq. ~45! as g5 B* /t;1/t. This t dependence of the fric
tion coefficient,g;1/t, is caused by the dynamical Ferm
surface distortions@19#, and it is opposite to thet depen-
dence ofg;t in the short relaxation regimevFt!1 ~see
above!. In general, one can use the following extrapolati
form for the friction coefficient:

g5vFB*
vFt

11~vFt!2
, ~51!

which provides the correct limit forg in both t→0 and
t→` cases.

We also point out that the presence of the character
oscillations of the bubble radius behind the barrier withR
.R* can lead to the emission ofg quanta. The energyE
5\vR and the dampingG52\v I of this radiation depend
both on the phase transition,T0, and the overheating,dT,
temperatures. This fact can be used for the determinatio
both temperaturesT0 and dT from the measurement of th
characteristicsE andG of the corresponding resonance lin
For the uncharged nuclear matter, the energyE and the
damping parameterG are given in Fig. 7. In the following
step in the investigation of cavitation in nuclear liquid, w
plan to take into account the finite size and the charge of
nucleus for both the liquid and the vapor phase.

V. SUMMARY

Using the temperature-dependent Thomas-Fermi appr
mation @13# and the Skyrme-type forces as the effecti
nucleon-nucleon interaction, we have solved equilibriu
equations~23! and evaluated the dependence of the criti
radiusR* of the embryonic bubble on the overheating te
peraturedT. We pointed out that the critical radiusR* in-
creases with the asymmetry parameterXliq of the liquid
phase. This is mainly due to the increase of the boiling te
peratureT0 with the decrease of the asymmetry parame
Xliq , see Ref.@13#.

The generation of the embryonic bubble of arbitrary
s.

t.

.
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dius R is subsidized by the variation of the free ener
DF(R), which is given by Eq.~18!, see also Fig. 5. The
maximum ofDF(R) is located atR5R* , and its position is
shifted to smaller values ofR* with an increase of the over
heating temperaturedT. The bubble radiusR* is the critical
point for the metastable phase with respect to the boil
process. To start the boiling up~cavitation!, i.e., to start the
infinite growth in the size of the bubbles, the system m
pass through the barrier ofDF(R) to reach the region of
R.R* .

We have studied the problem of the dynamical evolut
of the overcritical bubble with the radiusR behind the barrier
at R.R* . Starting from the collisional kinetic equation fo
the nuclear Fermi liquid, we have derived the no
Markovian equation of motion for the bubble radiusR(t)
without restrictions on the amplitude ofDR5R(t)2R* .

We have shown that the development of instability of t
bubble near the barrier pointR5R* is strongly influenced
by the memory effects, if the relaxation timet is large
enough. In this case, an expansion of the bubble is acc
panied by characteristic shape oscillations of the bubble
dius ~see Figs. 6 and 7!, which depend on the parameterk̃ of
the memory kernel and on the relaxation timet. Oscillations
of the radius appear due to the elastic force induced by
memory integral. This elastic force acts against the adiab
force 2kDR @see Eq.~45!# and hinders the growth of the
bubble radius. In contrast to the case of the Markovian m
tion, the delay in the boiling process is caused here byboth
the conservative elastic and the friction forces, and not by
friction force alone. We point out that the emission ofg
quanta becomes possible due to the characteristic shap
cillations of the bubble size. This fact provides, in princip
the possibility for the measurement of the temperature of
first kind phase transition through the measurement of
energy and the damping of the corresponding resonance
the g-quanta spectrum.
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