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Non-Markovian effects on the dynamics of bubble growth in hot asymmetric nuclear matter
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We study the conditions for the generation and the dynamical evolution of embryonic overcritical vapor
bubbles in an overheated asymmetric nuclear matter. We show that the Fermi-surface distortion and memory
effects significantly hinder the growth of the bubbles. Moreover, the growth of the bubble is accompanied by
characteristic oscillations of its raditR The characteristic energly, the damping parametdr, and the
instability growth rate parametér, depend on the relaxation time The characteristic oscillations disappear
in the short relaxation time limit— 0. Our approach ignores the fluctuations of the particle numbers in the
bubble region and the finite diffuse layer of the bubble. The minimum size of the critical radifsr which
our approach applies is determined by the condittd®R* <1, wherea=0.5-1 fm is the temperature-
dependent surface thickness of the bubble.
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I. INTRODUCTION lution of the bubble is influenced significantly by the fluc-

tuation of the particle number in the bubble region. This
The boiling of a liquid is an example of a phase transitioneffect was considered in Ref§9,10] including a random

of the first order. The necessary condition for the boiling isforce in the macroscopic equation of motion for the bubble
the equilibrium between the liquid and the saturated vaporadius. However, the macroscopic equation of motion used in

phases. Assuming a fixed external press@geand a plane Refs.[9,10] and earlier in Ref[3] does not account for the
surface for the separation of the liquid-vapor phases, thffects of the Fermi-surface distortion on the transport coef-
equilibrium conditions for the thermodynamical boiling ficients. The purpose of this work is to study the features of

point read[1] the dynamical evolution of the bubble in the nuclear Fermi
iq va g va liquid, taking into account the influence of the Fermi motion
PY(T,p)=P™T,p)=Po, w"%(T,p)=p"AT,p), of nucleons in the surrounding Fermi liquid on the bubble

@) dynamics. We will consider the dynamical evolution of large
enough overcritical bubble®R(>R*) and neglect the single-
article fluctuations. Note that the number particle fluctua-
ons play a significant role if the bubble radius is compa-
falble with the average interparticle distarjoé
Our numerical analysis was carried out for the saturation

whereP, u, p and T are the pressure, chemical potential,
particle density, and temperature, respectively. Here and iﬁ
the following, the indices “lig” and “vap” denote the liquid
and vapor phases, respectively. However, the conditions

Eqg. (1) are not sufficient for the occurrence of the boiling - .
process(cavitation). The boiling, as a process, also means!€Mperaturélo=6 MeV, which corresponds to the plateau

the generation and the growth of the vapor phésepor region in the nuclear_galoric gurvgl]. In this case, .the
bubbles inside the liquid phase as a result of the heterophas®west value of the critical radiuB™ is about 4 fm, which
fluctuations. In fact, the boiling can only start in a metastableseems to be too large to be applied directly to the problems
phase(overheated or extended liquidrhe formation of em- of the heavy ion collisions. We point out, however, that the
bryonic bubbles due to the quantum and statistical fluctuainclusion of the Coulomb forces, which is ignored in our
tions was studied earlier in Refi2—4]. The spontaneous nuclear matter consideration, decreases the valud*of
occurrence of embryonic bubbles caused by the single-2,3]. Unfortunately, the influence of the Coulomb forces on
particle fluctuations in hot nuclear matter was considered inthe formation of the vapor bubbles cannot be assessed for the
Ref.[5]. We also point out that the process of the generatiortase of infinite nuclear matter. Our consideration cannot be
of vapor bubbles in the nuclear interior is interesting byextended to very small values &". It is self-evident that
itself because the expansion of a bubble means a breakdovRt cannot be smaller than the average distance between
of the nuclear liquid, i.e., the multifragmentation of the neighboring nucleons in the liquid phase. Moreover, for a
nucleus[6,7]. small enough bubble the finite size effects, in particular the
The process of boiling is usually considered for a givenfinite diffuse layer for the vapor density distribution inside
value of the pressur®,. If at the pressurd®, the equilib- the bubble, can be importaf8]. In this respect, the mini-
rium conditions(1) are satisfied for a certain valdg of the ~ mum value of the radiuR*, for which our approach is ap-
temperature, the generation of the critical vapor bubbles oplicable, is determined by the conditiaiR* <1, wherea is
radiusR*, which are in a thermodynamical equilibrium with the surface thickness of the bubble. The parametean be
the liquid, will start at a higher temperatufie The critical  extracted from the density profiles obtained in a temperature-
radius R* depends on the overheating temperatdiie=T dependent Hartree-Fock or Thomas-Fermi calculation, where
— T, [8]. For a small embryonic bubble, the dynamical evo-a=0.5—-1 fm see Ref.3] and references therein.
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We will mainly focus on the dynamical effects related to We point out that due to the condition of mechanical equi-
the properties of the Fermi liquid. In particular, we will take librium between the bubble and the surrounding liquid, the
into consideration the Fermi-surface distortion effectsvapor pressur®,,,in the bubble must exceed the liquid one,
memory effects(non-Markovian dynamigs and the relax- Py, . Namely,
ation processes. The dependence of the critical rdgifuen
the overheating temperatud@r for an asymmetric nuclear Pvap=Piiq+ Po, )
matter is considered in Sec. Il. The equilibrium conditions . .
for the heated nuclear matter and the saturated vapor alghereP, is the capillary pressure,
considered in Sec. Ill. The time development of the bubble

. e . 2
instability in the thermodynamically metastaliteverheateg pU:_U, (6)
nuclear matter is studied in Sec. IV. The summary is given in R
. V. . . . .
Sec and o is the ordinary surface tension correspondingRo
=, i.e., we neglect the curvature correctionsdn For
Il. CRITICAL BUBBLES IN OVERHEATED ASYMMETRIC fixed values of temperatufeand pressur®;, =P we derive

NUCLEAR MATTER the critical radius of bubbleR*) from the condition of the

_ _ thermodynamical equilibrium,
Let us consider an asymmetric nuclear matter at a tem-

peratureT and an asymmetry paramet¥; defined asX ODI6A =0 at  Ajg+ A= const,
=(pn—pp)/p, Wherep, and p,, are the neutron and proton
densities, respectively. In the presence of both the liquid and XiigAlig + XvapAvap= CONSt. @)

the vapor(vapor bubbl¢ phases, the equilibrium condition
for the chemical potentials of neutrong,,, and protons, Using Egs.(3) and(7), we obtain
Mp, in the absence of surface effeqslane boundary sur-
face reads

et (P, T, Xiig) — s

20
a| P+ R—*,T,X\,alp

=0. (8)

liq ) — ,,Vap
#a (Po:To:Xoig) = g™ (Po: To:Xo vap, @ e point out that in the limit of plane geometry, R

dpP

—oo, Eq.(8) is reduced to the standard condition of Eg).
whereq is the isospin indexd=n for neutron andy= p for Differentiating both sides of Eq8) at fixed X;; and T
proton. Let us fix the pressur;,=P, and the asymmetry and using the relations
Xjig= Xo,iq Of the liquid phase. The two equilibrium condi-
tions of Eq.(2) allow us to determine both the temperature e 1 m Mn— Mp
To and the asymmetr¥(, .4, Of saturated vapor in the case of (%) :E, %) T o
plane geometry. Xt P

The boiling process takes place in the form of the generage gptain(see also Ref8])
tion of vapor bubbles which then grow to macroscopic di-
mensions. It thus becomes important to study the equilibriuj 1 oAX d 1
of the bubble of radiuRR with respect to the surrounding ) —+ . ( ) i )
liquid phase. A liquid which is overheated in the usual sens ,p"q(P’T’X"q) MXiq | Pig(P.T.Xig) [ 7
i.e., with respect to a phase separated from it by a plane
surface, can be underheated with respect to a vapor bubble of  dP+20d(1/R*)
a finite radiuskR. We will extend equilibrium condition2) in _Pvap(P+2<T/R* T, Xyap) '
such a way that the liquid phase will remain in equilibrium
with the vapor bubble with a given radiug, see also where AX=(X,qp~Xig)/2. Taking into account thapyy

(C)

Ref. [8]. > pyap, ONE Obtains from Eq(9),
The thermodynamical potential of the whole system, con-
sisting the liquid and the vapor bubble, is given by 20
5P=P0—P=R—*, (10)

D = Ajigiig( Piig» T Xiig) + Avanitvar. Pvaps Tr Xvap), (3
iaial Pig T Xia) + Avapttvard Prap: T Xvap) - (3) whereP, is the pressure of a saturated vapor in the case of

plane geometry aR* —x, see Eq.(2). As seen from Eq.
whereA=N-+Z is the number of nucleorisvith N neutrons  (10), the undercompressed liquid with< P, produces the
andZ protong andu is the mean chemical potential, defined cavitation in the liquid[the existence of the vapor bubble
as (critical bubble in thermodynamical equilibrium with the
surrounding liquid. A comparison of Eq910) and(5) leads
to the following important relatiorP,,,= P, i.e., the vapor
pressure inside the critical bubble does not depend on
its size[8].

1+X 1-X

;: z Pq/-Lq:T/-Ln+ Tﬂp- 4
q

D
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The equilibrium condition(10) defines the bubble radius not necessary stable wifR=R*). At fixed P, T, andX, it

R* in the undercompressed liquid as a function of the differ-is given by the change of the corresponding thermodynami-
encePy—P for a given value of the temperatule=To,  cal potential,

where T, is the boiling temperature in the case of plane
geometry, see Eq2). We will now transform Eq(10) to a AD=P -], (15
different form, which describes the occurrence of cavitation _
in the overheated liquid for a given value of the externalwhere <I>0=M"q(A“q+Aan corresponds to the absence of
pressureP,, whereP, is the pressure for a saturated vapor inthe bubble. Taking into account that the surface free energy
the plane geometry determined by Ef0). Let us establish of the bubble is given by #R?c, we obtain from Eq(15),
the relation between the differené® = P,— P and the over- _ _ _
heating temperaturéT =T —T,. Both of them are due to the AD = p A+ wYA oyt ARZ 0 — Y Ajg+ Az
capillary pressureP’ =2g/R*. We will consider a small 4
variation of P, T, andX,q, in the equilibrium equatiort8), = (u'aP— ﬁiq)?w Repyapt4mR%0. (16)

e (Po— 8P, T+ 8T, Xgig) = e X(Po, T+ 8T, Xovap

d At fixed P, T, andX;q, both chemical potentialg 2" and

+ Xvap)- (11 ﬁ“q are also fixed, and they are related to each other by the

) _ equilibrium condition(7). Using
We obtain from Eq(11) the relation

1 c?A,u,"q - o= ﬂIIqAqu + MvapAvap"’ 4nR%c 17
—+ AX( ) 5P =|svar—gla :
Pliq JP Tx and Egs.(15), (16), and (7), one obtains the well-known
0 result[8]
ﬂA,U/”q
AX( ) } oT, 2R3
IT Toxl, A®P=AD(R)=47o| R?— | (18)

(12)
_ ' . We point out that we neglect in our consideration the
WhereAM"q=M'r:q—M'r',q and the subscript “0” means that all Coulomb forces because the Coulomb energy contribution to
guantities are taken for the plane geometry as in ). A® is a rapidly decreasing function of the bubble di269],

Heres is the entropy per particle given by and we will restrict ourselves by the bubble growth regime at
R>R*.
o gvap [?;vap _ glag &ﬁliq
sVaP=— = — M= =—| —— lll. EQUATION OF STATE AND SURFACE
A aT | A aT | - EQ
vap P.X ' P.X OF EQUILIBRIUM WITHIN THE MEAN FIELD

. . APPROXIMATION
where S is the entropy. In deriving Eq.12), we have used

the relation To evaluate both the equilibrium vapor density,, and

the latent heat of evaporatiaf in Eq. (14), we will follow
1+X aMn) 1—x(aﬂp
P, T

2

the temperature-dependent Thomas-Fermi approximation us-
X 2 \ X ing the Skyrme-type force as the effective nucleon-nucleon
interaction. The free energy densifyis given by[12,13

P, T

Let us introduce the latent heat of evaporation

5
Izl 7]q) - §J3/2( 77q) + nqpq]

o I . F=T2 { A3
VAP~ S+ AX(IA " IT)p x %[ a

Pvap! Piig T+ PvapAX(&AM"q/&P)T,X

T,. (13
0

b=

1
+ Stol (1+%0/2)p? = (Xo+ L2 (pr+ pp)]

Using Egs.(10), (12), and(13), we obtain the critical radius
of the overheated bubble as

1
+ T5tap [(14+X3/2) p? = (xa+112) (pf+ pp) ],

R¥ — 20Ty (14 (19)

Pvap(;b(T_ To) .
wherex;, t;, ando are the Skyrme force parametegss the
We point out that, in general, the surface tension depends dgsospin index §=n for neutrons and|= p for protons, p, is
the temperature and the asymmetry parameter, namely, the nucleon density, ang=p,+p,. The Fermi integral
=0(T,Xjig)- J,(ng)=/odz Z/[1+exp—7,)] in Eq. (19 depends on
Let us consider the change of the free energy of the liquidhe fugacity 4. The value of#n, can be found from the
due to the formation of a bubble of an arbitrary radiié.e.,  condition
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pa=A3 12l 7q). (20 20 , , ,
Here, A} = (1/27%)(2m; T/4%)%? and mj; is the effective To=6MeV
nucleon mass, given by
15+ .
" = G 1+x,/2 1+x,/2
2m*_2_mq+z[tl( +X1/2) +t5(1+X/2) ]p R
a =
1 < 10t ]
+Z[t2(X2+ 1/2)_t1(xl+ 1/2)]pq (21) "‘m
Using Eq.(19), one can derive the pressiPdequation of
statg and the chemical potentiajs,. Namely, 5T )
0.2
o 2( 0 F 00 01
Ty X 0 ‘ ‘ ‘
0.0 0.4 0.8 12
dF dF
Ma=| 5 /-Lp:(a_) - (22) 6T (Mev)
Pn Tva pp Tan

FIG. 1. Dependence of the critical radiB$ on the overheating
A numerical calculation of the pressuPeof Eq. (22) with ~ temperatureST=T—T, for different values of the asymmetry pa-
the free energy densitf from Eq.(19) leads to the van der rameterX;q=0, 0.1, and 0.2 and fixed boiling temperaturg
Waals—like isotherm® = P(T,X,p), describing both the lig- =6 MeV. The numerical calculations were performed for the SkM
uid and the vapor phases in equilibrivit4—17. Equilib-  force.
rium states of the two-componeifibeutrons and protohs
liquid-vapor system are located on the three-dimensional SUkre ST on the asymmetry parameté, is shown in Fig. 3.

face in the P, T.X) spacd13]. The (P, T.X) surface of equi- The increase ofT with X4, seen in Fig. 3, is due to the fact

I|_br|um can be evaluated using the Gibbs equilibrium Condl'that the increase of the temperature in an asymmetric nuclear
tions[1] [see also Eq(1)]:

matter leads to an increase of the value of the critical asym-
) crit [P i
Pig(T.X,p)=Pyad T.X,p), ng(T,X:P):M‘éap(T,X,/Z)-) geeftr%/lpé?rametean for the liquid-gas phase transition, see
23 . .

from Eqg. (12). The dependence of the overheating tempera-

T T T T

Solving Eqs.(23) for certain values oK, andT =T,, one
obtains the equilibrium chemical potential%‘?n=ﬂ‘,;?,’f, the To =6 MeV 0.2
vapor asymmetry parametet,,,, and the vapor density

pvap- Determining these quantities allows us to evaluate the

latent heat of evaporatios, Eq. (13), and the radiufR* of

the critical bubble, Eq(14). Figure 1 shows the dependence <
of the critical radiusR* on the overheating temperatuéd % 08t 01 |
=T—T, for different values of the asymmetry paramexgyg é

and a fixed boiling temperatufg,=6 MeV. The numerical 0.0
calculations were performed using the SkKM parameters [g
t;, ando for the Skyrme force in Eq19) (see Ref[13] for

more detaily and the surface tension coefficientis given

by [18]
T&—T?
o=1. > >
T2+T

whereT-=14.6 MeV is the critical temperature for infinite SP (|\/| eV/fm3)

nuclear Fermi liquid, associated with the SkM interaction

[13]. Figure 2 gives an illustration of the dependence of the i 2. Dependence of the overheating temperatiifeon the
overheating temperatur8T on the change of the pressure pressure excessP [see Egs(11) and (12)] for the values of the
(6P) in the undercompressed liquid obtained from the equiasymmetry parametét;,=0, 0.1, and 0.2 and a fixed boiling tem-
librium equation(11). In the case of small variationsT and  peratureT,=6 MeV. The values of the asymmetry parameXgg
6P, the results shown in Fig. 2 agrees with those obtainedre shown near the curves.

04 r B

5/4
MeV, (24)

0.0 1 1 1
0.0 0.1 0.2 0.3 0.4
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8 T T
* 15+ i
T,=6MeV, R =4fm 0.0
0.2
3 ~
= 3 1l ]
S : =
+c> |_o
|_
1
= 5 1
6 - - - - L - - - - L 0.0 0‘.1 Of2
0.0 0.1 0.2
X P, (MeV/iim)

FIG. 4. Dependence of the boiling temperatiigeon the equi-
librium liquid-vapor pressure?, for the isobaric boiling of the
asymmetric nuclear matténo surface effecisfor the values of the
asymmetry parametef;,=0, 0.1, and 0.2.

FIG. 3. Dependence of the overheating temperatiireon the
asymmetry parameteX;, for a fixed boiling temperaturer,
=6 MeV and critical radiufR* =4 fm.

The definition of the latent heat of evaporatignmplies - )
a fixed value of the boiling pressuf,, see Eq(13). The phase_t.ran5|t|0n temperatirén Fig. 4, the dependenc_e of
numerical estimate of the boiling pressiRg and the corre-  the boiling temperatur&, on the “external” pressuré, is
sponding boiling temperatuf&, can be obtained by studying Shown for different values of the asymmetry paramatgr.
the caloric curve for the case of isobaric heating. Let ug=xPerimental observations show a nearly flplateay ca-

consider the temperature dependence of the excitation ener(f}fic curve with a temperature of about 7 Me¥1]. If one

per particle,E* A, which is given by qould assume the process of isobaric heating for'the descrip-
tion of the experimental data, the order of magnitude of the
pressureP, should beP,~10"2 MeV/fm? for this process.

E _ )\qugliq(Pqu aXqu T+ )\vapgvap(Pvaanvap!T)

Below we will use this value oP, as the external pressure

A NiigPiigt A
iaPiia™ e vap for the boiling in an overheated Fermi liquid.
Eiq(Piig s Xiig s T)
_< Py - ) (25) IV. HETEROPHASE FLUCTUATIONS AND BOILING
19 T=0

. ) ) Let us consider the dynamical evolution of overcritical
where£=F+TS is the energy density anflis the entropy  pybbles in an overheated nuclear matter. As noted earlier, the
density, bubble with the critical sizcR=R* exists in a thermody-
namic equilibrium with the liquid. The distribution of
3:%: (;4333/2( ) — ﬂqpq)- (26) fS()ur(r::uIbauFleI;]as with respect to their size is given by Gibbs’s
The volume fractions\j; and A, of the liquid and vapor
phases in Eq(25 are defined by\,=Vq/V and \,,
=Vyap!/V, WhereV; andV,,, are the volumes of the liquid where the potentiah®(R*) is given by[see Eq(18)]
and vapor phases, respectively, ang Vi, +V,,,. Numeri-
cal calculations shoW13] that the low temperature depen-
dence of the excitation enerdy* A corresponds to the heat-
ing of the degenerate Fermi liquid wite* A~T?2. At high
temperatures, the excitation enefgyA dependence ofiis  We now consider the dynamics of the bubble with an arbi-
the same as that of the classical Boltzmann’s gas ®f{th  trary overcritical sizeR>R*. In Fig. 5 we have plotted the
=(3/2)T. The caloric curvel(E*/A) is a continuous func- thermodynamical potentiah®(R) as a function of the
tion and has a plateau region for two-phase coexistence. THaibble radiusk [see Eq(18)] for the overheated liquid with
plateau region is achieved at a certain temperalgravhich ~ T>T, (solid line) and for a temperatur€ below the boiling
depends significantly on the pressufg. The temperature temperaturel, (dashed ling The position of the maximum
T, can be identified as the boiling temperatufiest-order  of the curveA®d (R) is located aR=R*, and it is shifted to

W= conste 2*(R)/T), (27)

4
A<1>(R*)=§7TUR*2. (28)
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f(r,p;t)=fsph(r,p;t)+gl st (r,p:t), (30)

wherefg,{r,p;t) describes the spherical distribution in mo-
mentum space. We point out that the time-dependent
Thomas-Fermi (TDTF) approximation is obtained from
Eq. (29 if one takes the distribution functiori(r,p;t)

in the following restricted formfe(r,p;t)="fs,{r,p;t)

+ 6f—1(r,p;t), instead of Eq(30), see Ref[20]. Below we

will extend the TDTF approximation taking into account the
dynamic Fermi-surface distortion up to multipolarity 2.

We will also assume that the collective motion is accompa-
nied by a small deviation of the momentum distribution from
the spherical symmetry, i.e., even in the case of large ampli-
tude motion the main contribution to the distribution func-

5 ‘ ‘ tion f(r,p;t) is given by the Thomas-Fermi terfrg(r,p;t),
0 2 4 6 and the additional terndf,_,(r,p;t) provides only a small
R (fm) correction. The lowest ordels=0 and 1(which are not nec-
essarily sma)lof the Fermi-surface distortion do not contrib-
FIG. 5. Dependence of the thermodynamical potentid [see ute to the collision integral in Eq29) because of the particle

Eq. (18)] of metastable liquid on the radius of the bubble. The solidnumber and momentum conservation in an interparticle

line is for the overheated liquid with>T, and the dashed line is collision. _ _
for T<To. Evaluating the first three moments of Eg§9) in p space,

we can derive a closed set of equations for the following

the left with the increase of the overheating temperatiffe moments of the distribution function, namely, the local par-
—T—T,, because of Eq(14). As one can see from Fig. 5, ticle densityp, the velocity fieldu, , and the pressure tensor
the pointR=R* is the critical point for the metastable phase Pv.» in the form(for details, see Ref$20,21])

in the following sense: to start the boiling process, i.e., to

start the process of increasing the size of the bubbles, the —p=
system must pass through the barrie® (R) to reach the dat
region of R>R*.

To describe the development of instability of the bubble d O€pot ,
with a nonequilibrium sizeR>R*, one needs to know the mp Z U, Mp(u,V)u,+V,P+pV, 5p == VP
equation of motion for the time dependenceRof R(t). To (32)
obtain the macroscopic equation of motion for the bubble
radiusR(t), we will start from the collisional kinetic equa- aJ d ,
tion for the phase-space distribution functibs f(r,p;t) in S Pt P Apu=—7P,. (33
the following form:

= V.(pu,), (31

Here

a_p ofj=2
V=V UV e e ——, (29)

d 1 d ,
b [ P PP gy
(27h)3 p) (27#h)3m

where U=U(r,p;t) is the self-consistent mean field,

— dfy=y /7 is the collision integraly is the relaxation time, andP=7(r,t) is the isotropic part of the pressure tensor,
andl is the multipolarity of the Fermi-surface distortion. The

notationéfy -~ in Eqg. (29 means that the collision integral 1 dp
does not contain the components withO andl =1 for the P(r,t)= am 3 pzfsph(r,p;t)z(Z/S) €kin- (35
distorted distribution functionsf in momentum space be- mJ (2nh)

cause of the conservation of the number of particles and of _ . o )
the total momentum. Note that E€R9) can be easily ex- HEre &in~=(3/5)pee is the internal kinetic energy ang is
tended by including the random forces in the right hand siddhe Fermi energy. The tensér,, =P, (r,t) is the deviation
of the equation, see Reff19]. Therefore, the fluctuation of Of the pressure tensor from its isotropic pa¥(s,t), due to
the particle number in the bubble region can be taken intdhe Fermi-surface distortion,

consideration in our approach in a way similar to the ap-

proach of Ref[9]. , 1 dp
The momentum distribution is distorted during the dy- Pw(r,t)zaf (zwms(pv_m“v)(pu
namical evolution of the bubble, and the distribution function
takes the form —mu,) 6f _o(r,p;t). (36)
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The potential energy density,; in Eq. (32) is related to the We point out that the non-Markovian form of E@O) is
self-consistent mean field asU = ey / dp, and the tensor due to the effects of the Fermi-surface distortion. The
A,, in Eq. (33 is given by memory integral in Eq(40) provides both the friction and
the conservative time-reversible force in E40). Also note
that we neglect the quantum and statistiGahgle-particle
fluctuations in Eq.(40). The quantum fluctuations play an
insignificant role for temperature$=1 MeV [2,3]. The
wherey, = x,(r,t) is the displacement field which is related single-particle fluctuations can change the bubble dynamics,
to the velocity field byu,= u,(r,t)=dx,(r,t)/dt. From Eq.  especially forR near the critical valu®* , see Ref[9], if the

2
AVM:VVXM+VMXV_§5VMV)\X}\! (37)

(33) we find the pressure tensér, ,(r,t) in the form bubble radiusR is comparable with the average interparticle
distances. Below we will apply Eq40) to the regions ofl
=P (1 to)exp( E) andR where the quantum and the single-patrticle fluctuations
are negligible.

For a small amplitude motion near the top of the barrier
4 , (the starting path for the development of the instabiligyg.
jtodt exr{ )P(r t) a’ Apu(11). (40) is reduced foAR=R—R* as

(38)

A solution of the continuity equation for the spherical A = kAR~ Kﬁodt exp( )_AR(t )
bubble leads to the following displacement figldin the (45)
surrounding liquid 3,22]:

where
3 r,
x(rh=-57. =R (39 B*=47mR3,, k=?Ad(R)/IRYppe= —Bmor
Multiplying Eq. (32) by zﬂzuM/R and integrating over, and 7<=(32/5)7TP06|=R*-
one obtains the following non-Markovian equation for the
collective variableR(t): We also point out that for two limiting cases of rare (
, e —0) and frequent £—«) collision regimes, Eq(45) is re-
BR+ __Rz+f dt'R(t’ )exp{t _t)IC(t t)=— J pot. duced to the standard Newton’s equation. For both limiting
2 IR T dR cases, we obtain from E@5),
(40)
2
The inertial parameteB in Eq. (40) can be derived from the B* a—AR(t)z —k'AR— 'yiAR(t), (46)
definition of the collective kinetic enerdg,;,. Namely, at? ot
_m 2:1 2 wherek’ =k if 7—0 andk’=k+ « if 7—o. The friction
Exin drpu BR-. cf
2 coefficienty in Eq. (46) will be derived and discussed below.

. . We will look for the solution to Eq(45) in the form
Assumingp < piig=p=pof(r —R), we obtain[3]

3

B=4mmRp,. (41 AR=,

Ciexp(Ait), (47)
The collective potential energl,(R) in Eq. (40) can be

identified with the thermodynamical potential of E4Q.8).  where the coefficient€; are determined by the initial con-
Namely, ditions. Differentiating Eq.(45) over time we find that the

_ eigenvalues,; can be obtained as solutions to the following
Epol R)=AD(R). (42 secular equation:

Finally, the memory kernel’(t,t") in Eq. (40) is given by

K
N+ = | +—\=0, (48)
B*

’ o
IC(t,t’)=J drP(r,t’)[VVXM(r,t)][VVXM(r,t’) B*

where 7 is the relaxation time. In the case of the zero-

+V x(r ) — 2 5V,LVAXA(r t’ )} (43 relaxation-time limitr— 0, one obtains from Eq48) a non-

damped motion with = = \/|k|/B*, i.e., the time evolution

. . is derived by the static stiffness coefficiektdn the opposite
Using Eqs.(35), (39), and(43), we obtain case of rare collisions;— o, the solution to Eq(48) leads
K(t,t")=(32/5) mpoeeR(1). (44 to a motion withx = +i+/(—|k|+«)/B*. In contrast to the
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FIG. 6. Time variation of the bubble shape param&eear the
barrier pointR=R* for various values of the relaxation timre The
dashed and solid curves correspond to the values=& fm/c and
7=50 fm/c, respectively.

previous case, the additional contributianappears at the
s’Fiffne_ss coefficient—|k| + k because of the Fermi-surface T (fm/c)
distortion effect.

In a general case of arbitrary, solution (47) takes the

form FIG. 7. Dependence upon relaxation timef the dimensionless

values of the characteristic enerfy=E/eq, width [=I/eg, and
AR=C§e§t+Awe’“/2ﬁsin( Et/#)+B,e "V coq Et/). the instability growth rate para_me@: {ler for the case of Eq.
(49 (49 and for damping parametefs =1I";/eg andl',=1",/eg in the
case of the solution given by E¢G0).
We have evaluated numerically the value MR from Eqg.
(45) using the secular equatiga8) and the initial conditions  applicable for small amplitudA R, the dashed line in Fig. 6
; was obtained using the exact solution of E4p).
At large enough relaxation time, the bubble growth de-
AR(to)=0, EAR(t)lt:to_vo’ and pends egsentiallfon the memory effe(nsn-Marko%ian re-
gime). The solid line in Fig. 6 showdR(t) obtained from
52 Eq. (46) for 7=50 fm/c. As can be seen from Fig. 6, the
—ZAR(t)h:tO:Q behavior ofAR(t) is changed dramatically with the increase
ot of the relaxation time. For the large relaxation time, a sig-
nificant time delay in the increase of the bubble size arises
due to the non-Markovian effects. Moreover, the bubble
growth is accompanied by damped oscillations. These oscil-
lations are due to the memory integral in E45). The char-
acteristic frequencyg and the corresponding damping pa-
rameterw, can be derived from the imaginary and real parts
of the complex conjugate roots of E¢48) as A= — o,

whereuv is the initial velocity. In Fig. 6 we show the results
for two values of the relaxation timez=5 fm/c (dashed
line) and 7=50 fm/c (solid line. We have usedR*
=4 fm, and the initial velocityv, was derived using the
initial kinetic energyE,, o= (1/2)Bjvj=1 MeV.

In the case of the very short relaxation time5 fm/c
(frequent collision regime the memory effects in Eq45)  +ju with ['=2%w, andE=fiwg.
play only a minor role(Markovian regimg and the ampli- In Fig. 7 we show the dependence of the instability
tude of motion is approximately an exponentially growing growth rate parametsf [see Eq(49)], the energy of eigen-
function, similar to the case of Newton motion from the bar-yiprations €), and the damping parametEron the relax-
rier in the presence of the friction forces, see the dashegtion timer. For small enough values of the relaxation time,
curve in Fig. 6. The friction coefficienf was derived here  :<g fmy/c, the functionAR(t) does not oscillate with time
from Eq. (45 at wgr<1, and it is given byy=«k7  and takes the following forfcompare with Eq(49) and see
= w2B* 7~ 7, where wg= \k/B* is the characteristic fre- the dashed lines in Fig.]7
guency for the eigenvibrations caused by the Fermi-surface
distortion effect. We also point out that since E45) is only AR=C %+ Ce "2+ C e~ a2, (50)
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We point out that the behavior of the friction coefficient dius R is subsidized by the variation of the free energy
in the above mentioned relaxation regimes is essentially difA®(R), which is given by Eq.(18), see also Fig. 5. The
ferent. In the rare collision regimer7>1, the friction co- maximum ofA®(R) is located aR=R*, and its position is
efficient y in the equation of motiori46) is obtained from shifted to smaller values d®* with an increase of the over-
Eq. (45 asy= B*/7~1/7. This 7 dependence of the fric- heating temperaturéT. The bubble radiu®* is the critical
tion coefficient,y~1/7, is caused by the dynamical Fermi- point for the metastable phase with respect to the boiling
surface distortion$19], and it is opposite to the depen- process. To start the boiling upavitation, i.e., to start the
dence ofy~ 7 in the short relaxation regimer7<1 (see infinite growth in the size of the bubbles, the system must
above. In general, one can use the following extrapolationpass through the barrier &®(R) to reach the region of

form for the friction coefficient: R>R*.
We have studied the problem of the dynamical evolution
. WFT of the overcritical bubble with the radilbehind the barrier
v=weB m (5D atR>R*. Starting from the collisional kinetic equation for

the nuclear Fermi liquid, we have derived the non-

which provides the correct limit fory in both 7—0 and  Markovian equation of motion for the bubble radi{s)
T— 0 Cases. without restrictions on the amplitude afR=R(t) —R*.

We also point out that the presence of the characteristic We have shown that the development of instability of the
oscillations of the bubble radius behind the barrier with bubble near the barrier poift=R* is strongly influenced
>R* can lead to the emission of quanta. The energ§ by the memory effects, if the relaxation time is large
=fwg and the dampind = 2% w, of this radiation depend €nough. In this case, an expansion of the bubble is accom-
both on the phase transitioff,, and the overheatingsT, panied by characteristic shape oscillations of the bubble ra-
temperatures. This fact can be used for the determination afius (see Figs. 6 and)7which depend on the parametenf
both temperature¥, and 6T from the measurement of the the memory kernel and on the relaxation timeOscillations
characteristicE€ andI" of the corresponding resonance line. of the radius appear due to the elastic force induced by the
For the uncharged nuclear matter, the eneEgynd the memory integral. This elastic force acts against the adiabatic
damping parametel’ are given in Fig. 7. In the following force —kAR [see Eq.(45)] and hinders the growth of the
step in the investigation of cavitation in nuclear liquid, we bubble radius. In contrast to the case of the Markovian mo-
plan to take into account the finite size and the charge of th&on, the delay in the boiling process is caused herddh

nucleus for both the liquid and the vapor phase. the conservative elastic and the friction forces, and not by the
friction force alone. We point out that the emission pf
V. SUMMARY quanta becomes possible due to the characteristic shape os-

) _ cillations of the bubble size. This fact provides, in principle,
Using the temperature-dependent Thomas-Fermi approxihe possibility for the measurement of the temperature of the
mation [13] and the Skyrme-type forces as the effectivefirst kind phase transition through the measurement of the

nuclepn—nucleon interaction, we have solved equilib.ri_umenergy and the damping of the corresponding resonances in
equations(23) and evaluated the dependence of the criticakpg y-quanta spectrum.

radiusR* of the embryonic bubble on the overheating tem-
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