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The breakup of halo nuclei is studied by numerically solving the semiclassical time-dependeilirggro
equation on an angular Lagrange mesh and on a quasiuniform radial mesh. The merits of different mesh
choices and approximations of the time evolution operator are discussed. The numerical technique is applied to
the breakup of thé'Be and*°C halo nuclei at energies around 70 MeV/nucleon. The time evolution of the
projectile wave packet during the breakup process is visualized. The role of the nuclear interaction between
target and projectile is analyzed and the validity of pure Coulomb breakup with an impact parameter cutoff is
estimated. The breakup and inelastic cross sections are discussed and compared with available experimental
data.
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[. INTRODUCTION assumptions about the magnitude of the different multipole
fields or about the importance of higher-order effects. The
Halo nuclei are among the most fascinating quantal sysmain model assumptions are the validity of the semiclassical
tems[1]. The mean radii of the orbitals of some among theirdescription of the projectile motion and the simplified de-
nucleons can be larger than the range of the nuclear interaseription(shared by other modelsf the internal structure of
tion with other nucleons. This topic is the subject of inten-this projectile.
sive experimental investigations. Breakup is one of the most Recently, efficient mesh methods of numerical resolution
useful tools for studying the properties of halo nuclei. Inof the time-dependent Schiinger equation have been de-
these reactions, information coming from the dissociation olveloped for accurately treating the time evolution of the
the projectile into fragments can be used to infer the properprojectile-nucleus wave function in this kind of reaction
ties of the halo part of the wave function. Coulomb breakupg15-17,19,20,2B These analyses are performed with three
is of particular interest because uncertainties about thepatial dimensions for the relative motion of the halo neutron
nuclear interaction between projectile and target are not exwith respect to the core. From a physical viewpoint, they are
pected to play a significant role. However, in order to cor-attractive owing to the simplicity of the treatment of time
rectly extract the information from cross sections, the accudependence. In principle, these methods are not restricted to
racy of the description of the reaction mechanism must beurely Coulomb breakup and can take account of a nuclear
ascertained. component. However some of these methods have limita-
Among halo nuclei*Be and'®C nuclei are of particular tions. For example, the time-dependent Sdiniger equation
interest[2—4]. Because of the relative simplicity of their is usually solved with a limited expansion in spherical har-
structure, the elaborate calculations required for a two-bodynonics followed by a discretization of the radial coordinate
breakup are not very affected by uncertainties about theif16,17,19. This approach requires an analytical treatment of
wave functions. Indeed, their bound states can be fairly welthe spherical harmonics. Matrix elements are calculated with
described as a core to which a neutron is loosely bound. Wit multipole expansion of the time-dependent potential be-
a good approximation, the breakup can be seen as a transween the halo nucleus and the target. They are often re-
tion from a two-particle bound state to the continuum, due tcstricted to a few dominant multipol¢45—17,19. The treat-

a varying Coulomb field. These nuclei are a good testingnent of a nuclear interaction is more complicated than the
ground for approximate theories of Coulomb breakup. treatment for the analytical Coulomb term. The purely nu-
In recent years a number of techniques have been devalerical approach of Ref23] does not suffer from this dif-
oped for the calculation of Coulomb breakup: perturbationficulty but the use of a three-dimensional mesh in Cartesian

expansion[5-8|, adiabatic approximatiof9,10], coupled coordinates prevents usinttdependent interactions and
channels with a discretized continuddil—14, and numeri- hence reproducing more than one bound state of a halo
cal resolution of the three-dimensional time-dependenhucleus.

Schralinger equatiorf15—-23. Here we focus on the latter In this work, we apply a numerical technique of solution
type of description where the projectile is assumed to followof the time-dependent Schtimger equation on angular and

a classical trajectory and its interaction evolves because ohdial meshe$24,25,20,2], which is free from the above-
the varying Coulomb and nuclear fields of the target. Thesenentioned drawbacks. We express the formalism in the con-
numerical resolutions, though much heavier, do not rely ortext of Lagrange meshd26,27]. The wave function is ex-
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panded over angular Lagrange functions associated with &herelL is the relative orbital momentum ands the frag-
two-dimensional angular mesh. The Lagrange functions vanment spin. We assume that the spirof the core is zero and
ish at all mesh points, except one. This basis is equivalent tthat the fragment spihis fixed. In other words, we neglect
a full set of spherical harmonics up to some orbital momenhere the coupling with the core spin and core excitations.
tum complemented by selected harmonics beyond that value. The time-dependent potential is given by

It is used together with an associated Gauss quadrature,

which eliminates the need for an analytical treatment. The ZZe
simplicity of this method arises from the fact that the time- V(r,t)=Ver(rer) +
dependent potential matrix is diagonal when the Gauss ap-

proximation is used. The radial variable is discretized over a (Ze+Z¢)Z1€? 4
mesh with an increasing step obtained from a change of vari- B R ' “)
ables in a finite-difference technique.

The numerical technique is applied to the breakup of thavhereR(t) is the time-dependent target position with respect
HBe and!®C halo nuclei at energies around 70 MeV/nucleonto the projectile center of mass. The core-target and
in order to make a comparison with experiments performedragment-target coordinates read
at RIKEN. At these energies, a fully numerical treatment is

2 Z:Z+€?

+Vir(rep) + ;
cT fT

relevant because higher-order effects are not negligible and rer(t) =R(t) +mer/M, )
the interaction does not reduce to a single multipole. The role
of the nuclear interaction with the target must also be evalu- rep(t)=R(t) —mcr/M, (6)

ated. In Ref[20], nuclear effects were simulated by a simple
cutoff on impact parameters for tH&Be breakup. The valid- respectively, wheré =m.+my is the projectile mass. The
ity and limitations of this approximation were not discussed.complex optical potential¥.r and V1 describe the purely

In Sec. Il, the time-dependent method is recalled. Theéwclear parts of the core- and fragment-target interactions.
computational algorithm for the time evolution is describedFor simplicity, the point Coulomb interactions are displayed
in Sec. III. In Sec. IV, variants of radial meshes are compare@xplicitly in Eq. (4). The core- and fragment-target Coulomb
and different tests are performed. In Sec. V, the internal pointeractions could be replaced by more realistic form factors
tentials of the halo nuclei and optical potentials for a leadtaking account of the finite sizes of the nuclei, without addi-
target are selected. The time evolution of the partial waves iional difficulty (see Sec. VB In the projectile rest frame,
the wave packet is depicted in Sec. VI. The obtained resultthe target follows a classical trajectory. This trajectory can be
are discussed in Sec. VII. The final section is devoted ta@ straight line or a Coulomb trajectory. It could also be a
concluding remarks. trajectory taking nuclear effects into accoy@8], but we
shall not make use of this case here. The initial velocity is
denoted ag and the impact parameter bs

For partial wavdj, the projectile eigenstatébound and
scattering state¢sare defined by

We consider the breakup by the interaction with a target
(with massm; and chargeZ;e) of a two-body projectile Hodijm(E,1)=Edijm(E,r). @)
made up of a pointlike coréwith massm, and chargeZ.e)
and a pointlike fragmeniwith massm; and charge&Zse). In
the projectile rest frame, the time-dependent Sdimger
equation can be written as

Il. COULOMB BREAKUP
BY TIME-DEPENDENT METHODS

The projectile angular momentupmesults from the coupling

of the orbital momenturhwith the fragment spih. Negative

energy states are normed and describe either the physical

bound states of the projectile or states forbidden by the Pauli

principle. Positive energy states correspond to the core-

ihi‘l’(r,t)zH(t)‘l’(r,t)z[Ho(r)+V(r,t)]\P(r,t). fragment scattering. They are necessary to analyze the final
ot state of the system. The radial part of a scattering wave func-

(1) tion is normalized in such a way that

The Hamiltonian of the projectile reads Rij(E,r) — r Y coss (E)F,(E,r)+siné(E)G,(E,r)],
r—oo
52 8
Ho(r)=—5—A+Vc(r), 2 :
2u whereF, andG, are the standard regular and irregular Cou-

lomb functions[29] and &, is the phase shift.
where u is the reduced mass of the core and fragment, As an initial condition att=—o, the system is in its
=(,r) is the relative coordinate between them, ahgis  ground statdyj,m, with energyE,<0,
the internal interaction between the core and fragment of the
projectile. This real potential, which may include Coulomb P(Mo)(r, —o0)= ¢,
and spin-orbit terms, reads

(Eq.r). (€)

oloMo

The time-dependent wave functich(™)(r,t) must be cal-
Ver(r)=Vo(r)+L- 1V (r), (3 culated for the differentn, values. It also depends on the
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impact parameteb, which is understood. The breakup prob- atedN Gauss-quadrature weighks and N Lagrange func-
ability per energy unit is given by tions f;(€2). By construction, these functions satisfy the

Lagrange propert
dp 24 1 grange property

ae B = a2 1 f(Q) =\ Y25, (15

On this mesh, the Gauss-quadrature approximation reads

x>, ; [ pijm(E,) [T Mo)(r,+0))[2, )
mg Ijm
(10) f gm)d%glxkgmk). (16)

wherek is the wave numbel20]. It includes full distortion
of the scattering eigenstates of the projectile. The breaku
cross section reads

Hence, because of E(L5), the Lagrange functions are or-
thonormal at the Gauss approximation

N
@(E)zsz’wE(E b)bdb. (12) f FX(Q)F()dO~ D NFF (QOf(Q)=8;. (17)

dE o dE* k=1

The main interest of this basis is that the potential matrix is

When the nuclear interactions are neglected in @gy. the ) S
also diagonal at the Gauss approximation in angular space,

lower bound in Eq(11) is replaced by a cutoff,;, simulat-
ing these nuclear effects. Some authd§,20,22,23 extract

the breakup component frot(Mo)(r, + ) before calculat- f X QV(Q,r,H)f;(Q)dQ
ing the matrix elements appearing in E40). With exact
scattering states, this additional projection is not necessary N
[21]. ~ 2 N F(QOV(Qi, 1D ()
An inelastic scattering cross section to an excited bound k=1
statenlj can be calculated as =V(Q;,1,1)8; . (19)
O'nlj(E):z'“'f Pj(b)bdb, (12) The approximate matrix elemgnts only depend on potential
0 values at the angular mesh points.
How can such functions be constructed? Technical details
where and the definition of the mesh points and weights are given
1 in the Appendix. The Lagrange functions are related with
(b)= — , , (mo)(p + 2 spherical harmonics. Let us considéfunctionsY ,({2) or-
Prij(b) 2jo+1 % % [ (Bt O[T, F-22))] thonormal at the Gauss approximation,

13 N

For pure Coulomb breakup, the probabilities satisfy the clo- f Y3 (Q)Y,(Q)dQ~ Z MY Q)Y (Q)=6,, .
sure relation K=t (19

> Poj(b)+ fxﬁ(E b)dE=1. (14y  The functionsY,(Q) involve standard spherical harmonics
nlj dE Y"(Q) for the lower| values and modified oneg™ in the

The summation in this relation includes the forbidden state%%sl}aﬁryt::]eEza(sllg)sﬁpltigi ﬁ]g??gtlﬁxfso\:vi?ﬁ t:\l)ésn']l'gr:atslast

of the core-fragment potential, if any. The right-hand side of

Eq. (14) becomeg W (M)(r, + )| W (M) (r, +0)) when com- S, =\ 2y () (20)
plex nuclear potentials are included in the time-dependent
potential[Eq. (4)]. is unitary. Hence one also has

N
Il APPROXIMATE TREATMENT OF TIME EVOLUTION Z )\_lIZY*(Q_))\lle (Q)=6 (21)
i v i/ Ty i) — i’ -
v=1

A. Expansion in angular Lagrange functions

In the traditional approach, the time-dependent wavelhe angular Lagrange functions are then given by
function is solved with an expansion in spherical harmonics
Y["(Q)). Here we describe a purely numerical approach with-
out such a partial wave expansip24,25,20,21 However,
we present it with a new notation in the spirit of the
Lagrange-mesh methd@6,27. since these expressions satisfy the Lagrange condifibn

Let us start withN points in a two-dimensional mesh on because of propert{21).
the unit spheré);=(0;,,¢;») [24]. To this mesh are associ- The time-dependent wave function is expanded as

N
)= YI(Q)Y(Q) (22
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| N

W(rt)=r1 E E AN Q)™M n]Iim). (23

df
dx

)~h . E cfL(j+kh], (30)

At angular mesh points, Eq15) provides the explicit ex- with c§"=0 and, fork+0,
pression of a partial wave

(n!)?
(1)~ k—1
C =1 e (31
w (O =r(Im W (@ r0). (24 ‘ k(n=k)!(n+k)!
With the column matrixil with elements i.e.,cy=—cy’. The second derivative is given by
d2f . _
Wir =AM ), (25 (d—xz) ~h=? 2 cZfl(i+kh], (32
j =
the matrix mesh equations read with, for k=0,
9 . . c@=2cM/k, (33
i —W(r,t)=[Ho(r)+V(r,t)JW(r,t). (26)
o i.e.,c?)=cl®, and
L Lo k— bk oy
The projectile Hamiltonian matri¥, is diagonal with re-
spect to index of basisY,(Q), cl?= —ZKEl c?= —221 i~2, (34)
= 1=
, ﬁ2 (92 +1 . . . .
Hgﬁlm,. (r=1- _[_2 Id+1) +V0(r)] S Bt After switching to coordinate, one obtains
vy 2u | or re ! 5
d%y
H(m by [L M Im{V(0) Sy o +me St - (W)r

j

(27)

When a spin-orbit force is used, it is not diagonal with re-
spect to the spin projectiom,. In Eq. (27), the angular
matrix elementsY,|L?|Y,) are replaced by(I+1)8,, . (39
This is not exact for the highdrvalues(see the Append)x  Because of the factors dependingjbrand of the asymmetry
The accuracy of this approximation seems to be consisten§; e coefflClentsc(l) the corresponding matrix and hence

with the accuracy of the angular Gauss quadrature employegl . representation on the mesh of operatgrare asymmet-
hereafter for the time-dependent interaction. A similar ap+;.

proximation is performed in the spin-orbit term.
The time-dependent interaction matkixis fully diagonal

. g(l) 2 N 2 g//(Jh) o
N hrNrg’(jh)} kz_n{ck _hg/(jh)ck ().

On this mesh, radial integrals are approximated as

hry M

in the Lagrange basi§;(Q2)|Im,) [Eq. (18)] at the Gauss *
approximation, I fo F(r)dr~ 2 g’ (Jh)F(r)). (36)
ml(r H~V(Q,,r)8:8 (28) This relation is used to calculate the scalar product of two
Vi T G Omymy radial functions.
Hence it is convenient to use both bases in the calculation C. Approximations of the evolution operator

[20]. Changing bases is performed with mat8XEq. (20)]. , o ) , ] o
The time evolution is obtained by an iteration with time

o o stepAt. Let us start from the first term of the Magnus ex-
B. Radial discretization

pansion[30],
The radial coordinate is discretized over a quasiuniform
mesh [trAt ,
' P(t+At)=exg —i H(t")dt'+O(At®) | W (t)
. . t

ri=rn9(i/g(1), j=1,..N; (29 (37)
obtained by mapping a uniform mesh with constant step (ﬁ.zl). For each time step, the evolution operator can be
=1/N, over xe[0,1] onto re[O,rNr] with a monotonic split as
function g(x), such thatg(0)=0. Examples are given in [t
Sec. IVA. The differentiation operators overcan be dis- W(t+At)=exp —i . V(t')dt
cretized with the (2+ 1)-point finite-difference formulas.
The first-order derivative reads Xexp(—iAtHo)W(t)+O(At?). (39
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With a simple approximation for the integral, one obtains half step, the factor depending ¢ty is treated in the basis

_ ) ) Y, where the matrix operatdilo(r) is diagonal with respect
\If(t+At)=exr[—|AtV(t)]exp(—|AtH0)\If(t)+O(At().) to index! [Eq. (27)],
39

A better accuracy can, however, be obtained with the symf1+ 2iAtH(r)]JW(rt+ 3 At)=[1— 2iAtHy(r)]W(r,t).
metrized expressiof1] (45)

exp(—iAtHg) After discretization of, the matrixH, is a band matrix. The

system(45) can thus be solved quick[{24]. It must be noted

1 [teAt that in spite of the asymmetry of matrﬁko, the norm of the

XEXF{—?J V(t’)dt’}\lf(t)+O(At3). wave function is conserved. Moreover, in the bagis a
t possible angular momentum dependence of poteltialis
(40) easily taken into account.
In a second half step, the factor depending on the poten-

Then the integrals must be approximated to ordeY, which  tial is propagated in the basfs where the matrix operator
can be done in several ways, such as V(r,t) is diagonalEq. (28)],

1 [t+At
T(t+At)=ex —Eif V(t")dt’
t

W(t+At)=exd — 3 iAtV(t+ 3 At)]exp —iAtHg) (14 LiAtV(r.O W (r -+ A1)

xexg — FiAtV(t+ 3 At)]JW(t)+ O(AtS). C[1- LA BAD. (46)

(41)
For example, one can Verify that the less Symmetric expregé\fter discretization Of, the matriX\A/ is diagonal. Resolution
sion is thus very fast. The algorithm implies a change of basis at
each half step, which is fast since it only concerns the angu-
W(t+At) =exg — LiAtV(t+At)Jexp —iAtH,) lar part.
Xexp — 3 IAtV(D]W () +O(At%) (42 IV. NUMERICAL ASPECTS
A. Radial mesh

has a similar accuracy.
After iteration over time, the order of the error changes The function defining the quasiuniform mesh used in pre-

since the number of mesh points is proportional tatl/In vious works[20,21] reads

fact, after iteration, the actual error of approximati@9) is

of the same orde®(At?) as the error of approximatio@2). g1(x)=e*—1. (47)
Indeed, with Egs(42) as well as with(39), the resulting
algorithm reads Since ah<1, the step exponentially increases from about

rNrah exp(—a) to aboutr Nrah.

W(ty)=... exg —1AtV(tj, 1) Jexp(—iAtH) Here we make use of a slightly more complicated expres-

Xexf —iAtV(t))]exp(—iAtHg) sion
X exp — I AtV(t; ;) Jexp( —iAtHo).. W (ty) ) cosliatx—x]
+O(At2) (43) gz(x)—ax+lnm (48)

with t;=ty+jAt. Using Eqgs.(39) or (42) differs by negli-

gible corrections at the end points only. Other variants of thi

algorithm can be obtained by iterating E41), for example,

but we did not observe significant differences between the
The exponential operators are approximated as

Both functions are monotonic with monotonic derivatives
Sand vanish at 0. The first one has the drawback that the gap
between successive points always increases and becomes too
rT]arge neamy for the optimal choice of parametar Func-

tion g, has been devised to progressively switch from a
small step to a slowly varying larger step. The parameter
Xg controls the location of the region along which the tran-
sition occurs. Forxy>1, the step is abou’chh(l—xo)‘l

This approximation preserves unitarity and is consistent with< €Xp(—2ax) for small x and aboutry h(1—xp)* for
Egs.(41) and(42). The basic principle of the method relies largex.

on separate treatments ld§ andV(t) using different repre- In Fig. 1 the step;—r; _, between two successive points
sentations. The time evolution proceeds as follows. In a firsof the radial grid is represented as a functionr pfor both

exp(—iAtA)~(1+ JiAtA) 11— 2 iAtA)+O(ALD).
(44)
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10 g———1 e e breakup component of the wave function. This explains the
E gra=8 ——- 3 H i

Gt G =3 3 sudden fall of the corresponding wave function near

g2 a=95x9=06 — =500 fm in Flg 2.

gora=5m =08 —— The same calculation is performed with a parameter
C P 1 =3 s0 as to avoid too large a step at large distadodted

R . line). The drop in the wave function modulus disappears and

the wave function extends smoothly until the end of the ra-

rj —rj—1 (fm)

dial grid but the radial step is larger than 0.1 fm ne&0,

001 E E leading to a poor description of the bound states. This can be

== 3 seen in Fig. 2 where the short-range behavior of the wave
0.001 ] functior)s i_s represented at a larger scale than for the rest of
0.01 0.1 1 10 100 the radial interval.
r; (fm) The results obtained with @ distribution witha=5 and

Xo=0.6 are depicted with full lines. This distribution allows

a good description of the wave function at both small and
larger. A calculation usinga=5 andxy= 0.8 (dash-dotted
lines illustrates the influence of, in the g, distribution.

This distribution exhibits a smaller step negar0 than the
previous one but leads to a larger gap between points at large
distance. The corresponding wave function is well described
kinds of distributionsg,; and g,. Distributionsg; andg, at short distances but exhibits a sudden drop near 600 fm due
exhibit the same behavior for smallthe initially small step  to too large a step nea, .

increases, and the larger the parametéhe faster the in- The intervals of acceptable values of the parametensd
crease. But although tre stgp continues to rise steadily for X, seem to be relatively widdi.e., ac[3,20] and x,
larger, theg, step progressively tends to a plateau. In order_1q 3 0.7). Inside these intervals, the choice of the param-
to illustrate the influence of the distribution on the evolution otars does not seem to influence much the evolution of the

of the wave packet, Fig. 2 displays the modulus of S8 \yave function. For the calculations below, we adept5
—1/2 component of the final wave function obtained by theg g Xo=0.6.

evolution algorith_m. It corresppnds to the projection of the  The choice of the other parameters of the radial mesh is
wave packet onllljm) for 1=0, j=1/2, andm=—1/2. The  maqe as follows. Because of the time evolution process, the
calculation is performed in the case of'®Be projectile ona yyave function which is initially a bound state of the halo

?%%Pb target at an energy of 72 MeV/nucleon and at an impycleus develops a long-range breakup compotes Fig.
pact parameteb=25 fm. It is performed for all the mesh- 5 5nd sec. V). The maximalr valuery has been chosen
r

point distributions illustrated in Fig. 1. . .
The distribution shown as a dashed line in Fig. 1 Corre_equal to 800 fm in order to avoid boundary effects. Most of

sponds to the mesh used in previous calculatifa;21] the calculations presented below are done usipg 800 in
SP o o P = order to keep enough accuracy for the values of the cross
i.e., ag, distribution witha=8. The small step near=0

allows a good description of the bound states of the two> ection.

body system but the steps neay become too largé>6
fm), leading to a lack of precision in the description of the

FIG. 1. Radial step as a function of. Four different meshes
are representedN, =1000,ry =800 fm): g, distribution with a
=8 (dashed ling g, distribution witha=3 (dotted ling, g, distri-
bution witha=5 andxy= 0.6 (full line), andg, distribution with
a=5 andx,=0.8 (dash-dotted ling

B. Time interval and angular mesh

In the present study, all calculations are done assuming a
straight line trajectory of the projectile,

L T T T T T T T 3
grra=8 ——- ]
o a3 E R(t)=b+wt, (49
g2t a=5x =06 —— ]
g2: a=5uwp =08 — — ]

whereb is the impact vector and is the initial velocity. The

time t=0 corresponds to the closest approach of the projec-

tile and target. We choose this parametrization instead of a

Coulomb trajectory because the difference between a straight

line and a hyperbola is negligible at the energies considered

,. here as shown in Ref20]. More complicated trajectories

i N can be introduced by solving the ScHioger equation to-

107 L L1 . —L - gether with the classical Hamiltonian equations describing
bozo8 41w '2(20) 40060 80 the relative projectile-target motiof28], but the effect is
T negligible at the energies considered here.

FIG. 2. Modulus of thes1/2— 1/2 component of thé'Be wave Time evolution starts at initial tim&;, and stops at final
function after evolution ab= 25 fm and projectile energy 72 MeV/ time T, by iteration oveN; time stepsAt as explained in
nucleon. Computations are done using the distributions depicted i®ec. Ill C. The initial(final) time has to be sufficiently nega-
Fig. 1. Note the change of abscissa scale=att fm. tive (positive so as to allow the time-dependent potential

[{s1/2, —1/2|¥(Tow))|

014612-6



TIME-DEPENDENT ANALYSIS OF THE BREAKUP @ . .. PHYSICAL REVIEW C 68, 014612 (2003

2 T T T T T V. TWO-BODY INTERACTIONS
Ng=N,=5 ——-
. No=No=7 - A. Core-fragment potential
LS N No=No=9 —-—1 Halo nuclei are treated here as two-body systems involv-
Np=N,=11 —

ing a pointlike core of spin 0 surrounded by a loosely bound
neutron of spin 1/2. The potentidl (r) [see EQq.(3)] is
composed of a central term and a spin-orbit term coupling
the neutron spin and the angular momentum of the neutron-
0.5 - N core relative motion. Like in previous work20,21], deep
) potentials are used. These potentials present unphysical
bound states that simulate the occupied orbitals in the core.
’, 01,) i 115 ; 215 5 According to the Pauli principle, these bound states are for-
E (MeV) bidden to the fragment particle. As shown in Rgf2], they
play a negligible role in the breakup process and can there-
FIG. 3. Convergence with respect to the numbg=N,, of fore be ignored.

angular mesh points in théBe case with the first optical potential The central potential in Eq3) is chosen as
of Table Ill atv=0.37c.

Ng =Ny =15 oo

Vo(r)=—V,f(r,Ry,a) (50

V(r,t) [see Eq(4)] to be negligible at the beginningnd of
the evolution process. We select the same time interval as iwith a Woods-Saxon form factor
Ref.[20]: T;,=—20a/MeV andT,,=204/MeV. The time
stepAt is fixed equal to 0.02MeV. r—R.\1-1
In order to check the reversibility of the time evolution f(r,Ry,a)= 1+ex;{ O” . (51
algorithm, we have performed a time-reversed calculation in a
which the initial wave function is the output function Bf,;
after a normal evolution. In this test, the initial time is setThe spin-orbit coupling term is expressed as
equal toT,,; and the time step is chosen equalat with
the same numbeX; of time steps. The results of this calcu-
lation are astonishingly good: the wave function after the Vv, (r=V Eif(r Ro,a) (52)
. . L L LI LS 1IN0 .
time-backward evolution is equal to the initial ground-state dr
wave function of the time-forward evolution with an abso-
lute error better than 10 at any mesh point. i The parameters of the potentials are chosen so as to repro-
At impact parameters where the breakup is purely CoUgce the hound states of the studied nuclei and, in the case of
lombic (b>301fm), the angular mesh is composed of 4915¢c gne of the resonances. Table | summarizes the experi-
points:N,=7 for the ¢ variable andN,=7 for the ¢ vari-  mental values on which the potentials are fitted.
able. The corresponding basis includes all spherical harmon- | the case of'Be we choose the same potentiak as in
ics up tol =3 and some other up 16=9 (see the Appendix  Ref. [20] (adapted from Ref[16]). In the case of°C, we
However the introduction of optical potentials representingkeep the same diffusenesa<0.6 fm) and radius R,
the nuclear interactions with the targedec. VB requires  =1.2A%fm) as for 1'Be. The depths of the central and
higher numbers of angular mesh points. The convergencspin-orbit coupling terms are adapted so as to reproduce the
with respect tdN,= N, is studied in Fig. 3 with respect to a energies of the two bound states and of the" 3@sonance.
reference calculation with up th,=N,=15 for some im-  The values of the parameters used in the present work are
pact parameters. A fair accuracy is already obtained withisted in Table Il. The bound-state and resonance energies
Ny=N,=11. This value is adopted in the rest of the calcu-obtained by the potentials described above are shown in
lations forb<<30 fm. Table I.

TABLE |. Experimental bound-state and resonance enerdigg)( width (I',), and quantum numbers of théBe (Ref.[33]) and*°C
(Ref.[34]) nuclei used to fit the parameters of the Woods-Saxon potértial The theoretical energie€f,) and width (", obtained with
the parameters of Table Il are also listed.

1lBe 15C
J” | Eexp (MeV) Eq (MeV) J” | Eexp (MeV) I exp (MeV) Eqn (MeV) Ty, (MeV)
3* 0 —-0.503 —-0.5013 3t 0 —-1.218 —1.2180
- 1 -0.183 —-0.1844 3+ 2 —0.478 —0.4783
3+ 2 3.56-0.1 1.7:0.4 3.25 ~1.7
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TABLE Il. Parameters of the-1Be andn-1“C potentials. 1
Vi-o Viso vts a Ro 102
Nucleus (MeV) (MeV) (MeVimd  (fm) (fm) =
HBe 59.5 405 32.8 0.6 2.669 % Lo~
5¢ 52.814 51.3 20.77 0.6 2959 7
o 1078

B. Projectile-target potentials 10-8

In previous works[20,21], the interaction between pro-

jectile and target is treated as purely Coulombic. The nuclear 10 0 - 0 s a0 - o
part of the interaction is simulated by an impact parameter - (fm) ?
cutoff. In the present work, calculations are performed Lot
with an optical potential modeling the projectile-target . ' ' ' ' ' '
nuclear interaction. 1o
The selected optical potentials between the projectile_ Lo=?
fragments and the target contain real and imaginary partg 1074
with Woods-Saxon form factors, & 100
o
| 11—
Ver(r)=—VH(r,Re.aQ —IWf(r, R a), (63 & “'T
@ —7
5 10
where x stands for eitherc (core or f (fragmenj. Point- = 5=
sphere interactions replace the point Coulomb interactions in |,
Eq (4) —10
As in Ref.[22], the core-target potentid.t [see Eq(4)] T 100 200 300 400 500 600 700

is scaled from the parametrization in Table 2 of Boatral.
[35]. In order to evaluate the influence of the optical poten-
tial on the evolution of the wave function, we perform two
calculations using botf®Be-?%%Pb potentials listed in Table
.

The fragment-target optical potenti® is taken from  my=—1/2). The time-dependent wave function is projected
Becchetti, Jr. and Greenlef36]. For a?%®b target, the se- onto two different spin-angular states. The first one corre-
lected parameter values are given in Table Ill. Owing to thesponds to the initial bound statel(2— 1/2) and the second
energy dependence of this potential, two neutron-target pasne to the most important contribution to the breakup com-
rameter sets are selected in order to allow a comparison withonent ©3/2—3/2). The wave function is depicted at timtes
RIKEN experimentg2,4]. from T,,= —20k/MeV to T,,=20i/MeV at intervals of %/
MeV. A similar figure for a''Be projectile can be found in
Ref. [37].

At time T;,, the halo nucleus is in its ground state with
only asl1/2—1/2 component, which exhibits a characteristic

In order to illustrate the time evolution of the wave func- exponential decrease. At later negative times, causality re-
tion, we present the final result of a breakup calculation for astricts modifications of the wave function induced by the
15C projectile on @%b target at an impact parameter equalprojectile-target interaction to large values. Indeed, for

7 (fm)

FIG. 4. Time evolution of the moduli of thé) s1/2—1/2 and
(b) p3/2—3/2 partial waves of thé®C breakup obtained with an
initial 1s1/2—1/2 bound state fop =0.36c andb= 30 fm.

VI. TIME EVOLUTION OF THE PROJECTILE-
FRAGMENT WAVE PACKET

to 30 fm and a projectile velocity =0.36c, corresponding

s1/2—1/2, only the distant tail of the wave packet is affected.

to an energy of 68 MeV/nucleon. Figure 4 displays the re-The p3/2—3/2 wave remains negligible at negative times.

sults of that calculation for an initial functioW (r,T;,) cor-
responding to the ground statgs, 1(Eq,r) (i.e., with

TABLE Ill. Parameters of the core-targéRef. [35]) and
neutron-targetRef. [36]) optical potentials.

\% W Ry R, ar a
corf (MeV) (MeV) (fm) (fm) (fm) (fm)
10Be (1) 70.0 589 7.43 7.19 1.04 1.00
0Be (2) 53.6 49.4 789 7.69 0.954 0.887
e 70.0 589 7.67 7.42 1.04 1.00
n(72MeV) 2818 1428 693 7.47 075 0.58
n (68 MeV)  29.46 134 6.93 7.47 0.75 058

Neart=0, the partial wave functions start to change more
deeply: some parts increase by several orders of magnitude.
The modifications mainly correspond to the breakup compo-
nent. Thep3/2—3/2 wave becomes dominant at large dis-
tances. After the time of closest approach, the breakup com-
ponent develops rather quickly towards larga both partial
waves. It continues to spread as the wave packet evolves. In
spite of this ongoing spreading, the low-energy breakup
cross sections reach convergence negy.

VIl. COULOMB BREAKUP CROSS SECTIONS

A. Influence of nuclear interactions with the target

In the present section, we analyze the influence on the
breakup probability10) of the choice of the optical potential
modeling the nuclear interaction between projectile and tar-
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FIG. 5. Breakup probability per MeV ofBe on a**Pb target FIG. 6. Breakup cross sectiofis b/MeV) as a function of the

as a function of the impact parametefin fm) for E=0.5, 1.5, and  relative energy between the fragmentsie on2°%Pb at 68 MeV/

2.5 MeV. Calculations are without optical potential between projec-nycleon calculated with th&Be*°%Pb andn-2°%Pb optical poten-

tile and target(dashed lings with the first(full lines) and second  tjals of Table Il (full line) and with a cutoff ab,,;,=13 fm (dashed
(dotted liney °Be°Pb potential of Table IIl, together with the jine). Experimental results are from Ré], but scaled by a factor
neutron-target optical potential at 72 MeV. 0.85[38]. The dotted line corresponds to the cross section obtained

L . . for b>30 fm.
get. We also compare the effect of this interaction with the ™' m

simpler model in which a minimum impact parametg, tial, the b,,,;, values calculated at the energies of Fig. 5 are

cuts off a purely Coulombic calculation in EGLD). 12.5 fm at 0.5 MeV, 9.1 fm at 1.5 MeV, and 6.9 fm at 2.5

Introducing nucl_ear .potentlals IS very simple in- the MeV. Therefore the choice of an adequate impact parameter
present approach since it only requires values of these pOteﬂ)'wer boundb,,;, in a cutoff approximation is not straight-

tials at mesh points. Figure 5 shows the breakup prOb""b"'t}forward. Because of the simplicity of the present treatment,

11 ; ; :
of 'Be as a function ob for.thre_e relanve_energ!e(.s)l.s, 15, the modeling of the projectile-target nuclear interaction is
and 2.5 MeV. The calculation is done with an initial veloc- better taken into account with an optical potential

ity v=0.37c corresponding to a projectile energy of 72
MeV/nucleon. The evolution is computed in three different
cases:(i) with the first 1°Be-?°%b optical potential and the
neutron?%®Pb potential at 72 MeV of Table Ilifull lines), The breakup cross section is calculated fdtBe projec-
(i) with the second®Be-2*%b optical potential and the same tile on a2%%Pb target. With the aim of comparing our theo-
neutron-target interactio@otted line$, and(iii) without op-  retical results with the experimental ones of Nakanetral.
tical potential between projectile and targdashed lines [2], the calculation is done at a velocity=0.37c with the
The breakup probability obtained without optical potentialnumerical-parameter set given in Sec. IV. The cross sections
monotonically decreases as a functiorboft diverges when obtained after time evolution are depicted in Fig. 6 for the
b tends to 0 as a consequence of the purely Coulombic natudifferent ways of simulating the nuclear interaction between
of the interaction between projectile and tarpege Eq(4)]. projectile and target detailed above.
In the calculations with an optical potential added to the The cross sections obtained using both core-target optical
projectile-target Coulomb interaction, the breakup probabilpotentials are indistinguishable. The Coulomb breakup cross
ity is negligible nearb=0 because of strong absorption. section obtained with an impact parameter cutoff bat
When approaching the range of absorption in the nuclear 13 fm (dashed lingis close to the cross section obtained
optical potential, the probability increases and reaches with the optical potentialgfull line) in the peak near 0.3
maximum located around 11-14 fm. Beyond that maximumMeV. But, as stressed earlier, the difference between both
at lower energies, the breakup probability remains smallecalculations is energy dependent: the cross section including
than that calculated without any optical potential. At energieswuclear effects is systematically more important at high en-
larger than 0.5 MeV, the nuclear interaction with the targetergy for this choice of cutoff. A similar result has been ob-
leads to a significant increase of the breakup probabilitytained in Ref[22]. The data of Ref[2] are scaled by a factor
Fromb=20-25 fm, all results exhibit the same behavior as0.85 according to a reanalysis of the experimgd8]. The
that without projectile-target nuclear interaction. Thecomparison with our results shows good agreement between
breakup probabilities obtained with both optical potentialstheory and experiment except around 1 MeV. The simplified
are very close to each other. description of''Be here is essentially valid with a spectro-
The comparison of the breakup probabilities calculatedscopic factor for ther-1°Be configuration in thé'Be ground
with and without nuclear optical potential suggests that thestate that is very close to unity.
cutoff impact parameteb,,;,, should depend on energy in The strong dominance of trewave agrees with several
order to simulate nuclear effects. When webfit,, to obtain  analyses of experimental results. However, the value of the
the same breakup cross section in a pure Coulomb breakwgpectroscopic factor and the importance of core excitation
approximation as in a calculation involving an optical poten-are still controversial. A measurement of tH8e magnetic

B. Breakup of Be
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FIG. 7. Breakup cross sectiofis b/MeV) as a function of the FIG. 8. Inelastic excitation cross sections EfPb to the 1/2
relative energy between the fragmentsi®® on 2%%Pb at 68 Mev/  State of'Be at 72 MeV/nucleon and to the 5/tate of'°C at 68
nucleon calculated with th¥C-2°%b andn-2%Pb optical potentials  MeV/nucleon calculated with optical potentials of Table (ull
of Table Il (full line) and with a cutoff ath,,;,=12.5 fm (dashed  lines and with pure Coulomb excitatioashed lines

line). The dotted line corresponds to the cross section obtained for
b>30 fm. As mentioned earlier, the difference between the cross

sections obtained with an impact parameter cutoff and that

calculated using an optical potential is energy dependent.

HBe(p,d)1%Be neutron-transfer reaction provides cross secere also a rather large cutoff, 12.5 fm, reproduces the peak

. ' i , . . 0 n region near 0.6 MeV but underestimates the cross sections at

tions compatible with models involving 16% ¢2"®0d]  phigher energies. The calculation in Fig. 7 agrees fairly well

core excitatior{40]. A study of neutron knockout fromi'Be with unpublished preliminary experimental data of R

on °Be is consistent with about 20% of core excitatldd]. ~ They seem to indicate the need for a spectroscopic factor

However a reanalysis of these data leads to possibly smallgfightly smaller than unity.

componentg§42]. Evaluating the importance of the spectro-

scopic factor from Coulomb breakup is difficult because of D. Comparison of the !Be and 1°C breakups

the sensitivity of its value to the adopted normalization of the 1 1s ,

experimental data. Precise statements have to wait for th _Th? Be and™C nuclei are both weakly bound halo nu-

publication of the new RIKEN datgd]. clei with only two bo_und stat_es. These bound states have_
In order to determine the spectroscopic factor, it is alsogxiig??ﬂenﬁgﬁﬁg gg;tjslshgvi'ﬁsreggﬁebez\rﬁiiglg‘.:s:nSUde'

important to eliminate the effects of the nuclear interaction ositive parities in5C. Hence Co?ﬁomb eF:(citations behave

with the target. To this end, cross sections restrictedb to P it d'ffp tv. Thi ' ffect is illustrated in Fia. 8 wh

>30 fm are shown as dotted lines in Fig. 6. They correspon&‘u' € diierently. 1his efiect 15 Tlustrated in F1g. & where

to pure Coulomb breakup and can be measiiéd inelastic transition probabilitiegmultiplied by 27b) are
P P compared.

C. Breakup of 15C The Coulomb excitation probabilities to the 5/3tate of

- breakup o 15C are smaller than that for the I/Xtate of 'Be because
The same kind of study is performed for theC halo the dominant transition corresponds to &2 multipole

nucleus using the numerical-parameter set of Sec. IV. Thavhile it is E1 for *'Be. They also decrease much faster with

breakup cross sections witl?¥Pb target are calculated at an b because of the larger excitation enedy. This decrease

energy of 68 MeV/nucleonu(=0.36). That energy is cho- is indeed roughly proportional to exp@bAE/Av) [21]. An-

sen with the aim of providing results that can be compared imther difference concerns the nuclear effects. £8e, the

the near future with still unpublished RIKEN ddt4). probabilities obtained with optical potentials are smaller than
In Fig. 7, two sets of results are shown. The first onethose with a pure Coulomb interaction at all impact param-

includes all impact parameters and the second one correters. For'°C, the small Coulomb probabilities are signifi-

sponds to an integration of the breakup probability over im-cantly enhanced by the nuclear force around 10 fm. A cutoff

pact parameterb larger than 30 fm. The calculation of the approximation cannot reproduce such an effect.

breakup cross sections 6fC is done using thé“C-2%%Pb The total breakup cross sections obtained with optical po-

optical potential and the-2%Pb potential at 68 MeV listed tentials are 0.690Hirst set of parametersr 0.692b(second

in Table Il (full line). These results are compared with the sep for 'Be at 72 MeV/nucleon. The pure Coulomb calcu-

cross section obtained with a cutofflaf;,=12.5 fm(dashed lation with a cutoff at 11.5 fm provides the good approxima-

line). The pure Coulomb cross section calculated For tion 0.689b. The cross section f&iC at 68 MeV/nucleon is

>30 fm is drawn as a dotted line. This quantity is now also0.0164b.

accessible to experimefd] and should allow determination The breakup cross sections of both halo nuclei are much

of the spectroscopic factor of the“C configuration in the closer to each other than the inelastic cross sections since

15C ground state. they are both dominated byl transitions. The"Be cross

moment is consistent with an almost pwatate[39]. The
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section is nevertheless larger because of the smaller bindingeakup at these energies have been obtained but are not yet
energy of this nucleus. For the same reason the maximum gfublished[4]. Preliminary analyses seem to indicate a good

the cross section is located at lower ener¢i8s agreement with our results provided that a spectroscopic fac-
tor slightly smaller than unity is used for tme“C configu-
VIIl. CONCLUSION ration.

An accurate description of the breakup of halo nuclei can
A time-dependent Schdinger equation describes the be obtained by solving numerically the time-dependent
breakup of a projectile in the varying Coulomb and nuclearSchralinger equation but with significant restrictions. The
fields of a target in the semiclassical approximation. A nu-breakup only involves a single nucleon and the simplest
merical technique of resolution of this equation on angulamodel is used to describe the halo. This model has the merit
and radial meshes has been applied to the breakup®Bef of reproducing the energy of the bound states and the node
and '°C halo nuclei on?®®Pb at energies around 70 MeV/ structure of their wave functions, at the cost of an angular-
nucleon. momentum dependence of the potential. It does not allow
With respect to previous workg0,21 different improve- ~ treating core excitation. Our aim is to improve the model
ments of the mesh technique have been introduced. The firgescription of the one-neutron halo nuclei and even to study
one concerns the presentation of the method. We have refoiie breakup of two-neutron halo nuclei with the time-
mulated it in a more general way where the accuracies of theependent approach. To reach these goals, significant im-
different approximations can more clearly be identified. TheProvements of the different parts of the algorittine., the
second improvement is technical and concerns the radial digngular, radial, and time discretizatigrmaust be realized in
cretization. We analyzed the advantages and drawbacks @fder to reduce the computing times.
two types of radial discretization. This analysis shows the
importance of keeping a small step at small distances in the ACKNOWLEDGMENTS
projectile while preventing this step from growing too much

at large distances. A new radial distribution of mesh pointsPS/07 . . . ; les initiated by th
seems to fulfill these conditions satisfactorily. A third im- on interuniversity attraction poles initiated by the

provement is the introduction of nuclear optical potentialsBelgian'State Federal Services for Scientific, Technical, and

between the fragments of the projectile and the target. Thig:UIturaI Affairs. P'_C' g_cknowledges the support of the Na-
introduction is straightforward in the present approach ancﬁ'onal Fund for Scientific ReseardkNRS, Belgium.
does not require any analytical calculation. For given num-
bers of mesh points, it does not increase the computing time APPENDIX
significantly.

The time evolution of the wave packet is illustrated with
the behavior of two important partial waves in th€ case.
A breakup component appears near the time of closest a
proach and continues to spread thereafter. Partial waves fe

This text presents research results of the Belgian program

In this appendix, we define the angular mesh points,
weights, and Lagrange functions. Thé=N,N, angular
oints(whereN,, is an odd numbegrform a two-dimensional
‘%esh defined as

by E1 transitions become dominant. Extended radial meshes Q:=(01,0i) (A1)
are necessary for a good description of the wave function at ’ e
large distances after interaction with the target. with j=(j’,j”). TheN, anglesg;, with j'=—(N,—1)/2 to

Breakup cross sections 6fBe and'°C on **Pb are cal- (N,—1)/2 are zeros of a Legendre polynomial of orély,
culated with optical potentials simulating the nuclear part of
the interaction between projectile and tarf@?]. This real- Pn,(cos6;)=0. (A2)
istic approach is compared with the pure Coulomb approxi-
mation involving a cutoff on impact parametef80,2l.  They thus have the property
With a cutoff near 13 fm, this approximation is very good for
both nuclei at low relative energies near the cross section C0sfj;=—cosb_; . (A3)
maximum. Above the energy of this maximum small impact
parameters play a larger role and the effect of the nucleafheN, anglesg;. (j”=1 toN,) are uniformly spaced over
interaction becomes more important. The cutoff approxima[O, 2| as
tion then underestimates the breakup cross sections except if .,
the cutoff impact parameter is chosen as decreasing with ¢jr=m(2]"—=1)IN,. (A4)
energy.

Inelastic cross sections have different orders of magnitud
for 1Be and*°C because of the contrasted parities of the
excited states. Breakup cross sections are somewhat smaller
fSr 15¢ than for''Be because of a larger binding energy. The

Be breakup cross sections are in fair agreement with . .
RIKEN data[pZ] with the new absolute normagllizatic[BS]. with the Gauss-Legendre weigtj9]
The n-1%Be description of this nucleus seems to be sound
with a spectroscopic factor close to unity. Data for th€

The N Gauss weights appearing in the quadrature formula
16) are defined as

N=NONE (AS)

N =2/ sin6; P} (cost;)]? (AB)
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and the Gauss-Fourier weights l
N, + E‘Ls.- . .
Nf'=27IN, . (A7) T
The angular basis must satisfy prope(t). The N basis
functions with indexv=(l,m) read No e R
Y,(Q)=NinP|"(0)explime), (A8) Mot o e
whereN,,, is a normalization factor anﬁ’,m is a Legendre
function or a function modified as explained below. One eas- Sl R
ily verifies with Egs.(A4) and (A7) that the orthogonality Ne-1
property(19) is automatically satisfied by the factor depend- 2
ing on ¢, i.e., relation 1 e e e s e
N(P () ) ) 1 . . .
.,,21 )\Jf eXF(_|mquu)eX[1|mlqurr):2’7T5mmr (Ag) .
J = - *
is exac{26]. Forl<N,, theP" are nothing but the standard —feol -1 0 1 Tt m

associated Legendre functio®s" [29]. The Y,(Q) do not FIG. 9. Schemati ation of t¥ie basi h dot
. . . . . J. Schematic representation o ¢ baslis: eac ot cor-
differ from the traditional spherical harmonid§"(Q). For responds to a basis state. Up lIte (N, —1)/2 (dotted ling, all

I=N,, the functionsP"(¢) must differ from associated possibley!™ are included. Below the dashed line, all basis functions
Legendre functions in order to be orthonormal at the Gaussarey". Above this line, modified spherical harmonics are used.

quadrature approximation on tite, mesh. AIII3|m must sat-

isfy the relations differs from the standard normalization factor of the spheri-
(Ng=1)12 B B 1 cal harmonics. Fol=N,+1, the polynomiall~3|rnI is or-
E )\J(?)le|(¢9j,)PlT‘(0jr)= W5”' . thogonalized toPlT‘2 with the Gram-Schmidt algorithm
J'==(Ng-1)/2 TIm (A10) based on the scalar produ#10). For|=N,+2, the poly-

nomial P|™ is orthogonalized toP|™, and P|™, with the
This is automatically satisfied by associated Legendre funcsame Gram-Schmidt algorithm, and so on.

tions with the samém| value forl, |’ <N,. Indeed the Gauss ~ The situation is depicted in Fig. 9. Upte=N,—1, all Y,
approximation is exact for polynomials in c@s up to order  are standard spherical harmonics. Hotarger than N,
2N,—1 and Eq(A10) is then nothing but the exact orthogo- —1)/2, |m| values larger thanN,— 1)/2 are missing. Start-
nality relation between Legendre functions. The polynomialsng with | =N, modified Legendre functions are used: for
TD!”" have a parity £ 1)' so that Eq(A10) is also automati- equal toN,, only the normalization of the spherical harmon-
cally satisfied whem+1’ is odd. The first modification must ics is modified; forl larger thanN,, the functionsY, differ
occur forl=N, where the normalization factdd,,, of Y,  from spherical harmonics.
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