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Time-dependent analysis of the breakup of halo nuclei
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The breakup of halo nuclei is studied by numerically solving the semiclassical time-dependent Schro¨dinger
equation on an angular Lagrange mesh and on a quasiuniform radial mesh. The merits of different mesh
choices and approximations of the time evolution operator are discussed. The numerical technique is applied to
the breakup of the11Be and15C halo nuclei at energies around 70 MeV/nucleon. The time evolution of the
projectile wave packet during the breakup process is visualized. The role of the nuclear interaction between
target and projectile is analyzed and the validity of pure Coulomb breakup with an impact parameter cutoff is
estimated. The breakup and inelastic cross sections are discussed and compared with available experimental
data.
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I. INTRODUCTION

Halo nuclei are among the most fascinating quantal s
tems@1#. The mean radii of the orbitals of some among th
nucleons can be larger than the range of the nuclear inte
tion with other nucleons. This topic is the subject of inte
sive experimental investigations. Breakup is one of the m
useful tools for studying the properties of halo nuclei.
these reactions, information coming from the dissociation
the projectile into fragments can be used to infer the prop
ties of the halo part of the wave function. Coulomb break
is of particular interest because uncertainties about
nuclear interaction between projectile and target are not
pected to play a significant role. However, in order to c
rectly extract the information from cross sections, the ac
racy of the description of the reaction mechanism must
ascertained.

Among halo nuclei,11Be and15C nuclei are of particular
interest @2–4#. Because of the relative simplicity of the
structure, the elaborate calculations required for a two-b
breakup are not very affected by uncertainties about t
wave functions. Indeed, their bound states can be fairly w
described as a core to which a neutron is loosely bound. W
a good approximation, the breakup can be seen as a tr
tion from a two-particle bound state to the continuum, due
a varying Coulomb field. These nuclei are a good test
ground for approximate theories of Coulomb breakup.

In recent years a number of techniques have been de
oped for the calculation of Coulomb breakup: perturbat
expansion@5–8#, adiabatic approximation@9,10#, coupled
channels with a discretized continuum@11–14#, and numeri-
cal resolution of the three-dimensional time-depend
Schrödinger equation@15–23#. Here we focus on the latte
type of description where the projectile is assumed to foll
a classical trajectory and its interaction evolves becaus
the varying Coulomb and nuclear fields of the target. Th
numerical resolutions, though much heavier, do not rely
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assumptions about the magnitude of the different multip
fields or about the importance of higher-order effects. T
main model assumptions are the validity of the semiclass
description of the projectile motion and the simplified d
scription~shared by other models! of the internal structure of
this projectile.

Recently, efficient mesh methods of numerical resolut
of the time-dependent Schro¨dinger equation have been de
veloped for accurately treating the time evolution of t
projectile-nucleus wave function in this kind of reactio
@15–17,19,20,23#. These analyses are performed with thr
spatial dimensions for the relative motion of the halo neut
with respect to the core. From a physical viewpoint, they
attractive owing to the simplicity of the treatment of tim
dependence. In principle, these methods are not restricte
purely Coulomb breakup and can take account of a nuc
component. However some of these methods have lim
tions. For example, the time-dependent Schro¨dinger equation
is usually solved with a limited expansion in spherical h
monics followed by a discretization of the radial coordina
@16,17,19#. This approach requires an analytical treatment
the spherical harmonics. Matrix elements are calculated w
a multipole expansion of the time-dependent potential
tween the halo nucleus and the target. They are often
stricted to a few dominant multipoles@15–17,19#. The treat-
ment of a nuclear interaction is more complicated than
treatment for the analytical Coulomb term. The purely n
merical approach of Ref.@23# does not suffer from this dif-
ficulty but the use of a three-dimensional mesh in Cartes
coordinates prevents usingl-dependent interactions an
hence reproducing more than one bound state of a h
nucleus.

In this work, we apply a numerical technique of solutio
of the time-dependent Schro¨dinger equation on angular an
radial meshes@24,25,20,21#, which is free from the above
mentioned drawbacks. We express the formalism in the c
text of Lagrange meshes@26,27#. The wave function is ex-
©2003 The American Physical Society12-1
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panded over angular Lagrange functions associated wi
two-dimensional angular mesh. The Lagrange functions v
ish at all mesh points, except one. This basis is equivalen
a full set of spherical harmonics up to some orbital mom
tum complemented by selected harmonics beyond that va
It is used together with an associated Gauss quadra
which eliminates the need for an analytical treatment. T
simplicity of this method arises from the fact that the tim
dependent potential matrix is diagonal when the Gauss
proximation is used. The radial variable is discretized ove
mesh with an increasing step obtained from a change of v
ables in a finite-difference technique.

The numerical technique is applied to the breakup of
11Be and15C halo nuclei at energies around 70 MeV/nucle
in order to make a comparison with experiments perform
at RIKEN. At these energies, a fully numerical treatment
relevant because higher-order effects are not negligible
the interaction does not reduce to a single multipole. The
of the nuclear interaction with the target must also be eva
ated. In Ref.@20#, nuclear effects were simulated by a simp
cutoff on impact parameters for the11Be breakup. The valid-
ity and limitations of this approximation were not discusse

In Sec. II, the time-dependent method is recalled. T
computational algorithm for the time evolution is describ
in Sec. III. In Sec. IV, variants of radial meshes are compa
and different tests are performed. In Sec. V, the internal
tentials of the halo nuclei and optical potentials for a le
target are selected. The time evolution of the partial wave
the wave packet is depicted in Sec. VI. The obtained res
are discussed in Sec. VII. The final section is devoted
concluding remarks.

II. COULOMB BREAKUP
BY TIME-DEPENDENT METHODS

We consider the breakup by the interaction with a tar
~with massmT and chargeZTe) of a two-body projectile
made up of a pointlike core~with massmc and chargeZce)
and a pointlike fragment~with massmf and chargeZfe). In
the projectile rest frame, the time-dependent Schro¨dinger
equation can be written as

i\
]

]t
C~r ,t !5H~ t !C~r ,t !5@H0~r !1V~r ,t !#C~r ,t !.

~1!

The Hamiltonian of the projectile reads

H0~r !52
\2

2m
D1Vc f~r !, ~2!

where m is the reduced mass of the core and fragmenr
[(V,r ) is the relative coordinate between them, andVc f is
the internal interaction between the core and fragment of
projectile. This real potential, which may include Coulom
and spin-orbit terms, reads

Vc f~r !5V0~r !1L•IVLI~r !, ~3!
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whereL is the relative orbital momentum andI is the frag-
ment spin. We assume that the spinI c of the core is zero and
that the fragment spinI is fixed. In other words, we neglec
here the coupling with the core spin and core excitations

The time-dependent potential is given by

V~r ,t !5VcT~r cT!1
ZcZTe2

r cT
1Vf T~r f T!1

ZfZTe2

r f T

2
~Zc1Zf !ZTe2

R
, ~4!

whereR(t) is the time-dependent target position with resp
to the projectile center of mass. The core-target a
fragment-target coordinates read

r cT~ t !5R~ t !1mfr /M , ~5!

r f T~ t !5R~ t !2mcr /M , ~6!

respectively, whereM5mc1mf is the projectile mass. The
complex optical potentialsVcT and Vf T describe the purely
nuclear parts of the core- and fragment-target interactio
For simplicity, the point Coulomb interactions are display
explicitly in Eq. ~4!. The core- and fragment-target Coulom
interactions could be replaced by more realistic form fact
taking account of the finite sizes of the nuclei, without ad
tional difficulty ~see Sec. V B!. In the projectile rest frame
the target follows a classical trajectory. This trajectory can
a straight line or a Coulomb trajectory. It could also be
trajectory taking nuclear effects into account@28#, but we
shall not make use of this case here. The initial velocity
denoted asv and the impact parameter asb.

For partial wavelj , the projectile eigenstates~bound and
scattering states! are defined by

H0f l jm~E,r !5Ef l jm~E,r !. ~7!

The projectile angular momentumj results from the coupling
of the orbital momentuml with the fragment spinI. Negative
energy states are normed and describe either the phy
bound states of the projectile or states forbidden by the P
principle. Positive energy states correspond to the co
fragment scattering. They are necessary to analyze the
state of the system. The radial part of a scattering wave fu
tion is normalized in such a way that

Rl j ~E,r ! →
r→`

r 21@cosd l~E!Fl~E,r !1sind l~E!Gl~E,r !#,

~8!

whereFl andGl are the standard regular and irregular Co
lomb functions@29# andd l is the phase shift.

As an initial condition att52`, the system is in its
ground statel 0 j 0m0 with energyE0,0,

C~m0!~r ,2`!5f l 0 j 0m0
~E0 ,r !. ~9!

The time-dependent wave functionC (m0)(r ,t) must be cal-
culated for the differentm0 values. It also depends on th
2-2
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impact parameterb, which is understood. The breakup pro
ability per energy unit is given by

dP

dE
~E,b!5

2m

p\2k

1

2 j 011

3(
m0

(
l jm

u^f l jm~E,r !uC~m0!~r ,1`!&u2,

~10!

wherek is the wave number@20#. It includes full distortion
of the scattering eigenstates of the projectile. The brea
cross section reads

dsbu

dE
~E!52pE

0

` dP

dE
~E,b!bdb. ~11!

When the nuclear interactions are neglected in Eq.~4!, the
lower bound in Eq.~11! is replaced by a cutoffbmin simulat-
ing these nuclear effects. Some authors@16,20,22,23# extract
the breakup component fromC (m0)(r ,1`) before calculat-
ing the matrix elements appearing in Eq.~10!. With exact
scattering states, this additional projection is not neces
@21#.

An inelastic scattering cross section to an excited bo
statenlj can be calculated as

snl j~E!52pE
0

`

Pnl j~b!bdb, ~12!

where

Pnl j~b!5
1

2 j 011 (
m0

(
m

u^fnl jm~Enl j ,r !uC~m0!~r ,1`!&u2.

~13!

For pure Coulomb breakup, the probabilities satisfy the c
sure relation

(
nl j

Pnl j~b!1E
0

` dP

dE
~E,b!dE51. ~14!

The summation in this relation includes the forbidden sta
of the core-fragment potential, if any. The right-hand side
Eq. ~14! becomeŝC (m0)(r ,1`)uC (m0)(r ,1`)& when com-
plex nuclear potentials are included in the time-depend
potential@Eq. ~4!#.

III. APPROXIMATE TREATMENT OF TIME EVOLUTION

A. Expansion in angular Lagrange functions

In the traditional approach, the time-dependent wa
function is solved with an expansion in spherical harmon
Yl

m(V). Here we describe a purely numerical approach w
out such a partial wave expansion@24,25,20,21#. However,
we present it with a new notation in the spirit of th
Lagrange-mesh method@26,27#.

Let us start withN points in a two-dimensional mesh o
the unit sphereV j5(u j 8 ,w j 9) @24#. To this mesh are assoc
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atedN Gauss-quadrature weightsl j and N Lagrange func-
tions f j (V). By construction, these functions satisfy th
Lagrange property

f i~V j !5l i
21/2d i j . ~15!

On this mesh, the Gauss-quadrature approximation read

E g~V!dV'(
k51

N

lkg~Vk!. ~16!

Hence, because of Eq.~15!, the Lagrange functions are o
thonormal at the Gauss approximation

E f i* ~V! f j~V!dV'(
k51

N

lkf i* ~Vk! f j~Vk!5d i j . ~17!

The main interest of this basis is that the potential matrix
also diagonal at the Gauss approximation in angular spa

E f i* ~V!V~V,r ,t ! f j~V!dV

'(
k51

N

lkf i* ~Vk!V~Vk ,r ,t ! f j~Vk!

5V~V i ,r ,t !d i j . ~18!

The approximate matrix elements only depend on poten
values at the angular mesh points.

How can such functions be constructed? Technical det
and the definition of the mesh points and weights are gi
in the Appendix. The Lagrange functions are related w
spherical harmonics. Let us considerN functionsYn(V) or-
thonormal at the Gauss approximation,

E Yn* ~V!Yn8~V!dV'(
k51

N

lkYn* ~Vk!Yn8~Vk!5dnn8 .

~19!

The functionsYn(V) involve standard spherical harmonic
Yl

m(V) for the lower l values and modified onesỸl
m in the

rest of the basis~see the Appendix for details!. The last
equality in Eq.~19! implies that matrixS with elements

Sin5l i
1/2Yn~V i ! ~20!

is unitary. Hence one also has

(
n51

N

l i
1/2Yn* ~V i !l i 8

1/2Yn~V i 8!5d i i 8 . ~21!

The angular Lagrange functions are then given by

f i~V!5l i
1/2(

n51

N

Yn* ~V i !Yn~V! ~22!

since these expressions satisfy the Lagrange condition~15!
because of property~21!.

The time-dependent wave function is expanded as
2-3
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C~r ,t !5r 21 (
mI52I

I

(
i 51

N

l i
1/2f i~V!c i

mI~r ,t !uImI&. ~23!

At angular mesh points, Eq.~15! provides the explicit ex-
pression of a partial wave

c i
mI~r ,t !5r ^ImI uC~V i ,r ,t !&. ~24!

With the column matrixC with elements

C i~r ,t !5l i
1/2c i

mI~r ,t !, ~25!

the matrix mesh equations read

i\
]

]t
C~r ,t !5@Ĥ0~r !1V̂~r ,t !#C~r ,t !. ~26!

The projectile Hamiltonian matrixĤ0 is diagonal with re-
spect to indexl of basisYn(V),

Ĥ
0nn8

mImI8~r !5H 2
\2

2m F ]2

]r 22
l ~ l 11!

r 2 G1V0~r !J dmImI8
dnn8

1^ lm ImI uL•I u lm8ImI8&VLI~r !dmI1m,m
I81m8d l l 8 .

~27!

When a spin-orbit force is used, it is not diagonal with r
spect to the spin projectionmI . In Eq. ~27!, the angular
matrix elementŝ YnuL2uYn8& are replaced byl ( l 11)dnn8 .
This is not exact for the higherl values~see the Appendix!.
The accuracy of this approximation seems to be consis
with the accuracy of the angular Gauss quadrature emplo
hereafter for the time-dependent interaction. A similar a
proximation is performed in the spin-orbit term.

The time-dependent interaction matrixV̂ is fully diagonal
in the Lagrange basisf i(V)uImI& @Eq. ~18!# at the Gauss
approximation,

V̂
ii 8

mImI8~r ,t !'V~V i ,r ,t !d i i 8dmImI8
. ~28!

Hence it is convenient to use both bases in the calcula
@20#. Changing bases is performed with matrixS @Eq. ~20!#.

B. Radial discretization

The radial coordinate is discretized over a quasiunifo
mesh,

r j5r Nr
g~ jh !/g~1!, j 51,...,Nr ~29!

obtained by mapping a uniform mesh with constant steh
51/Nr over xP@0,1# onto r P@0,r Nr

# with a monotonic

function g(x), such thatg(0)50. Examples are given in
Sec. IV A. The differentiation operators overx can be dis-
cretized with the (2n11)-point finite-difference formulas
The first-order derivative reads
01461
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dxD
j

'h21 (
k52n

n

ck
~1! f @~ j 1k!h#, ~30!

with c0
(1)50 and, forkÞ0,

ck
~1!5~21!k21

~n! !2

k~n2k!! ~n1k!!
, ~31!

i.e., c2k
(1)52ck

(1) . The second derivative is given by

S d2f

dx2D
j

'h22 (
k52n

n

ck
~2! f @~ j 1k!h#, ~32!

with, for kÞ0,

ck
~2!52ck

~1!/k, ~33!

i.e., c2k
(2)5ck

(2) , and

c0
~2!522(

k51

n

ck
~2!522(

i 51

n

i 22. ~34!

After switching to coordinater, one obtains

S d2c

dr2 D
r j

'F g~1!

hrNr
g8~ jh !G2

(
k52n

n Fck
~2!2h

g9~ jh !

g8~ jh !
ck

~1!Gc~r j 1k!.

~35!

Because of the factors depending onjh and of the asymmetry
of the coefficientsck

(1) , the corresponding matrix and henc
the representation on the mesh of operatorH0 are asymmet-
ric.

On this mesh, radial integrals are approximated as

E
0

`

F~r !dr'
hrNr

g~1! (j 51

Nr

g8~ jh !F~r j !. ~36!

This relation is used to calculate the scalar product of t
radial functions.

C. Approximations of the evolution operator

The time evolution is obtained by an iteration with tim
stepDt. Let us start from the first term of the Magnus e
pansion@30#,

C~ t1Dt !5expF2 i E
t

t1Dt

H~ t8!dt81O~Dt3!GC~ t !

~37!

(\51). For each time step, the evolution operator can
split as

C~ t1Dt !5expF2 i E
t

t1Dt

V~ t8!dt8G
3exp~2 iDtH0!C~ t !1O~Dt2!. ~38!
2-4
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With a simple approximation for the integral, one obtains

C~ t1Dt !5exp@2 iDtV~ t !#exp~2 iDtH0!C~ t !1O~Dt2!.
~39!

A better accuracy can, however, be obtained with the s
metrized expression@31#

C~ t1Dt !5expF2
1

2
i E

t

t1Dt

V~ t8!dt8Gexp~2 iDtH0!

3expF2
1

2
i E

t

t1Dt

V~ t8!dt8GC~ t !1O~Dt3!.

~40!

Then the integrals must be approximated to orderDt3, which
can be done in several ways, such as

C~ t1Dt !5exp@2 1
2 iDtV~ t1 1

2 Dt !#exp~2 iDtH0!

3exp@2 1
2 iDtV~ t1 1

2 Dt !#C~ t !1O~Dt3!.

~41!

For example, one can verify that the less symmetric exp
sion

C~ t1Dt !5exp@2 1
2 iDtV~ t1Dt !#exp~2 iDtH0!

3exp@2 1
2 iDtV~ t !#C~ t !1O~Dt3! ~42!

has a similar accuracy.
After iteration over time, the order of the error chang

since the number of mesh points is proportional to 1/Dt. In
fact, after iteration, the actual error of approximation~39! is
of the same orderO(Dt2) as the error of approximation~42!.
Indeed, with Eqs.~42! as well as with~39!, the resulting
algorithm reads

C~ tn!5... exp@2 iDtV~ t j 11!#exp~2 iDtH0!

3exp@2 iDtV~ t j !#exp~2 iDtH0!

3exp@2 iDtV~ t j 21!#exp~2 iDtH0!...C~ t0!

1O~Dt2! ~43!

with t j5t01 j Dt. Using Eqs.~39! or ~42! differs by negli-
gible corrections at the end points only. Other variants of t
algorithm can be obtained by iterating Eq.~41!, for example,
but we did not observe significant differences between th

The exponential operators are approximated as

exp~2 iDtA!'~11 1
2 iDtA!21~12 1

2 iDtA!1O~Dt3!.
~44!

This approximation preserves unitarity and is consistent w
Eqs.~41! and ~42!. The basic principle of the method relie
on separate treatments ofH0 andV(t) using different repre-
sentations. The time evolution proceeds as follows. In a
01461
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half step, the factor depending onH0 is treated in the basis
Yn where the matrix operatorĤ0(r ) is diagonal with respec
to index l @Eq. ~27!#,

@11 1
2 iDtĤ0~r !#C~r ,t1 1

2 Dt !5@12 1
2 iDtĤ0~r !#C~r ,t !.

~45!

After discretization ofr, the matrixĤ0 is a band matrix. The
system~45! can thus be solved quickly@24#. It must be noted
that in spite of the asymmetry of matrixĤ0 , the norm of the
wave function is conserved. Moreover, in the basisYn , a
possible angular momentum dependence of potentialVc f is
easily taken into account.

In a second half step, the factor depending on the po
tial is propagated in the basisf j where the matrix operato
V̂(r ,t) is diagonal@Eq. ~28!#,

@11 1
2 iDtV̂~r ,t !#C~r ,t1Dt !

5@12 1
2 iDtV̂~r ,t !#C~r ,t1 1

2 Dt !. ~46!

After discretization ofr, the matrixV̂ is diagonal. Resolution
is thus very fast. The algorithm implies a change of basis
each half step, which is fast since it only concerns the an
lar part.

IV. NUMERICAL ASPECTS

A. Radial mesh

The function defining the quasiuniform mesh used in p
vious works@20,21# reads

g1~x!5eax21. ~47!

Since ah!1, the step exponentially increases from abo
r Nr

ah exp(2a) to aboutr Nr
ah.

Here we make use of a slightly more complicated expr
sion

g2~x!5ax1 ln
cosh@a~x2x0!#

cosh~ax0!
. ~48!

Both functions are monotonic with monotonic derivativ
and vanish at 0. The first one has the drawback that the
between successive points always increases and become
large nearr Nr

for the optimal choice of parametera. Func-

tion g2 has been devised to progressively switch from
small step to a slowly varying larger step. The parame
x0 controls the location of the region along which the tra
sition occurs. Forax0.1, the step is aboutr Nr

h(12x0)21

3exp(22ax0) for small x and aboutr Nr
h(12x0)21 for

largex.
In Fig. 1 the stepr j2r j 21 between two successive poin

of the radial grid is represented as a function ofr j for both
2-5
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kinds of distributionsg1 and g2 . Distributions g1 and g2
exhibit the same behavior for smallr: the initially small step
increases, and the larger the parametera the faster the in-
crease. But although theg1 step continues to rise steadily fo
larger, theg2 step progressively tends to a plateau. In ord
to illustrate the influence of the distribution on the evoluti
of the wave packet, Fig. 2 displays the modulus of thes1/2
21/2 component of the final wave function obtained by t
evolution algorithm. It corresponds to the projection of t
wave packet onulIjm& for l 50, j 51/2, andm521/2. The
calculation is performed in the case of a11Be projectile on a
208Pb target at an energy of 72 MeV/nucleon and at an
pact parameterb525 fm. It is performed for all the mesh
point distributions illustrated in Fig. 1.

The distribution shown as a dashed line in Fig. 1 cor
sponds to the mesh used in previous calculations@20,21#,
i.e., a g1 distribution with a58. The small step nearr 50
allows a good description of the bound states of the tw
body system but the steps nearr Nr

become too large~.6
fm!, leading to a lack of precision in the description of t

FIG. 1. Radial step as a function ofr j . Four different meshes
are represented (Nr51000,r Nr

5800 fm): g1 distribution with a
58 ~dashed line!, g1 distribution witha53 ~dotted line!, g2 distri-
bution with a55 andx050.6 ~full line!, andg2 distribution with
a55 andx050.8 ~dash-dotted line!.

FIG. 2. Modulus of thes1/221/2 component of the11Be wave
function after evolution atb525 fm and projectile energy 72 MeV
nucleon. Computations are done using the distributions depicte
Fig. 1. Note the change of abscissa scale atr 54 fm.
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breakup component of the wave function. This explains
sudden fall of the corresponding wave function nearr
5500 fm in Fig. 2.

The same calculation is performed with a parametea
53 so as to avoid too large a step at large distance~dotted
line!. The drop in the wave function modulus disappears a
the wave function extends smoothly until the end of the
dial grid but the radial step is larger than 0.1 fm nearr 50,
leading to a poor description of the bound states. This can
seen in Fig. 2 where the short-range behavior of the w
functions is represented at a larger scale than for the res
the radial interval.

The results obtained with ag2 distribution witha55 and
x050.6 are depicted with full lines. This distribution allow
a good description of the wave function at both small a
large r. A calculation usinga55 andx050.8 ~dash-dotted
lines! illustrates the influence ofx0 in the g2 distribution.
This distribution exhibits a smaller step nearr 50 than the
previous one but leads to a larger gap between points at l
distance. The corresponding wave function is well describ
at short distances but exhibits a sudden drop near 600 fm
to too large a step nearr Nr

.
The intervals of acceptable values of the parametersa and

x0 seem to be relatively wide~i.e., aP@3,20# and x0
P@0.3,0.7#). Inside these intervals, the choice of the para
eters does not seem to influence much the evolution of
wave function. For the calculations below, we adopta55
andx050.6.

The choice of the other parameters of the radial mes
made as follows. Because of the time evolution process,
wave function which is initially a bound state of the ha
nucleus develops a long-range breakup component~see Fig.
2 and Sec. VI!. The maximalr value r Nr

has been chosen
equal to 800 fm in order to avoid boundary effects. Most
the calculations presented below are done usingNr5800 in
order to keep enough accuracy for the values of the cr
section.

B. Time interval and angular mesh

In the present study, all calculations are done assumin
straight line trajectory of the projectile,

R~ t !5b1vt, ~49!

whereb is the impact vector andv is the initial velocity. The
time t50 corresponds to the closest approach of the pro
tile and target. We choose this parametrization instead o
Coulomb trajectory because the difference between a stra
line and a hyperbola is negligible at the energies conside
here as shown in Ref.@20#. More complicated trajectories
can be introduced by solving the Schro¨dinger equation to-
gether with the classical Hamiltonian equations describ
the relative projectile-target motion@28#, but the effect is
negligible at the energies considered here.

Time evolution starts at initial timeTin and stops at final
time Tout by iteration overNT time stepsDt as explained in
Sec. III C. The initial~final! time has to be sufficiently nega
tive ~positive! so as to allow the time-dependent potent
in
2-6
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TIME-DEPENDENT ANALYSIS OF THE BREAKUP OF . . . PHYSICAL REVIEW C 68, 014612 ~2003!
V(r ,t) @see Eq.~4!# to be negligible at the beginning~end! of
the evolution process. We select the same time interval a
Ref. @20#: Tin5220\/MeV andTout520\/MeV. The time
stepDt is fixed equal to 0.02\/MeV.

In order to check the reversibility of the time evolutio
algorithm, we have performed a time-reversed calculation
which the initial wave function is the output function atTout

after a normal evolution. In this test, the initial time is s
equal toTout and the time step is chosen equal to2Dt with
the same numberNT of time steps. The results of this calcu
lation are astonishingly good: the wave function after
time-backward evolution is equal to the initial ground-sta
wave function of the time-forward evolution with an abs
lute error better than 10213 at any mesh point.

At impact parameters where the breakup is purely C
lombic (b.30 fm), the angular mesh is composed of
points: Nu57 for the u variable andNw57 for the w vari-
able. The corresponding basis includes all spherical harm
ics up tol 53 and some other up tol 59 ~see the Appendix!.
However the introduction of optical potentials represent
the nuclear interactions with the target~Sec. V B! requires
higher numbers of angular mesh points. The converge
with respect toNu5Nw is studied in Fig. 3 with respect to
reference calculation with up toNu5Nw515 for some im-
pact parameters. A fair accuracy is already obtained w
Nu5Nw511. This value is adopted in the rest of the calc
lations forb,30 fm.

FIG. 3. Convergence with respect to the numberNu5Nw of
angular mesh points in the11Be case with the first optical potentia
of Table III at v50.37c.
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V. TWO-BODY INTERACTIONS

A. Core-fragment potential

Halo nuclei are treated here as two-body systems invo
ing a pointlike core of spin 0 surrounded by a loosely bou
neutron of spin 1/2. The potentialVc f(r ) @see Eq.~3!# is
composed of a central term and a spin-orbit term coupl
the neutron spin and the angular momentum of the neut
core relative motion. Like in previous works@20,21#, deep
potentials are used. These potentials present unphy
bound states that simulate the occupied orbitals in the c
According to the Pauli principle, these bound states are
bidden to the fragment particle. As shown in Ref.@32#, they
play a negligible role in the breakup process and can th
fore be ignored.

The central potential in Eq.~3! is chosen as

V0~r !52Vl f ~r ,R0 ,a! ~50!

with a Woods-Saxon form factor

f ~r ,R0 ,a!5F11expS r 2R0

a D G21

. ~51!

The spin-orbit coupling term is expressed as

VLI~r !5VLS

1

r

d

dr
f ~r ,R0 ,a!. ~52!

The parameters of the potentials are chosen so as to re
duce the bound states of the studied nuclei and, in the cas
15C, one of the resonances. Table I summarizes the exp
mental values on which the potentials are fitted.

In the case of11Be we choose the same potentialVc f as in
Ref. @20# ~adapted from Ref.@16#!. In the case of15C, we
keep the same diffuseness (a50.6 fm) and radius (R0
51.2A1/3 fm) as for 11Be. The depths of the central an
spin-orbit coupling terms are adapted so as to reproduce
energies of the two bound states and of the 3/21 resonance.
The values of the parameters used in the present work
listed in Table II. The bound-state and resonance ener
obtained by the potentials described above are shown
Table I.
TABLE I. Experimental bound-state and resonance energies (Eexp), width (Gexp), and quantum numbers of the11Be ~Ref. @33#! and15C
~Ref. @34#! nuclei used to fit the parameters of the Woods-Saxon potentialVc f . The theoretical energies (Eth) and width (G th) obtained with
the parameters of Table II are also listed.

11Be 15C

Jp l Eexp ~MeV! Eth ~MeV! Jp l Eexp ~MeV! Gexp ~MeV! Eth ~MeV! G th ~MeV!

1
2

1 0 20.503 20.5013 1
2

1 0 21.218 21.2180
1
2

2 1 20.183 20.1844 5
2

1 2 20.478 20.4783
3
2

1 2 3.5660.1 1.760.4 3.25 ;1.7
2-7
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B. Projectile-target potentials

In previous works@20,21#, the interaction between pro
jectile and target is treated as purely Coulombic. The nuc
part of the interaction is simulated by an impact parame
cutoff. In the present work, calculations are perform
with an optical potential modeling the projectile-targ
nuclear interaction.

The selected optical potentials between the projec
fragments and the target contain real and imaginary p
with Woods-Saxon form factors,

VxT~r !52V f~r ,RR ,aR!2 iW f~r ,RI ,aI !, ~53!

where x stands for eitherc ~core! or f ~fragment!. Point-
sphere interactions replace the point Coulomb interaction
Eq. ~4!.

As in Ref.@22#, the core-target potentialVcT @see Eq.~4!#
is scaled from the parametrization in Table 2 of Boninet al.
@35#. In order to evaluate the influence of the optical pote
tial on the evolution of the wave function, we perform tw
calculations using both10Be-208Pb potentials listed in Table
III.

The fragment-target optical potentialVf T is taken from
Becchetti, Jr. and Greenlees@36#. For a 208Pb target, the se
lected parameter values are given in Table III. Owing to
energy dependence of this potential, two neutron-target
rameter sets are selected in order to allow a comparison
RIKEN experiments@2,4#.

VI. TIME EVOLUTION OF THE PROJECTILE-
FRAGMENT WAVE PACKET

In order to illustrate the time evolution of the wave fun
tion, we present the final result of a breakup calculation fo
15C projectile on a208Pb target at an impact parameter equ
to 30 fm and a projectile velocityv50.36c, corresponding
to an energy of 68 MeV/nucleon. Figure 4 displays the
sults of that calculation for an initial functionC(r ,Tin) cor-
responding to the ground statefs1/221/2(E0 ,r ) ~i.e., with

TABLE II. Parameters of then-10Be andn-14C potentials.

Nucleus
Vl 50

~MeV!
Vl .0

~MeV!
VLS

~MeV fm2!
a

~fm!
R0

~fm!

11Be 59.5 40.5 32.8 0.6 2.669
15C 52.814 51.3 20.77 0.6 2.959

TABLE III. Parameters of the core-target~Ref. @35#! and
neutron-target~Ref. @36#! optical potentials.

c or f
V

~MeV!
W

~MeV!
RR

~fm!
RI

~fm!
aR

~fm!
aI

~fm!

10Be ~1! 70.0 58.9 7.43 7.19 1.04 1.00
10Be ~2! 53.6 49.4 7.89 7.69 0.954 0.887
14C 70.0 58.9 7.67 7.42 1.04 1.00
n ~72 MeV! 28.18 14.28 6.93 7.47 0.75 0.58
n ~68 MeV! 29.46 13.4 6.93 7.47 0.75 0.58
tar-
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m0521/2). The time-dependent wave function is project
onto two different spin-angular states. The first one cor
sponds to the initial bound state (s1/221/2) and the second
one to the most important contribution to the breakup co
ponent (p3/223/2). The wave function is depicted at timest
from Tin5220\/MeV to Tout520\/MeV at intervals of 5\/
MeV. A similar figure for a11Be projectile can be found in
Ref. @37#.

At time Tin , the halo nucleus is in its ground state wi
only a s1/221/2 component, which exhibits a characteris
exponential decrease. At later negative times, causality
stricts modifications of the wave function induced by t
projectile-target interaction to larger values. Indeed, for
s1/221/2, only the distant tail of the wave packet is affecte
The p3/223/2 wave remains negligible at negative time
Near t50, the partial wave functions start to change mo
deeply: some parts increase by several orders of magnit
The modifications mainly correspond to the breakup com
nent. Thep3/223/2 wave becomes dominant at large d
tances. After the time of closest approach, the breakup c
ponent develops rather quickly towards larger in both partial
waves. It continues to spread as the wave packet evolve
spite of this ongoing spreading, the low-energy break
cross sections reach convergence nearTout.

VII. COULOMB BREAKUP CROSS SECTIONS

A. Influence of nuclear interactions with the target

In the present section, we analyze the influence on
breakup probability~10! of the choice of the optical potentia
modeling the nuclear interaction between projectile and

FIG. 4. Time evolution of the moduli of the~a! s1/221/2 and
~b! p3/223/2 partial waves of the15C breakup obtained with an
initial 1s1/221/2 bound state forv50.36c andb530 fm.
2-8
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TIME-DEPENDENT ANALYSIS OF THE BREAKUP OF . . . PHYSICAL REVIEW C 68, 014612 ~2003!
get. We also compare the effect of this interaction with
simpler model in which a minimum impact parameterbmin
cuts off a purely Coulombic calculation in Eq.~11!.

Introducing nuclear potentials is very simple in th
present approach since it only requires values of these po
tials at mesh points. Figure 5 shows the breakup probab
of 11Be as a function ofb for three relative energies~0.5, 1.5,
and 2.5 MeV!. The calculation is done with an initial veloc
ity v50.37c corresponding to a projectile energy of 7
MeV/nucleon. The evolution is computed in three differe
cases:~i! with the first 10Be-208Pb optical potential and the
neutron-208Pb potential at 72 MeV of Table III~full lines!,
~ii ! with the second10Be-208Pb optical potential and the sam
neutron-target interaction~dotted lines!, and~iii ! without op-
tical potential between projectile and target~dashed lines!.

The breakup probability obtained without optical potent
monotonically decreases as a function ofb. It diverges when
b tends to 0 as a consequence of the purely Coulombic na
of the interaction between projectile and target@see Eq.~4!#.
In the calculations with an optical potential added to t
projectile-target Coulomb interaction, the breakup proba
ity is negligible nearb50 because of strong absorptio
When approaching the range of absorption in the nuc
optical potential, the probability increases and reache
maximum located around 11–14 fm. Beyond that maximu
at lower energies, the breakup probability remains sma
than that calculated without any optical potential. At energ
larger than 0.5 MeV, the nuclear interaction with the tar
leads to a significant increase of the breakup probabi
From b520– 25 fm, all results exhibit the same behavior
that without projectile-target nuclear interaction. T
breakup probabilities obtained with both optical potenti
are very close to each other.

The comparison of the breakup probabilities calcula
with and without nuclear optical potential suggests that
cutoff impact parameterbmin should depend on energy i
order to simulate nuclear effects. When we fitbmin to obtain
the same breakup cross section in a pure Coulomb brea
approximation as in a calculation involving an optical pote

FIG. 5. Breakup probability per MeV of11Be on a208Pb target
as a function of the impact parameterb ~in fm! for E50.5, 1.5, and
2.5 MeV. Calculations are without optical potential between proj
tile and target~dashed lines!, with the first ~full lines! and second
~dotted lines! 10Be-208Pb potential of Table III, together with the
neutron-target optical potential at 72 MeV.
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tial, the bmin values calculated at the energies of Fig. 5 a
12.5 fm at 0.5 MeV, 9.1 fm at 1.5 MeV, and 6.9 fm at 2
MeV. Therefore the choice of an adequate impact param
lower boundbmin in a cutoff approximation is not straight
forward. Because of the simplicity of the present treatme
the modeling of the projectile-target nuclear interaction
better taken into account with an optical potential.

B. Breakup of 11Be

The breakup cross section is calculated for a11Be projec-
tile on a 208Pb target. With the aim of comparing our the
retical results with the experimental ones of Nakamuraet al.
@2#, the calculation is done at a velocityv50.37c with the
numerical-parameter set given in Sec. IV. The cross sect
obtained after time evolution are depicted in Fig. 6 for t
different ways of simulating the nuclear interaction betwe
projectile and target detailed above.

The cross sections obtained using both core-target op
potentials are indistinguishable. The Coulomb breakup cr
section obtained with an impact parameter cutoff atb
513 fm ~dashed line! is close to the cross section obtaine
with the optical potentials~full line! in the peak near 0.3
MeV. But, as stressed earlier, the difference between b
calculations is energy dependent: the cross section inclu
nuclear effects is systematically more important at high
ergy for this choice of cutoff. A similar result has been o
tained in Ref.@22#. The data of Ref.@2# are scaled by a facto
0.85 according to a reanalysis of the experiment@38#. The
comparison with our results shows good agreement betw
theory and experiment except around 1 MeV. The simplifi
description of11Be here is essentially valid with a spectr
scopic factor for then-10Be configuration in the11Be ground
state that is very close to unity.

The strong dominance of thes wave agrees with severa
analyses of experimental results. However, the value of
spectroscopic factor and the importance of core excita
are still controversial. A measurement of the11Be magnetic

-

FIG. 6. Breakup cross sections~in b/MeV) as a function of the
relative energy between the fragments of11Be on208Pb at 68 MeV/
nucleon calculated with the10Be-208Pb andn-208Pb optical poten-
tials of Table III ~full line! and with a cutoff atbmin513 fm ~dashed
line!. Experimental results are from Ref.@2#, but scaled by a factor
0.85 @38#. The dotted line corresponds to the cross section obtai
for b.30 fm.
2-9



ec

al
o-
o

th
t

ls
io
o
on

Th
n

d

n
rr

im
e

he

lso
n

oss
that
ent.
eak
s at
ell

ctor

-
ave
clei

e
e

ith

an
m-
-

toff

po-

u-
a-

uch
ince

f

P. CAPEL, D. BAYE, AND V. S. MELEZHIK PHYSICAL REVIEW C68, 014612 ~2003!
moment is consistent with an almost pures state@39#. The
11Be(p,d)10Be neutron-transfer reaction provides cross s
tions compatible with models involving 16% of@21

^ 0d#
core excitation@40#. A study of neutron knockout from11Be
on 9Be is consistent with about 20% of core excitation@41#.
However a reanalysis of these data leads to possibly sm
components@42#. Evaluating the importance of the spectr
scopic factor from Coulomb breakup is difficult because
the sensitivity of its value to the adopted normalization of
experimental data. Precise statements have to wait for
publication of the new RIKEN data@4#.

In order to determine the spectroscopic factor, it is a
important to eliminate the effects of the nuclear interact
with the target. To this end, cross sections restricted tb
.30 fm are shown as dotted lines in Fig. 6. They corresp
to pure Coulomb breakup and can be measured@4#.

C. Breakup of 15C

The same kind of study is performed for the15C halo
nucleus using the numerical-parameter set of Sec. IV.
breakup cross sections with a208Pb target are calculated at a
energy of 68 MeV/nucleon (v50.36c). That energy is cho-
sen with the aim of providing results that can be compare
the near future with still unpublished RIKEN data@4#.

In Fig. 7, two sets of results are shown. The first o
includes all impact parameters and the second one co
sponds to an integration of the breakup probability over
pact parametersb larger than 30 fm. The calculation of th
breakup cross sections of15C is done using the14C-208Pb
optical potential and then-208Pb potential at 68 MeV listed
in Table III ~full line!. These results are compared with t
cross section obtained with a cutoff atbmin512.5 fm~dashed
line!. The pure Coulomb cross section calculated forb
.30 fm is drawn as a dotted line. This quantity is now a
accessible to experiment@4# and should allow determinatio
of the spectroscopic factor of then-14C configuration in the
15C ground state.

FIG. 7. Breakup cross sections~in b/MeV) as a function of the
relative energy between the fragments of15C on 208Pb at 68 MeV/
nucleon calculated with the14C-208Pb andn-208Pb optical potentials
of Table III ~full line! and with a cutoff atbmin512.5 fm ~dashed
line!. The dotted line corresponds to the cross section obtained
b.30 fm.
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As mentioned earlier, the difference between the cr
sections obtained with an impact parameter cutoff and
calculated using an optical potential is energy depend
Here also a rather large cutoff, 12.5 fm, reproduces the p
region near 0.6 MeV but underestimates the cross section
higher energies. The calculation in Fig. 7 agrees fairly w
with unpublished preliminary experimental data of Ref.@4#.
They seem to indicate the need for a spectroscopic fa
slightly smaller than unity.

D. Comparison of the 11Be and 15C breakups

The 11Be and15C nuclei are both weakly bound halo nu
clei with only two bound states. These bound states h
extended neutron orbitals. A difference between these nu
is that the bound states have opposite parities in11Be and
positive parities in15C. Hence Coulomb excitations behav
quite differently. This effect is illustrated in Fig. 8 wher
inelastic transition probabilities~multiplied by 2pb) are
compared.

The Coulomb excitation probabilities to the 5/21 state of
15C are smaller than that for the 1/22 state of11Be because
the dominant transition corresponds to anE2 multipole
while it is E1 for 11Be. They also decrease much faster w
b because of the larger excitation energyDE. This decrease
is indeed roughly proportional to exp(22bDE/\v) @21#. An-
other difference concerns the nuclear effects. For11Be, the
probabilities obtained with optical potentials are smaller th
those with a pure Coulomb interaction at all impact para
eters. For15C, the small Coulomb probabilities are signifi
cantly enhanced by the nuclear force around 10 fm. A cu
approximation cannot reproduce such an effect.

The total breakup cross sections obtained with optical
tentials are 0.690b~first set of parameters! or 0.692b~second
set! for 11Be at 72 MeV/nucleon. The pure Coulomb calc
lation with a cutoff at 11.5 fm provides the good approxim
tion 0.689b. The cross section for15C at 68 MeV/nucleon is
0.0164b.

The breakup cross sections of both halo nuclei are m
closer to each other than the inelastic cross sections s
they are both dominated byE1 transitions. The11Be cross

or

FIG. 8. Inelastic excitation cross sections on208Pb to the 1/22

state of11Be at 72 MeV/nucleon and to the 5/21 state of15C at 68
MeV/nucleon calculated with optical potentials of Table III~full
lines! and with pure Coulomb excitation~dashed lines!.
2-10
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TIME-DEPENDENT ANALYSIS OF THE BREAKUP OF . . . PHYSICAL REVIEW C 68, 014612 ~2003!
section is nevertheless larger because of the smaller bin
energy of this nucleus. For the same reason the maximum
the cross section is located at lower energies@2#.

VIII. CONCLUSION

A time-dependent Schro¨dinger equation describes th
breakup of a projectile in the varying Coulomb and nucle
fields of a target in the semiclassical approximation. A n
merical technique of resolution of this equation on angu
and radial meshes has been applied to the breakups of11Be
and 15C halo nuclei on208Pb at energies around 70 MeV
nucleon.

With respect to previous works@20,21# different improve-
ments of the mesh technique have been introduced. The
one concerns the presentation of the method. We have r
mulated it in a more general way where the accuracies of
different approximations can more clearly be identified. T
second improvement is technical and concerns the radial
cretization. We analyzed the advantages and drawback
two types of radial discretization. This analysis shows
importance of keeping a small step at small distances in
projectile while preventing this step from growing too mu
at large distances. A new radial distribution of mesh poi
seems to fulfill these conditions satisfactorily. A third im
provement is the introduction of nuclear optical potenti
between the fragments of the projectile and the target. T
introduction is straightforward in the present approach a
does not require any analytical calculation. For given nu
bers of mesh points, it does not increase the computing t
significantly.

The time evolution of the wave packet is illustrated w
the behavior of two important partial waves in the15C case.
A breakup component appears near the time of closest
proach and continues to spread thereafter. Partial waves
by E1 transitions become dominant. Extended radial mes
are necessary for a good description of the wave functio
large distances after interaction with the target.

Breakup cross sections of11Be and15C on 208Pb are cal-
culated with optical potentials simulating the nuclear part
the interaction between projectile and target@22#. This real-
istic approach is compared with the pure Coulomb appro
mation involving a cutoff on impact parameters@20,21#.
With a cutoff near 13 fm, this approximation is very good f
both nuclei at low relative energies near the cross sec
maximum. Above the energy of this maximum small impa
parameters play a larger role and the effect of the nuc
interaction becomes more important. The cutoff approxim
tion then underestimates the breakup cross sections exc
the cutoff impact parameter is chosen as decreasing
energy.

Inelastic cross sections have different orders of magnit
for 11Be and 15C because of the contrasted parities of t
excited states. Breakup cross sections are somewhat sm
for 15C than for11Be because of a larger binding energy. T
11Be breakup cross sections are in fair agreement w
RIKEN data @2# with the new absolute normalization@38#.
The n-10Be description of this nucleus seems to be sou
with a spectroscopic factor close to unity. Data for the15C
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breakup at these energies have been obtained but are no
published@4#. Preliminary analyses seem to indicate a go
agreement with our results provided that a spectroscopic
tor slightly smaller than unity is used for then-14C configu-
ration.

An accurate description of the breakup of halo nuclei c
be obtained by solving numerically the time-depend
Schrödinger equation but with significant restrictions. Th
breakup only involves a single nucleon and the simpl
model is used to describe the halo. This model has the m
of reproducing the energy of the bound states and the n
structure of their wave functions, at the cost of an angu
momentum dependence of the potential. It does not al
treating core excitation. Our aim is to improve the mod
description of the one-neutron halo nuclei and even to st
the breakup of two-neutron halo nuclei with the tim
dependent approach. To reach these goals, significant
provements of the different parts of the algorithm~i.e., the
angular, radial, and time discretizations! must be realized in
order to reduce the computing times.
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APPENDIX

In this appendix, we define the angular mesh poin
weights, and Lagrange functions. TheN5NuNw angular
points~whereNw is an odd number! form a two-dimensional
mesh defined as

V j5~u j 8 ,w j 9! ~A1!

with j [( j 8, j 9). TheNu anglesu j 8 with j 852(Nu21)/2 to
(Nu21)/2 are zeros of a Legendre polynomial of orderNu ,

PNu
~cosu j 8!50. ~A2!

They thus have the property

cosu j 852cosu2 j 8 . ~A3!

TheNw anglesw j 9 ( j 951 to Nw) are uniformly spaced ove
@0, 2p# as

w j 95p~2 j 921!/Nw . ~A4!

TheN Gauss weights appearing in the quadrature form
~16! are defined as

l j5l j 8
~u!l j 9

~w! ~A5!

with the Gauss-Legendre weights@29#

l j 8
~u!

52/@sinu j 8PNu
8 ~cosu j 8!#

2 ~A6!
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and the Gauss-Fourier weights

l j 9
~w!

52p/Nw . ~A7!

The angular basis must satisfy property~19!. TheN basis
functions with indexn[( l ,m) read

Yn~V!5NlmP̃l
umu~u!exp~ imw!, ~A8!

whereNlm is a normalization factor andP̃l
m is a Legendre

function or a function modified as explained below. One e
ily verifies with Eqs.~A4! and ~A7! that the orthogonality
property~19! is automatically satisfied by the factor depen
ing on w, i.e., relation

(
j 951

Nw

l j 9
~w! exp~2 imw j 9!exp~ im8w j 9!52pdmm8 ~A9!

is exact@26#. For l ,Nu , theP̃l
m are nothing but the standar

associated Legendre functionsPl
m @29#. The Yn(V) do not

differ from the traditional spherical harmonicsYl
m(V). For

l>Nu , the functions P̃l
m(u) must differ from associated

Legendre functions in order to be orthonormal at the Gau
quadrature approximation on theu j 8 mesh. All P̃l

m must sat-
isfy the relations

(
j 852~Nu21!/2

~Nu21!/2

l j 8
~u!P̃l

umu~u j 8!P̃l 8
umu

~u j 8!5
1

2pNlm
2 d l l 8 .

~A10!

This is automatically satisfied by associated Legendre fu
tions with the sameumu value forl, l 8,Nu . Indeed the Gauss
approximation is exact for polynomials in cosuj8 up to order
2Nu21 and Eq.~A10! is then nothing but the exact orthogo
nality relation between Legendre functions. The polynomi
P̃l

umu have a parity (21)l so that Eq.~A10! is also automati-
cally satisfied whenl 1 l 8 is odd. The first modification mus
occur for l 5Nu where the normalization factorNlm of Yn
be
.
A.

D.

.
.
B

T.
i-
ra

sic
ao

01461
-

-

s-

c-

s

differs from the standard normalization factor of the sphe

cal harmonics. Forl 5Nu11, the polynomialP̃l
umu is or-

thogonalized toPl 22
umu with the Gram-Schmidt algorithm

based on the scalar product~A10!. For l 5Nu12, the poly-

nomial P̃l
umu is orthogonalized toPl 24

umu and P̃l 22
umu with the

same Gram-Schmidt algorithm, and so on.
The situation is depicted in Fig. 9. Up tol 5Nu21, all Yn

are standard spherical harmonics. Forl larger than (Nw

21)/2, umu values larger than (Nw21)/2 are missing. Start-
ing with l 5Nu , modified Legendre functions are used: fol
equal toNu , only the normalization of the spherical harmo
ics is modified; forl larger thanNu , the functionsYn differ
from spherical harmonics.

FIG. 9. Schematic representation of theYn basis: each dot cor-
responds to a basis state. Up tol 5(Nw21)/2 ~dotted line!, all
possibleYl

m are included. Below the dashed line, all basis functio
areYl

m . Above this line, modified spherical harmonics are used
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