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Negative specific heat in a thermodynamic model of multifragmentation
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We consider a soluble model of multifragmentation which is similar in spirit to many models which have
been used to fit intermediate energy heavy ion collision data. In this modisl,always positive but for finite
nuclei c, can be negative for some temperatures and pressures. Furthermore, negative valuiearobe
obtained in canonical treatment. One does not need to use the microcanonical ensemble. Negative eglues for
can persist for systems as large as 200 particles but this depends upon parameters used in the model calcula-
tion. As expected, negative specific heats are absent in the thermodynamic limit.
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[. INTRODUCTION gas model as well. It was demonstrated thats positive in
the lattice gas model even for a very small system. This can
This paper deals with specific heats of an assembly obe shown almost analytically without having to use a Monte
interacting nucleons. In recent times, the subject has receive@arlo simulatior{4]. On the other hand, is much harder to
a great deal of attentioil—6]. The topic is beset with many calculate in the lattice gas model. Chonezl. find thatc,
controversies. Some of the ideas are the following: undegan be negative in the lattics gas mofi&].
suitable conditions, nuclear systems exhibit negative heat ca- For completeness, we describe the canonical thermody-
pacities; negative heat capacities are obtainable only in theamic model in Sec. Il. In the following section, we set up
microcanonical ensemble; negative heat capacities also afe grand canonical model to get to the thermodynamic limit.
pear in canonical models but disappear once the drop siZBubsequent sections will show the results.
crosses the value-60.
We investigate the specific heats using a thermodynamic Il. THE THERMODYNAMIC MODEL
model. The basic assumption of the model is that populations . ) )
of different channels are dictated solely by phase space con- 1h€ thermodynamic model has been described in many
siderations. This is a common theme in many applicationsP@Pers7,8,11. For completeness and to enumerate the pa-
for example, statistical multifragmentation mo@ig] and mi- ~ f@meters, we provide some details. We describe the model
crocanonical Metropolis Monte Carlo modél although de- for one kind of par'ucle only. The generalization to two kinds
tails vary from one model to another. could be found in Refd8,11]. o
A canonical model based on this assumption was shown !f there areA identical particles of only one kind in an
to be easily soluble requiring only very quick and Simp|eenclosure at temperatuile the partition function of the sys-
computing[7]. The first application used one kind of particle €M can be written as
but was later extended to two kinds of partic[&9]. This 1
appears to be accurate enough for many applicatia6% Qa=— ()™ (2.1
and will undoubtedly be used more and more in the future. Al
We investigate the question of specific heat in this model ) . ) . _
primarily using one kind of particle. Two kinds of particles Heréw is the partition f%nCt'on of one particle. For a spinless
were also used but this requires a longer computing time, angarticle, this iso=(V/h®)(27mT)"% mis the mass of the
we expect no changes from the lessons learned from thearticle;V is the available _volume within which each particle
model of one kind of particles. We will, however, show also MOVes;A! corrects for Gibb’s paradox. If there are many
some results obtained from using two kinds of particles. ~ SPecies, the generalization is
What we will show is that although, for this model is n,
always positive,c, can sometimes be negative. This is a Q=2 11 (@i) _ (2.2
finite particle number effect and negative values disappear in il
the thermodynamic limit. Furthermore, we get negative val- . - . _ S
ues ofc, in the canonical model itself. We did not need to go Heré ; is the partition function of a composite which hias
to the microcanonical description. Thermodynamic limit ishucleons. For a dimer=2, for a trimeri =3, etc., Eq(2.2)
obtained by using the grand canonical ensemble whereas fg no longer trivial to calculate. The trouble is with the sum
nite systems are described by the canonical model with exa@n the right hand side of E¢2.2). The sum is restrictive. We
particle number. We find that negative valuescfcan per-  need to consider only those partitions of the numberhich
sist for fairly large systems although this is dependent upogatisfy A=ZXin;. The number of partitions which satisfies
binding energies used, etc. This was not investigated in d¢he sum is enormous whehis large. We can call a given
tail. allowed partition to be a channel. The probability of the oc-

The statements made above appear to hold for the latticeurrence of a given chann@l(ﬁ)EP(nl,nz,ng, ...) s
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_ 1 (w))" by Eq.(2.7) up to a limitk=N and zero afterwards. When
P(n)= Q—AH o~ (2.3 A>N, this simply means that the largest cluster Nasucle-
a ons.
The average number of compositesiafiucleons is easily Using standard defi”iti°”£:T2(‘7|” Qa/dT) and pres-
seen from the above equation to be surep=T(dIn Qa/dV), we arrive at
()=, Qé“ | 2.4 E=S (nd(EL"+EM, 28
A
Since =in;=A, one readily arrives at a recursion relation where Ef"=3T and E"=k(—Wy+T% )+ o(T)k¥®
[12] —T[d0(T)/aT1k?2 The last term irE," was neglected in
A Ref. [7]. It is included here but makes little difference. The
1 expression for pressure is
Q=% 2, kerQaic (2.5

T
For one kind of particleQ, above is easily evaluated on a P=v 2 (). 2.9

computer forA as large as 3000 in a matter of seconds. It is
this recursion relation that makes the computation so easy iMultiplicity mis given bym=X={n;).
the model. Of course, once one has the partition function, all
relevant thermodynamic quantities can be computed. IIl. INEINITE MATTER LIMIT: GRAND CANONICAL
We now need an expression faf, which can mimic the MODEL
nuclear physics situation. We take
If there were only monomers in the grand canonical en-
\Vi semble, one would solve
wk=ﬁ(27rmT)3’2k3’2qk, (2.6)
p=explu/T oy, (3.0
where the first part arises from the center of mass motion of _
the composite which hak nucleons andyy is the internal wherew;=w;/V of Sec. Il. Giverp andT, one then finds the
partition function. Fok=1, gq,=1, and fork=2, itis taken = chemical potentiaf.. The number of particles is then given
to be by A=pV, whereV and A are very large(thermodynamic
limit). The fluctuations in the number of particles implied by
k= exp{[ Wok— o(T)k?3+ T?k/ €, ]/ T}. (2.7)  the use of the grand canonical ensemble are then negligible
compared to the average numbfer

Here, as in Ref[1], Wy=16 MeV is the volume energy If we have a model where the only allowed species are
term, o(T) is a temperature dependent surface tension termnmonomers and dimers and the total particle number is very
and the last term arises from summing over excited states ilarge, one would solve
the Fermi-gas model. The value &f is taken to be 16 MeV.
The explicit expression foro(T) used here isa(T) p=exp(u/T)w+2exp2ulT)w,, (3.2
=ao[(T2=T?)/(T24+T%)1%* with 0,=18 MeV and T,
=18 MeV. In the nuclear case, one might be tempted tavhere phase-space consideration has implied that chemical
interpretV of Eq. (2.6) as simply the freeze-out volume but it equilibration exists, that is, the chemical potential of the
is clearly less than thaty is the volume available to the dimer is twice that of the monomer, i.@u,=2u.
particles for the center of mass motion. Assume that the only For a system which is very large but, for which, the heavi-

interaction between clusters is that they cannot overlap ongst cluster ha$l nucleons and no more, one needs to solve
another. This assumption restricts the validity of the model to

low density limit as was stressed in all previous applications N
of the model. In the van der Waals spirit, we take p=2, kexp(ku/T)wy. (3.3
=Vireeze— Vex, WhereVy, is taken here to be constant and 1
equal toVy=A/pg. The precise value df ., is inconsequen- ] . ] o
tial so long as it is taken to be constant. Calculations employn this case, one might argue that one is considering a model
V; the valueV, enters only if results are plotted against In which the composites obey E(.6) up tok=N andw,’s
plpo=Vo/(V+Ve,), Wherep is the freeze-out density. for k>N are all zeros. Of course it is p053|ble_ that béth

In the past, calculations with one kind of particle used theand N are very large. Use of the grand canonical ensemble
parametrization of Eq(2.7) for all k's however large. This always implies tha# is very large butN may be large or
means that if the system hasnucleons, the largest possible small.
cluster allowed in the system also hasiucleons. While we Pressure in the grand canonical model is calculated from
will show a few cases with this specification we will also P=(T/V)In Zg;ang, which in this model reduces t@
consider a variation. We will take the value@fto be given =(T/V)Z(n;), where(n;}/V=exp(u/T)w;. Notice that for-
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TABLE |. Variation of energies per particidMeV) with temperaturédMeV) in the negative and positive

compressibility zones, fop=0.017 MeV fm 2.

T ol po e /A €0t/ A €ot/A

6.0 0.146 0.978 —5.235 —4.257
P_, 6.1 0.212 0.638 —6.970 —6.332
= 6.2 0.392 0.294 —8.708 —-8.414

6.0 0.104 1.422 -3.271 —1.849
P_, 6.1 0.090 1.653 —-2.513 —0.859
ap 6.2 0.082 1.824 —2.027 —0.202

mally this equation is the same as EQ.9) but, of course, particles @=200 andN=200, whereN is the number of
(ni) in Eq. (2.9 is calculated according to the canonical nycleons of the largest allowed clustehis is drawn at three
formula, Eq.(2.4). temperaturesT,;<T,<T,. Here, T, is only slightly higher
thanT,. We notice that orT,, T, isothermals, there are re-
gions of mechanical instability wheep/ dp is negative. It is
Iin this region that one encounters negative valuescfor
was first studied for phase transitions, it was pointed out thaltnStead Of”_' Iet_ us use the variablee: 1/.p' Thus the regions
for a given densityp, the specific heat per particle, of mechanical instability are characterlzed(m/a_\/>0. Let
=Cy/A tends to» at a particular temperature when the us try to understa.nd hOW.th'S can happen. In S|mp|.er.c.ases as
particle numbeiA tends to. Since in a gas of npnmteractmg monomers, the multlphcny
[which determines the pressure, ipsT(m/V)] is simply

IV. SPECIFIC HEATS IN THE MODEL

In Ref. [7] where the canonical thermodynamic mode

2 A and (@p/dV)t is always negativéwe actually usem—1
JE S J°F g s C :
Cv=|==| =T|==| =-T| >=| . rather tharm for calculatingp but this is immaterial for our
IT]y I/ T/, discussion In the thermodynamic model, because of com-

posites,m<A at moderate temperatures. At fixed tempera-
a singularity inCy, signifies a break in the first derivative of ture T>0, m will always increase withV. Negative com-
F, the free energy, and a first-order phase transition. Theressibility is marked by dm/oV)>m/V. Let us consider
specific heat, in the model has been studied in more thanpointsa,b (region of positivecp) and pointsc,d (region of
one application and always found to be positive. We Nowhegativec,). Pointsb,c are onT;=T and pointsa,d are on
turn our attention te, studied in this canonical model. Itis T,=T+ sT with §T>0. Using
instructive to look atp-p curves at different temperatures

(equation of stateto gain an understandingig. 1). For 200 m+ sm

1 (T4eT
p=Ty =(T+4T)

V+ 6V’

005 T T / T T

/ we arrive at

/

L f —— T=6.0MeV |
0.04 S - sm &V ST
/ T=6.1MeV om_ov. ot @.1)
/ —-— T=7.0MeV m \Y T ’

0.03 | / i

. In the region €¢,d), 6V is negative, 5T is always positive,
thus ém is negative. Ifm goes down, then so does the kinetic
energy and also the potential enefgyeating moren creates
more surface and hence more engrghhus in this region
with increasing temperature but constant pressure, both the
kinetic and the potential energies of the system go down. In
the “normal” region, Sm is positive and both the kinetic and
the potential energies increase withat constant pressure.
This is illustrated in Table I. Finally we show, in Fig. 2, the
P E caloric curve for a given pressure where in part of the curve,

03 04 05 temperature does go down with excitation energy. The fall is
p/po very gentle whereas the rise with energy when it happens is
faster.

The occurrence of a negati, in spite of a positiveC,,

is allowed in the following well-known relatiofil 7]:

0.02

p (MeV fm )

0.01

0....I....I..
0 01 0.2

FIG. 1. Equation of statéEOS in the canonical model for a
system ofA=200. The largest cluster also hids-200.
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FIG. 2. Caloric curve at a constant pressureg ( 0.01

=0.017 MeV fm %) in the canonical model witiA=200 andN
=200. The solid and dashed portions of the curve give negative and
positivec,, respectively.

2

o
Cp,—Cy= VTT’
0.005 ‘ ‘ ‘ ‘
where « is the volume coefficient expansion ardis the 0 O'Zp/p 04 0 O'Zp/p 0.4
isothermal compressibility given by 0 0
1/oV FIG. 3. EOS alf =6 MeV in the two models. For the left panel,
a= _(_) ) the largest cluster ha$é= 200 and for the right pan&=2000. For
VidT p the canonical calculation, the left and right panels have200 and
2000, respectively, but for the grand canonical calculatiénsge
1/0V (see text
K= — v % . .

down considerably but there is no region of mechanical in-
For negative(, Cp is less tharcv and can become negative' Stablllty although the canonical calculation with 200 particles

Using the equality has a region of instability. In the grand canonical result
which represents the thermodynamic extrapolation, we have
v aV\ [dp not reached the classic liquid-gas coexistence limit where

9T p:_ % . aT p’ there would be no rise of pressure at @lch as in the

Maxwell construction We think the reason is this. The larg-
we can also write est cluster.has: size 200 which is not a big enoug_h number.
Condensation into the largest and larger clusters still does not
ap\ 1(av behave like a liquid. We now increase the largest cluster size
Cp—CV=VT(ﬁ) V(ﬁ) . to 2000. Now the coexistence region is very clear and there
v p is unmistakable signature of first-order phase transition. This

. - . grand canonical result is very close to the case whi¢re
This shows thatC, can drop belowCy, if isobaric volume  Z (see Fig. 3 in Ref[13]). In the same figure, we also

coefficient of expansion becomes negative which is the Casg w results of a canonical calculation witt= 2000 and

in some regions of Fig. 1. N=2000. The region of mechanical instability has gone
down considerably but it has not disappeared showing that

V. EXTRAPOLATION TO THERMODYNAMIC LIMIT we have not reached the thermodynamic limit yet.

For A very large butN= 200, we use the grand canonical
ensemble. For a givep and T, we solve foru whereN in
Eq. (3.9 is set at 200. In the-p diagram, there are no
regions of mechanical instabilitisee Fig. 3. For compari- The mechanical instability which led to negative values of
son, thep-p diagram forN =200 butA= 200 obtained by the ¢, is not only a finite number effect but it is also dependent
canonical calculation is also shown in the same figure. Wen details of parameters; see also Ré}. As in Fig. 3, we
see that in the low density sidéhe gas phasethe two draw ap-p diagram for 200 particles in Fig. 4 but now the
diagrams coincide. The rise of pressure with density is quitéargest cluster habl=100, that is,w is given by Eq.(2.6)
rapid and linear. After the two diagrams separate, the rise afip to k=100 and is zero fok>100. The mechanical insta-
pressure with density in the grand canonical model slowdility region has completely disappeared. In fact, the nega-

VI. MORE CALCULATIONS IN THE CANONICAL MODEL
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0.03 : , CiNei
(ni j)= ;| QZQI'N X 7.0
= 200, N=100 N
where the nuclear properties are containedin:
w; :X(Zwm'l')3’2a3’2q- - (7.2
0.02 | M3 o '
‘= ——— T=4MeV We take the internal partition function of the composite to be
= — T=6MeV
R T=8MeV o (707 2
> gij=exg | Wa—oa“>—s +aTey|IT|.
2 o1l | (7.3
As is usual in all infinite matter case calculations, the Cou-
lomb interaction is switched off. We tak&/=15.8 MeV, o
=18 MeV, s=23.5 MeV, andey=16.0 MeV. Fora=5,
=77 we use this formula. For lower masses, we simulate the no
,,,,,,,,, Coulomb case by setting the binding energy®sfe as the
o L= T ‘ ‘ ‘ binding energy of°H and the binding energy dfLi as the
0 0.1 0.2 0.3 0.4 0.5 binding energy of*H.
P/p, For a givena, what are the limits om (or j=a—i)? This

is a nontrivial question. In the results we will show, we have
FIG. 4. EOS in the canonical model for a system of 200 par-taken the limits by calculating the drip lines of protons and
ticles, but the number of nucleons of the largest cluster is restricteleutrons as given by the binding energy formula. Limiting
to 100. oneself to within the drip lines is a well-defined prescription,
but is likely to be an underestimation since resonances show
tive compressibility in thep-p diagram in Fig. 4 disappears up in particle-particle correlation experiments. On the other
even with the following minimal change. We ugg of Eq.  hand, for a givera, taking limits ofi from O toa is definitely
(2.7 up to k=100 and fork>100 useq,=exp(0.97Wyk  an overestimation.
— o (T)k?*+T?k/ €,]/T). We were surprised that with such  In Fig. 5, we have drawn isothermdlst T=6.0 MeV) for
small changes, zones of negative compressibility disappearedio-component nuclear systems for differgist in the grand
but such consequences were anticipated in other models beanonical ensemble. We restrigtbetween 0.3 and 0.5 and
fore [6]. plpo between 0 and 0.5, the ranges for which the thermody-
namic model is expected to be reliable. In the calculation, the
VIl. CHEMICAL POTENTIALS largest cluster is_taken to ee=500. The same figure also
shows the behaviors @fp and uy at constant pressure. The
In this section, we deal with two kinds of particles and derivative dupldy is seen to be always positiisimulta-
discuss the behaviors of chemical potentials as the prOtOﬁeously’aMN/ay is negative. In Fig. 6, for completeness,
fraction of large systems changes. This is remotely connectegle have continued the model beyopkp,=0.5 and gone up
with specific heats but the behavior of chemical potentialgo the highest possible limit gf/p,=1 in the model to see

with the proton fraction has attracted some attention in recenthe behavior ofup and uy . No chemical instability is seen.
times and we felt that it is of general interest to show what

the behavior is in the themodynamic model. It was shown
that in the mean-field theories of nuclear matter, there is
chemical instability as a function of=Z/(N+Z) in the
limited regions ofy, that is, @up/dy), + becomes negative We have shown that with usual concepts, one can obtain a
in some region of up—y plane [correspondingly negative value ofCp in part of theT-E plane within the
(dunldy),t becomes positivie This is analogous to me- framework of a thermodynamic model. Although we have
chanical instability as a function of densiff4—-16. We  shown this, for the sake of simplicity, using one kind of
have seen that in the thermodynamic model, there are nparticle only, we have checked that the phenomenon remains
regions of mechanical instability for large systeftie grand when a more complicated version with two kinds of particles
canonical resulis We will see that there is no chemical in- and realistic binding energies for the composites are used.
stability either in the model in the large particle numberTheC, is positive and its origin is the cost in surface energy
limit. Now we need to consider the thermodynamic modelto break large clusters into smaller clusters and nucleons. A
for two kinds of particles. For details, we refer to R]. A negativeC, is seen in our exactly soluble canonical en-
composite has two indices:as the proton numbeyj,as the  semble model for small systems. This negative value arises
neutron number witha=i+j. Analogous to Eq(2.4), we in regions of mechanical instability where the isothermal
have compressiblity is negative or equivalently, the isobaric vol-

VIIl. SUMMARY AND DISCUSSION
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0.005 L - I I !
0 0z 04 0.3 0.35 0.4 0.45 0.5
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78 proton fraction (y)
p=0.015 MeV fm p=0.02 MeV fm™~

5.6 | FIG. 6. The behaviors ofty and up extrapolated to higher
densities. For this figure, the-p/p, diagram(upper panel, Fig. 6
was extended up tp/po=1.

79

5.64

seen here is at least partially similar to that seen in Refs.
6 I [3,4]. There is no negative specific heat @, [4] but it
< makes its presence felt wh&y} is considered3]. Although
g 258 / 294 1 our model is quite different from the one considered in Ref.
= [6] the results are similar.
= Unfortunately, we cannot recommend any experiments to
verify the conclusions of this paper. Nuclear disassembly in
heavy ion collisions cannot be fine tuned. There is no reason
to think that it takes place exactly at constant volume or
FIG. 5. The top panel shows isothermalsTat6 MeV for dif-  exactly at constant pressure. Calculations at constant volume
ferenty’s (proton fraction. The lower panels show the behavior of give quite reasonable predictions for observables that have
un andup as a function ofy in the density range of the top panel. heen measurefll0,18 but this does not rule out the possi-
Calculation_s are done in a grand canonical model with the Iarges(gi”ty that variations happen. If disassembly always took
cluster having 500 nucleons. place at constant pressure, then the following idealized ex-
periment would be useful. One measures excitation energy
ume expansion coefficient is negative. A negative isobariqer particle and also the temperature. One would then find
volume expansion leads to a decrease in multiplicity, or totathat there are cases where the average excitation energy per

number of clusters, with temperature and a correspondingarticle goes down even though the temperature rises.
decrease in energy. For larger systems, these regions disap-

pear and in the grand canonical limi,, is always positive.
Since several papers have demonstrated the existence of
negative specific heats, it is pertinent to mention the rel-
evance of our work to these earlier works. Our model is not, S.D.G. acknowledges very useful discussions with Rajat
in any simple way, connected to negative specific heat foun&. Bhaduri, Lee Sobotka, and Abhijit Majumder. This work
in ten-dimensional Potts modg?]. The specific heat consid- was supported in part by the Natural Sciences and Engineer-
ered in that work i<C,, and the negative specific heat appearsing Research Council of Canada and the U.S. Department of
only in microcanonical treatment. The negative specific heaEnergy Grant No. DEFG02-96ER40987.
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