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Negative specific heat in a thermodynamic model of multifragmentation
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We consider a soluble model of multifragmentation which is similar in spirit to many models which have
been used to fit intermediate energy heavy ion collision data. In this model,cv is always positive but for finite
nuclei cp can be negative for some temperatures and pressures. Furthermore, negative values ofcp can be
obtained in canonical treatment. One does not need to use the microcanonical ensemble. Negative values forcp

can persist for systems as large as 200 particles but this depends upon parameters used in the model calcula-
tion. As expected, negative specific heats are absent in the thermodynamic limit.
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I. INTRODUCTION

This paper deals with specific heats of an assembly
interacting nucleons. In recent times, the subject has rece
a great deal of attention@1–6#. The topic is beset with many
controversies. Some of the ideas are the following: un
suitable conditions, nuclear systems exhibit negative hea
pacities; negative heat capacities are obtainable only in
microcanonical ensemble; negative heat capacities also
pear in canonical models but disappear once the drop
crosses the value'60.

We investigate the specific heats using a thermodyna
model. The basic assumption of the model is that populati
of different channels are dictated solely by phase space
siderations. This is a common theme in many applicatio
for example, statistical multifragmentation model@1# and mi-
crocanonical Metropolis Monte Carlo model@2# although de-
tails vary from one model to another.

A canonical model based on this assumption was sho
to be easily soluble requiring only very quick and simp
computing@7#. The first application used one kind of partic
but was later extended to two kinds of particles@8,9#. This
appears to be accurate enough for many applications@10#
and will undoubtedly be used more and more in the futu
We investigate the question of specific heat in this mo
primarily using one kind of particle. Two kinds of particle
were also used but this requires a longer computing time,
we expect no changes from the lessons learned from
model of one kind of particles. We will, however, show al
some results obtained from using two kinds of particles.

What we will show is that althoughcv for this model is
always positive,cp can sometimes be negative. This is
finite particle number effect and negative values disappea
the thermodynamic limit. Furthermore, we get negative v
ues ofcp in the canonical model itself. We did not need to
to the microcanonical description. Thermodynamic limit
obtained by using the grand canonical ensemble wherea
nite systems are described by the canonical model with e
particle number. We find that negative values ofcp can per-
sist for fairly large systems although this is dependent u
binding energies used, etc. This was not investigated in
tail.

The statements made above appear to hold for the la
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gas model as well. It was demonstrated thatcv is positive in
the lattice gas model even for a very small system. This
be shown almost analytically without having to use a Mon
Carlo simulation@4#. On the other hand,cp is much harder to
calculate in the lattice gas model. Chomazet al. find thatcp
can be negative in the lattics gas model@3#.

For completeness, we describe the canonical thermo
namic model in Sec. II. In the following section, we set u
the grand canonical model to get to the thermodynamic lim
Subsequent sections will show the results.

II. THE THERMODYNAMIC MODEL

The thermodynamic model has been described in m
papers@7,8,11#. For completeness and to enumerate the
rameters, we provide some details. We describe the m
for one kind of particle only. The generalization to two kind
could be found in Refs.@8,11#.

If there areA identical particles of only one kind in an
enclosure at temperatureT, the partition function of the sys
tem can be written as

QA5
1

A!
~v!A. ~2.1!

Herev is the partition function of one particle. For a spinle
particle, this isv5(V/h3)(2pmT)3/2; m is the mass of the
particle;V is the available volume within which each partic
moves;A! corrects for Gibb’s paradox. If there are man
species, the generalization is

QA5( )
i

~v i !
ni

ni !
. ~2.2!

Herev i is the partition function of a composite which hasi
nucleons. For a dimeri 52, for a trimeri 53, etc., Eq.~2.2!
is no longer trivial to calculate. The trouble is with the su
on the right hand side of Eq.~2.2!. The sum is restrictive. We
need to consider only those partitions of the numberA which
satisfy A5( ini . The number of partitions which satisfie
the sum is enormous whenA is large. We can call a given
allowed partition to be a channel. The probability of the o
currence of a given channelP(nW )[P(n1 ,n2 ,n3 , . . . ) is
©2003 The American Physical Society07-1
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P~nW !5
1

QA
)

~v i !
ni

ni !
. ~2.3!

The average number of composites ofi nucleons is easily
seen from the above equation to be

^ni&5v i

QA2 i

QA
. ~2.4!

Since ( ini5A, one readily arrives at a recursion relatio
@12#

QA5
1

A (
k51

k5A

kvkQA2k . ~2.5!

For one kind of particle,QA above is easily evaluated on
computer forA as large as 3000 in a matter of seconds. I
this recursion relation that makes the computation so eas
the model. Of course, once one has the partition function
relevant thermodynamic quantities can be computed.

We now need an expression forvk which can mimic the
nuclear physics situation. We take

vk5
V

h3
~2pmT!3/2k3/2qk , ~2.6!

where the first part arises from the center of mass motion
the composite which hask nucleons andqk is the internal
partition function. Fork51, qk51, and fork>2, it is taken
to be

qk5exp$@W0k2s~T!k2/31T2k/e0#/T%. ~2.7!

Here, as in Ref.@1#, W0516 MeV is the volume energy
term,s(T) is a temperature dependent surface tension te
and the last term arises from summing over excited state
the Fermi-gas model. The value ofe0 is taken to be 16 MeV.
The explicit expression fors(T) used here iss(T)
5s0@(Tc

22T2)/(Tc
21T2)#5/4 with s0518 MeV and Tc

518 MeV. In the nuclear case, one might be tempted
interpretV of Eq. ~2.6! as simply the freeze-out volume but
is clearly less than that;V is the volume available to the
particles for the center of mass motion. Assume that the o
interaction between clusters is that they cannot overlap
another. This assumption restricts the validity of the mode
low density limit as was stressed in all previous applicatio
of the model. In the van der Waals spirit, we takeV
5Vf reeze2Vex , whereVex is taken here to be constant an
equal toV05A/r0. The precise value ofVex is inconsequen-
tial so long as it is taken to be constant. Calculations emp
V; the valueVex enters only if results are plotted again
r/r05V0 /(V1Vex), wherer is the freeze-out density.

In the past, calculations with one kind of particle used
parametrization of Eq.~2.7! for all k’s however large. This
means that if the system hasA nucleons, the largest possib
cluster allowed in the system also hasA nucleons. While we
will show a few cases with this specification we will als
consider a variation. We will take the value ofqk to be given
01460
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by Eq. ~2.7! up to a limit k5N and zero afterwards. Whe
A.N, this simply means that the largest cluster hasN nucle-
ons.

Using standard definitions:E5T2(] ln QA /]T) and pres-
surep5T(] ln QA /]V), we arrive at

E5( ^nk&~Ek
kin1Ek

int!, ~2.8!

where Ek
kin5 3

2 T and Ek
int5k(2W01T2/e0)1s(T)k2/3

2T@]s(T)/]T#k2/3. The last term inEk
int was neglected in

Ref. @7#. It is included here but makes little difference. Th
expression for pressure is

p5
T

V ( ^ni&. ~2.9!

Multiplicity m is given bym5(^ni&.

III. INFINITE MATTER LIMIT: GRAND CANONICAL
MODEL

If there were only monomers in the grand canonical e
semble, one would solve

r5exp~m/T!ṽ1 , ~3.1!

whereṽ i5v i /V of Sec. II. Givenr andT, one then finds the
chemical potentialm. The number of particles is then give
by A5rV, whereV and A are very large~thermodynamic
limit !. The fluctuations in the number of particles implied b
the use of the grand canonical ensemble are then neglig
compared to the average numberA.

If we have a model where the only allowed species
monomers and dimers and the total particle number is v
large, one would solve

r5exp~m/T!ṽ112exp~2m/T!ṽ2 , ~3.2!

where phase-space consideration has implied that chem
equilibration exists, that is, the chemical potential of t
dimer is twice that of the monomer, i.e.,m252m.

For a system which is very large but, for which, the hea
est cluster hasN nucleons and no more, one needs to sol

r5(
1

N

k exp~km/T!ṽk . ~3.3!

In this case, one might argue that one is considering a mo
in which the composites obey Eq.~2.6! up tok5N andvk’s
for k.N are all zeros. Of course it is possible that bothA
and N are very large. Use of the grand canonical ensem
always implies thatA is very large butN may be large or
small.

Pressure in the grand canonical model is calculated fr
p5(T/V) ln Zgrand , which in this model reduces top
5(T/V)(^ni&, where^ni&/V5exp(im/T)ṽi . Notice that for-
7-2
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TABLE I. Variation of energies per particle~MeV! with temperature~MeV! in the negative and positive
compressibility zones, forp50.017 MeV fm23.

T r/r0 ek /A epot /A etot /A

6.0 0.146 0.978 25.235 24.257
]p

]r
,0

6.1 0.212 0.638 26.970 26.332
6.2 0.392 0.294 28.708 28.414

6.0 0.104 1.422 23.271 21.849
]p

]r
.0

6.1 0.090 1.653 22.513 20.859
6.2 0.082 1.824 22.027 20.202
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mally this equation is the same as Eq.~2.9! but, of course,
^ni& in Eq. ~2.9! is calculated according to the canonic
formula, Eq.~2.4!.

IV. SPECIFIC HEATS IN THE MODEL

In Ref. @7# where the canonical thermodynamic mod
was first studied for phase transitions, it was pointed out
for a given densityr, the specific heat per particlecv
5CV /A tends to` at a particular temperature when th
particle numberA tends to`. Since

CV5S ]E

]TD
V

5TS ]S

]TD
V

52TS ]2F

]2T
D

V

,

a singularity inCV signifies a break in the first derivative o
F, the free energy, and a first-order phase transition.
specific heatcv in the model has been studied in more th
one application and always found to be positive. We n
turn our attention tocp studied in this canonical model. It i
instructive to look atp-r curves at different temperature
~equation of state! to gain an understanding~Fig. 1!. For 200

0 0.1 0.2 0.3 0.4 0.5
ρ/ρ0

0

0.01

0.02

0.03

0.04

0.05

p 
(M

eV
 fm

3
)

T=6.0 MeV
T=6.1 MeV
T=7.0 MeV

a
b c

d

-

FIG. 1. Equation of state~EOS! in the canonical model for a
system ofA5200. The largest cluster also hasN5200.
01460
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particles (A5200 andN5200, whereN is the number of
nucleons of the largest allowed cluster!, this is drawn at three
temperatures:T1,T2,T3. Here,T2 is only slightly higher
thanT1. We notice that onT1 ,T2 isothermals, there are re
gions of mechanical instability where]p/]r is negative. It is
in this region that one encounters negative values forcp .
Instead ofr, let us use the variableV}1/r. Thus the regions
of mechanical instability are characterized by]p/]V.0. Let
us try to understand how this can happen. In simpler case
in a gas of noninteracting monomers, the multiplicitym
@which determines the pressure, i.e.,p5T(m/V)] is simply
A and (]p/]V)T is always negative~we actually usem21
rather thanm for calculatingp but this is immaterial for our
discussion!. In the thermodynamic model, because of co
posites,m!A at moderate temperatures. At fixed tempe
ture T.0, m will always increase withV. Negative com-
pressibility is marked by (]m/]V)T.m/V. Let us consider
pointsa,b ~region of positivecp) and pointsc,d ~region of
negativecp). Pointsb,c are onT1[T and pointsa,d are on
T2[T1dT with dT.0. Using

p5T
m

V
5~T1dT!

m1dm

V1dV
,

we arrive at

dm

m
5

dV

V
2

dT

T
. ~4.1!

In the region (c,d), dV is negative,dT is always positive,
thusdm is negative. Ifm goes down, then so does the kinet
energy and also the potential energy~creating morem creates
more surface and hence more energy!. Thus in this region
with increasing temperature but constant pressure, both
kinetic and the potential energies of the system go down
the ‘‘normal’’ region,dm is positive and both the kinetic an
the potential energies increase withT at constant pressure
This is illustrated in Table I. Finally we show, in Fig. 2, th
caloric curve for a given pressure where in part of the cur
temperature does go down with excitation energy. The fa
very gentle whereas the rise with energy when it happen
faster.

The occurrence of a negativeCp in spite of a positiveCV
is allowed in the following well-known relation@17#:
7-3
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Cp2CV5VT
a2

k
,

where a is the volume coefficient expansion andk is the
isothermal compressibility given by

a5
1

V S ]V

]TD
p

,

k52
1

V S ]V

]p D
T

.

For negativek, Cp is less thanCV and can become negative
Using the equality

S ]V

]TD
p

52S ]V

]p D
T
S ]p

]TD
p

,

we can also write

Cp2CV5VTS ]p

]TD
V

1

V S ]V

]TD
p

.

This shows thatCp can drop belowCV if isobaric volume
coefficient of expansion becomes negative which is the c
in some regions of Fig. 1.

V. EXTRAPOLATION TO THERMODYNAMIC LIMIT

For A very large butN5200, we use the grand canonic
ensemble. For a givenr andT, we solve form whereN in
Eq. ~3.3! is set at 200. In thep-r diagram, there are no
regions of mechanical instability~see Fig. 3!. For compari-
son, thep-r diagram forN5200 butA5200 obtained by the
canonical calculation is also shown in the same figure.
see that in the low density side~the gas phase!, the two
diagrams coincide. The rise of pressure with density is q
rapid and linear. After the two diagrams separate, the ris
pressure with density in the grand canonical model slo

4 8 12 16 20
Excitation energy (MeV/nucleon)

5.5

6

6.5

7

7.5

8
T

em
pe

ra
tu

re
 (

M
eV

)

cp ~ ve
cp ~ +ve

p=0.017 MeV fm 3-

FIG. 2. Caloric curve at a constant pressurep
50.017 MeV fm23) in the canonical model withA5200 andN
5200. The solid and dashed portions of the curve give negative
positivecp , respectively.
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down considerably but there is no region of mechanical
stability although the canonical calculation with 200 partic
has a region of instability. In the grand canonical res
which represents the thermodynamic extrapolation, we h
not reached the classic liquid-gas coexistence limit wh
there would be no rise of pressure at all~such as in the
Maxwell construction!. We think the reason is this. The larg
est cluster has size 200 which is not a big enough num
Condensation into the largest and larger clusters still does
behave like a liquid. We now increase the largest cluster s
to 2000. Now the coexistence region is very clear and th
is unmistakable signature of first-order phase transition. T
grand canonical result is very close to the case whereN
5` ~see Fig. 3 in Ref.@13#!. In the same figure, we als
show results of a canonical calculation withA52000 and
N52000. The region of mechanical instability has go
down considerably but it has not disappeared showing
we have not reached the thermodynamic limit yet.

VI. MORE CALCULATIONS IN THE CANONICAL MODEL

The mechanical instability which led to negative values
cp is not only a finite number effect but it is also depende
on details of parameters; see also Ref.@6#. As in Fig. 3, we
draw ap-r diagram for 200 particles in Fig. 4 but now th
largest cluster hasN5100, that is,vk is given by Eq.~2.6!
up to k5100 and is zero fork.100. The mechanical insta
bility region has completely disappeared. In fact, the ne

nd

0 0.2 0.4
ρ/ρ0

0.005

0.01

0.015

0.02

p 
(M

eV
 fm

3
)

N=200 N=2000

0 0.2 0.4
ρ/ρ0

Canonical model
Grandcanonical model

-

FIG. 3. EOS atT56 MeV in the two models. For the left pane
the largest cluster hasN5200 and for the right panelN52000. For
the canonical calculation, the left and right panels haveA5200 and
2000, respectively, but for the grand canonical calculations,A5`
~see text!.
7-4



s

h
ar

b

d
to

ct
ial
e

ha
w

-

-
e
e

be

u-

no

ve
nd
ng
n,
how
er

d
dy-
the
o
e

,

.

in a

ve
of
ains
les
ed.

gy
s. A
n-
ises
al

ol-

ar
cte

NEGATIVE SPECIFIC HEAT IN A THERMODYNAMIC . . . PHYSICAL REVIEW C68, 014607 ~2003!
tive compressibility in thep-r diagram in Fig. 4 disappear
even with the following minimal change. We useqk of Eq.
~2.7! up to k5100 and fork.100 useqk5exp„0.97@W0k
2s(T)k2/31T2k/e0#/T…. We were surprised that with suc
small changes, zones of negative compressibility disappe
but such consequences were anticipated in other models
fore @6#.

VII. CHEMICAL POTENTIALS

In this section, we deal with two kinds of particles an
discuss the behaviors of chemical potentials as the pro
fraction of large systems changes. This is remotely conne
with specific heats but the behavior of chemical potent
with the proton fraction has attracted some attention in rec
times and we felt that it is of general interest to show w
the behavior is in the themodynamic model. It was sho
that in the mean-field theories of nuclear matter, there
chemical instability as a function ofy5Z/(N1Z) in the
limited regions ofy, that is, (]mP /]y)p,T becomes negative
in some region of mP2y plane @correspondingly
(]mN /]y)p,T becomes positive#. This is analogous to me
chanical instability as a function of density@14–16#. We
have seen that in the thermodynamic model, there are
regions of mechanical instability for large systems~the grand
canonical results!. We will see that there is no chemical in
stability either in the model in the large particle numb
limit. Now we need to consider the thermodynamic mod
for two kinds of particles. For details, we refer to Ref.@8#. A
composite has two indices:i as the proton number,j as the
neutron number witha5 i 1 j . Analogous to Eq.~2.4!, we
have

0 0.1 0.2 0.3 0.4 0.5
ρ/ρ0

0

0.01

0.02

0.03
p

 (
M

eV
 f

m
–

3
)

T=4 MeV
T=6 MeV
T=8 MeV

A = 200,  N=100

FIG. 4. EOS in the canonical model for a system of 200 p
ticles, but the number of nucleons of the largest cluster is restri
to 100.
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^ni , j&5v i , j

QZ2 i ,N2 j

QZ,N
, ~7.1!

where the nuclear properties are contained inv i , j :

v i , j5
V

h3
~2pmT!3/2a3/2qi , j . ~7.2!

We take the internal partition function of the composite to

qi , j5expF S Wa2sa2/32s
~ i 2 j !2

a
1aT2/e0D /TG .

~7.3!

As is usual in all infinite matter case calculations, the Co
lomb interaction is switched off. We takeW515.8 MeV,s
518 MeV, s523.5 MeV, ande0516.0 MeV. For a>5,
we use this formula. For lower masses, we simulate the
Coulomb case by setting the binding energy of3He as the
binding energy of3H and the binding energy of4Li as the
binding energy of4H.

For a givena, what are the limits oni ~or j 5a2 i )? This
is a nontrivial question. In the results we will show, we ha
taken the limits by calculating the drip lines of protons a
neutrons as given by the binding energy formula. Limiti
oneself to within the drip lines is a well-defined prescriptio
but is likely to be an underestimation since resonances s
up in particle-particle correlation experiments. On the oth
hand, for a givena, taking limits of i from 0 toa is definitely
an overestimation.

In Fig. 5, we have drawn isothermals~atT56.0 MeV) for
two-component nuclear systems for differenty’s in the grand
canonical ensemble. We restricty between 0.3 and 0.5 an
r/r0 between 0 and 0.5, the ranges for which the thermo
namic model is expected to be reliable. In the calculation,
largest cluster is taken to bea5500. The same figure als
shows the behaviors ofmP andmN at constant pressure. Th
derivative ]mp /]y is seen to be always positive~simulta-
neously,]mN /]y is negative!. In Fig. 6, for completeness
we have continued the model beyondr/r050.5 and gone up
to the highest possible limit ofr/r051 in the model to see
the behavior ofmP andmN . No chemical instability is seen

VIII. SUMMARY AND DISCUSSION

We have shown that with usual concepts, one can obta
negative value ofCP in part of theT-E plane within the
framework of a thermodynamic model. Although we ha
shown this, for the sake of simplicity, using one kind
particle only, we have checked that the phenomenon rem
when a more complicated version with two kinds of partic
and realistic binding energies for the composites are us
TheCV is positive and its origin is the cost in surface ener
to break large clusters into smaller clusters and nucleon
negativeCp is seen in our exactly soluble canonical e
semble model for small systems. This negative value ar
in regions of mechanical instability where the isotherm
compressiblity is negative or equivalently, the isobaric v

-
d
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ume expansion coefficient is negative. A negative isoba
volume expansion leads to a decrease in multiplicity, or to
number of clusters, with temperature and a correspond
decrease in energy. For larger systems, these regions d
pear and in the grand canonical limit,Cp is always positive.

Since several papers have demonstrated the existen
negative specific heats, it is pertinent to mention the
evance of our work to these earlier works. Our model is n
in any simple way, connected to negative specific heat fo
in ten-dimensional Potts model@2#. The specific heat consid
ered in that work isCV and the negative specific heat appe
only in microcanonical treatment. The negative specific h

0.3 0.35 0.4 0.45

y

22.2

20.2

µ P
 (

M
eV

)

12.5

11.5

µ N
 (

M
eV

)

p=0.01 MeV fm
3

p=0.015 MeV fm
3

p=0.02 MeV fm
3

0 0.2 0.4
ρ/ρ0

0.005

0.015

0.025

0.035

p 
(M

ev
 fm

3
)

y=0.30
y=0.35
y=0.40
y=0.45
y=0.50

0.3 0.35 0.4

y

26

25.8

25.6

8

7.9

7.8

0.3 0.32 0.34 0.36

y

29.5

29.4

5.64

5.6

-

- --

FIG. 5. The top panel shows isothermals atT56 MeV for dif-
ferenty’s ~proton fraction!. The lower panels show the behavior
mN andmP as a function ofy in the density range of the top pane
Calculations are done in a grand canonical model with the lar
cluster having 500 nucleons.
.

s.
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seen here is at least partially similar to that seen in R
@3,4#. There is no negative specific heat inCV @4# but it
makes its presence felt whenCP is considered@3#. Although
our model is quite different from the one considered in R
@6# the results are similar.

Unfortunately, we cannot recommend any experiments
verify the conclusions of this paper. Nuclear disassembly
heavy ion collisions cannot be fine tuned. There is no rea
to think that it takes place exactly at constant volume
exactly at constant pressure. Calculations at constant vol
give quite reasonable predictions for observables that h
been measured@10,18# but this does not rule out the poss
bility that variations happen. If disassembly always to
place at constant pressure, then the following idealized
periment would be useful. One measures excitation ene
per particle and also the temperature. One would then
that there are cases where the average excitation energ
particle goes down even though the temperature rises.
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