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Hartree-Fock approach to nuclear matter and finite nuclei with M3Y-type
nucleon-nucleon interactions
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By introducing a density-dependent contact term, M3Y-type interactions applicable to the Hartree-Fock
calculations are developed. In order to view basic characters of the interactions, we carry out calculations on
the uniform nuclear matter as well as on several doubly magic nuclei. It is shown that a parameter set called
M3Y-P2 describes various properties similarly well to the Skyrme SLy5 and/or the Gogny D1S interactions. A
remarkable difference from the SLy5 and D1S interactions is found in the spin-isospin properties in the nuclear
matter, to which the one-pion-exchange potential gives a significant contribution. Affecting the single-particle
energies, this difference may play a certain role in the new magic humbers in unstable nuclei.
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[. INTRODUCTION studies in this course. Although microscopic approaches us-
ing the G matrix have not yet been successful in reproducing
Various models for nuclear structure have been developethe saturation properties, notable progress has been made
in order to study low energy phenomena of the atomic nufecently. In the shell model approaches, microscopic effec-
clei. Whereas straightforward application of the biifg in-  tive interactions have been shown to reproduce observed lev-
teraction is yet limited only to light nucldil], the nuclear ~els remarkably well6]. it should be noted, however, that the
structure seems to be well described by relatively simpleshell model interactions are usually specific to mass regions,
effective interactions at low energies. Although the effective?nd their global characters have not been discussed in detall,
interactions may depend on the models, there should be badi€SPite several exceptiofig]. The so-called Michigan three-
characters in the effective interactions for the low energJ ange Yukawa(MSY)_ |nteract!o_n[8] has been derlve(_j from
phenomena, irrespective of the model. On the other han he bareNN interaction, by fitting the Yukawa functions to

: . . he G-matrix. Represented by the sum of the Yukawa func-
since the invention of the secondary beam technology, extions, the M3Y type interactions will be tractable in various

perimental data on the unstable nuclei have disclosed NeW dels. It has been shown that the M3Y interaction gives
aspects of the nuclegr structure. A remarkable example is tr‘l‘?iatrix elements similar to reliable shell model interactions
dependence of magic n'umbers on the neutron ex@&stn [9]. Moreover, with a certain modification, M3Y-type inter-
regard to the new magic numbers discovered near the nelginns have successfully been applied to nuclear reactions
tron drip line, a question has been raised on a character of tk[qo]_ By using a recently developed algoritti], a class of
effective interactions relating to the spin-isospin flip the M3Y-type interactions can be applied also to the mean-
mode[3]. field calculations. Under such circumstances, it will be of
Mean-field theories have successfully been applied to thgterest to explore M3Y-type interactions and to investigate
nuclear structure problems, in particular for stable nucleitheir characters in the mean-field framework. In this paper,
They are also useful to investigate basic characters of th&e shall develop M3Y-type interactions and investigate their
effective interactions. However, not many effective interac-characters via the HF calculations.
tions have been explored for the nuclear mean-field calcula-
tions so far. The Skyrme interacti¢d] has been popular in
the Hartree-Fock(HF) calculations, since the zero-range Il. MODIFICATION OF M3Y INTERACTION

form is easy to handle. Among a limited number of finite-  Nyclear effective Hamiltonian consists of the kinetic en-

range interactions, the Gogny interactifsl is widely ap- ergy and the effective interaction,
plied to the mean-field calculations, in which the Gaussian

form is assumed for the central force. The parameter sets, o?
both of the Skyrme and Gogny interactions, have been ad- H=K+V: K= i V=
) , : - = ; =2 5 =2, Vjj- 1
justed mainly to the data on the nuclei around ghstability. E 2M ZJ . @
It is not obvious whether the available parameter sets of
these interactions account for the new magic numbers pro
erly.

In order to exploit effective interactions applicable also to
unstable nuclei, guide from microscopic theories will be im-
portant. Brueckner'ss matrix has been a significant clue to

Rerei andj are the indices of individual nucleons. It will be
natural to assume the effective interactigp to be transla-
tionally invariant, except for the density dependence men-
tioned below. We consider the effective interaction having
the following form:

_ (O, (LS), ..(TN), . (DD
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interaction gives no saturation point within the HF theory,

0(1?:; (thE)PSE—FthE)PTE_l_thO)PSO unless density dependence is taken into account explicitly.
Khoaet al. applied the M3Y interaction to nuclear reactions
+tTOp )1 ), in the folding model, by making the coupling constants de-

pendent on densitiegl0]. The exchange terms are treated
approximately. However the exchange terms may contribute
vi=2 (115OP e+ tSOP ) (1)L (51 +5), significantly to the nuclear structure. We here keep the cou-
i pling constants in{$ independent of density, while intro-
o e o - , ducing a density-dependent contact interacfiofp™ in Eq.
vV =2 (tMOP e+ tMOIPo) ™ (r 1)1 S0, (2)], as in the Skyrme and the Gogny interactions. We can
. then treat the exchandge., the Fockterms exactly with the
currently available computers. It should be mentioned that
there has been an interesting attempt to approximate the ex-
change terms of the interaction in the density-matrix expan-
dsion[lS], although the accuracy of the density-matrix expan-
sion should be checked carefully.
We start from the Paris-potential version of the M3Y in-
teraction[14]. This original parameter set with no density
L1o="r15X P1o, (3)  dependence is hereafter called “M3Y-P0.” We shall modify
this interaction so as to reproduce the saturation properties.
s,, S, are the nucleon spin operators, aBg is the tensor In the isotropic uniform nuclear matter, matrix elements of
operator, v5Y and v{)Y between the HF states vanish. Therefore
. A v{9+v{0” determines the bulk properties such as the satu-
S12=4[3(s1°12)(S T12) =1 S 4 r?éi)on. The range parame('E:e)rs for tlhe Yukawal functions
) ) fi/(ri)=e #n"12/y ryoin vy are u; "=0.25, u, ~=0.4,
fn(r1) represents an appropriate functionrgp, the sub- a%d(;?1=1.414 frILnLnirizthe li/IZSY inltLelraction, chhzich corre-

scriptn corresponds to t.he parameter att.ached to th'e'funct|ogpond to the Compton wavelengths of mesons with masses
(e.g., the range of the interactiprandt, is the coefficient.

Examples off ,(r 1,) are the delta, the Gauss, and the YukawaOf about 790, 490, and 140 MeV, respectively. We do not

. o ; han th rameters. For the lon -ran rt
functions.P, (P,) denotes the spifisospin exchange op- C:??) gt?]e Cglsje”r?a (?onztznstésaotg; t(%oge;d?”%?af: (
erator, whilePsg, Prg, Pso, and Prg are the projection ’ piing = NI 3

operators on the singlet-evé&E), triplet-even(TE), singlet- fixed to be thase of the one-pion-exchange poteq@#IER),

odd (SO), and triplet-odd(TO) two-particle states, respec- as in M3Y-PO. The interactioni, ™ in Eq. (2) acts only on
tively, which are defined by the SE and TE channels,

v B =tCD(1+xPOP [ p(ry)]%6(r ). 2

The relative coordinate is denoted by,=r;—r, andrq,
=|r,4. Correspondingly, the relative momentum is define
by p1o=(p1—p,)/2. L1, is the relative orbital angular mo-
mentum,

1-P, 1+P, 1+P, 1-P,
Pse=—— % Pe=—5——5— 0=t (1—xP) §(r1,) Pse
+tPPY(1+xPP)) §(r 1) Pre. (6
1-P, 1-P, 1+P, 1+P,
Pso=—5 5+ Pro=— >

Microscopic investigations have shown that the density de-
The nucleon density is denoted lpyr). The original M3Y  pendence of the TE part is primarily responsible for the satu-
interaction is represented in the form of E(), with ration[15], as a higher-order effect of the tensor force. While
fo(ri)=e #1211, r, andv(l'gD)zo. As discussed in Ref. the interaction in the SE channel is attractive at low densi-

[11], the Skyrme and the Gogny interactions are obtained byi€s, it also has certain density dependence originating in the
settingf,(r,,) appropriately, except for some parameter set$trong short-range repulsion. Thus, a possible way of modi-
of the Skyrme interaction in which certain terms are ex-fying the M3Y interaction may be to replace a fraction of the
pressed only in the density-functional form. repulsion in the SE and TE channels p§3” .

The saturation of density and energy is a basic property of In addition to the saturation properties that are relevant to
nuclei. In developing effective interactions adaptable forthe central force, the spin-orhitS) splitting is significant in
many nuclei, it is required to reproduce the saturation propdescribing the shell structure of nuclei. While true origin of
erty. However, the nonrelativisti® matrix fails to reproduce the LS splitting is not yet obviougl6], LS splittings ob-
the saturation at the right density and energy. Therefore, #ained from HF calculations with th® matrix interaction are
will not be appropriate to use th® matrix for HF calcula- too small, in comparison with the observed ones. From the
tions without any modification, although several HF ap-HF calculations for finite nuclei, we find that5> should be
proaches using interactions derived from tBenatrix were  about twice as strong as that of M3Y-PO to reproduce the
tried in earlier studie$12]. The M3Y interaction was ob- observed LS splittings. The tensor force influences the
tained so that thés matrix at a certain density could be ordering of the single-particlés.p) orbits. To reproduce
reproduced by a sum of the Yukawa functions. The M3Ythe observed ordering;,(szN) should be smaller than that of
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M3Y-PO. We here introduce an overall enhancement factor télere y, (x,) denotes the spifisospin wave function, and

v{tY and an overall reduction factor @{,V, as will be  Q indicates the volume of the system, for which we will take

shown in Sec. V. the ) —oo limit afterward. The s.p. energy for this state is
In this paper we shall use two parameter sets for modifiedlefined as

M3Y interaction, “M3Y-P1” and “M3Y-P2,” in order to

show sensitivity to the parameters for some results. In M3Y- o) = k2 Q E e
P1, we replace the shortest-range=(1) repulsive part of «( UT)_W+ (2m)3 G5 Jrp=k 2
© by v{2? in a simpl We reduce baffi® and GG
vy by vis~’ in a simple manner. We reduce an
t{"® by a single factor, keeping the SE/TE ratio i3> X(kor,kyoym|v1dkoT ko). (9)

equal tot(5®/t{™® in M3Y-PO, by imposing _ _
Energy of the nuclear matter is expressed by a function of

densities depending on the spin and the isospip, (7

=p,n; o=1,]). The density variables can be converted to

t(lTE)+t(15|z)' @) the total densityp=%2,.p,,, and the spin- and isospin-
asymmetry parameters

(TE) __ +(SE)
x(DD) :tl t

The reduction factor antf®® are determined so as for the

saturation density and energy in the nuclear matter to be 2 0Pz o dp.—
typical values, as presented in the following section. Charac- De=— _ Pt Pol T Pni Pl
ters of M3Y-P1 will be investigated in the nuclear matter. p p
Although this modification is too simple to reproduce prop-

erties of finite nuclt_ai, the M3Y—P1.sgt will be yseful t(_) clarify 2 ™.y

what characters arise from the original M3Y interaction, rela- o7 Pp1tPpL— P~ Pny
tively insensitive to the phenomenological modification. In = P = o '
the M3Y-P2 set, alt, parameters belonging to time=1 and

2 channels inv{S are shifted from those of M3Y-P0. Al-

though we have three rangesuify, the number of adjust- ; oy oy
able parameters is no greater than in the Gogny interaction, Net= = Pe1” Ppl” P pnl, (10
since we fix the OPEP part. We fit those parameters, together P P

with the enhancement factor fof5> and the reduction fac-

() - ) whereo (7) in the summation takes: 1, corresponding to
tor fpr iz s to the binding energies of several doqbly o=1,1 (r=p,n). By assuming that the s.p. states are occu-
magic nuclei. The resultant values of the parameters will b%ied up to the Fermi momentum, the density is related to the
shown later. Fermi momentum for each spin and isospin,

Ill. PROPERTIES OF NUCLEAR MATTER AT AND _ 1 K3 (12)
AROUND SATURATION POINT

Basic characters of nuclear effective interactions can befhe total energy of nuclear matter is given by
discussed via properties of the infinite nuclear matter; in par-

ticular, properties at and around the saturation point. In this 0 K2
section we investigate characters of the M3Y-type interac- E= 3 E d3kl—l
tions via the nuclear matter properties within the HF theory. (2m)° o1m Jki=<ker o, 2M

In comparison, we also discuss those of the Skyrme and the

Gogny interactions. We use the D1S parametef éf for + 02 2 J' 43K J 43K
the Gogny interaction. In most of the Skyrme HF ap- 2(2m)8 o105 Jka=ke, o 1 Ko<Ke, o 2
proaches, the LS currents arising from the momentum depen- v o

dence of the central force are ignored, and the parameters are X(ky0171,Ko0575| 019 K101 71, K05 75) . (12

adjusted without their contribution. Although this treatment

occasionally improves some characters of the interactions, iAs already pointed out, only{3+v{3” contributes to the
this paper we would focus on characters of the two-bodyenergy of the isotropic nuclear matter. In Appendix A, sev-
interactions, rather than those of density functionals. For thigral formulas on the HF energy of the nuclear matter are
reason we adopt the SLy5 sgt8], which is devised for derived for interactions expressed in the form of E2),

calculations including the LS currents. with general and typicaigc)(rlz). The nuclear matter ener-
In the HF theory of the nuclear matter, the s.p. wave funcgies are calculated for the Skyrme and the Gogny interac-
tions can be taken to be the plane wave, tions, as well as for the M3Y-type interactions, by using

these formulas.

1 In the spin-saturated symmetric nuclear matter, we have

Pror(1)=—= Ty, x.. (8) 7s= 7= 15:=0, which |nd|catesk_Fm= Kep, = Kenp =Keng
N and p,;=pp = pny=pn = pl4. In this case we denote the
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60 ‘ TABLE Il. Nuclear matter properties at the saturation point.
40 M3Y-P1  M3Y-P2 SLy5 D1S
Kro (fm) 1.358 1.340 1.334 1.342
% 207 & (Mev) —15.99 —16.14 —1598 —16.01
s K (MeV) 225.7 220.4 229.9 202.9
< 07 M3/M 0.641 0.652 0.697 0.697
w a, (MeV)  30.35 30.61 32.03 31.12
207 ag (MeV) 20.81 21.19 37.47 26.18
ag (MeV) 37.63 38.19 15.15 29.13
-40
o6 01 02 03 04 05 06 have saturation points in M3Y-P1 and M3Y-P2 owing to

-3
pIfm™] v(lfz’D). Differences among the saturating forces, i.e., SLy5,

FIG. 1. Energies per nucleafE/A in the symmetric nuclear 1S, M3Y-P1, and M3Y-P2, are small at<po. At rela-
matter for several effective interactions. The thick dotted, dot-tiVely high density p=0.3 fm ), the M3Y-P1 and the
dashed, and solid lines represent the results with the M3Y-P0, M3YM3Y-P2 interactions have lowetthan SLy5 gnd higher than
P1, and M3Y-P2 interactions, respectively, while the thin dashed®1S. The values okgy and&, are tabulated in Table II. The
and solid lines represent those with the SLy5 and D1S interactiond3Y-P1 set has been determined so as to ghig

=1.36 fm andéy;=16 MeV.

Fermi momentum simply bkg. The lowest energy for a  In Figs. 2 and 3, contrit?uzL:ion téDngm each of the SE,
given p normally occurs along this line. The saturation point TE, SO, and TO channels irf3+v{3® is shown as a func-
is obtained by minimizing the energy per nuclefm E/A, tion of ke. Sum of all these channels and the kinetic energy

(K)/A=(3/5)(k2/2M) is equal tof in Fig. 1. As seen in Fig.

0_5 ~0 (13) 2, the TE channel takes a minimum lgi=1.3-1.5 fm ex-
ap |, ' cept for M3Y-P0O and M3Y-P1, primarily responsible for the

which yields the saturation densipy (equivalentlykgy) and 150 ,

energy&,. Figure 1 illustrates as a function ofp for the 4

symmetric nuclear matter with the M3Y type as well as with SE channel S

the SLy5 and D1S effective interactions. We $&t= (M, 1007 A

+M,)/2, whereM, (M) is the measured mass of a proton <

(a neutron. The parameters far(s) andv (3™ of the M3Y- v

type interactions are listed in Table I. As mentioned above, =

the M3Y-PO interaction gives no saturation point. We do é

TABLE |. Parameters of central forcgmcludingv{3™) in the

original and modified M3Y interactions. See text for {hg param-

eters.

Parameters M3Y-PO M3Y-P1 M3Y-P2 200

(59 (MeV) 11466 8599.5 8027 ‘

t{™® (MeV) 13967 10475.25 6080 150 TE channel ' N

(59 (MeV) —1418 —-1418  —11900 7

t410) (MeV) 11345 11345 3800 < 1007 K

t§59) (MeV) —3556 3556  —2880 2 K

£ (MeV) —4594  —4594  —4266 <

159 (MeV) 950 950 2730 > Sl

70 (MeV) —1900 —1900 —780 ”

t$59 (MeV)  —10.463 —10.463 —10.463 wod 0 T .

e (MeV) -10463 -10.463 -10463 | T .

£{50) (MeV) 31.389 31.389 31.389 -100 . . . N .

{7 (MeV) 3.488 3.488 3.488 00 05 1.0 15 20 25 30

a 1/3 1/3 ke [fm™]

t(0P) (MeV fm) 0 1212 1320

x(PP) 0.09834 0.72576 FIG. 2. Contribution of the SE and TE channelstdSee Fig. 1

for conventions.
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FIG. 3. Contribution of the SO and TO channels&oln both

channels, the results of M3Y-PO are equal to those of M3Y-P1
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The volume asymmetry energy corresponds to the curvature
of £ with respect toy, :

1 %€

S (16
2 ot

q

sat.

Analogously, the following coefficients are defined from the
curvatures of with respect tons and 7,

1 9%€ 1 9%€
as=5 5

5 17

Agt—

2 2
&775 sat. ay]St sat.

The coefficientsag, a;, andag; are relevant to the spin and
isospin responses in finite nuclei. In Table Il we also com-
pare K, M3, a;, a5, andag, among the effective interac-
tions.

The incompressibilityk is sensitive toa in v{3”. The
experimental value of has been extracted from the excita-
tion energies of the giant monopole resonances. Despite a
certain model dependence, most non-relativistic models are
consistent with the experiments ff~210 MeV. For finite-
range interactions, i.e., the Gogny and the M3Y-type interac-
tions, a~1/3 seems to give reasonable value&ofwhile in
the Skyrme interactiona~1/6 looks favorable, because of
the momentum-dependent termsuifh . Thek mass is em-
pirically known to beM§ ~(0.6—0.7M [19]. The M3Y-type
interactions tend to yield slightly smalléfg than the SLy5
and the D1S interactions. The volume asymmetry enafgy

which are presented by the dot-dashed line. See Fig. 1 for the oth% important in reproducing global trend of the binding ener-

conventions.

gies for theZ#N nuclei. From empirical viewpoints,
~30 MeV seems appropriate, as is fulfilled in the M3Y-type

saturation akgg~1.3 fm. In the D1S interaction, the energy interactions under consideration.

out of the SE channel monotonically goes down. This is not Thea, andag; coefficients are relevant to the spin degrees
compatible with the presence of the strong short-range repubf freedom. The kinetic energy has a certain contribution to
sion in theNN force, and causes an unphysical property ina; and ag;, as well as toa;, which amounts to about
the neutron matter, as will be shown in Sec. IV. Both the SO1L2 MeV atp~p, equally fora,, a5, andag;. The interac-

and TO channels do not contribute osignificantly for p

tion v{$+v {57 gives rise to the rest of these coefficients.

=po (.., ke=kgo). While the SO channel becomes attrac- Both the M3Y-type interactions have similar tendency with
tive and the TO channel stays small in the SLy5 and the D1espect to these coefficients. It is remarkable thais sub-
interactions, both channels are repulsive in the M3Y-typestantially larger in the M3Y-type interactions thag. As is

interactions afp>pg, including M3Y-PO. A certain part of

suggested by closas and ag; values between M3Y-P1 and

this character of the M3Y-type interactions comes from them3Y-pP2, the original M3Y interaction already carries this

OPEP part.
The curvature at the saturation point with respecp tis
proportional to the incompressibility,

=9p°— . (14)

The effective massk( mas$ at the saturation poink§ is
defined by

de(ko)
ak

Kro
sat. 0

feature. In particular, the OPEP part included in the M3Y-
type interactions plays a significant role, increasig by
about 11 MeV. On the other hanal, andag; are comparable
in the Gogny D1S interaction, and we have eegk ag; in
the Skyrme SLy5 interaction. In the SLy5 caag,is close to
the value due only to the kinetic energy.

Global characters of the spin and isospin responses are
customarily discussed in terms of the Landau parameters.
Formulas on the Landau parameters at the zero temperature
are given in Appendix B. We compute the parameters of Eq.
(B22). The results are shown in Table Ill. It is remarked that
the M3Y-P1 and M3Y-P2 interactions give similar results.
The g, and theg, parameters are closely related to the
and thea; coefficients, respectively. It has been known that
go is small, whileg} should be relatively larg¢20]. Al-
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TABLE Ill. Landau parameters at the saturation point. 60
M3Y-P1 M3Y-P2 SLy5 D1S 10

fo —-0.370 —0.357 —0.276 —0.369 S
f, -1.078 —1.044 —0.909 —-0.909 i 20
fy —0.381 —0.436 0.0 —0.558 <
fa —0.191 —0.210 0.0 —0.157 w
£l 0.525 0.607 0.815 0.743 0]
f1 0.537 0.635 —0.387 0.470
f) 0.250 0.245 0.0 0.342 -20 T T T T T 1
fl 0.101 0.096 0.0 0.100 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Jo 0.046 0.113 1.123 0.466 80
d1 0.372 0.273 0.253 —0.184
o]} 0.199 0.162 0.0 0.245
O3 0.088 0.078 0.0 0.091
do 0.891 1.006 —-0.141 0.631 s
g1 0.230 0.202 1.043 0.610 %
gs 0.073 0.040 0.0 —0.038 Z’
g3 0.008 —0.002 0.0 —0.036 |
though it is not easy to extract precise values of the Landau
parameters from experimental data because they could de- 20 | | | | | |
pend on the interaction forms, qualitative trend will not de- 00 01 02 03 04 05 06
pend on effective interactions. The M3Y-type interactions p [fm]

seem to have reasonable characters on the spin and isospin

responses, while SLy5 and D1S do not, although the spin and FIG. 4. Energies per nucledf= E/A in the asymmetric nuclear
isospin natures of the Skyrme interactions seem to be immatter with ,=—0.2 and—0.5 for several effective interactions.
proved if the LS currents are ignorg®il]. It is likely that the  See Fig. 1 for conventions.

difference in these coefficients may significantly influence

predictions of the spin and isospin responses of finite nuclei. V. PROPERTIES OF DOUBLY MAGIC NUCLEI
We next discuss properties of doubly magic nuclei in the
IV. PROPERTIES OF ASYMMETRIC NUCLEAR MATTER HF approximation. In the calculations for finite nuclei, we
AND NEUTRON MATTER use the algorithm presented in REf1], where the following

We turn to the asymmetric nuclear matter. In Fig. 4,s.p. bases are employed:

energies per nucleo@ are depicted as a functions ef

for the spin-saturated.e., 7<= 55,=0) nuclear matter with atim(N) =Rae(NIYO(NXIR
n=—0.2 and—0.5. The results from the M3Y-type inter-

actions are compared with those of the Skyrme and the R (1) =N " 2Paex] — (r/v,)?]. (18
Gogny interactions. Energies of the spin-saturated neutron

matter(i.e., »,= —1) are presented in Fig. 5. Results from a 100 ,
microscopic calculation in Refl22] are also shown as a S
reference. Although the dependence on the interactions is not 80 // /»’
strong at low densities even for the neutron matter, it be- RAAY
comes stronger gh>0.2fm as|#,| increases. In the D1S % 60 v

result for the neutron mattel has a maximum atp = /,’,/"

~0.6 fm and goes te-» asp—o. This unphysical behav- < 404 e

ior arises fromx(°P=1 in the D1S set, which implies no w

density dependence in the SE chanfsde Eq.(6)]. This 20

could also give rise to a problem in practical calculations for

finite nuclei. With the SLy5 interactioff goes up rapidly at

any 7, because of the momentum dependence of the inter- 00 01 0!2 0!3 0!4 0!5 0!6

action. In contrast to them, the M3Y-type interactions give o [fm3]

moderate€ for the neutron matter. The microscopic energy

of Ref. [22] lies between those of M3Y-P1 and M3Y-P2. It FIG. 5. Energies per nucleaf=E/A in the neutron matter for
will be possible, if necessary, to adjust the parameters of theeveral effective interactions. The circles are the results of Ref.
M3Y-type interactions to the microscopic results. [22]. See Fig. 1 for the other conventions.
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TABLE IV. Parameters of noncentral forces in the original and ~ TABLE VI. LS splitting around'®0. Experimental data are ex-

modified M3Y interactions. See text for the, parameters. tracted from Refs[24,27).

Parameters M3Y-PO M3Y-P2 Expt. M3Y-P2 SLy5 D1S

t(-sB) (MeV) —5101 —9181.8 €,(0p3) (MeV) —-218 —226 —206 —223

(-9 (MeV) —1897 —3414.6 €,(0p1p) (MeV) —157 —16.2 —144 —159

458 (MeV) —337 —606.6

S0 (MeV) -632 —-1137.6

£{TNE) (MeV fm?) —1096 —131.52 those of the SLy5 and the D1S interactions, as well as with
£(TNO) (MeV fm~2) 244 29.28 the experimental data. The one-body terms .of the center-pf-
£TNE) (MeV fm™2) 309 3708 ma_ss(c.m.) energy are remove_d before iteration. The contri-

£mo) (MeV fm™2) 15.6 1872 bution of the two-body terms is subtracted from the conver-

gent HF wave functions, in the D1S and the M3Y-P2 results.
There are also spurious c.m. effects in the matter radii,

HereY“)(f) expresses the spherical harmonics. We drop the
isospin index without confusion. The indexindicatesp,, (a (r3)= 1 E ((r—R)?)
non-negative integg¢rand v, , simultaneously. By choosing A5 '
p, and v, appropriately, these bases span the space equiva-
lent to that of the harmonic-oscillatgHO) bases, and can _ l 2 (r?)—(R2>
also form the Kamimura-GauskG) basis sef23]. Without A5 !
parameters specific to mass number or nuclide su¢hwasa
single set of the KG bases is applicable to a wide range of _ 1
nuclides. In the following calculations we apply the hybrid A
basis se{11] for the nuclei withA<50, in which an HO
basis is added to the KG basis-set, while the HO basis sethe first term in the right-hand side is expressed by one-
with Nose<15 andhw=41.2A"Y2 MeV for heavier nuclei.  body operators with a correction factor 1L/A). We need

In finite nuclei the noncentral forces are important as well.two-body operators for the second term. For the D1S and the
In the M3Y interaction, the LS force{;> and the tensor M3Y-P2 interactions we fully remove the c.m. contribution
force v{JV are taken by setting(-5)(r,;)=e #n"17/ury,  according to Eq(19). For the SLy5 interaction we use only
and ngN)(rlz):ewnrlz/Mnrlz in Eq. (2). We here fix the the one-body terms with the correction factor, ignoring the
range parameters as ifS; w;1=0.25 fm, u, 1=0.4 fm  two-body terms in Eq(19), as in calcylating t.he energi_es.
for v{5¥, and u;1=0.4 fm, u,1=0.7 fm for v{JV. The Wave functions of the doubly magic nuclei are considered

coupling constants in the M3Y-P2 set are tabulated in Tabld0 P& well approximated in the spherical HF approaches. It
IV, together with those in the original M3Y-PO set. In M3Y- should still be noted that correlations due to the residual
P2 the enhancement factor fmgLZS) is taken to be 1.8 and [nteraction could influence their properties. Therefore we do

the reduction factor fOD(lTZN) to be 0.12. The binding ener- not pursue fine tuning of the parameters. As shown in Table

gies and the rms matter radii obtained from the HF Calcula-v' the M3Y-P2 set is fixed so as to reproduce the measured

4 : 3 . : ' - “binding energies of the doubly magic nuclei, includitfgr,
tions with M3Y-P2 are shown in Table V, in comparison with within about 5 MeV accuracy. The binding energies of these

TABLE V. Binding energies and rms matter radii of several r]uclei obtained from the SLy5_and the D1S in.ter.actions are
doubly magic nuclei. Experimental data are taken from R&#%-— |n_ agreement with the experimental data within 3 Me\/,
26). slightly better than M3Y-P2. We do not have to take this
difference seriously, before evaluating the influence of the
Expt. M3Y-P2  SLy5 D1S residual interactions. In addition to the binding energies, the
rms matter radii of these nuclei are reproduced by the

g

i1 #]

0 -E (Mev) 1276 1271 1286 1295 M3Y-P2 set similarly well to the other available interactions.
(3 (fm) 2.61 2.60 2.59 259  In Table VI we present the neutron s.p. energigf0ps,)

“Ca  —E (Mev) 3421 3387 3443 3445 ande,(0p,) around®0. The enhancement factor fofs>
(3 (fm) 347 3.37 329 336 inthe M3Y-P2 set has been adjusted approximately to the

“8ca —-E (MeV) 416.0 4118  416.0 416.8 experimental value of this s.p. energy difference. The reduc-
3y (fm) 357 3.52 344 350 tion factor forv{,Y) has been determined so as to reproduce

90z¢ —-E (Mev) 7839 7787 7824 7845 the s.p. energy ordering fof®Pb. Without this reduction
Wr?y  (fm) 4.32 4.25 4.22 4.23  factor, the orbits with highef have too high energies. The

8257 —E  (MeV) 11029 1098.1 11035 1102.9 resultant s.p. levels irf°Pb with M3Y-P2 are depicted in
Y2y (fm) 4.79 4.77 4.76 Fig. 6. The levels obtained from D1S and the experimental

208y _E  (MeV) 1636.4 16358 16352 1638.1 S.p. levels are also shown. The overall level spacings are
Wrgy  (fm) 5.49 5.53 5.52 5.51 related toM§ shown in Table Il. In the usual HF calculations

the level spacings tend to be larger than the observed ones,
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FIG. 6. Single-particle energies f6P®%Pb. Experimental values

are extracted from Ref§24.27) FIG. 7. A¢, for theN= 16 isotones. The thick solid, dotted, thin

solid, and dashed lines correspond to the results with the M3Y-P2,

o . . USD, D1S, and SLy5 interactions, respectively.
and it is not(and should not beremedied until the correla-

tions due to the residual interacti¢or the w mas$ are taken For comparison, we also show the s.p. energies obtained
into account19]. This is also true in the present case. Wefrom the reliable shell model interaction for tee-shell nu-
find that M3Y-P2 yields as plausible s.p. levels as D1S doestl€i, the so-called universal $SD) interaction[9]. For this

We thus confirm that the M3Y-P2 interaction well describesPurpose we define the effective values of s.p. energies for
the global nature of stable nuclei. each nucleus\ from the shell model space and interaction,

which correspond to those of the spherical HF calculations,

as
VI. SINGLE PARTICLE LEVELS IN N=16 ISOTONES
2J+1
In the preceding section we have shown that the M3Y-P2 ¢USD(j: A) = €VS0(j;170) + >, (Nj) p——————
interaction reproduces the properties of the doubly magic i’ (2j+1)(2)"+1)
nuclei to a similar accuracy to the SLy5 and the D1S inter- (i 7 3|0 YS0ljj ), (20)

actions. At a glance, the spin-isospin characters in the

nuclear matter, which have been discussed in Sec. llayia where the sum with respect {6 runs over the valence or-
and gy, do not seem to influence the nuclear propertiespits. For(N;),, we assume that the nucleons occupy the s.p.
around the ground states. However, the spin and isospiorbits from the bottom, according te(j). From these s.p.

characters influence s.p. energies of finite nuclei. Therebgnergies we obtaimeh’SDz e,‘fSD(Odg,,z;A)—eﬁSD(lsl,z;A)

they may affect even the ground state properties. In this segor individual nucleus. This definition is equivalent to the
tion we illustrate this point by the neutron orbits in the  effective s.p. energies in RdB] for theZ<N(=16) nuclei.
=16 isotones, following the arguments in RES], although  The A €YSP values are also shown in Fig. 7. It is noted that in
precise studies in this line are beyond the scope of this papafe shell model approaches the nucleus dependence of the

As was suggested in RefB], the proton-numberZ) de- s wave functions is not fully taken into account. Effects of
pendence of the neutron s.p. energy0ds,) relative 1o rearrangement in the wave functions of the deeply bound
€n(1sy7) can sizably be affected by effective interactions. orbits are renormalized into the interactions among the va-
Figure 7 depictsA e,= €,(0d3/) — €,(1512) obtained from |ence nucleons. In contrast, in the HF approaches the s.p.
the spherical HF calculations in tié= 16 isotones. Though wave functions are determined self-consistently, from
it is not obvious whether the ground states of all of thesenycleus to nucleus. Therefore, the shell model s.p. energies
isotones are well approximated by the spherical HF wavejo not agree with their HF counterparts. However, there
functions, it is meaningful to see the s.p. energies, whiclshould be qualitative correspondence, which arises from ba-
often give an indication to magic or submagic numbers. Fokijc characters of the effective interactions. It is remarked that
D1S we reduce the number of bases in Etf) to avoid  the M3Y-P2 interaction has the same trend\a, , in terms
instability occurring for som&l=16 nuclei, which probably of the Z dependence, as the USD interaction. It has been
relates to the unphysical behavior in the neutron matter. It isuggested3] that the interaction in thedt- o) (7 7) channel,
found that, if viewed as a function &, Ae, strikingly de-  which will be linked toa, or to g, is significant to the
pends on the interactions. With the M3Y-P2 interactid®,  magic numbers in highly neutron-rich nuclei, and that Zne
increases ag goes fromZ=14 toZ=8. We have confirmed dependence of the s.p. energies in this region could be rel-
[28] that even M3Y-PL(with appropriatev{5” andv{}")  evant to the new magic numbét=16 [29]. The present
shows similar behavior and that a significant part of thisresults are fully consistent with the arguments in Hél,
feature originates in the OPEP partu’rﬁ?. It is thus sug- although we cannot draw conclusions on the magic number
gested that this behavior dfe, is correlated to the spin- problem without assessing the influence of residual interac-
isospin property in the nuclear matter. tions.
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VIl SUMMARY AND OUTLOOK (kyoi71 kool fU(r12) 0,0, k10171 Koo o) n
We have developed effective interactions to describe low 1
energy phenomena of nuclei. Starting from the M3Y interac- :_f d3r1d3r2ei(k1*ki)'r1+i(k2*ké)'r2fs1c)(r12)
tion, we introduce a density-dependent contact term and 02

modify several parameters in a phenomenological manner,

whereas maintaining the OPEP part in the central force. In

order to view basic_ characte_rs of the interaction_s,_ t_he 1 ‘ , ‘ ,

Hartree-Fock calculations are implemented for the infinite =—2f PBRPr e/ KK Reitkiz ki) 12 O )

nuclear matteffor which useful formulas are newly derived Q

and for several doubly magic nuclei. We have shown that a

parameter set called M3Y-P2 describes their properties plau-

sibly. The properties that are well treated by the Skyrme

SLy5 and/or the Gogny D1S interactions are also reproduced

by the M3Y-P2 interaction. However, a remarkable differ-

ence is found in the properties relevant to the spin degrees of X(0103|O4|a102)(T1 75| O] 7172), (A1)

freedom in the nuclear matter. The M3Y-type interactions

seem to give reasonable spin and isospin properties, in which B B B .

the OPEP part contained it3) plays a significant role. We whe:re R=(rtr2)/2, f12="1" 2 ,K_ kitks, K'=ky

have also shown that the difference in the spin-isospin propfr k21 k1= (K1—k2)/2, ky;=(ky—k3)/2, and f(q) is the

erty affects the s.p. energies in finite nuclei to a considerabl§0Urer transform of (r),

extent. It will be interesting to apply extensively the M3Y-

type interactions, particularly to the magic number problems _ _

far from the B stability. f(q)=f drf(rye'or. (A2)
Although the M3Y-P2 interaction seems to have various

desired characters, there still remains a certain room for fur-

ther tuning of the parameters. It should be noted that thighe density-dependent interactioﬁﬁ[’) is also handled in a

parameter set will not be a unique choice to reproduce thgimilar manner, since the density behaves like a constant in

properties of the nuclear matter and the doubly magic nucleithe nuclear matter. For the Hartree term we hakgo( ;)

Effective interaction might not be co_n_strained su_fficiently:(kigiri) and (Kyo,m)=(kyo,7,), while (kioq7)

only from the HF calculations. The pairing effects in nuclei =(kyoy7y) and (Kyo,7p)=(kjo}7;) for the Fock term.

give valuable information on the effective interaction, prima-Therefore both terms satisf¢=K’. For the relative mo-

rily on the SE channel. Comparison of the matrix element§pentum the Hartree terrtthe Fock term yields Kyo— K,

with reliable shell model interactions will also be helpful, if _ (ky,— k.= 2k,;). Contribution of the two-body interac-

the core polarization effects are treated appropriately. These 1z T2 1 . . . ~.

points will be discussed in future publications. fuon to the nuclear matter energy is obtained by integrating
in Eq. (A1) up to the Fermi momenta.

We here consider general cases where the Fermi momen-
tum may depend on spin and isospin. In order to take into

account the spin-isospin dependence, we integfate the

I am grateful to Dr. D. T. Khoa for discussions. This work rangek;<kg; andk,<Kkg,. The integration is immediately
was financially supported as Grant-in-Aid for Scientific Re-carried out for the Hartree term, as far f$,,) is momen-
search(C), No. 13640263, by the Ministry of Education, tum independent, since the integrand depends neithés; on
Culture, Sports, Science and Technology, Japan. Numericalor onk,,
calculations were performed on HITAC SR8000 at Institute
of Media and Information Technology, Chiba University, at

X(0103|Oglo102)(7175| O 7175)

X(0103| Og|0102)(7175| O;| 7172)

1 rd ’
= 5 5K,K’f§1C)(|k12_ k12|)

ACKNOWLEDGMENTS

Information Technology Center, University of Tokyo, and at H _ 3 J' 3 %
Computing Center, Hokkaido University. W (Ke1,Ke2) = klskpld ki kzsszd kof(0)
_ 16772 k3 k3 ? 0) (A3)
APPENDIX A: ANALYTIC FORMULAS FOR NUCLEAR T g "FI'R2 (0).

MATTER ENERGY

In this appendix we derive formulas concerning the inter-For the Fock term contribution, the integral with respect to
action part of Eq(12). The form of Eq.(2) is assumed for k; andk, is converted to the one with respectioandk .
U1p. We here assumkg;<kg, without loss of generality, owing

Each term ofv{$ is expressed a$(®(r;)0,0.. Its  to the symmetryW(Ke;,Kes) =W(Kea.key). Handling the
nonantisymmetrized matrix element in the plane wave statesange of integral carefully, we obtain the following expres-

of Eq. (8) is evaluated as sion:
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5 3 (2) p-dependent interaction Since the density is a con-
) d klfk ) dkaf(2kyo) stant in the uniform nuclear matter, th& functions for
15KF1 2SKe

WF(kFl-kFZ):f
f(rq)=p“d(r,,) are similar to the above case,

k

8 2|:f(kF2kFl)/2dk 16k3 k27(2k ) 1672
=om 1277 KE1K12 1 T
0 3 WH(k1.k2):WF(k1.k2):Tpakikg- (A9)
(ke tke2)/2 1, 2 \2
+f dky, _E(sz_ Kr1) K12 Note thatp is a function of the Fermi momenta, when we
(kr2~kr1)/2 take derivatives of th&V functions.

(3) Gauss interaction For f(r,)=e #'12°, we have

b KK A2+ KIS 7 ’
3 (Kr T Keo)Kyo F1 T Kp2) K1 f(q) =Vl n)e~ (@247 deriving

8 .. 2 s
+§k§2]f(2k12) : (A4) WH(kl,kz):%(g) k3k3, (A10)

These formulas are general to multicomponent uniformand
Fermi liquids with equal masses. \/_7

In handling the spin-isospin degrees of freedom, we re- F 32\ 2 2 )
write the central force in E¢2) as Wi(ky ko) = —3 {(ki—kika ke —2)
x ekt 2ul® (12 4k K, + K3
0{f=2 (M +tPP,~tP —t1"P,P ) F{(r ).

— _ 2
n (AB) —2u?)e [(ka—kq)/2u] }
. . 3 3 kl+ k2 3
The relations between the coupling constants are — (ki k3)erf 7 + (k5

£(SE)= ¢ (W) ¢ (B) _¢(H) 4 (M)

ko—k
—ki)erfc( 22,LL l)+\/;k3}, (A11)
B =tW) 4B 4t 4t M)

where
SO)_
U .
erfc(x)=J e “dz (A12)
t{ =t + (B — 10—t (AB) X
. o . In Eqg. (All) we have postulatek; <k, again.
After summing over the spin-isospin degrees of freedom, the 4 vikawa interactionFor the Yukawa interaction we set

interaction energy is given by Hr)—e M2 ur . leading to F(q) =4/ w(x?+ ).

Q This yields
(V)= s> > [V+tPs, , ~ts, ,
2(277') n 0,077 H K. k _647T k3k3
o y WH(ky, 2)—9_,“3 1%25 (A13)
_tn 5010257172)Wn(kFrla'llkFrzo'z)
(M) 4 +(H) _1+(B) and
+(tn +tn 50'10'2 tn 57'17'2
—_ (W) F 3
0 Oy 0,07, 7)) WilKer, 0, Keryr,) - (A7) WF(klakZ)zﬁ Ak ko {3(K3+K3) — u?}
In Eq. (A7) we regard the sum overto includev 3™ . It is otk
noted thatA=Qp, which is used to obtain the energy per —16u] (K3+ kg)arctarﬁ ! 2)
nucleoné. M
We next calculate th&V functions for typical interaction Ko— K
forms. ~ —(kg—kf)arctaré 2 l)]—{S(k%—kE)z
(1) & interaction If f(rq)=05(r12, f(q)=1 and there-
fore we have 2 2
+(ky+k
-6 2(k2+k2)— 4}|nu_
HARTRK) 2 2
Hiky,k Fky,k 1%2k3k3 wtlemia)
Wk, ko) =W (Kq, 2)—T 1R2- (A8) (A14)
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(5) Momentum-dependent interaction In the Skyrme 9y . Q7 5 )
interaction we have momentum-dependent terms with the ~ W"(Ki,ka) == W7(ky ko) =—75-ky k3(K5+K3).
form  3{p%,8(r1) + 8(r1)pit and piy 8(ri)pi,. The (A16)
former operates only on the even channels and yields ) o o )
The incompressibilitylC and the spin-isospin curvatures

4772 a;, as, ag; are expressed by the derivatives of thefunc-
Wy ko) =Wk k)= 7 KIBE+ ). Bone e
(A15) The single-particle energy(ko7) defined in Eq.(9) is
also expressed by the derivative of théfunctions. We first
The latter acts on the odd channels, giving rewrite the integral in Eq(12) as

37 3 ! !
f, d klf d k2<k10171:k2027'2|v12|k1017'1,k2(727'2>
ky=ki ko=Kez, o,

k
=417f lkizdkij A3Ko(K 0171, Koo T v 15 K 01 71, Kp0p ). (AL17)
0 Ko<Kpr o

This immediately gives

d
3! 3 ’ ’
D f, d k1f d k2<k1017'1,k2(7272|U12|k1017'1-k20272>
1Jki=<kq kzsk,:rzt72

:47Tkijk . d3k2<k10'171,k20'27'2|l)12|k10'17'1,k20'27'2>. (A18)
2="Fry0,
|
Therefore, (V) 1 5
— = n kq{)n ko) f(0
i 1 1 QO 2(277)6 ; oaaTyT k12k2 7'10'1( l) 7'202( 2) n( )
e(kyoym) =57+ — tW B
(kyoam) =54 (27 2k 5 > 02272 [( 7105 <(AW 18, s, M, , 5. ),
(H) (M) (B2)
_tn 57172_tn 50'10'2 Tsz)(?lW (klakazt)’Z) <V>
HOE O S COP) o 22 2 (kn,, (k)
n n Yoo, *n Y77y Q 2(27T) n o077y Kikp v 2z
W
_tg )50'10'2 TlTZ)[?lW (klakFT 0'2)] (Alg) Xf (Zklz)(t(M)+t(H)§0_ 105 th)57172
where we use the shorthand notation ~t8, 5,67 1)- (B3)
071WH/F(|<1,|<2)— —WH’F(kl,kz). (A20) The Landau coefficient is defined by
. . ) ) P 2¢+1 (1 . . PN
It is now obvious that the effective mass of H@5) is ex- F(Tl)l,1 oy (Ki K2) = TJ d(ky-kp)Po(kq-kp)
pressed by using the second derivative of ¥Wdunctions. -1
F(V)IQ)
APPENDIX B: LANDAU PARAMETERS FOR “3n (kpon. . (ky)’ (B4)
7191 7202

SYMMETRIC NUCLEAR MATTER

Let us denote the occupation probability of the s.p. stategor the interaction independent of momentum and of density,
of Eq. (8) by n,,(k). The nuclear matter energy of EA7) it is straightforward to write down the coefficients of Eq.

can be rewritten as (B4) in terms off, within the HF theory at the zero tempera-
ture. Noticing thatp also depends on_.(k), we evaluate

V) _ Mt (Ve (B1) the contribution of the density-dependefitinteraction (1
0 o +XPPP)peo(rs) 1o F o (Ka ko) @s
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a(la— 1)

5| 5 P [ 2 PTU+X(DD)<E Po

(277)

- P2
T

+ apafl{zp_ prlo'l_p720'2+X(DD)(p0'1+p02

- pTl_ p'rz)} + pa{l_ 5717260102+ X(DD)( 50'10'2_ 57172)}} )
(B5)

wherep,=2 p,, andp,=2 p,,. Apart from the spin and
isospin degrees of freedom, the momentum-dependémt

teractions 3{p2,6(r 15) + 8(r12)pa,} and pio- 8(r15)p12 con-
tribute toFfU1 o (K1,K2) by

1 K2+ k3

kiky
1)
(2,”_)6 €0 4

“Ou 5| (B6)

In characterizing effective interactions, we view the Lan-

PHYSICAL REVIEW C 68, 014316 (2003

F{O Ky ko) =

H
—2t51)

—tM)T (0),

(klikZ)

2 (i 0)6 > (=2t —t)7(0),

F(ky ko) =

(2 )6 > (P -1M")F,(0),

> (—t")F(0),

FO (ks o) =— (B9)

4(2 )6

while the Fock terms

F{ky ko) = > (4t 4 2t — 2t (B)

4(2m)° “n

dau coefficients for the symmetric nuclear matter, where

Pro™

pl4 for any 7 and o. While formulas for the Landau

—tM") G (ky ko),

parameters were derived for the Skyrme interaction in Ref.

[21] and for the Gogny interaction in Ref30], we here
derive expressions for interactions with the form of E}.in

a more general manner. It is customary to transform the

(7,0) variables into the following ones:
1---pT+pl+ni+n],
t---pT+pl—nT—nl,
s---pl—pl+nT—n|,

t--pT—pl—nT+n]. (B7)
Since X ,0=2,17=2 (or)=2(o7)=0, all the off-
diagonal coefficients with respect to {5,st) vanish. The
diagonal coefficients are redefined as

=)

T101,7202

1
(6) -
F (k1!k2) 16

>

01027172

(k1.ka),

1 TZF 101, 7202( kl ’ kZ) ’

1
(kl!kZ)_ 16 (rlz

027172

>

027172

1
FO(ky ko) =

16 . 0'10'2F7-101 7'20'2( kl7k2)1

1
F{ (ke ko) = T

>

01710'27'2F71al T20'2( Ki.Ko).
01027172

(B8)

The Hartree terms of the momentum-
independent interactions yield

and density-

F{Q(ky ko) =

—2tB) WOk k),
(277)6§n:( n n)n(l 2)

FUKky ko) =

2 2 (2= t")G(ky ko),
o

F{Or(ky ko) = ; (=t G (ky k),

4(2m)8
(B10)
where
6k k)= 2 f ARy Ro) P (Ry- ko) To( 2K,
(B11)

Contribution of the density-dependent interactidh® (1
+x(PPP )p5(ry,) is given by

o +(DD)
4(27)°

3(a+l)(at+2)
F{n(ki ko) = pe

Fi{o(ke ko) = £(OP)(— 2x(PD) _ 1) e,

4(2m)°

Fgl)DD(klka) = t(DD)(zx(DD)_ 1)p%,

4(2 )°

Fg,)DD( Ki,kp)= t(PP)pe, (B12)

4(27)°
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For momentum-independent interactions such as the Gogny -
interaction and the M3Y-type interactions, the Landau coef- G©(ky,k,)= p

ficients are obtained by F{“(ky ky)=F{ (ks ko)
+F{ky ko) + F{Qp(kq ko), and so forth. The momentum-
dependen® interactions yield

K2+ k2
F(O (ky,ky)= ( L 2 5 kk)
1,up(K1, Kz 8(2m)° 05 ¢1K1K2
3t{MD)
X 50D
1 K2+ k2
FO (K k)= (5 L 2 5 kk)
t,MD( 1 2) 8(2’77)6 €0 2 (1N 1R2

tMP)(—2x{MP) — 1)
tMP) (2xMP) + 1),

.

tMP) (2x(MP) — 1)
9P (2xMP) + 1),

d
1
8(2)°

d

8(277)6(5“’
(=t
g

MD!
M)

2

k2+k3
- 5€1k1k2

Fé,%o( ki, ko) = 2

|

k2+k3
2

Fg,)MD(kllkZ): - 5@1k1k2)

(B13)
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3

[e~l(ki—ka)l2u)? _ g~ [(katkp)i2u)?y

kiko
(B16)
3\/;3 2,U«2 2
GD(k, k,)= |<1_ )e_[(kl_kZ)/ZM]
| R
2 2
+ 1+Fpl;2 [(k1+kz)/2,u]2}. (B17)

(3) Yukawa interactionFor the Yukawa interaction we

usef(q) =4/ u(uw?+q?. Inserting it into Eq.(B11), we
obtain for event,

where the upper row corresponds to the even channel integnd for odd¢

action 3t{MP)(1+xMPP ){p2,8(r1p) + 8(r1)ps, while
the lower to the odd channel interaction{™ (1
+xMPP yp.,- 8(r2)paa, respectively. Equatior(B13) is
available for the Skyrme interactions in which the LS cur-
rents are not ignored.

We next show explicit form of theG() factor in Eq.
(B10) for typical interaction forms.

(1) & interaction Substitutingf(2k;,) by 1, we obtain

GO (ky kp)=60- (B14)
2 Gauss interaction Because  f(q)
= (Jmlp)3 e (@20° Eq. (B11) leads to
SOk k)= (20+1)Jmd & (e+myt [ p2\m
DR ukiky  dZo mE(€—m)! | kiky
X {(— )M [(ki—k)/24)?
_(_)€e—[(k1+kz)/2M]2}_ (B15)

For¢=0 and 1, we have

G(ky k)
_2m(20+1) %2 ( u? )2m+1(_)€,2_m
wl m=0 | 2k3K>
L (e+2m-Du (1+ K24+K2\ 2™ 24 (kg k)2
I ——— n
(2m)! (€ —2m)! 2 12+ (Ky—ky)?
TP (em)
p=0 2m—p p!(2m—p)!
k2+k2 p k _k 2\ 2Zm-p
x| 1+ 1 2 1+( 1 22)
® 7
ky+k,)2| 2P
_ 1+M (B18)
PE
GO(ky k)
(€-1)/2 2\ 2m+2
_2m(20+1) m+ R
w® m=0 \2Kiky
(€+2m)!!
X 2mr D)I(€—2m—1)1
XK” K24+ K2\ 2™ 2 (K ky)2
I w2+ (ky—ky)?
2N ()P (2m+1)!

_p:c, 2m+1—p p!'(2m+1—p)!

2 2 2\ 2m+1-p
ki+k5 —ky)

p
=

X(l-l—
M

2m+1-p
i 1

For¢=0 and 1, we have

M

(Ky+ky)?

PE

(B19)
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24 (Ky+ky)?2 fe=NoF{"(keo,kro), T1=NoF{"(keo,kro),
GOks ko) = e e (kl kZ)Z, (820 ' C
+ - !
vz pt ke k) 9¢=NoF{"(keo.Kro), 97 =NoF{(Keo,Kro).
(B22)
GM(ky ky) = ———— | (u2+K2+KD) The second derivaties éfat the saturation point are con-
2u(kqky)? nected to the Landau parameters. The following relations are
) ) verified:
p+ (ki +ko)
M e e B2 M5 e -3 Koy
M - 3 1 _Mioc( 0)1 at_GMg( O)l
Settingk; =k, =Kk and using the estimated level density K2 K2
at the Fermi momenturily=(27)2keoM ¢ /72, we define aS:6l\;2‘(1+g°)’ ast:w—Fi(lJrgé)- (B23)
the usual Landau parameters, 0 0
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