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Hartree-Fock approach to nuclear matter and finite nuclei with M3Y-type
nucleon-nucleon interactions

H. Nakada*
Department of Physics, Faculty of Science, Chiba University, Yayoi-cho 1-33, Inage, Chiba 263-8522, Japan

~Received 7 April 2003; published 30 July 2003!

By introducing a density-dependent contact term, M3Y-type interactions applicable to the Hartree-Fock
calculations are developed. In order to view basic characters of the interactions, we carry out calculations on
the uniform nuclear matter as well as on several doubly magic nuclei. It is shown that a parameter set called
M3Y-P2 describes various properties similarly well to the Skyrme SLy5 and/or the Gogny D1S interactions. A
remarkable difference from the SLy5 and D1S interactions is found in the spin-isospin properties in the nuclear
matter, to which the one-pion-exchange potential gives a significant contribution. Affecting the single-particle
energies, this difference may play a certain role in the new magic numbers in unstable nuclei.
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I. INTRODUCTION

Various models for nuclear structure have been develo
in order to study low energy phenomena of the atomic
clei. Whereas straightforward application of the bareNN in-
teraction is yet limited only to light nuclei@1#, the nuclear
structure seems to be well described by relatively sim
effective interactions at low energies. Although the effect
interactions may depend on the models, there should be b
characters in the effective interactions for the low ene
phenomena, irrespective of the model. On the other ha
since the invention of the secondary beam technology,
perimental data on the unstable nuclei have disclosed
aspects of the nuclear structure. A remarkable example is
dependence of magic numbers on the neutron excess@2#. In
regard to the new magic numbers discovered near the
tron drip line, a question has been raised on a character o
effective interactions relating to the spin-isospin fl
mode@3#.

Mean-field theories have successfully been applied to
nuclear structure problems, in particular for stable nuc
They are also useful to investigate basic characters of
effective interactions. However, not many effective intera
tions have been explored for the nuclear mean-field calc
tions so far. The Skyrme interaction@4# has been popular in
the Hartree-Fock~HF! calculations, since the zero-rang
form is easy to handle. Among a limited number of finit
range interactions, the Gogny interaction@5# is widely ap-
plied to the mean-field calculations, in which the Gauss
form is assumed for the central force. The parameter s
both of the Skyrme and Gogny interactions, have been
justed mainly to the data on the nuclei around theb stability.
It is not obvious whether the available parameter sets
these interactions account for the new magic numbers p
erly.

In order to exploit effective interactions applicable also
unstable nuclei, guide from microscopic theories will be i
portant. Brueckner’sG matrix has been a significant clue
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studies in this course. Although microscopic approaches
ing theG matrix have not yet been successful in reproduc
the saturation properties, notable progress has been m
recently. In the shell model approaches, microscopic eff
tive interactions have been shown to reproduce observed
els remarkably well@6#. It should be noted, however, that th
shell model interactions are usually specific to mass regio
and their global characters have not been discussed in de
despite several exceptions@7#. The so-called Michigan three
range Yukawa~M3Y! interaction@8# has been derived from
the bareNN interaction, by fitting the Yukawa functions t
the G-matrix. Represented by the sum of the Yukawa fun
tions, the M3Y type interactions will be tractable in variou
models. It has been shown that the M3Y interaction giv
matrix elements similar to reliable shell model interactio
@9#. Moreover, with a certain modification, M3Y-type inte
actions have successfully been applied to nuclear react
@10#. By using a recently developed algorithm@11#, a class of
the M3Y-type interactions can be applied also to the me
field calculations. Under such circumstances, it will be
interest to explore M3Y-type interactions and to investig
their characters in the mean-field framework. In this pap
we shall develop M3Y-type interactions and investigate th
characters via the HF calculations.

II. MODIFICATION OF M3Y INTERACTION

Nuclear effective Hamiltonian consists of the kinetic e
ergy and the effective interaction,

H5K1V; K5(
i

pi
2

2M
, V5(

i , j
v i j . ~1!

Here i and j are the indices of individual nucleons. It will b
natural to assume the effective interactionv i j to be transla-
tionally invariant, except for the density dependence m
tioned below. We consider the effective interaction havi
the following form:

v125v12
(C)1v12

(LS)1v12
(TN)1v12

(DD) ,
©2003 The American Physical Society16-1
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v12
(C)5(

n
~ tn

(SE)PSE1tn
(TE)PTE1tn

(SO)PSO

1tn
(TO)PTO! f n

(C)~r 12!,

v12
(LS)5(

n
~ tn

(LSE)PTE1tn
(LSO)PTO! f n

(LS)~r 12!L12•~s11s2!,

v12
(TN)5(

n
~ tn

(TNE)PTE1tn
(TNO)PTO! f n

(TN)~r 12!r 12
2 S12,

v12
(DD)5t (DD)~11x(DD)Ps!@r~r1!#ad~r12!. ~2!

The relative coordinate is denoted byr125r12r2 and r 12
5ur12u. Correspondingly, the relative momentum is defin
by p125(p12p2)/2. L12 is the relative orbital angular mo
mentum,

L125r123p12, ~3!

s1 , s2 are the nucleon spin operators, andS12 is the tensor
operator,

S1254@3~s1• r̂12!~s2• r̂12!2s1•s2#. ~4!

f n(r 12) represents an appropriate function ofr 12, the sub-
scriptn corresponds to the parameter attached to the func
~e.g., the range of the interaction!, and tn is the coefficient.
Examples off n(r 12) are the delta, the Gauss, and the Yuka
functions.Ps (Pt) denotes the spin~isospin! exchange op-
erator, whilePSE, PTE , PSO, and PTO are the projection
operators on the singlet-even~SE!, triplet-even~TE!, singlet-
odd ~SO!, and triplet-odd~TO! two-particle states, respec
tively, which are defined by

PSE5
12Ps

2

11Pt

2
, PTE5

11Ps

2

12Pt

2
,

PSO5
12Ps

2

12Pt

2
, PTO5

11Ps

2

11Pt

2
. ~5!

The nucleon density is denoted byr(r ). The original M3Y
interaction is represented in the form of Eq.~2!, with
f n(r 12)5e2mnr 12/mnr 12 and v12

(DD)50. As discussed in Ref
@11#, the Skyrme and the Gogny interactions are obtained
setting f n(r 12) appropriately, except for some parameter s
of the Skyrme interaction in which certain terms are e
pressed only in the density-functional form.

The saturation of density and energy is a basic propert
nuclei. In developing effective interactions adaptable
many nuclei, it is required to reproduce the saturation pr
erty. However, the nonrelativisticG matrix fails to reproduce
the saturation at the right density and energy. Therefore
will not be appropriate to use theG matrix for HF calcula-
tions without any modification, although several HF a
proaches using interactions derived from theG matrix were
tried in earlier studies@12#. The M3Y interaction was ob-
tained so that theG matrix at a certain density could b
reproduced by a sum of the Yukawa functions. The M
01431
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interaction gives no saturation point within the HF theo
unless density dependence is taken into account explic
Khoa et al. applied the M3Y interaction to nuclear reaction
in the folding model, by making the coupling constants d
pendent on densities@10#. The exchange terms are treate
approximately. However the exchange terms may contrib
significantly to the nuclear structure. We here keep the c
pling constants inv12

(C) independent of density, while intro
ducing a density-dependent contact interaction@v12

(DD) in Eq.
~2!#, as in the Skyrme and the Gogny interactions. We c
then treat the exchange~i.e., the Fock! terms exactly with the
currently available computers. It should be mentioned t
there has been an interesting attempt to approximate the
change terms of the interaction in the density-matrix exp
sion@13#, although the accuracy of the density-matrix expa
sion should be checked carefully.

We start from the Paris-potential version of the M3Y i
teraction @14#. This original parameter set with no densi
dependence is hereafter called ‘‘M3Y-P0.’’ We shall modi
this interaction so as to reproduce the saturation proper
In the isotropic uniform nuclear matter, matrix elements
v12

(LS) and v12
(TN) between the HF states vanish. Therefo

v12
(C)1v12

(DD) determines the bulk properties such as the sa
ration. The range parameters for the Yukawa functio
f n

(C)(r 12)5e2mnr 12/mnr 12 in v12
(C) are m1

2150.25, m2
2150.4,

and m3
2151.414 fm in the M3Y interaction, which corre

spond to the Compton wavelengths of mesons with mas
of about 790, 490, and 140 MeV, respectively. We do n
change these parameters. For the longest-range parn
53), the coupling constantst3

(SE), t3
(TE) , t3

(SO), andt3
(TO) are

fixed to be those of the one-pion-exchange potential~OPEP!,
as in M3Y-P0. The interactionv12

(DD) in Eq. ~2! acts only on
the SE and TE channels,

v12
(DD)5t (DD)~12x(DD)!d~r12!PSE

1t (DD)~11x(DD)!d~r12!PTE . ~6!

Microscopic investigations have shown that the density
pendence of the TE part is primarily responsible for the sa
ration@15#, as a higher-order effect of the tensor force. Wh
the interaction in the SE channel is attractive at low den
ties, it also has certain density dependence originating in
strong short-range repulsion. Thus, a possible way of mo
fying the M3Y interaction may be to replace a fraction of t
repulsion in the SE and TE channels byv12

(DD) .
In addition to the saturation properties that are relevan

the central force, the spin-orbit~LS! splitting is significant in
describing the shell structure of nuclei. While true origin
the LS splitting is not yet obvious@16#, LS splittings ob-
tained from HF calculations with theG matrix interaction are
too small, in comparison with the observed ones. From
HF calculations for finite nuclei, we find thatv12

(LS) should be
about twice as strong as that of M3Y-P0 to reproduce
observed LS splittings. The tensor force influences
ordering of the single-particle~s.p.! orbits. To reproduce
the observed ordering,v12

(TN) should be smaller than that o
6-2
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M3Y-P0. We here introduce an overall enhancement facto
v12

(LS) and an overall reduction factor tov12
(TN) , as will be

shown in Sec. V.
In this paper we shall use two parameter sets for modi

M3Y interaction, ‘‘M3Y-P1’’ and ‘‘M3Y-P2,’’ in order to
show sensitivity to the parameters for some results. In M
P1, we replace the shortest-range (n51) repulsive part of
v12

(C) by v12
(DD) in a simple manner. We reduce botht1

(SE) and
t1
(TE) by a single factor, keeping the SE/TE ratio inv12

(DD)

equal tot1
(SE)/t1

(TE) in M3Y-P0, by imposing

x(DD)5
t1
(TE)2t1

(SE)

t1
(TE)1t1

(SE)
. ~7!

The reduction factor andt (DD) are determined so as for th
saturation density and energy in the nuclear matter to
typical values, as presented in the following section. Cha
ters of M3Y-P1 will be investigated in the nuclear matt
Although this modification is too simple to reproduce pro
erties of finite nuclei, the M3Y-P1 set will be useful to clari
what characters arise from the original M3Y interaction, re
tively insensitive to the phenomenological modification.
the M3Y-P2 set, alltn parameters belonging to then51 and
2 channels inv12

(C) are shifted from those of M3Y-P0. Al
though we have three ranges inv12

(C) , the number of adjust-
able parameters is no greater than in the Gogny interac
since we fix the OPEP part. We fit those parameters, toge
with the enhancement factor forv12

(LS) and the reduction fac
tor for v12

(TN) , to the binding energies of several doub
magic nuclei. The resultant values of the parameters will
shown later.

III. PROPERTIES OF NUCLEAR MATTER AT AND
AROUND SATURATION POINT

Basic characters of nuclear effective interactions can
discussed via properties of the infinite nuclear matter; in p
ticular, properties at and around the saturation point. In
section we investigate characters of the M3Y-type inter
tions via the nuclear matter properties within the HF theo
In comparison, we also discuss those of the Skyrme and
Gogny interactions. We use the D1S parameter set@17# for
the Gogny interaction. In most of the Skyrme HF a
proaches, the LS currents arising from the momentum dep
dence of the central force are ignored, and the parameter
adjusted without their contribution. Although this treatme
occasionally improves some characters of the interaction
this paper we would focus on characters of the two-bo
interactions, rather than those of density functionals. For
reason we adopt the SLy5 set@18#, which is devised for
calculations including the LS currents.

In the HF theory of the nuclear matter, the s.p. wave fu
tions can be taken to be the plane wave,

wkst~r !5
1

AV
eik•rxsxt . ~8!
01431
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Herexs (xt) denotes the spin~isospin! wave function, and
V indicates the volume of the system, for which we will ta
the V→` limit afterward. The s.p. energy for this state
defined as

e~kst!5
k2

2M
1

V

~2p!3 (
s2t2

E
k2<kFt2s2

d3k2

3^kst,k2s2t2uv12ukst,k2s2t2&. ~9!

Energy of the nuclear matter is expressed by a function
densities depending on the spin and the isospin,rts (t
5p,n; s5↑,↓). The density variables can be converted
the total densityr5(strts , and the spin- and isospin
asymmetry parameters

hs5

(
st

srts

r
5

rp↑2rp↓1rn↑2rn↓
r

,

h t5

(
st

trts

r
5

rp↑1rp↓2rn↑2rn↓
r

,

hst5

(
st

strts

r
5

rp↑2rp↓2rn↑1rn↓
r

, ~10!

wheres (t) in the summation takes61, corresponding to
s5↑,↓ (t5p,n). By assuming that the s.p. states are oc
pied up to the Fermi momentum, the density is related to
Fermi momentum for each spin and isospin,

rts5
1

6p2
kFts

3 . ~11!

The total energy of nuclear matter is given by

E5
V

~2p!3 (
s1t1

E
k1<kFt1s1

d3k1

k1
2

2M

1
V2

2~2p!6 (
s1s2t1t2

E
k1<kFt1s1

d3k1E
k2<kFt2s2

d3k2

3^k1s1t1 ,k2s2t2uv12uk1s1t1 ,k2s2t2&. ~12!

As already pointed out, onlyv12
(C)1v12

(DD) contributes to the
energy of the isotropic nuclear matter. In Appendix A, se
eral formulas on the HF energy of the nuclear matter
derived for interactions expressed in the form of Eq.~2!,
with general and typicalf n

(C)(r 12). The nuclear matter ener
gies are calculated for the Skyrme and the Gogny inter
tions, as well as for the M3Y-type interactions, by usi
these formulas.

In the spin-saturated symmetric nuclear matter, we h
hs5h t5hst50, which indicateskFp↑5kFp↓5kFn↑5kFn↓
and rp↑5rp↓5rn↑5rn↓5r/4. In this case we denote th
6-3
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Fermi momentum simply bykF . The lowest energy for a
givenr normally occurs along this line. The saturation po
is obtained by minimizing the energy per nucleonE5E/A,

]E
]r U

sat.

50, ~13!

which yields the saturation densityr0 ~equivalently,kF0) and
energyE0. Figure 1 illustratesE as a function ofr for the
symmetric nuclear matter with the M3Y type as well as w
the SLy5 and D1S effective interactions. We setM5(M p
1Mn)/2, whereM p (Mn) is the measured mass of a proto
~a neutron!. The parameters forv12

(C) andv12
(DD) of the M3Y-

type interactions are listed in Table I. As mentioned abo
the M3Y-P0 interaction gives no saturation point. We

60

40

20

0

-20

-40

E
/A

 [
M

e
V

]

0.60.50.40.30.20.10.0
ρ [fm-3]

FIG. 1. Energies per nucleonE5E/A in the symmetric nuclear
matter for several effective interactions. The thick dotted, d
dashed, and solid lines represent the results with the M3Y-P0, M
P1, and M3Y-P2 interactions, respectively, while the thin das
and solid lines represent those with the SLy5 and D1S interacti

TABLE I. Parameters of central forces~including v12
(DD)) in the

original and modified M3Y interactions. See text for themn param-
eters.

Parameters M3Y-P0 M3Y-P1 M3Y-P2

t1
(SE) ~MeV! 11466 8599.5 8027

t1
(TE) ~MeV! 13967 10475.25 6080

t1
(SO) ~MeV! 21418 21418 211900

t1
(TO) ~MeV! 11345 11345 3800

t2
(SE) ~MeV! 23556 23556 22880

t2
(TE) ~MeV! 24594 24594 24266

t2
(SO) ~MeV! 950 950 2730

t2
(TO) ~MeV! 21900 21900 2780

t3
(SE) ~MeV! 210.463 210.463 210.463

t3
(TE) ~MeV! 210.463 210.463 210.463

t3
(SO) ~MeV! 31.389 31.389 31.389

t3
(TO) ~MeV! 3.488 3.488 3.488

a 1/3 1/3
t (DD) ~MeV fm! 0 1212 1320
x(DD) 0.09834 0.72576
01431
t

,

have saturation points in M3Y-P1 and M3Y-P2 owing
v12

(DD) . Differences among the saturating forces, i.e., SL
D1S, M3Y-P1, and M3Y-P2, are small atr&r0. At rela-
tively high density (r*0.3 fm23), the M3Y-P1 and the
M3Y-P2 interactions have lowerE than SLy5 and higher than
D1S. The values ofkF0 andE0 are tabulated in Table II. The
M3Y-P1 set has been determined so as to givekF0
.1.36 fm andE0.16 MeV.

In Figs. 2 and 3, contribution toE from each of the SE,
TE, SO, and TO channels inv12

(C)1v12
(DD) is shown as a func-

tion of kF . Sum of all these channels and the kinetic ene
^K&/A5(3/5)(kF

2/2M ) is equal toE in Fig. 1. As seen in Fig.
2, the TE channel takes a minimum atkF51.3–1.5 fm ex-
cept for M3Y-P0 and M3Y-P1, primarily responsible for th

-
Y-
d
s.

TABLE II. Nuclear matter properties at the saturation point.

M3Y-P1 M3Y-P2 SLy5 D1S

kF0 ~fm! 1.358 1.340 1.334 1.342
E0 ~MeV! 215.99 216.14 215.98 216.01
K ~MeV! 225.7 220.4 229.9 202.9
M0* /M 0.641 0.652 0.697 0.697
at ~MeV! 30.35 30.61 32.03 31.12
as ~MeV! 20.81 21.19 37.47 26.18
ast ~MeV! 37.63 38.19 15.15 29.13

150

100

50

0

-50

V
/A

 [M
eV

]

3.02.52.01.51.00.50.0

kF [fm
-1]200

150

100

50

0

-50

-100

V
/A

 [M
eV

]

3.02.52.01.51.00.50.0

kF [fm
-1]

SE channel

TE channel

FIG. 2. Contribution of the SE and TE channels toE. See Fig. 1
for conventions.
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saturation atkF0'1.3 fm. In the D1S interaction, the energ
out of the SE channel monotonically goes down. This is
compatible with the presence of the strong short-range re
sion in theNN force, and causes an unphysical property
the neutron matter, as will be shown in Sec. IV. Both the
and TO channels do not contribute toE significantly for r
&r0 ~i.e., kF&kF0). While the SO channel becomes attra
tive and the TO channel stays small in the SLy5 and the D
interactions, both channels are repulsive in the M3Y-ty
interactions atr.r0, including M3Y-P0. A certain part of
this character of the M3Y-type interactions comes from
OPEP part.

The curvature at the saturation point with respect tor is
proportional to the incompressibility,

K5kF
2 ]2E
]kF

2U
sat.

59r2
]2E
]r2U

sat.

. ~14!

The effective mass (k mass! at the saturation pointM0* is
defined by

]e~kst!

]k U
sat.

5
kF0

M0*
. ~15!

-150

-100

-50

0

50

100
V

/A
 [M

eV
]

3.02.52.01.51.00.50.0

kF [fm
-1]150

100

50

0

-50

V
/A

 [M
eV

]

3.02.52.01.51.00.50.0

kF [fm
-1]

SO channel

TO channel

FIG. 3. Contribution of the SO and TO channels toE. In both
channels, the results of M3Y-P0 are equal to those of M3Y-
which are presented by the dot-dashed line. See Fig. 1 for the o
conventions.
01431
t
l-

-
S
e

e

The volume asymmetry energy corresponds to the curva
of E with respect toh t :

at5
1

2

]2E
]h t

2U
sat.

. ~16!

Analogously, the following coefficients are defined from t
curvatures ofE with respect tohs andhst ,

as5
1

2

]2E
]hs

2U
sat.

, ast5
1

2

]2E
]hst

2 U
sat.

. ~17!

The coefficientsas , at , andast are relevant to the spin an
isospin responses in finite nuclei. In Table II we also co
pareK, M0* , at , as , and ast among the effective interac
tions.

The incompressibilityK is sensitive toa in v12
(DD) . The

experimental value ofK has been extracted from the excit
tion energies of the giant monopole resonances. Despi
certain model dependence, most non-relativistic models
consistent with the experiments ifK'210 MeV. For finite-
range interactions, i.e., the Gogny and the M3Y-type inter
tions,a'1/3 seems to give reasonable values ofK, while in
the Skyrme interactionsa'1/6 looks favorable, because o
the momentum-dependent terms inv12

(C) . The k mass is em-
pirically known to beM0* '(0.6–0.7)M @19#. The M3Y-type
interactions tend to yield slightly smallerM0* than the SLy5
and the D1S interactions. The volume asymmetry energyat
is important in reproducing global trend of the binding en
gies for the ZÞN nuclei. From empirical viewpointsat
'30 MeV seems appropriate, as is fulfilled in the M3Y-typ
interactions under consideration.

Theas andast coefficients are relevant to the spin degre
of freedom. The kinetic energy has a certain contribution
as and ast , as well as toat , which amounts to abou
12 MeV atr'r0 equally forat , as , andast . The interac-
tion v12

(C)1v12
(DD) gives rise to the rest of these coefficien

Both the M3Y-type interactions have similar tendency w
respect to these coefficients. It is remarkable thatast is sub-
stantially larger in the M3Y-type interactions thanas . As is
suggested by closeas and ast values between M3Y-P1 an
M3Y-P2, the original M3Y interaction already carries th
feature. In particular, the OPEP part included in the M3
type interactions plays a significant role, increasingast by
about 11 MeV. On the other hand,as andast are comparable
in the Gogny D1S interaction, and we have evenas.ast in
the Skyrme SLy5 interaction. In the SLy5 case,ast is close to
the value due only to the kinetic energy.

Global characters of the spin and isospin responses
customarily discussed in terms of the Landau paramet
Formulas on the Landau parameters at the zero tempera
are given in Appendix B. We compute the parameters of
~B22!. The results are shown in Table III. It is remarked th
the M3Y-P1 and M3Y-P2 interactions give similar resul
The g, and theg,8 parameters are closely related to theas

and theast coefficients, respectively. It has been known th
g0 is small, while g08 should be relatively large@20#. Al-

,
er
6-5



da
d

e
n
os
a
im

ce
le

4

-
th
tro
a

a
n

be

-

fo

te
ive
gy
It
th

he
e

r
.

ef.
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though it is not easy to extract precise values of the Lan
parameters from experimental data because they could
pend on the interaction forms, qualitative trend will not d
pend on effective interactions. The M3Y-type interactio
seem to have reasonable characters on the spin and is
responses, while SLy5 and D1S do not, although the spin
isospin natures of the Skyrme interactions seem to be
proved if the LS currents are ignored@21#. It is likely that the
difference in these coefficients may significantly influen
predictions of the spin and isospin responses of finite nuc

IV. PROPERTIES OF ASYMMETRIC NUCLEAR MATTER
AND NEUTRON MATTER

We turn to the asymmetric nuclear matter. In Fig.
energies per nucleonE are depicted as a functions ofr
for the spin-saturated~i.e., hs5hst50) nuclear matter with
h t520.2 and20.5. The results from the M3Y-type inter
actions are compared with those of the Skyrme and
Gogny interactions. Energies of the spin-saturated neu
matter~i.e., h t521) are presented in Fig. 5. Results from
microscopic calculation in Ref.@22# are also shown as
reference. Although the dependence on the interactions is
strong at low densities even for the neutron matter, it
comes stronger atr.0.2 fm asuh tu increases. In the D1S
result for the neutron matter,E has a maximum atr
'0.6 fm and goes to2` asr→`. This unphysical behav
ior arises fromx(DD)51 in the D1S set, which implies no
density dependence in the SE channel@see Eq.~6!#. This
could also give rise to a problem in practical calculations
finite nuclei. With the SLy5 interactionE goes up rapidly at
any h t , because of the momentum dependence of the in
action. In contrast to them, the M3Y-type interactions g
moderateE for the neutron matter. The microscopic ener
of Ref. @22# lies between those of M3Y-P1 and M3Y-P2.
will be possible, if necessary, to adjust the parameters of
M3Y-type interactions to the microscopic results.

TABLE III. Landau parameters at the saturation point.

M3Y-P1 M3Y-P2 SLy5 D1S

f 0 20.370 20.357 20.276 20.369
f 1 21.078 21.044 20.909 20.909
f 2 20.381 20.436 0.0 20.558
f 3 20.191 20.210 0.0 20.157
f 08 0.525 0.607 0.815 0.743
f 18 0.537 0.635 20.387 0.470
f 28 0.250 0.245 0.0 0.342
f 38 0.101 0.096 0.0 0.100
g0 0.046 0.113 1.123 0.466
g1 0.372 0.273 0.253 20.184
g2 0.199 0.162 0.0 0.245
g3 0.088 0.078 0.0 0.091
g08 0.891 1.006 20.141 0.631
g18 0.230 0.202 1.043 0.610
g28 0.073 0.040 0.0 20.038
g38 0.008 20.002 0.0 20.036
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V. PROPERTIES OF DOUBLY MAGIC NUCLEI

We next discuss properties of doubly magic nuclei in t
HF approximation. In the calculations for finite nuclei, w
use the algorithm presented in Ref.@11#, where the following
s.p. bases are employed:

wa, jm~r !5Ra, j~r !@Y(,)~ r̂ !xs#m
( j ) ,

Ra, j~r !5Na, j r
,12paexp@2~r /na!2#. ~18!
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e
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FIG. 4. Energies per nucleonE5E/A in the asymmetric nuclea
matter withh t520.2 and20.5 for several effective interactions
See Fig. 1 for conventions.
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FIG. 5. Energies per nucleonE5E/A in the neutron matter for
several effective interactions. The circles are the results of R
@22#. See Fig. 1 for the other conventions.
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HereY(,)( r̂ ) expresses the spherical harmonics. We drop
isospin index without confusion. The indexa indicatespa ~a
non-negative integer! and na , simultaneously. By choosing
pa andna appropriately, these bases span the space equ
lent to that of the harmonic-oscillator~HO! bases, and can
also form the Kamimura-Gauss~KG! basis set@23#. Without
parameters specific to mass number or nuclide such as\v, a
single set of the KG bases is applicable to a wide range
nuclides. In the following calculations we apply the hybr
basis set@11# for the nuclei withA,50, in which an HO
basis is added to the KG basis-set, while the HO basis
with Nosc<15 and\v541.2A21/3 MeV for heavier nuclei.

In finite nuclei the noncentral forces are important as w
In the M3Y interaction, the LS forcev12

(LS) and the tensor
force v12

(TN) are taken by settingf n
(LS)(r 12)5e2mnr 12/mnr 12

and f n
(TN)(r 12)5e2mnr 12/mnr 12 in Eq. ~2!. We here fix the

range parameters as inv12
(C) ; m1

2150.25 fm, m2
2150.4 fm

for v12
(LS) , and m1

2150.4 fm, m2
2150.7 fm for v12

(TN) . The
coupling constants in the M3Y-P2 set are tabulated in Ta
IV, together with those in the original M3Y-P0 set. In M3Y
P2, the enhancement factor forv12

(LS) is taken to be 1.8 and
the reduction factor forv12

(TN) to be 0.12. The binding ener
gies and the rms matter radii obtained from the HF calcu
tions with M3Y-P2 are shown in Table V, in comparison wi

TABLE IV. Parameters of noncentral forces in the original a
modified M3Y interactions. See text for themn parameters.

Parameters M3Y-P0 M3Y-P2

t1
(LSE) ~MeV! 25101 29181.8

t1
(LSO) ~MeV! 21897 23414.6

t2
(LSE) ~MeV! 2337 2606.6

t2
(LSO) ~MeV! 2632 21137.6

t1
(TNE) ~MeV fm22! 21096 2131.52

t1
(TNO) ~MeV fm22! 244 29.28

t2
(TNE) ~MeV fm22! 230.9 23.708

t2
(TNO) ~MeV fm22! 15.6 1.872

TABLE V. Binding energies and rms matter radii of sever
doubly magic nuclei. Experimental data are taken from Refs.@24–
26#.

Expt. M3Y-P2 SLy5 D1S

16O 2E ~MeV! 127.6 127.1 128.6 129.5
A^r 2& ~fm! 2.61 2.60 2.59 2.59

40Ca 2E ~MeV! 342.1 338.7 344.3 344.5
A^r 2& ~fm! 3.47 3.37 3.29 3.36

48Ca 2E ~MeV! 416.0 411.8 416.0 416.8
A^r 2& ~fm! 3.57 3.52 3.44 3.50

90Zr 2E ~MeV! 783.9 778.7 782.4 784.5
A^r 2& ~fm! 4.32 4.25 4.22 4.23

132Sn 2E ~MeV! 1102.9 1098.1 1103.5 1102.9
A^r 2& ~fm! 4.79 4.77 4.76

208Pb 2E ~MeV! 1636.4 1635.8 1635.2 1638.1
A^r 2& ~fm! 5.49 5.53 5.52 5.51
01431
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those of the SLy5 and the D1S interactions, as well as w
the experimental data. The one-body terms of the center
mass~c.m.! energy are removed before iteration. The con
bution of the two-body terms is subtracted from the conv
gent HF wave functions, in the D1S and the M3Y-P2 resu
There are also spurious c.m. effects in the matter radii,

^r 2&5
1

A (
i

^~r i2R!2&

5
1

A (
i

^r i
2&2^R2&

5
1

A F S 12
1

AD(
i

^r i
2&2

1

A (
iÞ j

^r i•r j&G . ~19!

The first term in the right-hand side is expressed by o
body operators with a correction factor (121/A). We need
two-body operators for the second term. For the D1S and
M3Y-P2 interactions we fully remove the c.m. contributio
according to Eq.~19!. For the SLy5 interaction we use onl
the one-body terms with the correction factor, ignoring t
two-body terms in Eq.~19!, as in calculating the energies.

Wave functions of the doubly magic nuclei are conside
to be well approximated in the spherical HF approaches
should still be noted that correlations due to the resid
interaction could influence their properties. Therefore we
not pursue fine tuning of the parameters. As shown in Ta
V, the M3Y-P2 set is fixed so as to reproduce the measu
binding energies of the doubly magic nuclei, including90Zr,
within about 5 MeV accuracy. The binding energies of the
nuclei obtained from the SLy5 and the D1S interactions
in agreement with the experimental data within 3 Me
slightly better than M3Y-P2. We do not have to take th
difference seriously, before evaluating the influence of
residual interactions. In addition to the binding energies,
rms matter radii of these nuclei are reproduced by
M3Y-P2 set similarly well to the other available interaction
In Table VI we present the neutron s.p. energiesen(0p3/2)
anden(0p1/2) around16O. The enhancement factor forv12

(LS)

in the M3Y-P2 set has been adjusted approximately to
experimental value of this s.p. energy difference. The red
tion factor forv12

(TN) has been determined so as to reprodu
the s.p. energy ordering for208Pb. Without this reduction
factor, the orbits with higher, have too high energies. Th
resultant s.p. levels in208Pb with M3Y-P2 are depicted in
Fig. 6. The levels obtained from D1S and the experimen
s.p. levels are also shown. The overall level spacings
related toM0* shown in Table II. In the usual HF calculation
the level spacings tend to be larger than the observed o

TABLE VI. LS splitting around16O. Experimental data are ex
tracted from Refs.@24,27#.

Expt. M3Y-P2 SLy5 D1S

en(0p3/2) ~MeV! 221.8 222.6 220.6 222.3
en(0p1/2) ~MeV! 215.7 216.2 214.4 215.9
6-7
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and it is not~and should not be! remedied until the correla
tions due to the residual interaction~or thev mass! are taken
into account@19#. This is also true in the present case. W
find that M3Y-P2 yields as plausible s.p. levels as D1S do
We thus confirm that the M3Y-P2 interaction well describ
the global nature of stable nuclei.

VI. SINGLE PARTICLE LEVELS IN NÄ16 ISOTONES

In the preceding section we have shown that the M3Y
interaction reproduces the properties of the doubly ma
nuclei to a similar accuracy to the SLy5 and the D1S int
actions. At a glance, the spin-isospin characters in
nuclear matter, which have been discussed in Sec. III viaast

and g,8 , do not seem to influence the nuclear propert
around the ground states. However, the spin and iso
characters influence s.p. energies of finite nuclei. Ther
they may affect even the ground state properties. In this
tion we illustrate this point by the neutron orbits in theN
516 isotones, following the arguments in Ref.@3#, although
precise studies in this line are beyond the scope of this pa

As was suggested in Ref.@3#, the proton-number (Z) de-
pendence of the neutron s.p. energyen(0d3/2) relative to
en(1s1/2) can sizably be affected by effective interaction
Figure 7 depictsDen5en(0d3/2)2en(1s1/2) obtained from
the spherical HF calculations in theN516 isotones. Though
it is not obvious whether the ground states of all of the
isotones are well approximated by the spherical HF w
functions, it is meaningful to see the s.p. energies, wh
often give an indication to magic or submagic numbers.
D1S we reduce the number of bases in Eq.~18! to avoid
instability occurring for someN516 nuclei, which probably
relates to the unphysical behavior in the neutron matter.
found that, if viewed as a function ofZ, Den strikingly de-
pends on the interactions. With the M3Y-P2 interaction,Den
increases asZ goes fromZ514 toZ58. We have confirmed
@28# that even M3Y-P1~with appropriatev12

(LS) and v12
(TN))

shows similar behavior and that a significant part of t
feature originates in the OPEP part inv12

(C) . It is thus sug-
gested that this behavior ofDen is correlated to the spin
isospin property in the nuclear matter.
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e
V

]

M3Y-P2
M3Y-P2

D1S D1SExp. Exp.

proton neutron

0g7/2

1d5/2

0h11/2

1d3/2

2s1/2

0h9/2

1f7/2

1f5/2

2p3/2

0h9/2

1f7/2

0i13/2

2p3/2

2p1/2

0i11/2
1g9/2

0j15/2

1f5/2

2d5/2

3s1/2

1g7/2

2d3/2

0i13/2

FIG. 6. Single-particle energies for208Pb. Experimental values
are extracted from Refs.@24,27#.
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For comparison, we also show the s.p. energies obta
from the reliable shell model interaction for thesd-shell nu-
clei, the so-called universal sd~USD! interaction@9#. For this
purpose we define the effective values of s.p. energies
each nucleusA from the shell model space and interactio
which correspond to those of the spherical HF calculatio
as

en
USD~ j ;A!5en

USD~ j ;17O!1(
j 8

^Nj 8&A

2J11

~2 j 11!~2 j 811!

3^ j j 8;JuvUSDu j j 8;J&, ~20!

where the sum with respect toj 8 runs over the valence or
bits. For^Nj&A , we assume that the nucleons occupy the s
orbits from the bottom, according toe( j ). From these s.p.
energies we obtainDen

USD5en
USD(0d3/2;A)2en

USD(1s1/2;A)
for individual nucleus. This definition is equivalent to th
effective s.p. energies in Ref.@3# for theZ<N(516) nuclei.
TheDen

USD values are also shown in Fig. 7. It is noted that
the shell model approaches the nucleus dependence o
s.p. wave functions is not fully taken into account. Effects
rearrangement in the wave functions of the deeply bou
orbits are renormalized into the interactions among the
lence nucleons. In contrast, in the HF approaches the
wave functions are determined self-consistently, fro
nucleus to nucleus. Therefore, the shell model s.p. ener
do not agree with their HF counterparts. However, th
should be qualitative correspondence, which arises from
sic characters of the effective interactions. It is remarked t
the M3Y-P2 interaction has the same trend ofDen , in terms
of the Z dependence, as the USD interaction. It has b
suggested@3# that the interaction in the (s•s)(t•t) channel,
which will be linked to ast or to g,8 , is significant to the
magic numbers in highly neutron-rich nuclei, and that theZ
dependence of the s.p. energies in this region could be
evant to the new magic numberN516 @29#. The present
results are fully consistent with the arguments in Ref.@3#,
although we cannot draw conclusions on the magic num
problem without assessing the influence of residual inter
tions.

6

5

4

3

2

1

0

∆ε
n 

[M
e

V
]

16 14 12 10 8
Z

FIG. 7. Den for theN516 isotones. The thick solid, dotted, thi
solid, and dashed lines correspond to the results with the M3Y
USD, D1S, and SLy5 interactions, respectively.
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VII. SUMMARY AND OUTLOOK

We have developed effective interactions to describe
energy phenomena of nuclei. Starting from the M3Y inter
tion, we introduce a density-dependent contact term
modify several parameters in a phenomenological man
whereas maintaining the OPEP part in the central force
order to view basic characters of the interactions,
Hartree-Fock calculations are implemented for the infin
nuclear matter~for which useful formulas are newly derived!
and for several doubly magic nuclei. We have shown tha
parameter set called M3Y-P2 describes their properties p
sibly. The properties that are well treated by the Skyr
SLy5 and/or the Gogny D1S interactions are also reprodu
by the M3Y-P2 interaction. However, a remarkable diffe
ence is found in the properties relevant to the spin degree
freedom in the nuclear matter. The M3Y-type interactio
seem to give reasonable spin and isospin properties, in w
the OPEP part contained inv12

(C) plays a significant role. We
have also shown that the difference in the spin-isospin pr
erty affects the s.p. energies in finite nuclei to a considera
extent. It will be interesting to apply extensively the M3Y
type interactions, particularly to the magic number proble
far from theb stability.

Although the M3Y-P2 interaction seems to have vario
desired characters, there still remains a certain room for
ther tuning of the parameters. It should be noted that
parameter set will not be a unique choice to reproduce
properties of the nuclear matter and the doubly magic nuc
Effective interaction might not be constrained sufficien
only from the HF calculations. The pairing effects in nuc
give valuable information on the effective interaction, prim
rily on the SE channel. Comparison of the matrix eleme
with reliable shell model interactions will also be helpful,
the core polarization effects are treated appropriately. Th
points will be discussed in future publications.
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APPENDIX A: ANALYTIC FORMULAS FOR NUCLEAR
MATTER ENERGY

In this appendix we derive formulas concerning the int
action part of Eq.~12!. The form of Eq.~2! is assumed for
v12.

Each term ofv12
(C) is expressed asf n

(C)(r 12)OsOt . Its
nonantisymmetrized matrix element in the plane wave st
of Eq. ~8! is evaluated as
01431
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^k18s18t18 ,k28s28t28u f n
(C)~r 12!OsOtuk1s1t1 ,k2s2t2&n.a.

5
1

V2E d3r 1d3r 2ei (k12k18)•r11 i (k22k28)•r2f n
(C)~r 12!

3^s18s28uOsus1s2&^t18t28uOtut1t2&

5
1

V2E d3Rd3r 12e
i (K2K8)•R1 i (k122k128 )•r12f n

(C)~r 12!

3^s18s28uOsus1s2&^t18t28uOtut1t2&

5
1

V
dK ,K8 f̃ n

(C)~ uk122k128 u!

3^s18s28uOsus1s2&^t18t28uOtut1t2&, ~A1!

where R5(r11r2)/2, r125r12r2 , K5k11k2 , K 85k18

1k28 , k125(k12k2)/2, k128 5(k182k28)/2, and f̃ (q) is the
Fourier transform off (r ),

f̃ ~q!5E d3r f ~r !e2 iq•r. ~A2!

The density-dependent interactionv12
(DD) is also handled in a

similar manner, since the density behaves like a constan
the nuclear matter. For the Hartree term we have (k1s1t1)
5(k18s18t18) and (k2s2t2)5(k28s28t28), while (k1s1t1)
5(k28s28t28) and (k2s2t2)5(k18s18t18) for the Fock term.
Therefore both terms satisfyK5K 8. For the relative mo-
mentum the Hartree term~the Fock term! yields k122k128
50 (k122k128 52k12). Contribution of the two-body interac

tion to the nuclear matter energy is obtained by integratinf̃
in Eq. ~A1! up to the Fermi momenta.

We here consider general cases where the Fermi mom
tum may depend on spin and isospin. In order to take i
account the spin-isospin dependence, we integratef̃ in the
rangek1<kF1 and k2<kF2. The integration is immediately
carried out for the Hartree term, as far asf (r 12) is momen-
tum independent, since the integrand depends neither ok1
nor onk2,

W H~kF1,kF2!5E
k1<kF1

d3k1E
k2<kF2

d3k2 f̃ ~0!

5
16p2

9
kF1

3 kF2
3 f̃ ~0!. ~A3!

For the Fock term contribution, the integral with respect
k1 andk2 is converted to the one with respect toK andk12.
We here assumekF1<kF2 without loss of generality, owing
to the symmetryW(kF1,kF2)5W(kF2,kF1). Handling the
range of integral carefully, we obtain the following expre
sion:
6-9
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W F~kF1,kF2!5E
k1<kF1

d3k1E
k2<kF2

d3k2 f̃ ~2k12!

58p2F E
0

(kF22kF1)/2

dk12

16

3
kF1

3 k12
2 f̃ ~2k12!

1E
(kF22kF1)/2

(kF11kF2)/2

dk12H 2
1

2
~kF2

2 2kF1
2 !2k12

1
8

3
~kF1

3 1kF2
3 !k12

2 24~kF1
2 1kF2

2 !k12
3

1
8

3
k12

5 J f̃ ~2k12!G . ~A4!

These formulas are general to multicomponent unifo
Fermi liquids with equal masses.

In handling the spin-isospin degrees of freedom, we
write the central force in Eq.~2! as

v12
(C)5(

n
~ tn

(W)1tn
(B)Ps2tn

(H)Pt2tn
(M) PsPt! f n

(C)~r 12!.

~A5!

The relations between the coupling constants are

tn
(SE)5tn

(W)2tn
(B)2tn

(H)1tn
(M) ,

tn
(TE)5tn

(W)1tn
(B)1tn

(H)1tn
(M) ,

tn
(SO)5tn

(W)2tn
(B)1tn

(H)2tn
(M) ,

tn
(TO)5tn

(W)1tn
(B)2tn

(H)2tn
(M) . ~A6!

After summing over the spin-isospin degrees of freedom,
interaction energy is given by

^V&5
V

2~2p!6 (
n

(
s1s2t1t2

@~ tn
(W)1tn

(B)ds1s2
2tn

(H)dt1t2

2tn
(M)ds1s2

dt1t2
!W n

H~kFt1s1
,kFt2s2

!

1~ tn
(M)1tn

(H)ds1s2
2tn

(B)dt1t2

2tn
(W)ds1s2

dt1t2
!W n

F~kFt1s1
,kFt2s2

!#. ~A7!

In Eq. ~A7! we regard the sum overn to includev12
(DD) . It is

noted thatA5Vr, which is used to obtain the energy p
nucleonE.

We next calculate theW functions for typical interaction
forms.

~1! d interaction. If f (r 12)5d(r12), f̃ (q)51 and there-
fore we have

W H~k1 ,k2!5W F~k1 ,k2!5
16p2

9
k1

3k2
3 . ~A8!
01431
-

e

~2! r-dependentd interaction. Since the density is a con
stant in the uniform nuclear matter, theW functions for
f (r 12)5rad(r12) are similar to the above case,

W H~k1 ,k2!5W F~k1 ,k2!5
16p2

9
rak1

3k2
3 . ~A9!

Note thatr is a function of the Fermi momenta, when w
take derivatives of theW functions.

~3! Gauss interaction. For f (r 12)5e2(mr 12)
2
, we have

f̃ (q)5(Ap/m)3e2(q/2m)2
, deriving

W H~k1 ,k2!5
16p2

9 SAp

m D 3

k1
3k2

3 , ~A10!

and

W F~k1 ,k2!5
32Ap7

3 Fm$~k1
22k1k21k2

222m2!

3e2[(k11k2)/2m] 2
2~k1

21k1k21k2
2

22m2!e2[(k22k1)/2m] 2
%

2~k1
31k2

3!erfcS k11k2

2m D1~k2
3

2k1
3!erfcS k22k1

2m D1Ap k1
3G , ~A11!

where

erfc~x!5E
x

`

e2z2
dz. ~A12!

In Eq. ~A11! we have postulatedk1<k2 again.
~4! Yukawa interaction. For the Yukawa interaction we se

f (r 12)5e2mr 12/mr 12, leading to f̃ (q)54p/m(m21q2).
This yields

W H~k1 ,k2!5
64p3

9m3
k1

3k2
3 , ~A13!

and

W F~k1 ,k2!5
2p3

3m F4k1k2$3~k1
21k2

2!2m2%

216mH ~k1
31k2

3!arctanS k11k2

m D
2~k2

32k1
3!arctanS k22k1

m D J 2$3~k2
22k1

2!2

26m2~k1
21k2

2!2m4% ln
m21~k11k2!2

m21~k22k1!2G .

~A14!
6-10
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~5! Momentum-dependentd interaction. In the Skyrme
interaction we have momentum-dependent terms with
form 1

2 $p12
2 d(r12)1d(r12)p12

2 % and p12•d(r12)p12. The
former operates only on the even channels and yields

W H~k1 ,k2!5W F~k1 ,k2!5
4p2

15
k1

3k2
3~k1

21k2
2!.

~A15!

The latter acts on the odd channels, giving
te

01431
e W H~k1 ,k2!52W F~k1 ,k2!5
4p2

15
k1

3k2
3~k1

21k2
2!.

~A16!

The incompressibilityK and the spin-isospin curvature
at , as , ast are expressed by the derivatives of theW func-
tions.

The single-particle energye(kst) defined in Eq.~9! is
also expressed by the derivative of theW functions. We first
rewrite the integral in Eq.~12! as
E
k18<k1

d3k18E
k2<kFt2s2

d3k2^k18s1t1 ,k2s2t2uv12uk18s1t1 ,k2s2t2&

54pE
0

k1
k18

2dk18E
k2<kFt2s2

d3k2^k18s1t1 ,k2s2t2uv12uk18s1t1 ,k2s2t2&. ~A17!

This immediately gives

]

]k1
E

k18<k1

d3k18E
k2<kFt2s2

d3k2^k18s1t1 ,k2s2t2uv12uk18s1t1 ,k2s2t2&

54pk1
2E

k2<kFt2s2

d3k2^k18s1t1 ,k2s2t2uv12uk18s1t1 ,k2s2t2&. ~A18!
ity,
q.
-

Therefore,

e~k1s1t1!5
k1

2

2M
1

1

~2p!3

1

4pk1
2 (

n
(
s2t2

@~ tn
(W)1tn

(B)ds1s2

2tn
(H)dt1t2

2tn
(M)ds1s2

dt1t2
!]1W n

H~k1 ,kFt2s2
!

1~ tn
(M)1tn

(H)ds1s2
2tn

(B)dt1t2

2tn
(W)ds1s2

dt1t2
!]1W n

F~k1 ,kFt2s2
!#, ~A19!

where we use the shorthand notation

]1W n
H/F~k1 ,k2!5

]

]k1
W n

H/F~k1 ,k2!. ~A20!

It is now obvious that the effective mass of Eq.~15! is ex-
pressed by using the second derivative of theW functions.

APPENDIX B: LANDAU PARAMETERS FOR
SYMMETRIC NUCLEAR MATTER

Let us denote the occupation probability of the s.p. sta
of Eq. ~8! by nts(k). The nuclear matter energy of Eq.~A7!
can be rewritten as

^V&
V

5
^V&H1^V&F

V
, ~B1!
s

^V&H

V
5

1

2~2p!6 (
n

(
s1s2t1t2

(
k1k2

nt1s1
~k1!nt2s2

~k2! f̃ n~0!

3~ tn
(W)1tn

(B)ds1s2
2tn

(H)dt1t2
2tn

(M)ds1s2
dt1t2

!,
~B2!

^V&F

V
5

1

2~2p!6 (
n

(
s1s2t1t2

(
k1k2

nt1s1
~k1!nt2s2

~k2!

3 f̃ n~2k12!~ tn
(M)1tn

(H)ds1s2
2tn

(B)dt1t2

2tn
(W)ds1s2

dt1t2
!. ~B3!

The Landau coefficient is defined by

Ft1s1 ,t2s2

(,) ~k1 ,k2!5
2,11

2 E
21

1

d~ k̂1• k̂2!P,~ k̂1• k̂2!

3
d2~^V&/V!

dnt1s1
~k1!dnt2s2

~k2!
. ~B4!

For the interaction independent of momentum and of dens
it is straightforward to write down the coefficients of E
~B4! in terms of f̃ , within the HF theory at the zero tempera
ture. Noticing thatr also depends onnts(k), we evaluate
the contribution of the density-dependentd interaction (1
1x(DD)Ps)rad(r12) to Ft1s1 ,t2s2

(,) (k1 ,k2) as
6-11
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d,0

~2p!6 Fa~a21!

2
ra22H r22(

st
rts

2 1x(DD)S (
s

rs
2

2(
t

rt
2D J 1ara21$2r2rt1s1

2rt2s2
1x(DD)~rs1

1rs2

2rt1
2rt2

!%1ra$12dt1t2
ds1s2

1x(DD)~ds1s2
2dt1t2

!%G ,
~B5!

wherers5(trts andrt5(srts . Apart from the spin and
isospin degrees of freedom, the momentum-dependentd in-
teractions 1

2 $p12
2 d(r12)1d(r12)p12

2 % and p12•d(r12)p12 con-
tribute toFt1s1 ,t2s2

(,) (k1 ,k2) by

1

~2p!6 S d,0

k1
21k2

2

4
2d,1

k1k2

2 D . ~B6!

In characterizing effective interactions, we view the La
dau coefficients for the symmetric nuclear matter, wh
rts5r/4 for any t and s. While formulas for the Landau
parameters were derived for the Skyrme interaction in R
@21# and for the Gogny interaction in Ref.@30#, we here
derive expressions for interactions with the form of Eq.~2! in
a more general manner. It is customary to transform
(t,s) variables into the following ones:

1•••p↑1p↓1n↑1n↓,

t•••p↑1p↓2n↑2n↓,

s•••p↑2p↓1n↑2n↓ ,

st•••p↑2p↓2n↑1n↓. ~B7!

Since (ss5(tt5(s(st)5(t(st)50, all the off-
diagonal coefficients with respect to (1,t,s,st) vanish. The
diagonal coefficients are redefined as

F1
(,)~k1 ,k2!5

1

16 (
s1s2t1t2

Ft1s1 ,t2s2

(,) ~k1 ,k2!,

Ft
(,)~k1 ,k2!5

1

16 (
s1s2t1t2

t1t2Ft1s1 ,t2s2

(,) ~k1 ,k2!,

Fs
(,)~k1 ,k2!5

1

16 (
s1s2t1t2

s1s2Ft1s1 ,t2s2

(,) ~k1 ,k2!,

Fst
(,)~k1 ,k2!5

1

16 (
s1s2t1t2

s1t1s2t2Ft1s1 ,t2s2

(,) ~k1 ,k2!.

~B8!

The Hartree terms of the momentum- and dens
independent interactions yield
01431
-
e

f.

e

-

F1,H
(,)~k1 ,k2!5

d,0

4~2p!6 (
n

~4tn
(W)12tn

(B)22tn
(H)

2tn
(M) ! f̃ n~0!,

Ft,H
(,)~k1 ,k2!5

d,0

4~2p!6 (
n

~22tn
(H)2tn

(M) ! f̃ n~0!,

Fs,H
(,) ~k1 ,k2!5

d,0

4~2p!6 (
n

~2tn
(B)2tn

(M) ! f̃ n~0!,

Fst,H
(,) ~k1 ,k2!5

d,0

4~2p!6 (
n

~2tn
(M) ! f̃ n~0!, ~B9!

while the Fock terms

F1,F
(,)~k1 ,k2!5

1

4~2p!6 (
n

~4tn
(M)12tn

(H)22tn
(B)

2tn
(W)!Gn

(,)~k1 ,k2!,

Ft,F
(,)~k1 ,k2!5

1

4~2p!6 (
n

~22tn
(B)2tn

(W)!Gn
(,)~k1 ,k2!,

Fs,F
(,)~k1 ,k2!5

1

4~2p!6 (
n

~2tn
(H)2tn

(W)!Gn
(,)~k1 ,k2!,

Fst,F
(,) ~k1 ,k2!5

1

4~2p!6 (
n

~2tn
(W)!Gn

(,)~k1 ,k2!,

~B10!

where

Gn
(,)~k1 ,k2!5

2,11

2 E
21

1

d~ k̂1• k̂2!P,~ k̂1• k̂2! f̃ n~2k12!.

~B11!

Contribution of the density-dependent interactiont (DD)(1
1x(DD)Ps)rad(r12) is given by

F1,DD
(,) ~k1 ,k2!5

d,0

4~2p!6
t (DD)

3~a11!~a12!

2
ra,

Ft,DD
(,) ~k1 ,k2!5

d,0

4~2p!6
t (DD)~22x(DD)21!ra,

Fs,DD
(,) ~k1 ,k2!5

d,0

4~2p!6
t (DD)~2x(DD)21!ra,

Fst,DD
(,) ~k1 ,k2!52

d,0

4~2p!6
t (DD)ra. ~B12!
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For momentum-independent interactions such as the Go
interaction and the M3Y-type interactions, the Landau co
ficients are obtained by F1

(,)(k1 ,k2)5F1,H
(,) (k1 ,k2)

1F1,F
(,)(k1 ,k2)1F1,DD

(,) (k1 ,k2), and so forth. The momentum
dependentd interactions yield

F1,MD
(,) ~k1 ,k2!5

1

8~2p!6 S d,0

k1
21k2

2

2
2d,1k1k2D

3H 3t1
(MD)

5t2
(MD) ,

Ft,MD
(,) ~k1 ,k2!5

1

8~2p!6 S d,0

k1
21k2

2

2
2d,1k1k2D

3H t1
(MD)~22x1

(MD)21!

t2
(MD)~2x2

(MD)11!,

Fs,MD
(,) ~k1 ,k2!5

1

8~2p!6 S d,0

k1
21k2

2

2
2d,1k1k2D

3H t1
(MD)~2x1

(MD)21!

t2
(MD)~2x2

(MD)11!,

Fst,MD
(,) ~k1 ,k2!5

1

8~2p!6 S d,0

k1
21k2

2

2
2d,1k1k2D

3H ~2t1
(MD) !

t2
(MD) ,

~B13!

where the upper row corresponds to the even channel in
action 1

2 t1
(MD)(11x1

(MD) Ps)$p12
2 d(r12)1d(r12)p12

2 %, while
the lower to the odd channel interactiont2

(MD)(1
1x2

(MD) Ps)p12•d(r12)p12, respectively. Equation~B13! is
available for the Skyrme interactions in which the LS cu
rents are not ignored.

We next show explicit form of theG(,) factor in Eq.
~B10! for typical interaction forms.

~1! d interaction. Substitutingf̃ (2k12) by 1, we obtain

G(,)~k1 ,k2!5d,0 . ~B14!

~2! Gauss interaction. Because f̃ (q)
5(Ap/m)3 e2(q/2m)2

, Eq. ~B11! leads to

G(,)~k1 ,k2!5
~2,11!Ap3

mk1k2
(

m50

,
~,1m!!

m! ~,2m!! S m2

k1k2
D m

3$~2 !me2[(k12k2)/2m] 2

2~2 !,e2[(k11k2)/2m] 2
%. ~B15!

For ,50 and 1, we have
01431
ny
f-

r-

-

G(0)~k1 ,k2!5
Ap3

mk1k2
$e2[(k12k2)/2m] 2

2e2[(k11k2)/2m] 2
%,

~B16!

G(1)~k1 ,k2!5
3Ap3

mk1k2
H S 12

2m2

k1k2
De2[(k12k2)/2m] 2

1S 11
2m2

k1k2
De2[(k11k2)/2m] 2J . ~B17!

~3! Yukawa interaction. For the Yukawa interaction we
use f̃ (q)54p/m(m21q2). Inserting it into Eq.~B11!, we
obtain for even,,

G(,)~k1 ,k2!

5
2p~2,11!

m3 (
m50

,/2 S m2

2k1k2
D 2m11

~2 !,/22m

3
~,12m21!!!

~2m!! ~,22m!! F S 11
k1

21k2
2

m2 D 2m

ln
m21~k11k2!2

m21~k22k1!2

2 (
p50

2m21
~2 !p

2m2p

~2m!!

p! ~2m2p!!

3S 11
k1

21k2
2

m2 D pH S 11
~k12k2!2

m2 D 2m2p

2S 11
~k11k2!2

m2 D 2m2pJ G ~B18!

and for odd,

G(,)~k1 ,k2!

5
2p~2,11!

m3 (
m50

(,21)/2 S m2

2k1k2
D 2m12

~2 !(,21)/22m

3
~,12m!!!

~2m11!! ~,22m21!!

3F S 11
k1

21k2
2

m2 D 2m11

ln
m21~k11k2!2

m21~k22k1!2

2 (
p50

2m
~2 !p11

2m112p

~2m11!!

p! ~2m112p!!

3S 11
k1

21k2
2

m2 D pH S 11
~k12k2!2

m2 D 2m112p

2S 11
~k11k2!2

m2 D 2m112pJ G . ~B19!

For ,50 and 1, we have
6-13
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G(0)~k1 ,k2!5
p

mk1k2
ln

m21~k11k2!2

m21~k22k1!2
, ~B20!

G(1)~k1 ,k2!5
3p

2m~k1k2!2 F ~m21k1
21k2

2!

3 ln
m21~k11k2!2

m21~k22k1!2
24k1k2G . ~B21!

Settingk15k25kF0 and using the estimated level dens
at the Fermi momentumN05(2p)62kF0M0* /p2, we define
the usual Landau parameters,
e,

l,

s.
n

e

01431
f ,5N0F1
(,)~kF0,kF0!, f ,85N0Ft

(,)~kF0,kF0!,

g,5N0Fs
(,)~kF0,kF0!, g,85N0Fst

(,)~kF0,kF0!.
~B22!

The second derivaties ofE at the saturation point are con
nected to the Landau parameters. The following relations
verified:

M0*

M
511

1

3
f 1, K5

3kF0
2

M0*
~11 f 0!, at5

kF0
2

6M0*
~11 f 08!,

as5
kF0

2

6M0*
~11g0!, ast5

kF0
2

6M0*
~11g08!. ~B23!
un.

aef-

o,

.

icz,

. C

s.

i-

s.
@1# S.C. Pieper, K. Varga, and R.B. Wiringa, Phys. Rev. C66,
044310~2002!.

@2# I. Tanihata, Nucl. Phys.A654, 235c~1999!.
@3# T. Otsukaet al., Phys. Rev. Lett.87, 082502~2001!.
@4# D. Vautherin and D.M. Brink, Phys. Rev. C5, 626 ~1972!.
@5# J. Decharge´ and D. Gogny, Phys. Rev. C21, 1568~1980!.
@6# L. Coraggioet al., Phys. Rev. C58, 3346~1998!; 60, 064306

~1999!.
@7# J.P. Schiffer and W.W. True, Rev. Mod. Phys.48, 191 ~1976!.
@8# G. Bertsch, J. Borysowicz, H. McManus, and W.G. Lov

Nucl. Phys.A284, 399 ~1977!.
@9# B.A. Brown, W.A. Richter, R.E. Julies, and B.H. Wildentha

Ann. Phys.~N.Y.! 182, 191 ~1988!.
@10# D.T. Khoa, W. von Oertzen, and A.A. Ogloblin, Nucl. Phy

A602, 98 ~1996!; D.T. Khoa, G.R. Satchler, and W. vo
Oertzen, Phys. Rev. C56, 954 ~1997!.

@11# H. Nakada and M. Sato, Nucl. Phys.A699, 511~2002!; A714,
696 ~2003!.

@12# J.W. Negele, Phys. Rev. C1, 1260~1970!; X. Campi and D.W.
Sprung, Nucl. Phys.A194, 401 ~1972!.

@13# F. Hofmann and H. Lenske, Phys. Rev. C57, 2281~1998!.
@14# N. Anantaraman, H. Toki, and G.F. Bertsch, Nucl. Phys.A398,

269 ~1983!.
@15# H.A. Bethe, Annu. Rev. Nucl. Sci.21, 93 ~1971!.
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