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A nuclear vibron model applied to light and heavy nuclear molecules
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A nuclear vibron model for nuclear molecules consisting of two clusters with inner structure is investigated.
The Hamiltonian model has aUC1

(6)^ UC2
(6)^ UR(4).SUC1

(3)^ SUC2
(3)^ SUR(3) dynamical symme-

try. Applying a geometrical mapping, the relation of the parameter of the coherent state to the relative distance
of the two clusters is deduced. The Hamiltonian model exhibits a minimum at relative distances different from
zero. It is discussed how to deduce the potential, knowing the spectrum, and how to deduce the spectrum,
knowing the potential. As a classical example the system12C112C is taken, where the spectrum is known and
the internuclear potential can be obtained. This system serves as a consistency check of the method. After-
wards, the heavy system96Sr1146Ba, playing a role as a subsystem of a possible three cluster molecule, is
investigated and the possible structure of the spectrum is deduced. We show that in order to obtain a Hamil-
tonian consistent with a geometrical picture, the structure of this Hamiltonian is restricted. Ambiguities of the
structure of the spectrum still exist but can be ordered into different classes.

DOI: 10.1103/PhysRevC.68.014314 PACS number~s!: 21.60.Ev, 21.60.Fw, 21.60.Gx
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I. INTRODUCTION

Nuclear molecules were observed for the first time
1960 @1# in the dispersion of12C112C. Since then, severa
new molecular systems were discovered~see the compilation
of Ref. @2#!. On the theoretical side, there exist numero
models to describe the formation of nuclear molecules.
example, in Ref.@3# the system is described by a two-cen
harmonic oscillator, which merges, in case of fusion, to
single harmonic oscillator, as a function of an adiabatic d
tance parameter. In Ref.@4# the double-resonance mechanis
was used to describe the formation of a nuclear molecule
in Ref. @5# the band-crossing model was introduced. A co
plete overview of the advances in the last decades is give
Ref. @6#.

Later, in Ref.@7# an algebraic model~the vibron model! is
presented and successfully applied to the12C112C system
@8#. No internal structure of the clusters was taken into
count. The relative motion of the clusters is described by
UR(4) group, where the dynamical symmetry cha
UR(4).SOR(4) was used~the indexR refers to the relative
motion!. This chain produces a minimum in the relative p
tential@9#, which is believed to be not the case for theUR(3)
dynamical symmetry, which produces in general an anh
monic oscillator. In Ref.@10# the same system was inves
gated within the vibron model and in Ref.@11# within the
nuclear Semimicroscopic Algebraic Cluster Model, taki
into account the Pauli principle. There, it was found that
UR(3) dynamical chain is more appropriate for the descr
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tion of the relative motion, a result that is very important f
our procedure.

In Refs. @12,13# the nuclear vibron model with interna
structure of the clusters was introduced for the description
spectra at low energy. After a general discussion, the mo
is restricted to one deformed cluster with the other part
pants being spherical~a clusters!. The model is intended to
describe the cluster structure of a nucleus atlow energy, con-
trary to our intention to restrict to the molecular resonan
sector only. The model@13# was successfully applied to var
ous heavy nuclei@14#. Though, the application produce
good agreement with the experiment, the Pauli Exclus
Principle should be important because of large overlap of
a particles with the core at low energy@15#.

In Refs. @16,17# the Semimicroscopic Algebraic Cluste
Model ~SACM! was introduced. As an important feature, th
model observes thePauli Exclusion Principle. As a conse-
quence, the number of relative oscillation quanta is limit
from below. The model was applied successfully to vario
nuclei @11,18#, encountering several systematic behaviors
the parameters@19#. Also the coexistence of different cluste
structures within the same nucleus was investigated@20#.
In Ref. @21# the SACM was mapped to a potential. Due
the lower limit in the relative oscillation quanta, a min
mum at a value different from 0 is produced. One advant
of the SACM is that it describes within the same mod
the low and high energy part, for states of positive and ne
tive parity. The high energy part can be related to nucl
molecules.

Recently, the study of nuclear molecules revived due
the possible observation of long living heavy systems w
three clusters@22#. In Ref. @23# a geometrical model was
used in order to deduce the structure of the molecu
spectrum. A distinctive feature is that each cluster has
©2003 The American Physical Society14-1
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inner structure, i.e., a deformation, which plays an essen
role. However, the molecular system is restricted to lin
configurations and harmonic interactions, otherwise no a
lytical results can be obtained. In Ref.@24# a triangular
configuration was considered without an inner structure
the clusters, and introducing deformation for the clust
leads to a complicated structure, difficult to solve, exc
numerically.

The difficulties encountered in the geometrical model le
to investigate algebraic models. The first attempts were
stricted to spherical clusters@25,26#. Recently a complete
description of the algebraic model was given@27#, also re-
stricted to spherical clusters~especially12C as composed by
threea particles!. As it seems, the algebraic model is mo
flexible in describing complicated configurations and anh
monic interactions of nuclear molecules. However, in m
cases the clusters have deformation and their influence on
structure of the nuclear molecule should be important.

In order to study the introduction of deformation of th
clusters, Ref.@26# investigated the system with two cluster
As shown there, the presence of deformation in cluster
important for the formation of a relative minimum. Th
Hamiltonian used did not belong to a dynamical symme
chain and a diagonalization should be performed.

The objective of this paper is to present a nuclear vib
model for nuclear molecules, using a Hamiltonian within
dynamical symmetry, and to give a connection of this mo
to geometrical potentials, consistent with internuclear pot
tials obtained by double folding methods@28#. We will as-
sume a small overlap between the clusters, implying that
Pauli Exclusion Principleplays a minor role@15#. Also to
study the effects whenbothclusters are deformed is interes
ing on its own.

We will show that theSOR(4) dynamical symmetry is no
the only one that produces a minimum in the relative pot
tial but also does theUR(3) dynamical symmetry. For the
construction of the relative potential, which will depend
the relative orientation and the deformation, the coher
state technique will be used@9,29–31#.

Knowing the internuclear potential will also help redu
the number of ambiguity in the parameters, alternatively
the use of electromagnetic transition rates, not available
general.

The paper is organized as follows. In Sec. II a particu
nuclear vibron model will be presented. In Sec. III the ge
metrical mapping is discussed. A relation will be deriv
between the parameters of the coherent state and the re
distance. In Sec. IV the model is applied first to12C112C.
The results will be compared to the model introduced in R
@8#. Due to the assumption that the overlap of the two cl
ters is small, only the energy range where the nuclear m
ecules are located can be described by such a mode
lower energies thePauli Exclusion Principleshould be ob-
served. Because we intend to apply the model later to he
nuclear molecules, where the overlap is small, this proced
is justified. The12C112C system was also discussed with
the SACM @11# and was able to describe the low and t
high energy region at the same time. Here, the investiga
of 12C112C mainly serves as a consistency check, i.e., t
01431
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fitting the spectra first and mapping afterwards to the pot
tial is consistent with first deducing the parameter from
given internuclear potential and then determining the sp
trum. The second system investigated is96Sr1146Ba, which
plays a role as a subsystem in a three-cluster molecule@22#.
In Sec. V conclusions are drawn.

II. THE MODEL

The vibron model@7# is combined with the Interacting
Boson Approximation~IBA ! @32–34# in order to form the
nuclear vibron model@12,13#. For light nuclei, the IBA-4
model is used@34,35#, while for heavy nuclei the IBA-1
@32–34# has to be applied. Both approaches make use of
U(6) group, whose generators are all possible combinati
of a creation and annihilation operator of ans ~spin 0! and/or
a d boson~spin 2!. In the IBA-4 model, there are besides th
proton and neutron pair bosons also proton-neutron
bosons. Each cluster will be represented by such a gro
The relative motion is described by aUR(4) group, whose
generators are composed byp bosons~spin 1! and an auxil-
iary s boson, different from that in the IBA, which introduce
a cutoff when the total number of bosonsns1np5NR is kept
constant. Thep bosons vary from 0 to the cutoff value. Th
large group is given by the direct productG5UC1

(6)

^ UC2
(6)^ UR(4), where the indexCi refers to thei th clus-

ter andR refers to the relative motion.
There are many possible subgroup chains, each co

sponding to a dynamical symmetry. The general classifi
tion will be done elsewhere@36# and the method, presente
in this contribution, can be applied to all other situation
Here, in particular, we will discuss the chain

UC1
~6! ^ UC2

~6! ^ UR~4!.SUC1
~3! ^ SUC2

~3! ^ SUR~3!

.@N1# @N2# @NR# ~l1 ,m1! ~l2 ,m2!~nR,0!

.SUC~3! ^ SUR~3!.SU~3!.SO~3!,

rc ~lC ,mC! ~nR,0!~l,m! k L ~1!

whereNi gives the number of bosons in the IBA model,nR
in the total number of bosons in the relative motion, (l i ,m i)
denotes theSU(3) representation of thei th cluster, (lC ,mC)
is the SU(3) irrep ~irreducible representation! to which the
two clusters are coupled, (l,m) is the totalSU(3) irrep,L is
the angular momentum, andrC andk are multiplicity indi-
ces. No multiplicity appears in the reduction ofSUC(3)
^ SUR(3) to the totalSU(3) group, because the irrep o
SUR(3) is symmetric. Thek value can be approximatel
related to the projection of the angular momentumL on the
intrinsic z axis @37#. In the case of a symmetric system, th
additional condition (l1m1nR)5even has to be observe
@17#. Note that for symmetric systems, such as12C112C,
where no inner structure is taken into account~l5m50!,
only nR5even is allowed, which impliesL5even and posi-
tive parity. However, when the inner structure is include
4-2
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the finall andm values are, in general, different from 0. I
this casenR can be odd and, consequently,L5odd too, and
negative parity is allowed.

Note that one can also substitute theUCi
~6! groups by the

microscopicSUCi
~3! groups, i.e., instead of working in

vibron model we can work in aFermion Algebraic Cluster
Model. The procedure presented in this contribution ha
larger range of applicability.

A possible Hamiltonian corresponding to dynamical ch
~1! can be, up to second order in the generators of the gro
given by

H5x1C2„SUC1
~3!…1x2C2„SUC2

~3!…1x12C2„SUC~3!…

1xvnR1xRC2„SUR~3!…1xTC2„SU~3!…

1xN@C2„SUC~3!…2^C2„SUC~3!…&u0
!nR1aL21cK2,

~2!

wherexv is the parameter ofnR and the otherx values give
the strength of the different quadrupole-quadrupole inter
tions, L2 is the angular momentum operator, andK2 is the
operator introduced in Ref.@37# whose eigenvaluek2 is ap-
proximately the square of the projection of the angular m
mentum onto the intrinsic symmetry axis. The second or
Casimir operators are a function of the angular momen
operators and the quadrupole operators. ThenR in the first
line in Eq. ~2! is the number operator of the relative oscill
tion quanta. The significance of the term proportional toxN
will be explained later on. It will allow us to reproduce th
correct position of the minimum in a cut through the pote
tial at a given relative orientation, different from that at t
absolute minimum. The expression^•••& contains geometric
information and we will show below that to obtain a suitab
Hamiltonian, geometric information is indispensable, oth
wise inconsistencies with the calculated internuclear po
tial appears. For example, the minimum of the mapped
tential at inclination angles different from 0 would be far o
the correct position and the number of relative quanta at
equilibrium position would not be that of the lowest state
the molecular system.

The Hamiltonian in Eq.~2! is an extension of that pro
posed by Daley and Iachello@13#, where only one deformed
and one spherical clusters were considered. Some new t
are, e.g., theK2 and thexN term. Surely, the Hamiltonian in
Eq. ~2! is not the most general one and further terms sho
be added in order to get a complete description of tw
cluster molecules. However, our intention is to keep
simple the Hamiltonian as possible. Furthermore, as will
seen later on, the Hamiltonian proposed can already re
duce sufficiently the mean features of the structure of nuc
molecules and the internuclear potential. One possible rea
is that the Hamiltonian in Eq.~2! renders the quadrupole
quadrupole interaction as the dominant one, which is a
sonable assumption for large extended and deformed
tems, as the nuclear molecule.

For the cluster quadrupole operators we have@32,34#
01431
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QIBA2 i ,m5@dim
† s̃1s†d̃im#6A7

4
@d†

^ d̃#m
2 , ~3!

where the positive sign refers to oblate and the negative
refers to prolate nuclei. The indexi in Eq. ~3! refers to the
number of the cluster andm is the magnetic component o
the quadrupole operator.

The eigenvalue of Hamiltonian~2! with respect to the
basis defined by dynamical group chain~1! is given up to a
constant by

E5x1@l1
21m1

21l1m113~l11m1!#1x2@l2
21m2

21l2m2

13~l21m2!#1x12@lC
2 1mC

2 1lCmC13~lC1mC!#

1xvnR1xR~nR
213nR!1xT@l21m21lm13~l1m!#

1xN$@lC
2 1mC

2 1lCmC13~lC1mC!#

2^C2„SUC~3!…&u0
%nR1aL21cK2. ~4!

The question remains, if this dynamical symmetry e
hibits a minimum in the relative potential. To show it, th
geometrical mapping will be discussed in the followin
section.

III. THE GEOMETRICAL MAPPING

First, we consider the relative motion, using the coher
state technique@9,29,31#. It is sufficient to consider the sys
tem with respect to the molecular system defined as follo
~see Fig. 1!: The molecularz axis is along the vector con
necting the centers of masses of each cluster. In this sys
there are onlyp0 bosons in the relative motion. The cohere
state is given by

FIG. 1. The intrinsic system of the nuclear molecule. Thez axis
connects the two centers of masses. For prolate deformed nu
the diagonal lines indicate the symmetry axes. For oblate defor
nuclei, the symmetry axes are perpendicular to the diagonal lin
4-3
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H. YÉPEZ-MARTÍNEZ, P. O. HESS, AND S¸. MIŞICU PHYSICAL REVIEW C 68, 014314 ~2003!
uNR ,aR&5
~s†1aRp0

†!NR

ANR! ~11aR
2 !NR

u0&, ~5!

whereaR is the parameter of the normalized coherent sta
The parameteraR has to be related to the relative distan

r of the two clusters. We start from the definition of th
physical relative distance operator, before the auxiliarys bo-
son was introduced, quantized with respect to the harmo
oscillator with frequencyv r :

rm5A \

2mv r
~pm

† 1pm!. ~6!

Due to the artificial introduction of a cutoff (NR), having
added an additionals-boson operator, the relative distan
operator has to be modified such thatNR is conserved and fo
large cutoff values (NR→`) both operators have the sam
matrix elements, save a contribution fromns5s†s ~see be-
low!. Therefore, we define the algebraic distance operator@9#
by

rm
a 5A \

2mv r
~pm

† s1s†pm!, ~7!

and

r m5
^rm

a &

A^s†s&
~8!

as the distance variable, where^s†s& is the expectation value
of s†s with respect to the coherent state. The upper ind
‘‘ a’’ refers to ‘‘algebraic’’ andm is the spherical componen
Because the two nuclei are connected via ther 0 ~z! axis, only
r 0 will be important and is equal to the internuclear distan
r. The variation of the algebraic operator has to be calcula
too. If the variation is small compared to the expectat
value, the distance variable gives the approximated dista
of the two clusters. The variation is proportional to 1/NR ,
which is very small for largeNR , as will be the case here
For very small distances the variation is of the same orde
the expectation value and the interpretation ofr m as a dis-
tance is inaccurate. For the situation discussed here, the
tance is always large~small overlap!. The definition of the
relative distance is consistent with the Generator Coordin
Method~GCM! in the Gaussian overlap approximation wit
out the contribution from the zero point motion@38#. In this
approximation the collective potential is given by the exp
tation value of the Hamiltonian. Other observables are de
mined through their expectation value with respect to
trial state. In this sense it deviates from other definitions
the relative coordinate@9,34,39#.

With this in mind, calculating the expectation value
algebraic distance operator~7! with respect to coheren
state~4! we obtain for the absolute valuer of the distance
variable

r

bA2NR

5
aR

A~11aR
2 !

, ~9!
01431
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whereb5A\/mv r is the oscillator length.
Because the variableaR ranges from 0 tò , r varies from

0 to a maximum valuebA2NR. In order to describe a nuclea
molecule, the values ofb and NR have to be such thatr
ranges from 0 up to several fm above the distance where
two clusters are barely touching, defined asR011R02 where
R0i is the nuclear radius of clusteri ( i 51, 2! in the direction
of the molecularz axis. This implies a largeNR and thus a
correct interpretation ofr as the internuclear distance. As wi
be shown below, for largeNR the potential will depend ex-
plicitly only on the oscillator lengthb, and not onNR .

As can be seen from Eq.~9! the parameteraR is approxi-
mately proportional tor for small values ofaR . However, in
general, this is not the case and one has to take great ca
not identifyingaR directly with the distance r.

There is another definition of the parameter of the coh
ent state, i.e.,;(A(12dR

2)s†1dRp0
†)NRu0& @9#. In this form

the relative distance is directly proportional to the parame
dR . However, due to the square root the permitted range
dR is limited between 0 and 1. This results into the sa
constraint inr as given above.

Let us now turn our attention to the structure part of ea
cluster, described by the IBA-1~for heavy clusters! or IBA-4
~for light clusters!. We have to use the following coheren
state@30#. ~In the following section we will show that for
light nuclei, where the IBA-4 model@34,35# has to be ap-
plied and there are proton-proton, neutron-neutron,
proton-neutron bosons, the distinction of the different bos
can be skipped for a particular representation.!

uNi ;b i , u2i&5
~ ŝ†1a i2d̂i

†!Ni

ANi ! ~11a i
2!Ni)

u0&, ~10!

wherea i2d̂ i
†5(ma i2md̂i2m

† anda i
25(a i2•a i2).

In general, the values of the coefficientsa i2m are given by
the expressiona i2m5(m8Dmm8

(2)* (u i)ai2m8 , @40# where in the
intrinsic reference system of each one of the nuclei we h
the usual relations:ai205b i

IBAcosgi , ai26150, and ai262

5(b i
IBA/A2)singi , where the index IBA refers to the defo

mation variable used with the IBA model~see below!.
We concentrate now our attention to axially symmet

nuclei only, i.e.,g50 with b IBA.0 for prolate andb IBA

,0 for oblate nuclei. For these cases,a i2m are given by
a i2m5b i

IBA Dm0
2 (u2i), implying ai2m5b i

IBAdm0.
We finally obtain, with respect to the molecula

system, defined in Fig. 1,a i205
1
2 b i

IBA(3cos2u2i21), a i261

56A 3
8 b i

IBAsin(2u2i), and a i2625A3
8 b i

IBAsin2(u2i), where
u2i is the inclination angle of the symmetry axis of clustei
with respect to the molecularz axis.

The complete coherent state is given by the direct prod
of coherent state of the relative motion~5! and the two co-
herent states related to inner structure~10!. The expectation
value of the Hamiltonian~2! with respect to this total coher
ent state is calculated forL50, K50 ~k51!. We obtain,
using V instead of^H& ~for a short hand notation we us
b i

IBA5b i),
4-4
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V5~x11x121xT!F10N11
4N1~N121!b1

2

~11b1
2!2 S 26A2b11

1

4
b1

2D G1~x21x121xT!F10N21
4N2~N221!b2

2

~11b2
2!2

3S 26A2b21
1

4
b2

2D G1~xR1xT!S 2

b2
r 21

1

4b4
r 4D 1xv

1

2b2
r 21~x121xT!

8N1N2b1b2

~11b1
2!~11b2

2!
S 16

b1

2A2
D S 16

b2

2A2
D

3@3cos2~u212u22!21#1A2xT

1

b2
r 2

N1b1

11b1
2 S 16

b1

2A2
D @3cos2~u21!21#1A2xT

1

b2
r 2

N2b2

11b2
2 S 16

b2

2A2
D @3cos2~u22!21#

1xN

1

b2
r 2

4N1N2b1b2

~11b1
2!~11b2

2!
S 16

b1

2A2
D S 16

b2

2A2
D $@3cos2~u212u22!21#2@3cos2~u210

2u220
!21#%, ~11!
e

m
in

ire
oo
io
p

l
r

a-
lu
ha

a
i-

re

e

R
b

io

se
in
e

e
n

w
ere
ted,
his
l to

, in
ob-

in
a
ters
-
are
ter-

the

ula-
al

-4.
the

e of
where the upper~lower! sign refers to prolate~oblate! nuclei.
The last term in the square bracket in the last line com
from the expectation valuêC2„SUC(3)…&. The expectation
value is taken at given angles of the orientation of the sy
metry axes of the two clusters and guarantees that the m
mum in the potential at these orientations is at the des
position. Otherwise, the structure of the Hamiltonian is t
rigid and would produce a dependence in the orientat
which contradicts severely the calculated relative nuclear
tential ~see Sec. IV!.

Note that for the case of zero deformation (b i50, i 51,2!
only the terms proportional tor 2 andr 4 appear, which are al
positive, except for thexv term that can be negative. Fo
xv>0 we obtain the known limit of the anharmonic oscill
tor. However, when the deformation parameters of the c
ters are different from 0, we can obtain further the terms t
depend on the relative distance variabler and can be nega-
tive, depending on the sign and absolute value of thex pa-
rameters. Also ifxv,0 a minimum can be formed. This is
novel feature implying the formation of a deformed min
mum in the limit of the dynamical symmetryUR(3) in the
relative motion. In contrast to the usual procedure, whe
xv.0 always and the lowest state is given bynR50, in our
model xv can be negative and the ground state will hav
nR.0.

The deformation parameters appearing in Eq.~11! are
those as deduced in the coherent state. As shown in
@30#, they are not equal to the physical values but have to
corrected by a factor. Usually theb5b iba value in the IBA
model is by a factor 3–5 larger than the physical deformat
bphys. An approximate relation is@30#

b i
phys51.18S 2Ni

A Db i
IBA . ~12!

Due to additional factors, the corrections ofO(1/Ni) is small
even for small values ofNi ~up to 20%).

In Eq. ~11! there is still a free scale parameterb, which
was not present before in the Hamiltonian. As discus
above, the introduction ofb was necessary in order to obta
the potential as a function in the relative distance, giv
in fm.
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IV. APPLICATION TO 12C¿12C AND 96Sr¿146Ba

This section is divided into two parts: In Sec. IV A w
investigate the light system12C112C. This system has bee
studied within the vibron model@8# and the nuclear vibron
model@11#. The reason to do this again is that not only ne
experimental information about its spectrum is available h
@2#, but also the relative nuclear potential can be calcula
i.e., both the spectrum and the potential are known. T
allows us to adjust the parameters of the algebraic mode
the spectrum and deduce the relative potential, which
turn, can be compared to the relative nuclear potential
tained by other means, e.g., double folding calculations@41#.
In this way the12C112C system can be used as a test case
order to verify the validity of the result starting from
known relative nuclear potential and deduce the parame
of the algebraic Hamiltonian. It will become especially im
portant for heavy systems where no experimental data
available and one depends strongly on theoretically de
mined nuclear potentials.

In the second part we will address our attention to
heavy nuclear molecule96Sr1146Ba, which forms the part of
a possible three-cluster nuclear molecule@22#. There are no
available experimental data of the spectrum and the calc
tion will predict a possible structure of such a hypothetic
nuclear molecule.

A. 12C¿12C

The carbon nucleus has to be treated within the IBA
The appropriate group structure for the description of
nucleus12C within the IBA-4 is given by@34,35#:

U~36!.UST~6! ^ Usd~6!, ~13!

whereUST(6) describes the isospin~T! and the spin~S! de-
grees of freedom.

One way to obtain theT and S labels is to reduce the
UST(6) group to its subgroupsSUT(2)^ SUS(2) of the
isospin and spin groups, using as an intermediate stag
the group SU(4), the Wigner supermultiplet group for
bosons:
4-5
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U~36!.UST~6! ^ Usd~6!.SU~4! ^ Usd~6!.„SUT~2!

^ SUS~2!…^ Usd~6!. ~14!

The presence of this group is expected because the
types of bosonsT51, S50 and T50 S51 belong to a
single representation of the groupSU(4), namely, the six-
dimensional irrep~0,1,0!.

The states lowest in energy are those symmetric
Usd(6). Because theU(36) irrep has to be symmetric, th
UST(6) irrep has to be symmetric too. This irrep ofUST(6)
contains the SU(4) irreps (0,s,0), with s5N,N
22, . . . ,1, or 0. TheT and S values, contained in a repre
sentation (0,s,0), are given by the conditionT1S5s,s
22, . . . ,1, or 0.

In the case of12C the number of bosons for the irreps@N#
of Usd(6) results to be@N#5@2#, because there are tw
boson holes in the valence shell~four nucleon holes!. In this
case the problem reduces to as if treating only one kinds
andd bosons, which justifies the use of the coherent stat
given in the last section.

SinceN52, s can take the valuess50,2, and theT and
Scontent can be obtained using the standard procedure@34#.
For the reduction of theUsd(6) to theSUsd(3) group we
need to take into account thatN52 and the (l,m) irreps of
SUsd(3) are given by

~l,m!5~0,4! % ~2,0!. ~15!

This defines theSU(3) content of each cluster. For the sing
cluster the~0,4! irrep is the lowest in energy. According t
Eq. ~1! the two cluster irreps are coupled to the irre
(lC ,mC)5(4,0)1(3,2)1(2,4)1(6,1)1(0,8) of SUC(3),
where~4,0! is the most prolate one@42#. It is also the lowest
one in energy as pointed out in Refs.@10,11#.
at

e

s
s,

in
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The parameters of the model will be adjusted to the sp
trum and the geometric potential deduced. The procedur
as follows: We require that ther 0 in n05^nR&5r 0

2/2b2 is
equal to the position of the minimum. The equilibrium di
tance can be estimated in various ways, one is to calcu
the radius of the nuclei in the direction of the molecular ax
or via the slope of the ground state band as a function
L(L11), or taking asr 0 the position of the minimum as i
results for the internuclear potential~see further below!. The
derivation ofr 0 from the slope was used in Ref.@8# resulting
in r 056.75 fm, which is quite large because taking as def
mation for 12C the value 0.5~see Ref.@43# including the
correction for largely deformed nuclei@40#! and determining
the distance for the touching point, assuming that the t
carbon nuclei touch each other at their bellies, we getr 0
54.75 fm. This estimation does not assume a smooth fall
of the nuclear density and might give a too lowr 0. We,
therefore, prefer to use ther 0 value as obtained for the inter
nuclear potential, i.e.,r 055.75 fm. We emphasize that it i
only an estimation, which, however, should be in the corr
range.r 0

2 depends on the number of oscillation quanta via
relation

r 0
252b2n0 . ~16!

Equation~16! expresses the fact that for the construction o
wave function, whose dominant contribution is aroundr 0,
one needsn0 oscillation quanta and this value depends on
stiffness of the basis oscillator, expressed by the oscilla
length.

The variablenR also appears in the expression of ener
~4!. In order to have consistency, we have to require t
E(nR) is minimal atnR5n0, wherenR is treated as a con
tinuous variable. This condition gives the relation
n052
@3xR13xT1xv1xT~2lC1mC!#

2~xR1xT!
2

xN@lC
2 1mC

2 1lCmC13~lC1mC!2^C2„SUC~3!…&u0
#

2~xR1xT!
~17!
bout
that

the

, as

al.
sted
e
at

c-
and we have to require that this value is the same as th
Eq. ~16!. It relates the oscillator lengthb with n0. In Eq.~17!
the expression̂C2„SUC(3)…&u0

refers to the numerical valu
of the geometrical mapped Casimir operator ofSUC(3) @see
Eq. ~11!# at u5u0. The symmetry axis of a carbon nucleu
~oblate deformed! is perpendicular to the molecular axi
which connects the two nuclei~see Fig. 1!. When we imag-
ine the line connecting the center of a cluster to the touch
point, we can define for12C112C as the new inclination
angleQ via u590°1Q, where theu is the inclination angle
of the symmetry axis of a cluster with respect to the mole
lar axis.

After this consideration, the relative motion for th
ground state is given by the irrep (n0,0) of SUR(3). When
~4,0! is the lowest irrep ofSUC(3) then the lowest irrep in
energy is given by (n014,0).
in

g

-

In order to proceed, an assumption has to be made a
the structure of the spectrum at low energy. We assume
the lowest 01 states are the band heads with all the samen0

but different (lC ,mC), which seems to be anad hocassump-
tion. A different choice is to assume that these states have
same (lC ,mC) but differentn0. With the first choice, how-
ever, we obtain a better agreement with the experiment
will be seen below.~We will come back to this point when
the spectrum is deduced starting from a known potenti!
The relevant quantum numbers of the lowest bands are li
in Table I. The remainingx parameters are adjusted to th
lowest 01 states, with the above assumption of the bands
low energy. Thea and c parameters are adjusted, respe
tively, to the moment of inertia (a5\2/2mr 0

2) and to the
position of the second 21 of the first total SU(3) irreps
4-6
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TABLE I. Irreducible representations used for the fit of the energy spectrum of the system12C112C.

nR
C1

C2
C12 C12R k L C2„SU(3)T…

n0 ~0,4!

~0,4!

~0,8! (n0,8) 8
6
4
2
0

L58,9, . . . ,n018
L56,7,8, . . . ,n016
L54,5, . . . ,n014
L52,3, . . . ,n012
L50 or 1, . . . ,n022,n0

n0
2111n0188

n0 ~0,4!

~0,4!

~0,8! (n021,7) 7
5
3
1

L57,8, . . . ,n016
L55,6, . . . ,n014
L53,4, . . . ,n012
L51,2, . . . ,n0

(n014)2145

n0 ~0,4!

~0,4!

~0,8! (n022,6) 6
4
2
0

L56,7,8, . . . ,n014
L54,5, . . . ,n012
L52,3, . . . ,n0

L50 or 1, . . . ,n024,n022

n0
215n0140

n0 ~0,4!

~0,4!

~1,6! (n011,6) 6
4
2
0

L56,7,8, . . . ,n017
L54,5, . . . ,n015
L52,3, . . . ,n013
L50 or 1, . . . ,n021,n011

not allowed by symmetry
when n05even

n0 ~0,4!

~0,4!

~1,6! (n021,7) 7
5
3
1

L57,8, . . . ,n016
L55,6, . . . ,n014
L53,4, . . . ,n012
L51,2, . . . ,n0

(n014)2145

n0 ~0,4!

~0,4!

~1,6! (n022,6) 6
4
2
0

L56,7,8, . . . ,n014
L54,5, . . . ,n012
L52,3, . . . ,n0

L50 or 1, . . . ,n024,n022

n0
215n0140

n0 ~0,4!

~0,4!

~2,4! (n012,4) 4
2
0

L54,5, . . . ,n016
L52,3, . . . ,n014
L50 or 1, . . . ,n0 ,n012

n0
2111n0146

n0 ~0,4!

~0,4!

~2,4! (n0,5) 5
3
1

L55,6, . . . ,n015
L53,4, . . . ,n013
L51,2, . . . ,n011

not allowed by symmetry
when n05even

n0 ~0,4!

~0,4!

~2,4! (n022,6) 6
4
2
0

L56,7,8, . . . ,n014
L54,5, . . . ,n012
L52,3, . . . ,n0

L50 or 1, . . . ,n024,n022

n0
215n0140

n0 ~0,4!

~0,4!

~3,2! (n013,2) 2
0

L52,3, . . . ,n015
L50 or 1, . . . ,n011,n013

not allowed by symmetry
when n05even

n0 ~0,4!

~0,4!

(3,2) (n011,3) 3
1

L53,4, . . . ,n014
L51,2, . . . ,n012

(n014)219

n0 ~0,4!

~0,4!

~3,2! (n021,4) 4
2
0

L54,5, . . . ,n013
L52,3, . . . ,n011
L50 or 1, . . . ,n023,n021

not allowed by symmetry
when n05even

n0 ~0,4!

~0,4!

~4,0! (n014,0) 0 L50 or 1, . . . ,n012,n0

14 n0
2111n0128

n0 ~0,4!

~0,4!

~4,0! (n012,1) 1 L51,2, . . . ,n013 not allowed by symmetry
when n05even

n0 ~0,4!

~0,4!

~4,0! (n0,2) 2
0

L52,3, . . . ,n012
L50 or 1, . . . ,n022,n0

n0
215n0110
014314-7
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TABLE II. Energy spectrum of the system12C112C, in our model with inner structure@UR(3)5U(3)# compared to experiment~Exp.!
and theSOR(4)@5SO(4)# model @8#.

L50 L52 L54 L56 L58

Exp. SO(4) U(3) Exp. SO(4) U(3) Exp. SO(4) U(3) Exp. SO(4) U(3) Exp. SO(4) U(3)

3.17 3.44 3.17 3.75 3.90 3.79 4.46 4.96 5.26 6.49 6.63 7.56 9.65 8.91 1
3.35 4.4 3.49 4.62 4.86 4.12 5.77 5.92 5.58 7.55 7.59 7.88 9.84 9.87 11
4.25 5.2 4.25 4.88 5.66 4.61 5.96 6.72 6.07 8.86 8.39 8.37 10.30 10.67 1
5.80 5.84 5.80 5.00 6.3 4.88 6.85 7.36 6.34 9.05 9.03 8.64 10.63 11.31 1
5.97 6.32 5.97 5.37 6.78 5.37 7.30 7.84 6.83 9.33 9.51 9.13 10.90 11.79 1

6.64 6.42 5.64 7.1 5.84 7.45 8.16 7.30 9.98 9.83 9.60 11.20 12.11 12
6.8 5.80 7.26 6.43 7.71 8.32 7.54 10.45 9.99 9.84 11.38 12.27 12

6.01 6.60 7.90 7.89 10.19 11.90 13.33
6.25 6.82 8.26 8.06 10.36 12.36 13.50
6.63 6.92 8.45 8.28 10.58 12.98 13.72
7.05 7.05 8.30 10.60 13.74

7.09 8.38 10.68 13.82
9.67 11.41 13.78
9.85 11.59 13.96
.
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where both valuesl andm are different from zero and even
The deduced values are

xR50.828 66 MeV,

xT520.0412 MeV,

x1250.164 38 MeV,

xv5215.4202 MeV,

xN520.0132 MeV,

n058,

a50.104 MeV,

c50.1225 MeV,

b51.437 fm. ~18!

The numerical energy values of our theoretical calculat
are listed in Table II@column UR(3)]. These can be com
pared to the experimental values given by Refs.@2,8#. The
theoretical energy values as obtained by the model of R
@8#, without inner structure of the clusters, are given in c
umn SOR(4) of Table II. In theSOR(4) model only those
states are listed, which have a corresponding interpretatio
the experiment. In Fig. 2 the spectrum within our model
depicted~middle panel! and compared to the experiment
one ~left panel!. In the right panel the spectrum as obtain
in the SOR(4) model is depicted.

When one compares the spectrum of our model and
SOR(4) model to the experiment, we observe a qualitat
agreement of our model while the spectrum of theSOR(4)
model does not reproduce as good the characteristic s
ture of the experimental result. In the theory there are so
states not present in the experiment and also the inverse
01431
n

f.
-

in

e
e

c-
e
b-

servation can be made. One has to keep in mind that
all states listed in Refs.@2,8# are completely verified ex-
perimentally; however, it is difficult to decide which one
are not real states~molecular resonances! of the system
@44#. There might also be more states than reported in
experiment.

Note that only positive parity states are listed. In Ref.@8#
there are only positive parity states because the clus
have no structure~see discussion in Sec. II!. In our model,
however, negative parity states and thus also odd spins e
In the reaction channel12C112C negative parity states
cannot be populated but maybe they can be reached in e
ing the 24Mg nucleus. In this way one could discrimina
between different models. To measure electromagnetic t
sition rates is also recommendable. Of course, these s
are very difficult to measure but experiments are planed@45#.

0

2

4

6

8

10

12

14

E
 [ 

M
eV

 ]

Exp.L=0+L=2+
L=4+

L=6+

L=8+

UR(3)L=0+L=2+
L=4+

L=6+

L=8+

L=0+L=2+
L=4+

L=6+

L=8+

SOR(4)L=0+L=2+
L=4+

L=6+

L=8+

L=0+L=2+
L=4+

L=6+

L=8+

L=0+L=2+
L=4+

L=6+

L=8+

FIG. 2. Energy spectrum of a nuclear molecule12C112C, for
the model with inner structure of the clusters. The left panel sho
the experiment and the middle one shows the theory. In the r
panel the spectrum of theSOR(4) model is depicted@8#.
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An alternative is given by the requirement to reprodu
the internuclear potential as obtained in a double fold
calculation.

Having obtained a satisfactory fit for the spectrum we c
now use the obtained parameter set in order to deduce
relative potential of the two carbon nuclei as a function
the relative inclination angle. Below we will show that o
potential is consistent with that obtained in double foldi
calculations@41#. The result is depicted in Fig. 3. Note th
the potential, as obtained by adjusting the energies, is
markably well reproduced. Though,r 0 was fixed by hand,
the stiffness of the geometrical potential comes out with
any further fitting.

Now we proceed to get information about the spectrum
the nuclear molecule,starting from the knowledge of th
relative nuclear potential only. The potential can be obtaine
using double folding techniques@28#. We use the procedur
described in Ref.@41#. In order to deduce the model param
eters, some conditions have to be fulfilled.

~1! The position of the minimum should agree to the c
culated one, i.e.,

]V

]r U
r 0 ,Q0

50, ~19!

wherer 0 is the position of the minimum at the equilibrium
orientationQ0.

~2! The stiffnessCr at the minimum, as obtained in th
double folding calculation, i.e., forr 0 and at the equilibrium
orientation angleQ0, should be the same

]2V

]r 2 U
r 0 ,Q0

5Cr . ~20!

0

2

4

6

8

10

4.5 5 5.5 6 6.5 7 7.5

V
(r

) 
[M

eV
]

r [ fm ] 

0o

15o

0o

15o

FIG. 3. Mapped geometrical potential for12C112C as obtained
in the model with inner structure of the clusters, after having
justed the experimental spectrum.
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~3! The slope of the potential at the minimum positionr 0
for a different orientation than the equilibrium one (Cr ,Q1

)
should be reproduced or somehow given, i.e.,

]V

]r U
r 0Q1

5Cr ,Q1
, ~21!

~this condition can also be substituted by requiring that
position of the minimum atQ1 is reproduced!. Cr ,Q1

is cho-

sen such that the minimum atQ1 is near the calculated one
~In general, adjusting the exact position of the minimum
Q1 is difficult to achieve, which led us to this approxima
tion.!

~4! The expectation value of̂nR& is proportional tor 0
2,

which gives

r 0
252b2n0 . ~22!

~5! The energy as a function ofnR , the number of relative
oscillation quanta, has to givethe samevalue ofn0

E~n0!5minimal, ~23!

where we assumed that the lowest irreducible representa
~irrep! is at the maximal coupling, i.e., (l,m)5(lC
1n0 ,mC) of the cluster irrep with the relative motion, wher
(lC ,mC) is obtained by a coupling of the individual cluste
states. The indicesQ0 andQ1 refer to the orientation angle
at equilibrium and another angle, respectively.

Condition ~1! with ~4! leads to

r 0
2

2b2
52

@4~xR1xT!1xv1xTG#

2~xR1xT!
~24!

and condition~2! leads to

Cr58~xR1xT!
r 0

2

2b4
, ~25!

whereG is defines as~note thatu590°1Q!

G5A8
N1b1

11b1
2 S 16

b1

2A2
D @3cos2~u210

!21!

1A8
N2b2

11b2
2 S 16

b2

2A2
D @3cos2~u220

!21#. ~26!

The last equation relates the valuen0, as obtained in Eq.
~23!, with that in Eq.~22!. The result is

-

r 0
2

2b2
5n052

@3xR13xT1xv1xT~2lC1mC!#

2~xR1xT!
2

xN@lC
2 1mC

2 1lCmC13~lC1mC!2^C2„SUC~3!…&Q0
#

2~xR1xT!
. ~27!
4-9
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Substituting Eqs.~22! and ~27! into Eqs.~24! and ~25! we
arrive at

Cr5
2@4~xR1xT!1xv1xTG#2

r 0
2~xR1xT!

~28!

and

~xR1xT!5xT@G2~2lC1mC!#2xN@lC
2 1mC

2 1lCmC

13~lC1mC!2^C2„SUC~3!…&Q0
#. ~29!

Finally, we use the condition given in Eq.~21!, to obtain

Cr ,Q1
5

r 0
2

2b2
@2~G82G!xT#

1xN@^C2„SUC~3!…&Q2^C2„SUC~3!…&Q0
#,

~30!

whereG85G (Q5Q1). Using Eqs.~28!, ~29!, and~30! we
finally obtain a relation betweenxT and xv of the form
f (xv ,xT)50 andxR5xR(xv ,xT).

For these equations we obtain an infinite number of v
ues (xv ,xT) that satisfy all the conditions that we are co
sidering; however, we need that (xR1xT).0 andn0.0. In
Fig. 4 xT is plotted as a function ofxv and the lines indicate
the points that fulfill all conditions. There are sever
branches but only one is of physical significance. One bra
corresponds to a negativen0, while another one~the straight
line! corresponds to (xT1xR)50. This implies a degen
eracy in alln0 as can be deduced from the form of the ene
@Eq. ~4!# in terms of Dn5nR2n0, which is E5E(n0)
1c(xT1xR)Dn2, wherec is a numerical factor. The only
branch of interest is that with negativexv ~a result that de-
pends on the particular system considered!.

As a consequence, all parameters of the model can
determined as a function ofxv,0, reflecting the remaining
ambiguity. In Fig. 5xT , xR1xT , x121xT , and x121xT
1n0xN are plotted. The last determines the scale of exc
tion of different irreps (lC ,mC), where a negative value fa
vors the largest dimensional irrep at low energy, while

-1

-0.5

0

0.5

1

1.5

2

2.5

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

χ T
 [M

eV
]

χω [MeV]

χT+χR>0
n0>0

χT+χR=0

χT+χR>0, n0<0

χT+χR<0, n0<0

FIG. 4. Dependence of the parameterxT on xv , for 12C
112C. The physical and unphysical branches are indicated.
lines indicate the positions that fulfill all conditions.
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a

positive value results in the lowest dimensional irrep at l
energy.xR1xT gives the scale of excitation in the relativ
motion. Large positive values imply a big difference betwe
different radial excitations, while small values imply a den
excitation spectrum in the radial degree of freedom.

All choices ofxv will give potentials of equivalent form
i.e., the main differences are at large r. However, the spec-
trum changes from small values of2xv to large ones. For
small values, the spectrum is dense and the radial excitat
are very near together, while for larger2xv values the spec-
trum gets less dense and the radial excitations are far
away.

There are two distinct regions:~i! (2xv) greater than
approximately 5.4 and~ii ! (2xv) lower than approximately
5.4. The first region corresponds to smalln0 and there lies
the solution, which we obtained adjusting the energy sp
trum. However, it is clear now that this was not the on
choice. For comparison, we choose a point in the sec
region, leading to thex values:

xR50.101 MeV,

xT520.066 MeV,

x1250.396 MeV,

xv522.5 MeV,

xN526.031024 MeV,

n0540,

a50.103 MeV,

c50 MeV,

b50.64 fm, ~31!

wherec could not be deduced from the potential and we p
it equal to 0. The value ofc can only be determined knowin
the spectrum. Thea parameter can be estimated, assumin
moment of inertiamr 0

2, with m as the reduced mass andr 0

e

-0.5

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40

χ 
 [M

eV
]

-χω [MeV]

χΤ
χR+χΤ

χ12+χΤ
χΤ+χ12+n0χN

FIG. 5. Somex parameters and combinations of them as a fu
tion of 2xv , for the physical branch of the system12C112C.
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the position of the minimum in the relative motion. The fitte
potential is shown in Fig. 6, which is comparable to that
obtained fitting first the energy spectrum~Fig. 3!.

The spectrum is depicted in Fig. 7. As can be seen,
quality of the spectrum is comparable to the former one. T
shows that there exist an ambiguity in whichxv value to
choose. When we go to even larger values of2xv the spec-
trum gets more stretched, leading to a low density of sta
per unit energy interval.

The interpretation of the structure of the spectrum is a
different in the two regions. While for (2xv)@5.4 all low
lying 01 bands correspond to the samenR5n0 but different
(lC ,mC), for (2xv),5.4 the low lying 01 bands have the
same (lC ,mC) but differentnR 5 n0 , n062, etc.

The results of this subsection do imply the following.~1!
It is not sufficient to propose for the Hamiltonian just a line
combination of second order Casimir operators. The res
ing potential may be wrong.~2! Geometrical information is
essential in order to propose a consistent Hamiltonian.~3!
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FIG. 6. Adjustment of the geometrically mapped potential
that as obtained in a double folding calculation.
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FIG. 7. The deduced energy spectrum of the molecular re
nances of12C112C as obtained from adjusting to the double foldin
potential.
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The potential, as obtained in a double folding calculation
not sufficient to pin down the structure of the spectrum, b
one can discuss at least distinct scenarios.

Fitting first the spectrum and afterwards mapping to
potential is, within a certain acceptance, consistent with fi
adjusting a potential and then calculating the spectrum.
ambiguities, which appear in the mapping, can be reduce
distinct classes of spectra. This gives us hope that one
deduce some characteristics of the spectrum of heavy nuc
molecules, where only a potential can be obtained and
experimental information is available yet. The relati
nuclear potential, as obtained in a double folding calculati
is a good starting point.

The comparison to theSOR(4) model was also given
The spectrum of theSOR(4) model does not reflect the co
rect structure of the experimental spectrum.

B. 96Sr¿146Ba

The description of such a system can be done, conside
the algebraicUCi

(6) IBA-1 model@32–34#, as one possibil-
ity, for the internal degrees of freedom of each nucleus a
for the relative motion of the clusters aUR(4) group@33,34#
is used.

The Hamiltonian that corresponds to dynamical chain~1!
is shown in Eq.~2!. The SUCi

(3) irreps are (18,0) and

(14,0) for Sr and Ba, respectively. The coupled cluster irr
which is lowest in energy, is (lC ,mC) 5 (32,0), i.e., the
most prolate one.

The geometrically mapped potential is given by Eq.~11!.
For the nuclei96Sr and 146Ba ~see Fig. 8!, the deformations
and N-values areb(Sr)5b1

phys50.338, b(Ba)5b2
phys50.2,

N(Sr)5N159, and N(Ba)5N257, where the tables o
Möller and Nix @46# were used in order to deduce the defo
mation values. They are transformed to theb iba deformation
values according to Eq.~12!. With this, we obtain the values
for the parametersb i : b151.53 andb251.77.

We proceed in a similar way as for12C112C. Applying
the conditions of the last subsection, we again arrive at
allowed range ofxv,0. In Fig. 9 thexT and the same
combinations as in Fig. 5 are plotted. Note thatxR1xT ,

o-
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FIG. 8. Dependence of the parameterxT on xv , for 96Sr
1146Ba. The physical and unphysical branches are indicated.
arrows indicate the range of validity of the limits associated toxT

andn0.
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responsible for the scale of the radial excitation, is nea
constant and small, which implies low lying radial excit
tions throughout the whole range ofxv , a stable feature no
encountered in the previous example. The combinationxT
1x121n0xN , giving the scale of the (lC ,mC) excitations,
andxT are small for2xv around 20 MeV and raise toward
larger or lower2xv , while their signs are opposite.xT de-
termines if the largest irrep (lC1n0 ,mC) is lowest in energy
~whenxT,0) or the smallest one~whenxT.0). The cross-
ing point from one situation to the other is at about2xv

520 MeV.
The n0 value and the oscillator lengthb do not change

appreciably either over the indicated range of2xv .
In Fig. 10 we plot the potential as obtained in the dou

folding calculation~solid line for u50° inclination of the
symmetry axes and dashed-dotted line foru515°! and as
deduced from adjusting the parameters of the geometric
mapped potential. We had problems to shift the minimum
15° to the right position, indicating a too stiff behavior of th
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FIG. 9. Somex parameters and combinations of them as a fu
tion of 2xv , for the physical branch. The system considered
96Sr1146Ba.
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FIG. 10. The relative potential foru50° and 15°, as obtained b
the mapping to the geometrical potential, compared to the do
folding calculation.u gives the inclination angle of the symmetr
axis of thenow prolatenuclei to the molecularz axis.
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algebraic model, i.e., probably further interaction terms
needed. However, without thexN term the minimum at 15°
would be far off and contradictions appear related to
consistency requirements.

Finally, in Fig. 11 we plot the spectrum of the hypothe
cal nuclear molecule96Sr 1 146Ba for 2xv512.03 MeV.
Also in Fig. 11 the first vibrationalb- andg-band heads of
the Sr and Ba nuclei are shown, as far as reported@47#. The
parameter set, obtained by fitting to the double folding p
tential, is given by

xR50.286 MeV,

xT520.146 MeV,

x12520.606 MeV,

xv5212.03 MeV,

xN50.014 MeV,

n0574,

a50.0218 MeV,

c50 MeV,

b51.06 fm, ~32!

where, as in the carbon-carbon case, thec parameter can no
be determined and it is put arbitrarily equal to 0.

The choice of thexv value is alsoad hoc, but it shows
one particular property of the heavy nuclear molecule: T
rotational bands are severely squeezed due to the large
ment of inertia. The Coriolis effect is not strong enough
order to distort the rotational structure of the vibration
bands, as happened in the model for three-cluster nuc
molecules, proposed in Ref.@25#. The structure found here
will prevail also for three-cluster molecule, i.e., also there
states within a rotational band are squeezed, showing tha
large Coriolis effect seen in Ref.@25# is the result of the
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FIG. 11. Spectrum of the hypothetical heavy nuclear molec
96Sr1146Ba. The dotted lines refer to excited bands on Sr~left! and
Ba ~right!.
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interaction used. It also indicates that one has to be v
careful in choosing a Hamiltonian and the mapped poten
has to be consistent.

IV. CONCLUSION

In this paper we used an algebraic nuclear vibron mo
for nuclear molecules with inner structure of both cluste
We discussed the dynamical symmetryUC1

(6)^ UC2
(6)

^ UR(4) . SUC1
(3)^ SUC2

(3)^ SUR(3). Thegeometrical
mapping of the corresponding Hamiltonian was investiga
using the coherent state method. The trial state depends
parameteraR, which we relate to the distancer between the
clusters. An important point is to note that the parameteraR
of the coherent state is not proportional to the inter clus
distancer and in addition is restricted from above via th
cutoff NR in the relative number of quanta.

We showed that the dynamical symmetry has a minim
in the relative distance at values different from 0, i.e.,
SUR(3) dynamical symmetry isnot always related to the
harmonic limit. With a negative and sufficiently largexv a
minimum atrÞ0 can already be obtained.

The model was first applied to the light system12C
112C, where a lot of experimental information is availab
The spectrum was adjusted satisfactorily to the experim
The agreement of theSOR(4) model to the experiment wa
less satisfactorily, the spectrum being too sparse. Our pr
dure gives the correct stiffness at the minimum (r 5r 0 and
Q050°), which is by no means trivial. One sees that ge
metrical information~position of r 0 and comparing the geo
metrically mapped potential to informations obtained v
e.g., the double folding calculation! is essential in order to
guarantee that the algebraic Hamiltonian makes sense or
The pure adjustment to energy~and also to a limited set o
transition elements! is not sufficient. It also shows that th
requirement, to reproduce the internuclear potential, m
help pin down the structure of the Hamiltonian, as elect
magnetic transitions do~the latter are extremely difficult to
measure!.

For heavy nuclear molecules no information about th
spectrum is available yet. The model relies heavily on
tt.

en
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double folding results for the potential. Using the inform
tion of the structure of the individual clusters, it permits
deduce the Hamiltonian of the nuclear molecule. In this w
the structure of the spectrum of such a nuclear molecule
be estimated.

We applied the model to the heavy system96Sr1146Ba.
The parameters of the model were adjusted to the pote
obtained in a double folding calculation. The moment of
ertia in the model~related toa) was defined viamr 0

2. The
parameter in front ofK2 could not be determined due t
missing information. A spectrum was given, showing no d
tortion of a large Coriolis force. While the scale of the rad
excitations remains stable over a large range ofxv , xT and
x121xT1n0xN vary appreciably, resulting in differen
scales for the excitation to different couplings of (lC ,mC).

We showed that the geometrical mapping applied
able to give a consistent relation of the algebraic mo
and its geometrical interpretation. The potentials obtain
are in remarkable agreement with those from double fold
calculations.

The next step would be to investigate again three-clu
molecules. In Ref.@25# a strong Coriolis force was predicted
generating no squeezed rotational bands except for
ground state band. Whether this is still the case for ano
Hamiltonian, as that proposed in this contribution, has to
found out. However, the results of this contribution sugg
that in the dynamical symmetry chosen this is not the ca
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