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A nuclear vibron model for nuclear molecules consisting of two clusters with inner structure is investigated.
The Hamiltonian model has Hcl(6)®Uc2(6)®UR(4)3SUc1(3)®SUc2(3)®SUR(3) dynamical symme-
try. Applying a geometrical mapping, the relation of the parameter of the coherent state to the relative distance
of the two clusters is deduced. The Hamiltonian model exhibits a minimum at relative distances different from
zero. It is discussed how to deduce the potential, knowing the spectrum, and how to deduce the spectrum,
knowing the potential. As a classical example the syst&m- 12C is taken, where the spectrum is known and
the internuclear potential can be obtained. This system serves as a consistency check of the method. After-
wards, the heavy syste¥Sr+14%Ba, playing a role as a subsystem of a possible three cluster molecule, is
investigated and the possible structure of the spectrum is deduced. We show that in order to obtain a Hamil-
tonian consistent with a geometrical picture, the structure of this Hamiltonian is restricted. Ambiguities of the
structure of the spectrum still exist but can be ordered into different classes.
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I. INTRODUCTION tion of the relative motion, a result that is very important for
our procedure.

Nuclear molecules were observed for the first time in In Refs.[12,13 the nuclear vibron model with internal
1960([1] in the dispersion of’C+*?C. Since then, several structure of the clusters was introduced for the description of
new molecular systems were discove(sée the compilation spectra at low energy. After a general discussion, the model
of Ref.[2]). On the theoretical side, there exist numerousis restricted to one deformed cluster with the other partici-
models to describe the formation of nuclear molecules. Fopants being sphericdkr clusters. The model is intended to
example, in Ref[3] the system is described by a two-centerdescribe the cluster structure of a nucleulatenergy, con-
harmonic oscillator, which merges, in case of fusion, to afrary to our intention to restrict to the molecular resonance
single harmonic oscillator, as a function of an adiabatic disSector only. The mod¢lL3] was successfully applied to vari-
tance parameter. In Rd#] the double-resonance mechanism©Us heavy nucle{14]. Though, the application produces
was used to describe the formation of a nuclear molecule anged agreement with the experiment, the Pauli Exclusion
in Ref. [5] the band-crossing model was introduced. A Com_Pnnc:lpIe should be important because of large overlap of the

lete overview of the advances in the last decades is given iff particles with the core at .IOW ener¢g§5]. :
pRef 6] g In Refs.[16,17] the Semimicroscopic Algebraic Cluster

Later, in Ref[7] an algebraic modéthe vibron modelis Model (SACM) was introduced. As an important feature, this

presented and successfully applied to e+ 12C system model observes thPauli Exclusion Principle As a conse-
[8]. No internal structure of the clusters was taken into aCquence, the number of relative oscillation quanta is limited

; : ) , from below. The model was applied successfully to various
count. The relative motion of the clugters is described by aRuclei[11,18, encountering several systematic behaviors of
Ugr(4) group, where the dynamical symmetry chainie parameterfl)]. Also the coexistence of different cluster
URr(4)DS0x(4) was usedthe indexR refers to the relative  siryctures within the same nucleus was investigdeda.
motion). This chain produces a minimum in the relative po- |, Ref. [21] the SACM was mapped to a potential. Due to
tential[9], which is believed to be not the case for thg(3)  the lower limit in the relative oscillation quanta, a mini-
dynamical symmetry, which produces in general an anhammum at a value different from 0 is produced. One advantage
monic oscillator. In Ref[10] the same system was investi- of the SACM is that it describes within the same model
gated within the vibron model and in RdfL1] within the  the low and high energy part, for states of positive and nega-
nuclear Semimicroscopic Algebraic Cluster Model, takingtive parity. The high energy part can be related to nuclear
into account the Pauli principle. There, it was found that themolecules.

Ug(3) dynamical chain is more appropriate for the descrip- Recently, the study of nuclear molecules revived due to
the possible observation of long living heavy systems with
three clusterd22]. In Ref. [23] a geometrical model was

*Email address: hess@nuclecu.unam.mx used in order to deduce the structure of the molecular
"Email address: misicu@th.physik.uni-frankfurt.de spectrum. A distinctive feature is that each cluster has an
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inner structure, i.e., a deformation, which plays an essentiditting the spectra first and mapping afterwards to the poten-
role. However, the molecular system is restricted to lineatial is consistent with first deducing the parameter from a
configurations and harmonic interactions, otherwise no anagiven internuclear potential and then determining the spec-
lytical results can be obtained. In Re24] a triangular  trum. The second system investigatediSr+4Ba, which
configuration was considered without an inner structure oplays a role as a subsystem in a three-cluster mold¢@afe

the clusters, and introducing deformation for the clusterdn Sec. V conclusions are drawn.

leads to a complicated structure, difficult to solve, except
numerically.

The difficulties encountered in the geometrical model lead
to investigate algebraic models. The first attempts were re- The vibron model[7] is combined with the Interacting
stricted to spherical clustef25,26. Recently a complete Boson Approximation(IBA) [32—34 in order to form the
description of the algebraic model was giviEdY], also re-  nyclear vibron mode[12,13. For light nuclei, the IBA-4
stricted to spherical clustefgspecially*’C as composed by model is used34,35, while for heavy nuclei the IBA-1
threea particles. As it seems, the algebraic model is more [32-34 has to be applied. Both approaches make use of the
flexible in describing Complicated Configurations and anharU(G) group, whose generators are all possib|e combinations
monic interactions of nuclear molecules. However, in mosiyf 5 creation and annihilation operator of s(spin 0 and/or
cases the clusters have deformation and their influence on they boson(spin 2. In the IBA-4 model, there are besides the
structure of the nuclear molecule should be important. proton and neutron pair bosons also proton_neutron pair

In order to Study the introduction of deformation of the bosons. Each cluster will be represented by such a group.
clusters, Ref[26] investigated the system with two clusters. The relative motion is described bylg(4) group, whose
As shown there, the presence of deformation in clusters igenerators are composed pyposons(spin 1) and an auxil-
important for the formation of a relative minimum. The jary shoson, different from that in the IBA, which introduces
Hamiltonian used did not belong to a dynamical symmetry, cytoff when the total number of bosamst+ n,= N is kept
chain and a diagonalization should be performed. constant. The bosons vary from 0 to the cutoff value. The

The objective of this paper is to present a nuclear vibrongrge group is given by the direct produ@=Uc (6)

model _for nuclear molecules, using a Ham_|lt0n|an ywthln a|®Uc (6)® Ur(4), where the indeC; refers to théth clus-
dynamical symmetry, and to give a connection of this mode 2

to geometrical potentials, consistent with internuclear potent€r @ndR refers to the relative motion. _

tials obtained by double folding metho28]. We will as- There are many possible subgroup chains, each corre-
sume a small overlap between the clusters, implying that théPonding to a dynamical symmetry. The general classifica-
Pauli Exclusion Principleplays a minor rolg15]. Also to  tion will be done elsewherg36] and the method, presented

study the effects whehoth clusters are deformed is interest- 1N this contribution, can be applied to all other situations.
ing on its own. Here, in particular, we will discuss the chain

We will show that theS Oz(4) dynamical symmetry is not
the only one that produces a minimum in the relative poten-
tial but also does th&Jz(3) dynamical symmetry. For the UC1(6)®UCz(6)®UR(4DSU01(3)®SUC2(3)®SUR(3)
construction of the relative potential, which will depend on

Il. THE MODEL

the relative orientation and the deformation, the coherent D[N1] [No] [Nr] (Ayap1) (2. 2)(NR,0)
state technique will be usd®,29-31. DSUc(3)®SUR(3)DSU(3)DSO(3),
Knowing the internuclear potential will also help reduce
the number of ambiguity in the parameters, alternatively to pc (Ac,mc) (NRO)(N,u) L (1)
the use of electromagnetic transition rates, not available in
general.

The paper is organized as follows. In Sec. Il a particulawhereN; gives the number of bosons in the IBA modek
nuclear vibron model will be presented. In Sec. Ill the geo-in the total number of bosons in the relative motiok, ,(u;)
metrical mapping is discussed. A relation will be deriveddenotes th&U(3) representation of thigh cluster, { ¢, rc)
between the parameters of the coherent state and the relatiigethe SU(3) irrep (irreducible representatiprio which the
distance. In Sec. IV the model is applied first ¥@C+%C.  two clusters are coupled) () is the totalSU(3) irrep,L is
The results will be compared to the model introduced in Refthe angular momentum, ang: and « are multiplicity indi-
[8]. Due to the assumption that the overlap of the two clusces. No multiplicity appears in the reduction 8U(3)
ters is small, only the energy range where the nuclear mol® SUg(3) to the totalSU(3) group, because the irrep of
ecules are located can be described by such a model. AUg(3) is symmetric. Thex value can be approximately
lower energies th&auli Exclusion Principleshould be ob- related to the projection of the angular momenturan the
served. Because we intend to apply the model later to heavintrinsic z axis[37]. In the case of a symmetric system, the
nuclear molecules, where the overlap is small, this proceduradditional condition X + x4+ ng) =even has to be observed
is justified. The'?C+%C system was also discussed within [17]. Note that for symmetric systems, such ¥€+*2C,
the SACM[11] and was able to describe the low and thewhere no inner structure is taken into accontu=0),
high energy region at the same time. Here, the investigatioonly ng=even is allowed, which impliek =even and posi-
of ¥2C+1%C mainly serves as a consistency check, i.e., thative parity. However, when the inner structure is included,
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the final\ and n values are, in general, different from 0. In + X
this caseng can be odd and, consequently- odd too, and
negative parity is allowed.
Note that one can also substitute th@i(6) groups by the
microscopicSUc (3) groups, i.e., instead of working in a
vibron model we can work in &ermion Algebraic Cluster 2
Model The procedure presented in this contribution has a 0
larger range of applicability.
A possible Hamiltonian corresponding to dynamical chain _e
(1) can be, up to second order in the generators of the groups,
given by

NvY

H=x1C2(SUc,(3))+ x2C2(SUc,(3)) + x12C2(SUc(3))

+ XoNrT XRC2(SUR(3))+ x7C2(SU(3)) 621:_62226

+Xn[C2(SUc(3))—(C2(SUc(3))) g )Nr+aL?+cK?,
FIG. 1. The intrinsic system of the nuclear molecule. Tlais
(2 connects the two centers of masses. For prolate deformed nuclei,
the diagonal lines indicate the symmetry axes. For oblate deformed

nuclei, the symmetry axes are perpendicular to the diagonal lines.
wherey,, is the parameter afiz and the othely values give

the strength of the different quadrupole-quadrupole interac- -

tions, L? is the angular momentum operator, akd is the Qia_im=[dl 5+s'dim]+ \ﬁ [d'ed]3, 3)
operator introduced in Ref37] whose eigenvalug? is ap- 4

proximately the square of the projection of the angular mo-

mentum onto the intrinsic symmetry axis. The second ordefyhere the positive sign refers to oblate and the negative sign
Casimir operators are a function of the angular momentumefers to prolate nuclei. The indéxn Eq. (3) refers to the
operators and the quadrupole operators. TiRen the first  nymber of the cluster anmh is the magnetic component of
line in Eq.(2) is the number operator of the relative oscilla- the quadrupole operator.

tion quanta. The significance of the term proportionajfp The eigenvalue of Hamiltonia2) with respect to the

will be explained later on. It will allow us to reproduce the phasjs defined by dynamical group ch4lin is given up to a
correct position of the minimum in a cut through the poten-constant by

tial at a given relative orientation, different from that at the

absolute minimum. The expressi¢n -) contains geometric B PR 2 2

information and we will show below that to obtain a suitable E= X1l 1+ 41+ Aapa+3(Nat ma) [+ xo Ao+ uot+Aop,

Hamiltonian, geometric information is indispensable, other- +3(Nat + N2+ u2 4+ F3(hmt

wise inconsistencies with the calculated internuclear poten- (Aot p2) I+ xad ket uethepet 3t uell

tial appears. For example, the minimum of the mapped po-  + y,ng+ xr(N3+3ng) + x7[ N2+ u2+ A+ 3(A+ )]

tential at inclination angles different from O would be far off .

the correct position and the number of relative quanta at the  +xn{[Act+uctAcpct3(Act+uc)]

equilibrium position would not be that of the lowest state of B 2 2

the molecular system. <C2(SUC(3))>%}”R+3L +eK- (4)
The Hamiltonian in Eq(2) is an extension of that pro-

posed by Daley and lachel[d3], where only one deformed  The question remains, if this dynamical symmetry ex-

and one spherical clusters were considered. Some new terfigits a minimum in the relative potential. To show it, the

are, e.g., th&? and theyy term. Surely, the Hamiltonian in  geometrical mapping will be discussed in the following
Eq. (2) is not the most general one and further terms shoul&ection.

be added in order to get a complete description of two-

cluster molecules. However, our intention is to keep as

simple the Hamiltonian as possible. Furthermore, as will be ll. THE GEOMETRICAL MAPPING

seen later on, the Hamiltonian proposed can already repro-

duce sufficiently the mean features of the structure of nuclear First, we consider the relative motion, using the coherent

molecules and the internuclear potential. One possible reasatate techniqug9,29,31. It is sufficient to consider the sys-

is that the Hamiltonian in Eq(2) renders the quadrupole- tem with respect to the molecular system defined as follows

guadrupole interaction as the dominant one, which is a reasee Fig. 1: The moleculaz axis is along the vector con-

sonable assumption for large extended and deformed sysecting the centers of masses of each cluster. In this system,

tems, as the nuclear molecule. there are onlypg, bosons in the relative motion. The coherent
For the cluster quadrupole operators we hg32 34 state is given by
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(s"+ agpf) "R whereb= A/ o, is the oscillator length. _
INR, ag)= —2|0>, ) Because the variableg ranges from 0 toe, r varies from
VNR! (1+ ag)Nr

0 to a maximum valubé/2Ng. In order to describe a nuclear

whereag is the parameter of the normalized coherent statem°lecule, the values db and N have to be such that

The parameteiy has to be related to the relative distance@"9€s from 0 up to several fm above the distance where the
r of the two clusters. We start from the definition of the WO clusters are barely touching, definedrag+ Ro, where
physical relative distance operator, before the auxiliabp- ~ Roi iS the nuclear radius of cluste(i=1, 2) in the direction

son was introduced, quantized with respect to the harmoni@f the moleculaz axis. This implies a largélg and thus a
oscillator with frequencyw, : correct interpretation af as the internuclear distance. As will

be shown below, for largdlg the potential will depend ex-
% : plicitly only on the oscillator lengthp, and not onNg.
Mm= Z,u—w(pm+ Pm)- (6) As can be seen from E) the parametety is approxi-
' mately proportional to for small values otxg. However, in

Due to the artificial introduction of a cutoffNg), having ~ general, this is not the case and one has to take great care in
added an additionas-boson operator, the relative distance not identifyingar directly with the distance.r
operator has to be modified such thatis conserved and for There is another definition of the parameter of the coher-
large cutoff values Nlg— ) both operators have the same ent state, i.e..~ ((1— 63)s'+ sgpd)N®|0) [9]. In this form

matrix elements, save a contribution fram=s's (see be- the relative distance is directly proportional to the parameter
low). Therefore, we define the algebraic distance opef&for Jr. However, due to the square root the permitted range of

by Or is limited between 0 and 1. This results into the same
constraint inr as given above.
a_ | T + T Let us now turn our attention to the structure part of each
fm= Zluwr(pms+s Pm) @) cluster, described by the IBA<{for heavy clustersor IBA-4

(for light clusters. We have to use the following coherent
and state[30]. (In the following section we will show that for
. light nuclei, where the IBA-4 moddl34,35 has to be ap-
- (rm) ®) plied and there are proton-proton, neutron-neutron, and
m \/<—st_> proton-neutron bosons, the distinction of the different bosons
can be skipped for a particular representajion.

as the distance variable, whei&'s) is the expectation value

of s's with respect to the coherent state. The upper index (5T+ @, 0HM
“a” refers to “algebraic” andmis the spherical component. IN;: Bi, )= $|O>, (10)
Because the two nuclei are connected viarthé&) axis, only INH(L+ a)N)

ro will be important and is equal to the internuclear distance
r. The variation of the algebraic operator has to be calculated ~t ~t 2
too. If the variation is small compared to the expectationv"hereo‘i2di = Zmiomiom and a; _(?i?'aiZ)' ,

value, the distance variable gives the approximated distance N 9eneral, the values of the coefficieais, are given by

2 . . ; — (2) ;
of the two clusters. The variation is proportional toNg/,  the eXPressiontizn= = Dy (6:)aizn , [40] where in the

which is very small for largeNg, as will be the case here. intrinsic reference system of each one of the nuclei we have
. - . . _ plBA —
For very small distances the variation is of the same order ofhe usual relationsa;,o=B;"'c0Sy;, @j+1=0, anda;z.»

the expectation value and the interpretatiorr gfas a dis- = (B!®*/\2)siny,, where the index IBA refers to the defor-
tance is inaccurate. For the situation discussed here, the digiation variable used with the IBA modé&ee below.

tance is always largésmall overlap. The definition of the We concentrate now our attention to axially symmetric
relative distance is consistent with the Generator Coordinatauclei only, i.e.,y=0 with g'®A>0 for prolate andg'®"
Method(GCM) in the Gaussian overlap approximation with- <O for oblate nuclei. For these casesg,, are given by
out the contribution from the zero point motif@8]. In this  «;,,=BP* D2(6,), implying a;,,= B8 0.
approximation the collective potential is given by the expec- We finally obtain, with respect to the molecular
taf[iondv{a;:ue oLtr:ﬁ Hamiltonj[a?. Othelr obsetrr:/ables aietdettre]:rsystem, defined in Fig. lg;,,=3 i'BA(3co§02i—1), @i
mine rou eir expectation value with respect to the_ 3 HIBA; _ 3 BA.:
trial state. Ingthis sensepit deviates from other dgfinitions of \/;'8‘. Sin(20y), and a..= \/;’8‘ sz(e?i)’ where
the relative coordinatf9,34,39. 6,; is the inclination angle of the symmetry axis of cluster

With this in mind, calculating the expectation value of with respect to the molecularam_s. . :
algebraic distance operatd?) with respect to coherent The complete coherent state is given by the direct product

state(4) we obtain for the absolute valueof the distance of coherent state of the _relat|ve moti¢h) and the two co-
variable herent states related to inner struct(t@). The expectation

value of the Hamiltoniari2) with respect to this total coher-
ent state is calculated fdr=0, K=0 (k=1). We obtain,

_—= =, (9) usingV instead of(H) (for a short hand notation we use
bV2Ng  (1+aR) B =By,

r aR
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ANy(N;—1)B] 1 ANy(N,—1)B5
V=(x1F X127+ x7)| 10N+ W(Ziﬁﬁl+ Z’Bi +(X2+ X127 X71) 10N2+W
1 2 1 1 8N;N2B182 B1 B2
2+\2 +—2)+ x| =124+ =14 |+ == 124 (1ot S 1+ )(11 )
X V28, 2P2] |+ (xrtx1) bzr 4b4r ) szbzr (X12 XT)(1+,35)(1+,3§) 2 22
1 Ny B1 1 ,NyB> B2
X[3CO§(021_022)—1]+ \/EXTErZH—B%<1iﬁ)[300§(021)—1]+ \/EXTErzl-f-B%(1iﬁ)[3cog(022)_1]
1 4N;N2B182 B1 B2
—r? 1+ 1+ 3c08( 01— 059 — 11— [3c0Z( 02, — 65 ) — 11}, 11
+XNb2r (1+ D) (1+ B3) 2\/5)( 2\/§>{[ COS (21~ 020 — 1] —[3C0S (a1, — 25)) — 11} 11
|
where the uppetlower) sign refers to prolatéoblate nuclei. IV. APPLICATION TO *?C+*C AND *°Sr+'“Ba

The last term in the square bracket in the last line comes
from the expectation valugC,(SU(3))). The expectation

value is taken at given angles of the orientation of the sym ; o . .
metry axes of the two clusters and guarantees that the minfiudied within the vibron mod¢8] and the nuclear vibron

mum in the potential at these orientations is at the desirquOde![ll]' Th_e reason to do thi.s again is that not.only new
position. Otherwise, the structure of the Hamiltonian is tooexperlmental information about its spectrum is available here

rigid and would produce a dependence in the orientationgz]' but also the relative nuclear potential can be calculated,

which contradicts severely the calculated relative nuclear po:&-+ Poth the spectrum and the potential are known. This

tential (see Sec. IV, allows us to adjust the parameters of the algebraic model to
Note that for the case of zero deformatioh €0, i=1,2) the spectrum and deduce the relative potential, which, in
only the terms proportional t? andr appear, Whi,Ch aré all turn, can be compared to the relative nuclear potential ob-
positive, except for they, term that can be negative. For tame_d by otherlzngealrzl(s:, e.g., double folding calculatfeds: .
X»=0 we obtain the known limit of the anharmonic oscilla- In this way the “C+™C system can be used as a test case in

tor. However, when the deformation parameters of the cIusQrder to ve.rify the validity OT the result starting from a
ters are different from O, we can obtain further the terms thal[mown reIauve_ nuclee}r pqtenﬂal 3”0' deduce the parameters
depend on the relative distance variabland can be nega- of the algebraic Hamiltonian. It will become'espemally im-
tive, depending on the sign and absolute value of ghea- portant for heavy systems where no experlmen_tal data are
rameters. Also ify,, <0 a minimum can be formed. This is a av_allable and one de_pends strongly on theoretically deter-
novel feature implying the formation of a deformed mini- mined nuclear potentials.

mum in the limit of the dynamical symmetiyz(3) in the h g\‘/ t?ﬁj sle;?rr;d Ipaﬁlgﬁvserrﬂeg:d\:\?;ihof%rrrﬁtt?;gogéo fthe
relative motion In contrast to the usual procedure, where eavy nucle olec X S part o

Y.>0 always and the lowest state is givenryy=0, in our a possible three-cluster nuclear molecf2&]. There are no

model y, can be negative and the ground state will have ataltvallal_)le exp_enmental _data of the spectrum and the calpula—
Ne>0. ion will predict a possible structure of such a hypothetical

The deformation parameters appearing in Etl) are nuclear molecule.
those as deduced in the coherent state. As shown in Ref.
[30], they are not equal to the physical values but have to be A 1204120
corrected by a factor. Usually the= 82 value in the IBA '
model is by a factor 3—5 larger than the physical deformation The carbon nucleus has to be treated within the IBA-4.

This section is divided into two parts: In Sec. IVA we
investigate the light systert?C+ 12C. This system has been

BPYS An approximate relation ig30] The appropriate group structure for the description of the
nucleus*?C within the IBA-4 is given by[34,35
Biphyszl_lg(¥) BA 12 U(36)DUg1(6)® U((6), (13
Due to additional factors, the corrections@f1/N;) is small ~ whereUg(6) describes the isospiiT) and the spinS de-
even for small values dfl; (up to 20%). grees of freedom.
In Eq. (11) there is still a free scale parameterwhich One way to obtain thé and S labels is to reduce the

was not present before in the Hamiltonian. As discussed)s(6) group to its subgroupSU(2)®SUg(2) of the
above, the introduction df was necessary in order to obtain isospin and spin groups, using as an intermediate stage of
the potential as a function in the relative distance, giverthe group SU(4), the Wgner supermultiplet group for

in fm. bosons:
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U(36)DUs{(6)®@Usy(6)DSU(4)®Uy(6)D(SU(2) The parameters of the model will be adjusted to the spec-
trum and the geometric potential deduced. The procedure is
®SUg(2))®Ug((6). (14)  as follows: We require that the, in ng=(ng)=ra/2b? is

] ] equal to the position of the minimum. The equilibrium dis-

The presence of this group is expected because the Spynce can be estimated in various ways, one is to calculate
types of bosonsT=1, S=0 andT=0 S=1 belong t0 & the radius of the nuclei in the direction of the molecular axis,
single representation of the groJ(4), namely, the six-  or via the slope of the ground state band as a function of
dimensional irrep(0,1,0. ~ L(L+1), or taking ag o the position of the minimum as it

The states lowest in energy are those symmetric inesyits for the internuclear potentiaee further beloyv The
Usq(6). Because theJ(36) irrep has to be symmetric, the gerivation ofr,, from the slope was used in R¢8&] resulting
Us1(6) irrep has to be symmetric too. This irrepW@&{(6)  inr,=6.75 fm, which is quite large because taking as defor-
contains the SU(4) irreps (0g.,0), with o=N,N  mation for 12C the value 0.5see Ref.[43] including the

—2,...,1,0r0. TheT and S values, contained in a repre- correction for largely deformed nuclpt0]) and determining
sentation (Qr,0), are given by the conditiof+S=o0,0  the distance for the touching point, assuming that the two
—2,...,1,0r0. carbon nuclei touch each other at their bellies, we mget

In the case of“C the number of bosons for the irrefl§] =4 75 fm. This estimation does not assume a smooth fall off

of Us4(6) results to befN]=[2], because there are two of the nuclear density and might give a too lay. We,
boson holes in the valence shétbur nucleon holes In this  therefore, prefer to use tirg value as obtained for the inter-
case the problem reduces to as if treating only one kinsl of pyclear potential, i.ex,=5.75 fm. We emphasize that it is
andd bosons, which justifies the use of the coherent state agnly an estimation, which, however, should be in the correct

given in the last section. range.r 3 depends on the number of oscillation quanta via the
SinceN=2, o can take the values=0,2, and thelT and  |g|ation

Scontent can be obtained using the standard procd@dte
For the reduction of théJ y(6) to the SUg4(3) group we
need to take into account thit=2 and the k,u) irreps of
SUs4(3) are given by

ré=2b%n,. (16)

Equation(16) expresses the fact that for the construction of a
(N, ) =(0,9a(2,0). (15)  Wwave function, whose dominant contribution is aroung
one needs oscillation quanta and this value depends on the
This defines th&U(3) content of each cluster. For the single stiffness of the basis oscillator, expressed by the oscillator
cluster the(0,4) irrep is the lowest in energy. According to length.
Eq. (1) the two cluster irreps are coupled to the irreps The variableng also appears in the expression of energy
(N, mc)=(4,00+(3,2)+(2,4)+(6,1)+(0,8) of SU:(3), (4). In order to have consistency, we have to require that
where(4,0) is the most prolate ongl2]. It is also the lowest E(ng) is minimal atng=ng,, whereng is treated as a con-
one in energy as pointed out in Ref40,11]. tinuous variable. This condition gives the relation

[3xr+3x7+ Yot X1(2hat pe)]  XNAET #E+Nepet3(het o) —(Ca(SUc(3)))4,]
2(Xrt Xx71) 2(xrt X71)

Ng=

17

and we have to require that this value is the same as that in In order to proceed, an assumption has to be made about
Eq.(16). It rglates the oscillator lengtwith ng. In Eq.(17) the structure of the spectrum at low energy. We assume that
the expressiofC,(SUc(3))), refers to the numerical value the lowest 0 states are the band heads with all the sae

of the geometrical mapped Casimir operatoSdi-(3) [see  but different (¢, uc), Which seems to be aad hocassump-

Eqg. (1D] at 6= 6p. The symmetry axis of a carbon nucleus tion. A different choice is to assume that these states have the
(oblate deformepis perpendicular to the molecular axis, same §c,uc) but differentn,. With the first choice, how-
which connects the two nuclesee Fig. 1. When we imag-  gyer, we obtain a better agreement with the experiment, as
ine the line connecting the center of a cluster to the touchlngvi” be seen below(We will come back to this point when

. . 1 . . .

point, we can define for®C+2C as the new inclination o spectrum is deduced starting from a known poteptial.
angle® via 6=90°+0, where thef is the inclination angle The rel ¢ i b fthe | t band listed
of the symmetry axis of a cluster with respect to the molecu- € refevant guantum numpers ot the fowest bands are liste
lar axis. in Table I. The remainingy parameters are adjusted to the

After this consideration, the relative motion for the lowest 0" states, with the above assumption of the bands at
ground state is given by the irrem,0) of SUg(3). When low energy. Thea and c parameters are adjusted, respec-

(4,0) is the lowest irrep 0SUg(3) then the lowest irrep in  tively, to the moment of inertiag=7%2/2urf) and to the
energy is given byrfy,+4,0). position of the second 2 of the first total SU(3) irreps

014314-6
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TABLE I. Irreducible representations used for the fit of the energy spectrum of the sy&tent’C.

G

ng C,

Cp Cir K L C,(SU(3)7)

no (0,4 (08 (no,8)
(0,9

L=8,9,...no+8

L=6,7,8...,np+6

L=45,...ny+4 n3+11ny+ 88
L=2,3,...no+2

L=0orl,...no—2ng

no 0,49 08 (ng—17) L=7.8,...n,+6

(04 e (Mo +4)2+45
L=1,2,...Nng
no (0,49 (08 (Ng—2,6) L=6,7,8...,ng+4
(0.4 ti;g T 2°+2 n3+5ny+40
L=0,0,r 1,. .?n0—4,n0—2
no (0,4 (1,6 (ne+1,6) L=6,7,8...,Ng+7
(0,9 L=45,...ng+5 not allowed by symmetry
L=23,...np+3 when ng=even
L=0orl,...ng—1np+1
no (0,4 (16 (ne—17) L=78,...n+6
o e (1ot 4745
L=1,2,...ng
no (0,4 1,6 (ng—2,6) L=6,7,8...,ng+4
(0,4 L=45,...no+2 2+ Bng-+ 40

L=23,...n

L=0orl,...ng—4n,—2

L=45,...no+6

L=23,...n+4 n3+ 11+ 46
L=0orl,...ng,npt2
L=56,...no+5
L=3,4,...n+3
L=1,2,...no+1
L=6,7,8...,ng+4

N (0,49 24 (ne+24)

n 2,4 Ng,5
o (04 @4  (no5) not allowed by symmetry

when ny=even

no (0,4 (24 (ng—2,6)

OONIAMPFPWONONDPPORPRPWOUO ONDMDEONDPPO PWOUONONPMOOTONMDMMOO RPWOAON ONMOO®

0 Loae w2 i+ 40
L=0orl,...ng—4n,—2
no (0,49 B2 (nNg+3.2) L=23,...np+5 not allowed by symmetry
(0,9 L=0or1,...ny+1ny,+3 whenny=even
n 3,2 ng+1,3 =
o (04 (B2 (o ) L=34,...n,+4 (No+4)+9
(0,4 L=12,...ng+2
n 3,2 no—1,4 =
0 ((())j) 32 (Mo ) t_;z Y noii not allowed by symmetry
(0.9 =42 o when ny=even
L=0orl,...np—3ng—1
No (0,4 (40 (ny+4,0) L=0or1,...ny+2ng
204)) 4 n3+11ny+ 28
No (0,49 @0 (Ne+21) 1 L=12,...no+3 not allowed by symmetry
(0,9 when ng=even
o (0,4 A0 (N2 2 L=23,...np+2 )
(0,4 0 L=0orl,...ny—2n, No+5no+10
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TABLE II. Energy spectrum of the systediC+12C, in our model with inner structurfdJ zx(3)=U(3)] compared to experimetExp.)

and theSOx(4)[=SO(4)] model[8].

PHYSICAL REVIEW C 68, 014314 (2003

L=0 L=2 L=4 L=6 L=8
Exp. SO(4) U(3) Exp. SO4) U(B) Exp. SO4) U3 Exp. SO(4) U(3) Exp. SO(4) U(3)
3.17 3.44 3.17 3.75 3.90 3.79 4.46 4.96 5.26 6.49 6.63 7.56 9.65 8.91 10.70
3.35 4.4 349 462 4.86 412 577 5.92 5.58 7.55 7.59 7.88 9.84 9.87 11.02
4.25 5.2 425 4.88 5.66 461 5.96 6.72 6.07 8.86 8.39 8.37 1030 10.67 1151
5.80 5.84 580 5.00 6.3 488 6.85 7.36 6.34 9.05 9.03 8.64 10.63 11.31 11.78
5.97 6.32 597 537 6.78 537 7.30 7.84 6.83 9.33 9.51 9.13 1090 11.79 12.27
6.64 6.42 5.64 7.1 5.84 7.45 8.16 7.30 9.98 9.83 9.60 11.20 1211 12.74
6.8 5.80 7.26 6.43 7.71 8.32 7.54  10.45 9.99 9.84 11.38 12.27 12.98
6.01 6.60 7.90 7.89 10.19 11.90 13.33
6.25 6.82 8.26 8.06 10.36 12.36 13.50
6.63 6.92 8.45 8.28 10.58 12.98 13.72
7.05 7.05 8.30 10.60 13.74
7.09 8.38 10.68 13.82
9.67 11.41 13.78
9.85 11.59 13.96

where both values and . are different from zero and even. servation can be made. One has to keep in mind that not
The deduced values are all states listed in Refd.2,8] are completely verified ex-
perimentally; however, it is difficult to decide which ones
xr=0.82866 MeV, are not real statesmolecular resonancg®f the system
[44]. There might also be more states than reported in the
experiment.

Note that only positive parity states are listed. In R8i.
there are only positive parity states because the clusters
have no structurg¢see discussion in Sec.)llin our model,
however, negative parity states and thus also odd spins exist.
In the reaction channel?’C+%C negative parity states
cannot be populated but maybe they can be reached in excit-
ing the Mg nucleus. In this way one could discriminate
between different models. To measure electromagnetic tran-
sition rates is also recommendable. Of course, these states
are very difficult to measure but experiments are plddéd

x7=—0.0412 MeV,
Xx12=0.164 38 MeV,
Xo=—15.4202 MeV,
xn=—0.0132 MeV,
no=38,
a=0.104 MeV,

c=0.1225 MeV,

14 [

b=1.437 fm. (18)

The numerical energy values of our theoretical calculation 12}
are listed in Table I[columnUg(3)]. These can be com-
pared to the experimental values given by R¢&s8]. The
theoretical energy values as obtained by the model of Ref—
[8], without inner structure of the clusters, are given in col-
umn SOg(4) of Table Il. In theSOg(4) model only those

10 +

[ MeV
L

w6l _

states are listed, which have a corresponding interpretation in - L:8+’ L=8+’ _ - ,_=8+’
the experiment. In Fig. 2 the spectrum within our model is al - - . - . - .,
depicted(middle panel and compared to the experimental - - L8 - L=6 - - L6
one (left pane). In the right panel the spectrum as obtained | . | . |- .
in the SOx(4) model is depicted. sz:“ - e

L=0 Exp. | |=oF TNE) —o* SOR(4)

When one compares the spectrum of our model and the |
SOk(4) model to the experiment, we observe a qualitative
agreement of our model while the spectrum of 8&x(4) FIG. 2. Energy spectrum of a nuclear molecdfe+2C, for
model does not reproduce as good the characteristic strughe model with inner structure of the clusters. The left panel shows
ture of the experimental result. In the theory there are somehe experiment and the middle one shows the theory. In the right
states not present in the experiment and also the inverse opanel the spectrum of th®Ox(4) model is depicteds].
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(3) The slope of the potential at the minimum positign
for a different orientation than the equilibrium onér(@)l)

should be reproduced or somehow given, i.e.,

oV
E :Cr,®1! (21)

o0

V(r) [MeV]

(this condition can also be substituted by requiring that the
position of the minimum a®, is reproducef Cro, is cho-

sen such that the minimum @, is near the calculated one.
(In general, adjusting the exact position of the minimum at
0, is difficult to achieve, which led us to this approxima-
tion.)

r[fm] (4) The expectation value dfng) is proportional tor3,
which gives

FIG. 3. Mapped geometrical potential f6fC+ '%C as obtained
in the model with inner structure of the clusters, after having ad- rS=2b2no. (22
justed the experimental spectrum.

An alternative is given by the requirement to reproduce (5 The energy as a function ok, the number of relative

the internuclear potential as obtained in a double foldingoscmaltlon quanta, has to giie samevalue ofn

calculation.

Having obtained a satisfactory fit for the spectrum we can
now use the obtained parameter set in order to deduce the
relative potentia| of the two carbon nuclei as a function ofWhere we assumed that the lowest irreducible representation
the relative inclination angle. Below we will show that our (irep) is at the maximal coupling, i.e., Mu)=(\c
potential is consistent with that obtained in double folding+No.xc) of the cluster irrep with the relative motion, where
calculationg41]. The result is depicted in Fig. 3. Note that (Ac,uc) is obtained by a coupling of the individual cluster
the potential, as obtained by adjusting the energies, is restates. The indice®, and©®, refer to the orientation angle
markably well reproduced. Thoughy was fixed by hand, at equilibrium and another angle, respectively.
the stiffness of the geometrical potential comes out without Condition (1) with (4) leads to
any further fitting.

Now we proceed to get information about the spectrum of r3 ~ [AGRT XD X0t XTT]

E(ng) =minimal, (23

the nuclear moleculestarting from the knowledge of the i 200t x7) (29
relative nuclear potential onlyThe potential can be obtained 2b XRTXT
using double folding techniqug&8]. We use the procedure -
described in Ref[41]. In order to deduce the model param- and condition(2) leads to
eters, some conditions have to be fulfilled. 2
(1) The position of the minimum should agree to the cal- C =8(vut yo)—L 2
culated one, i.e., r=8(xw XT)2b4’ (25
oV
o =0, (199 whereT is defines agnote thatd=90°+0)
r0:0¢
wherer is the position of the minimum at the equilibrium N181 B1
orientation®,,. F:\/§1+,82 1i2\/§ [3c0g(6,1)— 1)
(2) The stiffnessC, at the minimum, as obtained in the 1
double folding calculation, i.e., far, and at the equilibrium N3, B,
orientation angleé®,, should be the same +.8 5| 1x—= [3cog( 0220)—1]. (26)
1+851 7 242
92V
? =C;. (20) The last equation relates the valog as obtained in Eg.
0.9 (23), with that in Eq.(22). The result is
|
I3 I3t 3kt Xt an( et o)) XNNE+ E+Neuct3(Net ue) —(Ca(SUc(3)))e,] o
202 ° 2(xrt x7) 2(xrT x7) '
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25 —+—7—¢9——— 3
2 T+XR<0, Np<0 1 25 |
L X [
< 2| b —
% 1t XTtXR>0, Np<0 ———= o 15l XT+X12'&%0X;\1F
= 05} st
=< =3
0l =
051 xRS0 05 |
qL, h>0 R
7-65-4-3210123456 7 okz
Xo [MeV]
05 | ‘ ‘ ‘
FIG. 4. Dependence of the parametgf on y,, for °C 0 10 20 30 40
+12C. The physical and unphysical branches are indicated. The X [MeV]

lines indicate the positions that fulfill all conditions. o
FIG. 5. Somey parameters and combinations of them as a func-

Substituting Eqs(22) and (27) into Egs.(24) and (25) we tion of — y,,, for the physical branch of the systetfC+*°C.

arrive at . . . . .
positive value results in the lowest dimensional irrep at low

2[4(xrt x1) + Xot+ x71T T2 energy.xr+ xT1 gives the scale of excitation in the relative
C,= > - (28 motion. Large positive values imply a big difference between
ro(xr* x1) different radial excitations, while small values imply a dense

excitation spectrum in the radial degree of freedom.

All choices ofy,, will give potentials of equivalent form,
i.e., the main differences are at large lHowever, the spec-
trum changes from small values efy,, to large ones. For

and

(XrFTX7) = XTI = (2Nc+ ) 1= X[ NE+ uE+ N

+3(Nc+ ) —{Ca(SUc(3))e 1. (29 small values, the spectrum is dense and the radial excitations

0 are very near together, while for largery,, values the spec-
Finally, we use the condition given in E(R1), to obtain trum gets less dense and the radial excitations are farther

away.

r(Z) There are two distinct regionsi) (—x,) greater than

Cre,= —2[2(F’—F)XT] approximately 5.4 andi) (— x,,) lower than approximately

2b 5.4. The first region corresponds to smajl and there lies
+XN[<C2(SUC(3))>®_<C2(SUC(3))>®OL the solution, which we obtained adjusting the energy spec-

trum. However, it is clear now that this was not the only
(30 choice. For comparison, we choose a point in the second

region, leading to thg values:
wherel'’ =T (0=0,). Using Eqs.(28), (29), and(30) we

finally obtain a relation betweew; and y, of the form xr=0.101 MeV,
f(X0 . x7)=0 andxr= xr(Xw  X7)-

For these equations we obtain an infinite number of val- x7=—0.066 MeV,
ues (v, ,x7) that satisfy all the conditions that we are con-
sidering; however, we need tha¢{+ y1)>0 andny>0. In X12=0.396 MeV,

Fig. 4 xt is plotted as a function of,, and the lines indicate
the points that fulfill all conditions. There are several
branches but only one is of physical significance. One branch
corresponds to a negativg, while another onéthe straight
line) corresponds to X;+ xr)=0. This implies a degen-

Xo=—2.5 MeV,

XnN=—6.0x10"* MeV,

eracy in allng as can be deduced from the form of the energy No=40,
[Eq. (4)] in terms of An=ng—ng,, which is E=E(ng) a=0.103 MeV
+c(xr+xr)AN?, wherec is a numerical factor. The only '
branch of interest is that with negatiye, (a result that de- c=0 MeV,
pends on the particular system considéred
As a consequence, all parameters of the model can be b=0.64 fm, (31)

determined as a function gf ,<0, reflecting the remaining

ambiguity. In Fig. S5x1, xr+ X1, X12+ X7, and x1o+x7  wherec could not be deduced from the potential and we put
+ngxn are plotted. The last determines the scale of excitait equal to 0. The value af can only be determined knowing
tion of different irreps k¢, uc), where a negative value fa- the spectrum. Tha parameter can be estimated, assuming a
vors the largest dimensional irrep at low energy, while amoment of inertiawrg, with u as the reduced mass angl
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2 ‘ ‘
. —ne<0
15} x>0
s
=3
=05

V(r) [MeV]

0t x1>0 ]
no> @

-100 80 60 40 20 0

Xo [MeV]
‘ ‘ ‘ FIG. 8. Dependence of the parametef on x,, for °Sr
6 . . +1%Ba. The physical and unphysical branches are indicated. The
r{fm] arrows indicate the range of validity of the limits associateg/{o
andng.

FIG. 6. Adjustment of the geometrically mapped potential to

that as obtained in a double folding calculation. The potential, as obtained in a double folding calculation, is

the position of the minimum in the relative motion. The fitted gﬁéscuﬂcé?gésgsp;: g (;VSVP (:Jtir:teinsétrus(é[grr\zlr?;sthe spectrum, but
potential is shown in Fig. 6, which is comparable to that as Fitting first the spectrum and aﬁenNards mapping to a
obtained fitting first the energy spectiufg. 3. gotential is, within a certain acceptance, consistent with first

The spectrum is depicted in Fig. 7. As can be seen, thé .~ . )
quality of the spectrum is comparable to the former one. Thisad]usnng a potential and then calculating the spectrum. The

shows that there exist an ambiguity in whigh, value to ambiguities, which appear in the mapping, can be reduced to

choose. When we go to even larger values-of,, the spec- distinct classes of spectra. This gives us hope that one can

: . deduce some characteristics of the spectrum of heavy nuclear
trum gets more stretched, leading to a low density of stateS . .

. ) molecules, where only a potential can be obtained and no
per unit energy interval.

The interpretation of the structure of the spectrum is alsoexperlmental information is available yet. The relative

diferent in the two regions. Wik for- y,)>-5.4 al low -cioa" potental as oblained in a double folding calculaton,
: n ; .
lying 0 b]:amds correspandhtolthelsgmr@; nbo bgt dr:fferenr: The comparison to th&0z(4) model was also given.
(¢, ), for (—x,)<5.4 the low lying O bands have the 1,0 ohocirym of th&Ok(4) model does not reflect the cor-
same ¢, uc) but differentng = no, no* 2, etc. rect structure of the experimental spectrum
The results of this subsection do imply the followirid) '
It is not sufficient to propose for the Hamiltonian just a linear
combination of second order Casimir operators. The result- B. %sr+14Ba
ing potential may be wrong2) Geometrical information is

o . : The description of such a system can be done, considering
essential in order to propose a consistent Hamilton{ah.

the algebraidJ ¢ (6) IBA-1 model[32—34, as one possibil-

i T — ity, for the internal degrees of freedom of each nucleus and
- for the relative motion of the clusterslég(4) group[33,34
1 - is used.

The Hamiltonian that corresponds to dynamical cHain
= is shown in Eq.(2). The SUc (3) irreps are (18,0) and
] (14,0) for Sr and Ba, respectively. The coupled cluster irrep,
which is lowest in energy, isNc,uc) = (32,0), i.e., the
most prolate one.
_ The geometrically mapped potential is given by ELf).
L=6* 1 For the nuclei®®*Sr and*®Ba (see Fig. 8 the deformations
and N-values are8(Sr)= 80"°=0.338, B(Ba)=B85"°=0.2,
ar T ot - L=4+ ] N(Sr)=N;=9, and N(Ba)=N,=7, where the tables of
= =2t Moller and Nix[46] were used in order to deduce the defor-
mation values. They are transformed to {BIE? deformation
Exp h values according to Eq12). With this, we obtain the values
0 i ] for the parameterg;: 8,=1.53 andB,=1.77.
We proceed in a similar way as fdfC+'2C. Applying

FIG. 7. The deduced energy spectrum of the molecular res()the conditions of the last subsection, we again arrive at the
nances of?C+ *C as obtained from adjusting to the double folding allowed range ofy,<0. In Fig. 9 the y and the same
potential. combinations as in Fig. 5 are plotted. Note that+ x1,

10 +

=g*|

-

L=8*

E[MeV]
\
\

(o]
I
I
Lol
-
1
(o]
i
\
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-
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1t w2
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o
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2 1+ 0
3 ) ) . e (104,0), 72 0" (108,0), 76 07
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FIG. 9. Somey parameters and combinations of them as a func-  FIG. 11. Spectrum of the hypothetical heavy nuclear molecule
tion of —x,, for the physical branch. The system considered is%sr+146Ba. The dotted lines refer to excited bands or{l&ft) and
96541463, Ba (right).

responsible for the scale of the radial excitation, is nearlyalgebraic model, i.e., probably further interaction terms are
constant and small, which implies low lying radial excita- needed. However, without thg, term the minimum at 15°
tions throughout the whole range gf,, a stable feature not would be far off and contradictions appear related to the
encountered in the previous example. The combinatign consistency requirements.
+ x12t Noxn, giving the scale of theNc,pc) excitations, Finally, in Fig. 11 we plot the spectrum of the hypotheti-
and y; are small for— y,, around 20 MeV and raise towards cal nuclear molecul€®Sr + *%Ba for — y,=12.03 MeV.
larger or lower— y,,, while their signs are oppositg; de-  Also in Fig. 11 the first vibrationap- and y-band heads of
termines if the largest irrep\c+ Ny, 1c) is lowest in energy  the Sr and Ba nuclei are shown, as far as repdd@l The
(wheny1<0) or the smallest on@vhen y:>0). The cross- parameter set, obtained by fitting to the double folding po-
ing point from one situation to the other is at abouy,  tential, is given by
=20 MeV.

The ny value and the oscillator length do not change
appreciably either over the indicated range-of,, .

In Fig. 10 we plot the potential as obtained in the double
folding calculation(solid line for 6=0° inclination of the
symmetry axes and dashed-dotted line &#5¢15°) and as
deduced from adjusting the parameters of the geometrically
mapped potential. We had problems to shift the minimum at
15° to the right position, indicating a too stiff behavior of the

xr=0.286 MeV,
x7=—0.146 MeV,
Y1,= —0.606 MeV,
Xo=—12.03 MeV,

xn=0.014 MeV,

50

n0:74,
45
0L a=0.0218 MeV,

35 c=0 MeV,

30

25 | b=1.06 fm, (32)

V() [MeV]

20 where, as in the carbon-carbon case,dlparameter can not

be determined and it is put arbitrarily equal to 0.
The choice of they,, value is alsoad hog but it shows
one particular property of the heavy nuclear molecule: The
rotational bands are severely squeezed due to the large mo-
ment of inertia. The Coriolis effect is not strong enough in
order to distort the rotational structure of the vibrational
bands, as happened in the model for three-cluster nuclear
FIG. 10. The relative potential f#=0° and 15°, as obtained by Molecules, proposed in Ref25]. The structure found here
the mapping to the geometrical potential, compared to the doublwill prevail also for three-cluster molecule, i.e., also there the
folding calculation.d gives the inclination angle of the symmetry states within a rotational band are squeezed, showing that the
axis of thenow prolatenuclei to the moleculaz axis. large Coriolis effect seen in Ref25] is the result of the

115 12 12.5 13 135 14 14.5
r[fm]
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interaction used. It also indicates that one has to be vergouble folding results for the potential. Using the informa-
careful in choosing a Hamiltonian and the mapped potentialion of the structure of the individual clusters, it permits to

has to be consistent.

IV. CONCLUSION

deduce the Hamiltonian of the nuclear molecule. In this way,
the structure of the spectrum of such a nuclear molecule can
be estimated.

We applied the model to the heavy systéfisr+ 14%Ba.

In this paper we used an algebraic nuclear vibron modefhe parameters of the model were adjusted to the potential
for nuclear molecules with inner structure of both clusters gptained in a double folding calculation. The moment of in-

We discussed the dynamical symmet'rycl(6)®ucz(6)
®Ugr(4) D SUC1(3)®SUC2(3)®SUR(3). Thegeometrical

ertia in the modelrelated toa) was defined vie)uré. The
parameter in front ofK? could not be determined due to

mapping of the corresponding Hamiltonian was investigatednissing information. A spectrum was given, showing no dis-
using the coherent state method. The trial state depends orirtion of a large Coriolis force. While the scale of the radial

parameterg, which we relate to the distanecebetween the
clusters. An important point is to note that the parameter

excitations remains stable over a large rangg of x and
X127 X1+ Noxn Vary appreciably, resulting in different

of the coherent state is not proportional to the inter clustescales for the excitation to different couplings afc(, x.c).

distancer and in addition is restricted from above via the

cutoff Ng in the relative number of quanta.

We showed that the geometrical mapping applied is
able to give a consistent relation of the algebraic model

We showed that the dynamical symmetry has a minimun@and its geometrical interpretation. The potentials obtained
in the relative distance at values different from 0, i.e., theare in remarkable agreement with those from double folding

SUg(3) dynamical symmetry isiot always related to the
harmonic limit With a negative and sufficiently large, a
minimum atr #0 can already be obtained.

The model was first applied to the light systetiC

calculations.

The next step would be to investigate again three-cluster
molecules. In Ref[25] a strong Coriolis force was predicted,
generating no squeezed rotational bands except for the

+12C, where a lot of experimental information is available. ground state band. Whether this is still the case for another
The spectrum was adjusted satisfactorily to the experimentiamiltonian, as that proposed in this contribution, has to be
The agreement of th8 Oz(4) model to the experiment was found out. However, the results of this contribution suggest
less satisfactorily, the spectrum being too sparse. Our procéhat in the dynamical symmetry chosen this is not the case.
dure gives the correct stiffness at the minimunm=¢, and
®,=0°), which is by no means trivial. One sees that geo-
metrical information(position ofr, and comparing the geo-
metrically mapped potential to informations obtained via, The authors acknowledge very fruitful discussions with J.
e.g., the double folding calculatipiis essential in order to Cseh and G. Leai from the ATOMKI (Debrecen, Hungaly
guarantee that the algebraic Hamiltonian makes sense or ndthis work was supported by the CONACyT-MTA and CSIC-
The pure adjustment to energgnd also to a limited set of MTA exchange programs and by the CONACyT. H.Y.M. ac-
transition elemenisis not sufficient. It also shows that the knowledges financial support from DGEP-UNAM. The Iso-
requirement, to reproduce the internuclear potential, mayope Explorer, used for this publication, is supported by the
help pin down the structure of the Hamiltonian, as electro-Nuclear Physics division of the U.S. Department of Energy
magnetic transitions déthe latter are extremely difficult to under Contract No. DE-AC03-765F00098. Financial help
measurg from DGAPA, Project No. IN119002, is also acknowledged.
For heavy nuclear molecules no information about theirS. Misicu acknowledges the financial support from the Eu-
spectrum is available yet. The model relies heavily on theopean Community through a Marie Curie fellowship.
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