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Extended random phase approximation in a solvable model
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We propose an extended Lipkin model that can describe decay processes of particle-hole states and is still
solvable. We examine several RPA-type theories using the model. We show explicitly the roles played by the
self-energies of particle-hole propagators, and clarify how the extended RPA theory describes collective states
better than other RPA-type theories.
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[. INTRODUCTION other RPA-type theories. Finally in Sec. VI we give a sum-
mary.

The nuclear collective states has been studied extensively
by the random phase approximati@RPA) [1,2] for a long Il. SOLVABLE MODELS
time. The essential features of the RPA theory can be dem-
Eir;)SI:irr? tel\c/li e?r/”:gi I;Eglrém?(degﬂe Vl\iri]rl)ckri]nwrr?sdzosptﬁlsi?ai?]){ briefly to fix the notation, and then explain how to extend the
tains its importance in many fields as a solvable but nonm()del‘
trivial model. The model has enjoyed several extensions,

e.g., to incorporate two types of fermiof¥§ or to treat three A. Lipkin model

energy Ieve|$5,6]. Note that even the original version of the The |_|p|(|n model describes aN-fermion system with
model is still in service, e.g., in the analysis of two phonontwo N-fold degenerate levels shown in Fig. 1. The upper and
stateq[ 7]. the lower levels are indicated by=+1 ando=—1, re-

There have been many attempts to generalize the RPApectively, and thél degenerate levels are distinguished by
theory, especially to treat explicitly not only the particle-hole an additional quantum number=1,2, . .. N. The model is
(ph) but also the two-particle-two-holé2p2h degrees of  described by the following Hamiltonian:
freedom in the play. In this work, we concentrate on the
following two generalizations. The first one is the Second H =eJ,+3V(I2+J?), (1)
RPA (SRPA) theory, which takes into account the mixing of
the 2p2h states in the ph componef89]. The second one where the second-quantized operators
is the extended RPAERPA) theory, which handles the cor-
relations in the ground and the excited states in a consistent 3 _} S sal @)
way [10-13. e 7 po@po

There have been some efforts to compare these extended
versions of the RPA-type theories in real nudlg4]. It is,
however, obviously desirable to have a solvable model at = al, 18,1, = a) jap1, ()
hand to discuss such theories, as we have the Lipkin model P P
for the RPA. In this paper we propose a new solvable model
which is suitable to discuss these improved versions of th
RPA. The model is a natural extension of the Lipkin model,
which takes into account the decay processes of the ph stat
into 2p2h states, and is still solvable as the original Lipkin
model.

The plan of this paper is the following. In Sec. Il, we
introduce the solvable modédxtended Lipkin mode! In the
construction of the model, we pay special attention to th
Hartree-Fock condition. In Sec. Ill, we briefly review the
ERPA theory in the context of the extended Lipkin model.
We first give the ERPA eigenvalue problem explicitly. Then
the ph response function in the ERPA is presented in the field pp123 N
theoretical method. In Sec. IV, we examine the excitation e 2— -+ o=+1
energies of the collective states in the RPA, SRPA, and ERPA
in the extended Lipkin model, putting emphasis on the roles
of self-energies. In Sec. V, we investigate the transition -e2—H+—+ o=-1
strengths. Here the important role of the energy-weighted p: 123" N
sum rule is stressed. We shall see how these physical quan-
tities are well described by the ERPA theory, compared with FIG. 1. Graphical representation of the Lipkin model.

In this section we first review the original Lipkin model

atisfy the familiarSU(2) algebra. We havé\ particles in

e model system. Then tH&U(2) symmetry of the model
agows that the natural basis states are given by the eigen-
states of theangular momentunas|J,J,).

Let us first consider the true ground st of the sys-

tem. If there were not the two-body interactiovi= 0), then
the ground stat¢0) would be the statéN/2,—N/2) with all
dhe N particles being in the lower levet=—1. Let us as-
sume that the true ground std®) can be generated adia-
batically from|N/2,—N/2) by the two-body interaction in
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FIG. 2. Vinteraction in the Lipkin model. J; J+

the model, which are shown diagrammatically in Fig. 2. FIG. 4. Diagrammatic representation of the violation of the
Then the Hamiltonian guarantees that the true ground statdartree-Fock condition by a two-body interactidp).. . Summa-
|0) of the system belongs to th&=N/2 multiplet as the tion over the quantum numberis assumed. Exchange process is
unperturbed ground stat®l/2,—N/2). not drawn explicitly.

Next let us come to the excited states of the system. In the ) ) )
study of the excitations, we takk. andJ_ as the external ground state, and cannot be used as a first approximation to
excitation operators. Therefore, we can limit ourselves to thdhe real ground stati5]. o
J=N/2 multiplet throughout this paper. It is, however, possible to cancel th_e process in Fig. 4 by

Note that the Lipkin model can be generalized to include®Placing the above operatdrJ. by its normal ordered
an interaction operator that is proportionaltoJ . We do ~ counterpart J,J. :. Then it is clear that the stateN/2,
not consider such a generalization here because the main\/2) remains to be the Hartree-Fock ground state. The

effect of the term can be absorbed in the definition of the prfame discussion obviously applies #J_, J.J,, and
energye. J_J,. We adopt, therefore, the following operator as an ad-

ditional interaction:

B. Extended Lipkin model 3,(J+I )+ (I, +I NI,

Even though the RPA has been successful as a first step in
the description of nuclear collective states, it cannot account

for the decay processes that have been drawing much atteyhich generates the four processes in Fig. 3, but does not
tion. These decay processes are generated by the couplinggate the ph states as in Fig. 4. After the above consider-
of the ph to the 2p2h degrees of freedom, and lead to a widthtion, we arrive at the extended Lipkin model, which is de-

and an energy shift of a collective state. ~ scribed by the following Hamiltonian:
In order to simulate such processes, we extend the Lipkin

model so that it allows the interaction between—ppp and 1, 5, N-1
phehh, which are shown in Fig. 3. Such an interaction canH =Ho+Hi=eJ+ V(I35 +J%)+ ——U(J. +J)
be generated keeping tHg&U(2) symmetry of the Lipkin

model as follows. Let us first consider the following two- 1
body operator + UL+ +3)+ (34 +3-) 34, (5

—(N=1)(J, +I ) +I,J.+I )+ (I, +3_)J,,

where the strength of the new interaction is denotedUbit
can be easily shown that the third term guarantees the
(4)  Hartree-Fock condition

1
_ t t t
JzJ+—§ % (ap+1ap+1_ap—1ap—1); A+ 18k-1,

which apparently represents the-plpp and hh-ph transi- (N/2,—N/2|HJ[N/2,—N/2)=0, (6)
tions. We cannot adopt, however, the above operator as it is B
as the new interaction. A two-body interaction of this form Of [N/2,—N/2). We shall refer toHo=¢J, as the unper-
necessarily violates the Hartree-Fock condition, i.e. thdurbed Hamiltonian and to the rest as the residual interaction
ground stat¢N/2,— N/2) of the noninteracting system is un-

stable with respect to the creation of ph pairs shown in Fig, At the end of this subsection, we summarize as follows
4. Then |N/2,—N/2) is not any more the Hartree-Fock the extended Lipkin model described by the Hamiltonkhn

of Eq. (5). First, the Hamiltonian maintains tf&U(2) sym-

metry of the Lipkin model, and therefore it can be solved as
easily as the Lipkin model. Second, the Hamiltonian can
describe decay processes of ph states. Thi®,—N/2) is

the Hartree-Fock ground state.

/\ /\ C. Other extensions

Here we discuss other extensiofis,17] of the Lipkin

FIG. 3. Two-body interaction representing four types of transi-model to include the interaction between «ppp and
tions ph—pp and pk-hh. They are realized as théinteraction in ~ ph—hh. In these works, they investigated the systems with
the extended Lipkin model. new interaction terms that are similar to ours. The essential
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difference between these works and the present one is in thbe first approacti16,17], but does not introduce anything
treatment of the Hartree-Fock condition, as explained belownew to the original Lipkin model in the second approach.
To be concrete, let us look at the following interaction termThis is the reason why we cannot adopt the interaction of Eq.
used in Ref[17]: (7) in the present work.

%UZk (ag(ral(rak*(rap(r—i_ag(ralfoak(rap(r) Il EXTENDED RPA
P In this section, we explain the ERPA in terms of the ex-
1 tended Lipkin model of the preceding section. We present the
= Eu(ﬁ—l)(J++J_), (7) ERPA first as an eigenvalue problem and second as a theo-
retical framework to calculate the response function using

+ the diagrammatical methdd.0].

whereh=X% ;a,,a,, is the number operator. It can be eas-

ily seen that, by replacing by J,, Eq. (7) reduces to th&

interaction in the preceding subsection, but without the nor-

mal ordering operation. Note that the following discussions Let us start with a generdil-fermion system, which is

apply also to the interaction introduced in REE6]. described by a Hamiltoniai. The eigenstates ofl are
It is easily seen that the new interaction of Efj.violates ~ given by{|»),»=0,1,2 ...}, which satisfy

the Hartree-Fock condition in the same way as explained in

the preceding subsection. There are evidently two ap- H[v)=E,|v). ©

proaches to re;tore the Hartree-Fock condition; one is theye define an operat(@I that generates theth excited state

method taken in Ref§16,17], and the other is the one that 1) from the ground statt0) as

led to Eq.(5). We now compare these two approaches.
In the first approach16,17), they look for the Hartree- Qlloy=|v), Q,|0)=0, »=1,2,... . (10)

Fock solution of the given Hamiltonian by a unitary trans-

formation of the single particle basis functions, so that thelhen it is straightforward to show th&} satisfies the fol-

Hamiltonian satisfies the Hartree-Fock condition in terms oflowing variational equation for an arbitragQ [1,2]:

the new single particle states. The transformed Hamiltonian T T

obviously contains the interaction between«<pbp and (0][6Q.[H,Q,]11[0)=(E,~Eo)(0[[6Q,Q,][0). (11)

ph—hh in the new basis functions. However, the new cou- now we take the specific case of the extended Lipkin

pling strengths are complicated functions of the original ones,,4e| described by the Hamiltoni&hof Eq. (5). As the first
and the number of particles, and are not under control angtep in the ERPA. we expreQ{ in terms of the creation and

more. This approach_|s exce”ef“ to dlscu_ss, for example, thﬁ1e annihilation operators of ph and 2p2h states. In our case,
ground state properties of a given Hamiltonian. It is, how—We need to consider only four operators

ever, obviously inappropriate to examine the system proper,
ties with changing the coupling strength betweerup and ga d’;r‘.]lfhé‘]n’v’v‘;’;)z}a:;? Zise of the symmetry of the
ph—hh for fixed Hartree-Fock single particle states, which is ' P v
our purpose. Ty _y) (v _y

The second approach adopted in the preceding subsection Q=X =TT mye ) (1)
can be put in contrast with the first one as follows. In theAfter a straightforward calculation of E¢11), we can show
present work, we want to keep the Hartree-Fock single parthat the coefficients in Eq12) satisfy the following eigen-
ticle states to be independent of the coupling strength, whiclkialue equation:
we are going to vary as an independent variable at hand. We

A. Eigenvalue problem

change, therefore, the Hamiltonian by introducing the one- A Bu A X(ly)

body field, so that the original basis functions satisfy the By, Ap Ap ||y

Hartree-Fock condition for an arbitrary coupling strength. A A )

This corresponds to taking the normal ordered form of the 12 22 %2

interaction, as explained in the preceding subsection. A Ay y(z")

At the end, we make a comment on the interaction of Eq.

(7), which one might think that we could have adopted. It Si1

can be shown, however, that the normal ordered product of -S;

Eq. (7) reduces to =(E,—Ep) Sy

Auh—1)J,+J):=2u(h—-N)J,+J.), (8 — S

(v)

which obviously leads to a trivial model that does not intro- X1

duce new physical effects, because N vanishes identi- YS.V)

cally for the system with a fixed number of particlés, In X NORK (13

other words, the two-body interaction of E) presents a (ZV)

nontrivial and interesting problem for a fixed Hamiltonian in Y2
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where the matrix elements are given by struct the response function from the RPA-type eigenvalue
equation is given in Ref10].

1(V)? We define the response functid@(t) as a %2 matrix
Au=(0|[J-,[H,3.1][0)=Ne| 1+ 5 E) (N_l)}’ using theT-product(time-ordered produgtas
Ar,=(0|[J_ [H,J, 3, 1]|0y=2N(N—1)U, :1(<OIT[J_(t),J+]IO> <0|T[J_(t),J_]|0>>
P\ (0[T[J.4(1),3:1]0) (O|T[I.(1),3-][0)/)
A=(0|[3-J_,[H,J,3,]]]0)=4N(N—1)e, (17)
B11=—(0|[J_,[H,J_1]|0)=N(N—-1)V, Then its Fourier transform in the ERPA is given by
2 N
Sll=<0|[J_,J+]|O>=N—§(g) N(N-1), D(w)=(w_8 ) ( TSR
—w—g] \(N-1)V 3I(- )
Sp=(0[[J_J_3,3.][0)=2N(N-1). (14 erel ANTUVE e o

The second step of the ERPA is in the above evaluation ofynere the ph self-energy(w) stands for all the second order
the commutator$10]. Ay;, By, andSy, are calculated ex-  processes, and shall soon be explained below. The above
act!y up to the second order in powers of the re5|duql interiatrix form of D(w) can obviously be expressed using the
actionH;. In the same way we calculat®,, up to the first  giggrammatical method in the perturbation expansion, which
order, andA,, andS,, up to the zeroth order. This procedure gjiows an intuitive understanding of the dynamical pro-
can be shown to give the response function of the system fQfasses. Note that the above expressionb¢w) may be

the external one-body operatofd, ,J_} exactly up to the  gerived directly also from Eq13) using the general theory
second order in the residual interaction. Note that the secor[q()l first by deriving the %4 full response function matrix
order term is missing in the expression By;, because of 5 the operator se, ,J,J, ,J_,J_J_}, and then by tak-

the special form of the model interaction. This can be undermg the 2<2 submatrix corresponding . ,J_}.

stood most easily by noticing the fact that there is no way t0 "t js convenient to express the ph self-energy as

construct the second order processeB gfdiagrammatically

[10] with the interaction terms in Eq5). 3(0) =3 ppon( @) + S apan( @), (19
Here we can briefly mention the derivation of the SRPA

theory. If we had evaluated the above commutators by rewhere X ,,n(w) and 23,3,(w) represent the self-energies

placing the real ground sta}@) by the Hartree-Fock ground with 2p2h and 3p3h intermediate states, respectively, and are

state|N/2,—N/2), we would have arrived at the SRPA eigen- given by

value equatiofi8]. It is written in the same form as Eg4.3)

and(14), but with the replacemermt;;—Ne, S;;—N in Eq. )

(14). It should be noted here that the SRPA was the first EZPZh(w):Hlmlez(N_l)U w25 20

attempt toward the microscopic description of decay pro-

cesses of collective states.

As in the usual RPA theory, the solutions of the above 2 3pan(@)=— %Hl(w—Ho)m%
eigenvalue problem of Eq13) appear pairwise, i.e., a posi- 0 0
tive energy solution withe,>0 is accompanied by a nega- N—1/V)2
tive energy solution witfe_ ,= —E _<0. In our case of the =5 ;) (w—3e). (21

extended Lipkin model, there are only two positive energy
solutions withy=1,2.

It is convenient to normalize the eigenvectors in Ep)
as

The above self-energies are shown in Figs. 5 and 6, and the

middle expressions of Eq$§20) and (21) represent the cor-

responding processes in a symbolic way.

S, (x(M2_y(12) 4 X2\ 12y _ g (15 Here the difference t_)etween the ERPA and the SRPA can
G YT F ST Y =8 (19 o ted most clearly in terms of the response function; the

Then it can be shown that the transition amplitudes for theself-energy of the ERPA response is given by 8@), while

operators], andJ_ are given by the SRPA takes into account onby/,,,n(w) and neglects
2 3psn(w). In the following sections, we shall examine in
;(lv) Sllx(lv) (0]J_|v) detail wh.at'r'oles are played by thege two self-energ!es.
_ =( (V)) :( ) (16) By definition, the response functidd(w) can be written
yi” S1y1 (0[3+[) using the transition amplitudé§” and¥{” of Eq. (16) as
follows:
B. ERPA response function
- - sgn(v) (X
Here we explain the response function for the external D(w)zz —— (7((11/) ,y(lv)), (22)
operators), andJ_ in the ERPA. A general theory to con- y o—E, =i, |V}
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%(v)

1 1
——ImD(w)=>, S(w—E x y{y, (25
7-;-m (w) go (@ V) .y(l,,))(xl yl) ( )

/O/ O ————— which can be compared directly wittkperiments

IV. EXCITATION ENERGY

In this section, we calculate the excitation energy of the
_______________ first excited state(collective statg of the extended Lipkin
model in the following RPA-type theories.
(1) ERPA: the response function is given by Ef8).
""" (2) SRPA: the response function is obtained from the

ERPA response by neglectitiy,s{ ).
(3) RPA: the response function is obtained from the ERPA

FIG. 5. Self-enegy2,,{w) with 2p2h intermediate states. response by negle_ctlng the whole self-enefg;{))_ ' '
These processes express the couplings of the ph to the 2p2h states,(4) Ring approximation: the response function is obtained
which can be referred to as the correlation in the exdipetistates.  ffom the RPA response by neglecting the exchange pro-
All the interaction vertices are assumed to be antisymmetrized. Cesses, i.e., by the replacemeM{1)V—NV. Response

diagrams are composed of simple rings that are connected by

where the infinitesimal imaginary party,=i» sgn() is the direct Processes of t_he ph interactidn
written explicitly. By comparing Eqg18) and(22), it can be The exact eigenenergi&s, E,, ... can be calculated by

shown that the transition amplitudes satisfy the followingdidgonalizing the Ni+1)x (N+1) Hamiltonian matrix for
normalization[ 10]: the J=N/2 multiplet. In the RPA-type theories, excitation

energies are obtained from the positions of the poles in the
complexw plane of the response functid(w).

We first examine the case witti+0, U=0, which re-
v)) =sgr»)N, (23 duces to the original Lipkin model. We explain the idea of
1/N expansion and clarify the roles Bfy,3{ w). Second, we
study the case wit=0, U+ 0 to demonstrate the roles of
2 p2{w). Finally, we investigate the general cage 0, U
#0 of the extended Lipkin model.

()
1
(
1

X1

(7((1/) "y(V)) M V<~
1 1 y

where

ol
v -1/ S(—w)

Note that the unusual factdi in the right-hand sidérhs) of

(29)

£ A. Case 1:V#0, U=0

' This case corresponds to the original Lipkin model, with
which we can discuss the ERPA, RPA, and the ring approxi-
. o __mation. Note that there is no way to make,,{ ) without

Eq. (23) originates from the normalization of the operators |nU, and therefore the SRPA reduces to the RPA in this case.

the expansion of Eq12); J, , for example, is not so nor- Here we first explairi : :
. - ) ; plair(i) the idea of 1IN expansior{3], and
malized that the norm of ,|N/2,—N/2) is unity. We also then (i) the role of3. 5z w) [12].

mention here that a different expression for the normalization : -
o . O : In Fig. 7, we show the excitation ener@, — E, of the
of the tra_nsmon gmph_tudes is discussed in RB]. first excited state as a function of the number of the particles
By taking the imaginary part db(w) of Eq. (22) for o N for NV/e=0.8. 0.6. and 0.4
>0, we can obtain the spectrum of the transition strengths of We immediétély. r,ecogniz.e.in Fig. 7 that the excitation

J. andJ_ as energy in the ring approximation is independent\pfand is
given by[3]

E.—Eg NV 2|2
R =|1-|{— . (26)
& . &
______ Note that for stronger interaction strengthNd//e>1, Eq.
(26) gives imaginary excitation energies. This means that the

Hartree-Fock ground stat&l/2,—N/2) does not correspond
FIG. 6. Self-enegysysfw) with 3p3h intermediate states. any more to the local minimum of the energy surface, and

These processes express the effects of the ground state correlatifierefore it is unstabl¢l,2] in the ring approximation. In

on the ph states through the Pauli principle. All the interactionsuch very strong coupling regimes, it is possible to discuss a

vertices are assumed to be antisymmetrized. phase transition from aphericalto a deformedground state
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R
\
u‘;l“’ 11 ‘/\/ERPA NV/e=0.8
N \ X EXACT
X \
o 1
i
2 o9}
L K
Z 0.8
o]
L 07
=
G 06
x
L
05 5 10 15 20 25 30 35 40 45 50
NUMBER OF PARTICLES N
W 1 \.\ FIG. 8. Diagrammatic explanation of proceeding to higher or-
L;‘w1 05 ‘;\.‘/ERPA NV/e=0.6 ders in the IN expansion of the response function for the excitation
> Y X EXACT operatorJ, . The figure shows how to make the second order (
e 1 X\ =2) diagrams with two € n) fermion loops. Top: replacing a di-
Woosh X \ 1IN rect ph interaction by an exchange interaction in the left process
Yool X&x;\_\ reduces the number of the fermion loops front 1=3 to n=2.
8 I XXXX.&‘;‘\&.Q\(XZ“ ) Bottom: exchange process of the free process with the ground state
= 085 RPA Tt eee--. %m“m correlation diagram. This procedure gives the right diagram with
(;_) 0.8 T ﬁr'ih'g """""""""" two fermion loops forn=2. Note that the unlinked pafground
w575 state correlationof the left diagram does not appear in the expres-
5 10 15 20 25 30 35 40 45 50 sion for the response function, because it is canceled by virtue of
NUMBER OF PARTICLES N the linked cluster theorem.
w] 1040 to the trace over the quantum numipethe ring approxima-
1w B . .
up| 1.02 ‘.\.‘/ERPA QV/€=0-4 tion collects those terms with the most factorshoft each
5 1 EXACT order in powers of the residual interactidh This explains
T 0.98 X\ why the ring approximation is exact in the lariydimit. The
gk X N }’N above idea is completed as th&lléxpansion of the response
Z 0.96 's%% function, which can be stated most easily using the language
094 I L - of the diagrammatical method; the leading term of the ex-
E popt MDA [T s pansion is given by the ring approximation, in which tite
h Loring order processe@n powers of the residual interactior) of
0975 10 15 20 25 30 35 40 45 50 the response are composed of the diagrams wittl fer-
NUMBER OF PARTICLES N mion loops. The second term of the expansion is the sum of

all the nth order processes with fermion loops, which ob-
several theories foV#0, U=0. Exact values are denoted by vioqsly gives a correction of ordgr N/to the ring apprqxi-
crosses. The interaction strength is given Wy/e=0.8 (top), matloln. In the sgme way, the third term I.S the collection of
NV/& = 0.6 (middle), NV/e =0.4 (bottom). the d|agrams W|tm—1 fermlon_loops. This procedure can .
be continued to give an expansion of the response function in
powers of 1IN. Then it is straightforward to derive an expan-
sion of the excitation energy in powers of\L/

FIG. 7. Excitation energy of the first excited state in units af

[2,19]. We shall remain, however, in the regii&//e <1 in

this paper to discuss the collective statesspherical sys- ; ; .
temsp P ph y Let us briefly explain how to perform theN/expansion

Let us take into account the exchange processes of all tH8 the case o =2. We can notice that there are two possible

ph interaction in the ring approximation. This procedureWaYs t0 decrease the number of the fermion loops of a given
amounts to replacinyVV by (N— 1)V in Eq. (26), leading to process for a given or(_jer. one is to open a f?rmlon Ioop_ by
the following RPA result: takmg the exchange diagram in .the process; the other is to
consider an exchange process with a ground state correlation
E._E (N—1)V|2] 2 diagram, which has been canceled away by the linked cluster
( e 0) - 1_(—) } _ (27)  theoren{20]. This situation is shown in Fig. 8 for the second
€ RPA & order (h=2) processes.
In Fig. 7, we have shown as “l' the sum of the first

Figure 7 clearly shows that the RPA is much better than théring approximationh and the secondleading correctioh
ring approximation, especially in the smallregion. term of the 1N expansion of the excitation energy of the first

Now we explain the idea of the N/expansion3]. It is  excited state. The figure shows cleatly that the leading
visible in Fig. 7 that the ring approximation reproduces thecorrection reproduces the exact results very well for Idge
exact results in the largd limit. Let us think of a Goldstone and alsd(ii) that the convergence of the expansion is slow in
diagram that represents a response process to an extertiaé smallN region.
operatord , . Because each fermion loop gives a fadtiatue Now we compare the RPA and theNLéxpansion. We can
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see in Fig. 7 that the line denoted by N7approximates the  powers of IN. Then we can realize that it is more meaning-
exact results to a better extent with decreasing interactioful to sum up the important exchange processes to the infi-
strengthNV/e. On the other hand, the RPA improves only nite order, rather than to collect all the corrections of order
slowly with decreasingNV/e. Consequently, the RPA is bet- 1/N.
ter (for N=20) in the strong coupling regiorN(V/e = 0.8), Finally we come to the results of the ERPA in Fig. 7 to
while the 1N expansion is better in the weak coupling re- discuss the roles af 33 w). We recognize that the ERPA
gion (NV/e=0.4). This can be understood in the following reproduces exact results very well in all cases shown in the
way. Let us expand the excitation energy in powerdidfe  figure. Note that the difference between the ERPA and the
and 1N as RPA in the figure originates solely from the self-energy
2 3p3{w). One can show that the role of the self-energy
NV 1 23pa{@) in the ph propagator is twofolfl12]. One is to
= E ci,j<—) — increase the excitation energy of the ph state, and the other is
B e/ N to reduce the amplitude of the bare ph component in the

Ei—Eo

€

N2 1 1 31 excited state. This can be understood as follows. First, the
:1+(_) T Sl energy of the Hartree-Fock ground state is lowered by the
3 2 N 2pN2 second order processén powers ofV) of the ground state
correlation. Second, in the presence of the ph state, a part of
NV 1 51 471 the above processes is forbidden because of the Pauli block-
+ e )| 8 2N 4p52 T o ing. These two effects amount to increasing the energy of the

ph state measured from the ground state. This is exactly what
(28 3555 w) expresses. If we look at the same effect from the ph
state, we can easily understand that the bare ph amplitude
The explicit form of the above double expansion can be obshould be reduced by the ground state correlation, which
tained, e.g., from the results of the fourth order perturbationnhibits partly the presence of the bare ph state.
theory[3]. Here the coefficient; ; represents thith order in At the end, let us look at Fig. 7 from the viewpoint of
NV/e and thejth order in 1N, and the indices satisfy  improving the ring approximation. First, by taking into ac-
=j. We recognize that the perturbation expansion correcount the exchange processes, we obtain the RPA, which
sponds to looking the above series from the top to the botincreases the excitation energy by reducing the repulsive ph
tom, and that the N expansion is obtained by proceeding interaction. Second, by includingz,s{ »), the RPA excita-
from the left to the right. The above double expansion showsion energies are further increased to give the ERPA results,
that every term of the N expansion contains terms up to the which almost agree with the exact values in the whole range
infinite order in powers oNV/e, while theith order term in  of N. This means that most of the effects of fénteraction
the perturbation expansion can be expressed with only finiteeyond the ring approximation can be expressed by the ex-
powers{1,AN, ..., AN} of 1/N. change and the 3p3h self-ene@yps{ o).
We notice that; ; is a rapidly increasing function g¢ffor
i>]. This is essentially because the number of ways to de-

crease the fermion loops grows very rapidly with increasing B. Case 2V=0, U#0

j. Consequentlyc; ; for large values of can be important for In order to examine the roles played by the self-energy
large values of, while only a few terms with smajl(suchas 3., ,(w), we calculate the excitation energy of the lowest
Ci o andc; ;) can be meaningful for small values of excited state fo=0, U+0. In this case, the ring approxi-

The line “1/N” in Fig. 7 collects the first and the second mation reduces to the free response, and the ERPA and the
terms in the double expansion of E@8) for each power of SRPA coincide, because there is no ph interactions.
NV/e. On the other hand, the RPA sums up the exchange The numerical results are given in Fig. 9 fdtJ/e=0.6
processes to the infinite order, and therefore takes into aeind 0.4. It can be seen that the ERPA reproduces the exact
count a part of the coefficients ; of any power IN!, but  values very well in the whole range ®. This means that
misses several important processes that contribute; fo  most of the effects of th&-interaction term on the response
with smallj. In particular, the line “IN” gives exactlyc,;  function can be represented By, ).
=2, while the RPA value foc,, is 1. The role of the self-energy¥ ,,,{ w) on the ph propagator

In the weak interaction regionN(V/e=0.4) where the is twofold. One is to lower the energy of the ph state, and the
perturbation expansion is good, only the coefficientswith other is to reduce the amplitude of the bare ph component in
smalli are important in Eq(28), and therefore we can limit the excited stat¢12]. This can be understood easily in the
ourselves to the first few terms in theNLexpansion(note  second order perturbation theory, becalisg,{w) stands
i=]). This explains why the line “I" is better than the for the couplings of the excited ph states to the 2p2h states.
RPA, because it gives the exact expression for the coeffi- From the figure, we can see that the ERPA and the free
cientsc; ;, while the RPA expression fag, ; is wrong. responses reproduce the exact results in the Iardimnit.

In the strong coupling regionNV/e =0.8), on the other This is understandable from the viewpoint of th&l Expan-
hand, many coefficients; ; with largei andj are important.  sion of the response; with only thé&interaction at hand, one
In order to obtain a convergent result in th&lExpansion in  needs at least two factors bfto gain a factoN by making
this case, we need to evaluate exactly many terms with larga fermion loop. Therefore, the leading contribution of the
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FIG. 9. Excitation energy of the first excited state in unitsof
for V=0, U+#0. Exact values are denoted by crosses. The interac-
tion strength is given bjNU/e=0.6 (top) andNU/e=0.4 (bottom).
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\ NU/e= 0.4
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E -E,
€
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interaction is of the order of Wx (NU/¢)?, and vanishes as
N—oo. This explains clearly that both the ERPA and the
exact results should converge to the free valueNasc.
This is in contrast with th&/ interaction in the ring approxi- 08 ‘ ‘ Lr‘ing ‘ ‘
mation, where the number of the factors éfis identical 5 10 15 20 25 30
with that of the fermion loops. NUMBER OF PARTICLES N
We can also recognize in the figure that the ERPA coin-

0.85/ 3

EXCITATION ENERGY

. . 1.04
cides with the exact results fod=2 (smallest number of “ﬂw
particles in the figure It can be shown easily that all the wl 1.02 m‘a’;:gg
dynamical processes in the responseNer2 are taken into g 1 ERPA x EXACT
account in the framework of the ERPA, and therefore the U o8k
ERPA becomes exact. W o06
C. Case 3:V#0, U%0 2 094 ]|
. . S 092
Finally we examine the general case with=0, U+#0. %
The numerical results are shown in Fig. 10. Here we take the 09 5 10 15 20 25 30
interaction strengtt, which is slightly weaker than the ph NUMBER OF PARTICLES N
Intera_ctlon strengtlv, which is the usual situation in actual FIG. 10. Excitation energy of the first excited state in unitg of
nuclei. for V#0, U#0.

We can confirm in the figure the roles played Dy, )
and2 3,3 w) explained in the preceding subsections. Let usunderstandable because all the processes in the response in-
start with the RPA results. Then, by includidpp{®) in  terfere in the case with/#0, U+0.
the RPA response, we obtain the SRPA response, which gives From Fig. 10, we can see that the ERPA reproduces the
lower excitation energies than the RPA results. Finally, byexact results both in the large and the snidllimits. The
addingX 3ps ) to the SRPA response, we increase the exsituation in the largeN limit is understandable in the N/
citation energies from the SRPA values to the ERPA onesgxpansion. In the smaN region, the system can rarely ex-
which are close to the exact results. perience more complicated processes than are described by
We can also recognize that the difference between th& () andX;ps{w), because of the small number of par-
ERPA and the exact values are slightly larger than that irticles. This explains why the ERPA is good also in the small
case 1 Y#0, U=0) orin case 2Y=0, U#0). Thisis N region.
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Let us summarize this section as follows. We have clari- 05
fied explicitly the effects of the two self-energig€s () i zasigi
and 2 353 w) using the extended Lipkin model. We have o045l % Exact

demonstrated that it is important to include both self-energies
2 op2i @) andX g3 w) in the ph propagator, i.e., to use the
framework of the ERPA, to reproduce the exact excitation
energies in a satisfactory way.

|<1jojo>)° /N
o
N

o
)
a

V. TRANSITION STRENGTH

0.3
In this section we study the transition strengths of a Her- 5 10 15 20 25 30 35 40 45 50

mitian operatorO=J,+J_, using the first and the zeroth NUMBER OF PARTICLES - N
moments, which are the basic quantities to characterize the
spectrum of the transition strengths.

FIG. 11. Transition strengths to the first excited state per par-
ticle, [(1|O|0)|%N, for NV/e=0.8, NU/e=0.4. Results in the
ERPA, SRPA, RPA, and the ring approximation are presented with

A. Energy-weighted sum rule the exact values.
Generally, thekth moment of the transition strengths is
defined as as for the excitation energies shown in Fig. 10. This fact
shows explicitly that® ;3 w) plays an important role not
_— E —E)X(vl0l0Y2. 29 only in thg qalculanon of the excitation energies but also in
k VZO( v~ Bo(+10[0) 29 the description of the state vectors.

In Fig. 12 we presenm{Y/m,, the ratio tom,; of the
In particular, the first momentn; (energy-weighted sum  contributionm(®) of the first excited state in the ERPA and
rule) is important theoretically because it can be given by thepe SRPA theories, together with the exact results. The figure
ground state expectation value of a simple commutator agjearly shows that the first excited states in the ERPA and the

follows [21]: SRPA are as collective as in the exact results. It is also vis-
1 ible that the collectivity of the first excited state is enhanced
m;= > (E,—Eo)|(#]0]0)|2==(0|[O,[H,O]]|0). with increasing number of the particléé, as is naturally
=0 2 anticipated.
(30 Now we examine the energy-weighted sum milgof the

system. In order to show the absolute valuesmfin the

Accordingly it can be showfi22,23 thatm, is sensitive to ERPA and the SRPA theories, we present in Fig. 13 their

the ground state correlatl_on, and is only weakly affected byrau 0s mERPA/mix and mfRPA/mix to the exact valuent* of
the correlation in the excited states. ! . R
S the energy-weighted sum rule. First, we notice in Fig. 13 that
In the case of the extended Lipkin model, we can demon;
e . both the ERPA and the SRPA values foi are close to the
strate the above statement explicitly. By substitutingand

. . exact values in the small and the laiydimits. This situa-
3v_rit|tr;:]hzsoperatof9 in Eq. (30), we can show than, can be tion can be explained in the same way as for the excitation

energy. Second, both theories differ from the exact results in
Ay, —By\ /1 the intermediaté\ region. However, the error in the ERPA is
)( ) (3D much less than in the SRPA.
Let us take a different point of view, i.e., we can use the
value of m; given by an approximation to measure how
properly the ground state correlation is taken into account by

N

- Bll All
where the definitions oA;; andB,;, and their ERPA values
are given in Eq(14). We can easily see that the ERPA ex-
pression form; is given solely in terms of/, and is not

dependent oiJ. This is the consequence of the fact that the 1
U interaction enters only the correlations in the excited states 0.98 ERPA a0k
[ 2po @)1, while theV interaction causes the ground state 0.96 000
correlations[ 2 353 w)]. We also notice from Eq(31) that 8-2‘2‘ XX 0%
the SRPA and the RPA values for, are identical, because me g fx SRPA
these two approximations give the safkg andB;; [10,22. M o 88 )é,c

We start with the transition strengths to the first excited 0.8604 Nv/e=0.8
state, of which the excitation energy has been examined in o.sal D
detail in Sec. IV. The transition strengths per particle to the 0.82
first excited stat¢L<1|O|Q>|2/N, are shown in Fig. 11. We 08 & 10 15 20 25 30 35 40 45 %0
adopt here the interaction strengtNy//e=0.8 andNU/e NUMBER OF PARTICLES N

= 0.4, which we think realistic. It can be seen that the ERPA
approximates the exact values very well, and the SRPA is FIG. 12. Contributionm{") of the first excited state ten; for
even worse than the RPA. Note that this is the same situatioRV/e=0.8, NU/e=0.4.

014312-9



DAISUKE SHINDO AND KAZUO TAKAYANAGI PHYSICAL REVIEW C 68, 014312 (2003

1.05
18 ERPA
0.95[ . / ___________________
m_ooof T
mrogsk e

o8f, ..

0.75[ Moo
0.7 \SRPA(RPA) m\lﬁfg-i FIG. 15. Goldstone diagrams @, (t) with t>0 that has no

0.65 e interaction line in the time interval (), and therefore contribute to
0.6 my. The external excitation operator is taken taJhe Left: lowest

order[ O(V?)] process WithS 33p. Right: lowest ordefO(V2U?)]

process withX, 5p.

5 10 15 20 25 30 35 40 45 50
NUMBER OF PARTICLES N

FIG. 13. The first momentn, in the ERPA and the SRPA nor- ) ] ]
malized by the exact valum®* for NV/e=0.8, NU/e=0.4. The We can see in the figure thaltps{w) has important ef-
RPA value is the same as the SRPA one. fects in shifting the RPA value ah, toward the exact one,

while % ,,{ ) has little effect. This can be understood using

the approximation. Then Fig. 13 exhibits first that the SRPAthe idea of 1k expansion[21,23. Let split the response
treats the ground state correlation in the same way as tHeinctionD(t) of Eq. (17) as
RPA, and second that the ERPA makes a significant improve-
Irntelent on the SRPARPA) in treating the ground state corre- D(t)=(t)D(t)+ 6(—t)D(t)=D, (1)+D _(t), (33
ation.

At the end, let us stress again that the difference between ) )
the ERPA and the RPASRPA) stems solely front s o). according tat>0 ort<0. Itis easy to see thdd . (w), the
This fact shows clearly that s, ) is very important in the Fourier transform ofD_(t), is analytic in the upper half

calculation not only of the excitation energies but also of thePlane _Of“" Suppose we expand . () in powers of 1.
transition strengths. Then it can be proven that tHegh momentm, can be ob-

tained from the coefficient of &1, In order to evaluate
m,, therefore, we need to look for the processes of the re-
sponse that contribute to the coefficient ab 14t is straight-
Finally, we come to the zeroth momefnon-energy- forward to demonstrate that a Goldstone diagranDqf(t)

B. Non-energy-weighted sum rule

weighted sum rulemy, which is given by with no interaction line in the time interval (),behaves as
O(1) (constantast— +0. Then we can see that its Fourier
Mo= Zo (v 0]0)|2. (32) :Lar?]sform goes as d/as w—», and therefore it contributes
v 0-

Now we consider the response to the external opetator

Note that we do not have a simple expressionfigras Eq.  for simplicity, and look for the Goldstone diagrams that have
(31) for m;. no interaction line in (@). Let us start with th&/-interaction

We present the numerical results fop in Fig. 14 in the  term. We can immediately recognize that there is a contribu-
same way as in Fig. 13 fan,. Contrary to the case ofi;,  tion of orderV? throughX 5p3{ w), as shown in Fig. 15. Next
correlations in the excited as well as in the ground states, i.ewe come to theU interaction term. It can be immediately
3 opa @) andX g3 ), take place in the description afy.  recognized that thé) interaction alone cannot make a pro-
The difference between the RPA and the SRPA can be traceskss, which is of the order of @/ and also that the lowest
back toX. 555{ ), and the difference between the SRPA andorder contribution of theU interaction to my through

the ERPA originates fron g ). 3 ypaf{ @) is of the order ofV2UZ, as shown in Fig. 15. The
above observation tells that,,,{ w) entersmg only in the
11 fourth and the higher order perturbation theory, while
105}, ERPA 2 3p3H @) comes into play at _the second order. This_ explains
m 2 why 2 3,3{ @) is much more important thab ,,,{ @) in the
ng 1 a / description ofmg, as is visible in Fig. 14. Note that contri-
0.95 ~~~~~~~~ bu2ti%ns of orderU? appear only in higher moments,, k
0.9]  lIimne-ssoqmmizEniIEE Let us summarize this section as follows. The transition
1 strengths are investigated in terms of the first and the zeroth
0.85 SRPA RPA m’lizg'i order momentsn; and m,. It has been demonstrated that

08 & 10 5 20 25 30 2 3pa{w) is much more important thak ,p, ) in the cal-
NUMBER OF PARTICLES N culation of the transition strengths, which is emphasized, es-
pecially in m;. This fact shows explicitly that the ERPA
FIG. 14. mg/mg* for NV/e=0.8, NU/e=0.4 in the ERPA, gives much better results than the SRPA not only in the ex-
SRPA, and RPAMZ* represents the exact value fog,. citation energies but also in the transition strengths.
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VI. SUMMARY which has been explained in detail. It has been demonstrated
In this paper we have prooosed an extended Lipki with the extended Lipkin model that it is very important to
pap prop PXNake into account not ONlY opof ) but also 3o w) in the

model, which has th&U(2) symmetry of the original Lip- .
kin model, and therefore is solvable. It incorporates the two-ph propagator, i.e., to adopt the framework of the ERPA, to

body interaction between phpp and pk-hh, which de- %?gﬁgtlﬁlcse the exact excitation energies and transition
o1 the noninteracting aysiem satsfies the +iartree-Fock con Ve belive that the mode offers a very useful aboratory
dition, and therefore the model can be used to examine the? examine a variety of many-body systems.
RPA-type theories.

We havg st_ud|ed the_ ERPA, using the nevyly propoged ACKNOWLEDGMENTS
extended Lipkin model in terms of the excitation energies
and the transition strengths. The self-energy of the ph propa- This work was partially supported by Grants-in-Aid for
gator in the ERPA is given b¥ ,,,{ w) + 2 3,3{w), each of ~ Scientific Research from JSRG&rant No. 12640291
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