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Extended random phase approximation in a solvable model

Daisuke Shindo and Kazuo Takayanagi
Department of Physics, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan

~Received 24 March 2003; published 29 July 2003!

We propose an extended Lipkin model that can describe decay processes of particle-hole states and is still
solvable. We examine several RPA-type theories using the model. We show explicitly the roles played by the
self-energies of particle-hole propagators, and clarify how the extended RPA theory describes collective states
better than other RPA-type theories.
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I. INTRODUCTION

The nuclear collective states has been studied extens
by the random phase approximation~RPA! @1,2# for a long
time. The essential features of the RPA theory can be d
onstrated by the Lipkin model@3#, which was proposed by
Lipkin, Meshkov, and Glick. The Lipkin model still main
tains its importance in many fields as a solvable but n
trivial model. The model has enjoyed several extensio
e.g., to incorporate two types of fermions@4# or to treat three
energy levels@5,6#. Note that even the original version of th
model is still in service, e.g., in the analysis of two phon
states@7#.

There have been many attempts to generalize the R
theory, especially to treat explicitly not only the particle-ho
~ph! but also the two-particle-two-hole~2p2h! degrees of
freedom in the play. In this work, we concentrate on t
following two generalizations. The first one is the Seco
RPA ~SRPA! theory, which takes into account the mixing
the 2p2h states in the ph components@8,9#. The second one
is the extended RPA~ERPA! theory, which handles the cor
relations in the ground and the excited states in a consis
way @10–13#.

There have been some efforts to compare these exte
versions of the RPA-type theories in real nuclei@14#. It is,
however, obviously desirable to have a solvable mode
hand to discuss such theories, as we have the Lipkin m
for the RPA. In this paper we propose a new solvable mo
which is suitable to discuss these improved versions of
RPA. The model is a natural extension of the Lipkin mod
which takes into account the decay processes of the ph s
into 2p2h states, and is still solvable as the original Lipk
model.

The plan of this paper is the following. In Sec. II, w
introduce the solvable model~extended Lipkin model!. In the
construction of the model, we pay special attention to
Hartree-Fock condition. In Sec. III, we briefly review th
ERPA theory in the context of the extended Lipkin mod
We first give the ERPA eigenvalue problem explicitly. Th
the ph response function in the ERPA is presented in the fi
theoretical method. In Sec. IV, we examine the excitat
energies of the collective states in the RPA, SRPA, and ER
in the extended Lipkin model, putting emphasis on the ro
of self-energies. In Sec. V, we investigate the transit
strengths. Here the important role of the energy-weigh
sum rule is stressed. We shall see how these physical q
tities are well described by the ERPA theory, compared w
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other RPA-type theories. Finally in Sec. VI we give a su
mary.

II. SOLVABLE MODELS

In this section we first review the original Lipkin mode
briefly to fix the notation, and then explain how to extend t
model.

A. Lipkin model

The Lipkin model describes anN-fermion system with
two N-fold degenerate levels shown in Fig. 1. The upper a
the lower levels are indicated bys511 and s521, re-
spectively, and theN degenerate levels are distinguished
an additional quantum numberp51,2, . . . ,N. The model is
described by the following Hamiltonian:

HL5«Jz1
1
2 V~J1

2 1J2
2 !, ~1!

where the second-quantized operators

Jz5
1

2 (
ps

saps
† aps , ~2!

J15(
p

ap11
† ap21 , J25(

p
ap21

† ap11 , ~3!

satisfy the familiarSU(2) algebra. We haveN particles in
the model system. Then theSU(2) symmetry of the mode
shows that the natural basis states are given by the ei
states of theangular momentumas uJ,Jz&.

Let us first consider the true ground stateu0& of the sys-
tem. If there were not the two-body interaction (V50), then
the ground stateu0& would be the stateuN/2,2N/2& with all
the N particles being in the lower levels521. Let us as-
sume that the true ground stateu0& can be generated adia
batically from uN/2,2N/2& by the two-body interaction in

+ε/2

−ε/2

1  2  3   ... N

1  2  3   N

σ=+1

σ=−1
...

p:

p:

FIG. 1. Graphical representation of the Lipkin model.
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the model, which are shown diagrammatically in Fig.
Then the Hamiltonian guarantees that the true ground s
u0& of the system belongs to theJ5N/2 multiplet as the
unperturbed ground stateuN/2,2N/2&.

Next let us come to the excited states of the system. In
study of the excitations, we takeJ1 andJ2 as the externa
excitation operators. Therefore, we can limit ourselves to
J5N/2 multiplet throughout this paper.

Note that the Lipkin model can be generalized to inclu
an interaction operator that is proportional toJ1J2 . We do
not consider such a generalization here because the
effect of the term can be absorbed in the definition of the
energy«.

B. Extended Lipkin model

Even though the RPA has been successful as a first ste
the description of nuclear collective states, it cannot acco
for the decay processes that have been drawing much a
tion. These decay processes are generated by the coup
of the ph to the 2p2h degrees of freedom, and lead to a w
and an energy shift of a collective state.

In order to simulate such processes, we extend the Lip
model so that it allows the interaction between ph↔pp and
ph↔hh, which are shown in Fig. 3. Such an interaction c
be generated keeping theSU(2) symmetry of the Lipkin
model as follows. Let us first consider the following tw
body operator

JzJ15
1

2 (
p

~ap11
† ap112ap21

† ap21!(
k

ak11
† ak21 ,

~4!

which apparently represents the ph→pp and hh→ph transi-
tions. We cannot adopt, however, the above operator as
as the new interaction. A two-body interaction of this for
necessarily violates the Hartree-Fock condition, i.e.,
ground stateuN/2,2N/2& of the noninteracting system is un
stable with respect to the creation of ph pairs shown in F
4. Then uN/2,2N/2& is not any more the Hartree-Foc

σ=+1  σ=−1
p

σ=+1  σ=−1

σ=+1  σ=−1 σ=+1  σ=−1

p

p p

p’ p’

p’ p’

FIG. 2. V interaction in the Lipkin model.

FIG. 3. Two-body interaction representing four types of tran
tions ph↔pp and ph↔hh. They are realized as theU interaction in
the extended Lipkin model.
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ground state, and cannot be used as a first approximatio
the real ground state@15#.

It is, however, possible to cancel the process in Fig. 4
replacing the above operatorJzJ1 by its normal ordered
counterpart :JzJ1 :. Then it is clear that the stateuN/2,
2N/2& remains to be the Hartree-Fock ground state. T
same discussion obviously applies toJzJ2 , J1Jz , and
J2Jz . We adopt, therefore, the following operator as an a
ditional interaction:

:Jz~J11J2!1~J11J2!Jz :

5~N21!~J11J2!1Jz~J11J2!1~J11J2!Jz ,

which generates the four processes in Fig. 3, but does
create the ph states as in Fig. 4. After the above consi
ation, we arrive at the extended Lipkin model, which is d
scribed by the following Hamiltonian:

H5H01H15«Jz1
1

2
V~J1

2 1J2
2 !1

N21

2
U~J11J2!

1
1

2
U@Jz~J11J2!1~J11J2!Jz#, ~5!

where the strength of the new interaction is denoted byU. It
can be easily shown that the third term guarantees
Hartree-Fock condition

^N/2,2N/2uHJ1uN/2,2N/2&50, ~6!

for uN/2,2N/2&. We shall refer toH05«Jz as the unper-
turbed Hamiltonian and to the rest as the residual interac
H1.

At the end of this subsection, we summarize as follo
the extended Lipkin model described by the HamiltonianH
of Eq. ~5!. First, the Hamiltonian maintains theSU(2) sym-
metry of the Lipkin model, and therefore it can be solved
easily as the Lipkin model. Second, the Hamiltonian c
describe decay processes of ph states. Third,uN/2,2N/2& is
the Hartree-Fock ground state.

C. Other extensions

Here we discuss other extensions@16,17# of the Lipkin
model to include the interaction between ph↔pp and
ph↔hh. In these works, they investigated the systems w
new interaction terms that are similar to ours. The essen

-

σ=−1
p

J Jz +

σ=+1     σ=−1
p’ p’

FIG. 4. Diagrammatic representation of the violation of t
Hartree-Fock condition by a two-body interactionJzJ1 . Summa-
tion over the quantum numberp is assumed. Exchange process
not drawn explicitly.
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difference between these works and the present one is in
treatment of the Hartree-Fock condition, as explained bel
To be concrete, let us look at the following interaction te
used in Ref.@17#:

1

2
u(

pks
~aps

† aks
† ak2saps1aps

† ak2s
† aksaps!

5
1

2
u~ n̂21!~J11J2!, ~7!

wheren̂5(p,saps
† aps is the number operator. It can be ea

ily seen that, by replacingn̂ by Jz , Eq. ~7! reduces to theU
interaction in the preceding subsection, but without the n
mal ordering operation. Note that the following discussio
apply also to the interaction introduced in Ref.@16#.

It is easily seen that the new interaction of Eq.~7! violates
the Hartree-Fock condition in the same way as explaine
the preceding subsection. There are evidently two
proaches to restore the Hartree-Fock condition; one is
method taken in Refs.@16,17#, and the other is the one tha
led to Eq.~5!. We now compare these two approaches.

In the first approach@16,17#, they look for the Hartree-
Fock solution of the given Hamiltonian by a unitary tran
formation of the single particle basis functions, so that
Hamiltonian satisfies the Hartree-Fock condition in terms
the new single particle states. The transformed Hamilton
obviously contains the interaction between ph↔pp and
ph↔hh in the new basis functions. However, the new co
pling strengths are complicated functions of the original o
and the number of particles, and are not under control
more. This approach is excellent to discuss, for example,
ground state properties of a given Hamiltonian. It is, ho
ever, obviously inappropriate to examine the system pro
ties with changing the coupling strength between ph↔pp and
ph↔hh for fixed Hartree-Fock single particle states, which
our purpose.

The second approach adopted in the preceding subse
can be put in contrast with the first one as follows. In t
present work, we want to keep the Hartree-Fock single p
ticle states to be independent of the coupling strength, wh
we are going to vary as an independent variable at hand
change, therefore, the Hamiltonian by introducing the o
body field, so that the original basis functions satisfy t
Hartree-Fock condition for an arbitrary coupling streng
This corresponds to taking the normal ordered form of
interaction, as explained in the preceding subsection.

At the end, we make a comment on the interaction of
~7!, which one might think that we could have adopted.
can be shown, however, that the normal ordered produc
Eq. ~7! reduces to

: 1
2 u~ n̂21!~J11J2!:5 1

2 u~ n̂2N!~J11J2!, ~8!

which obviously leads to a trivial model that does not intr
duce new physical effects, becausen̂2N vanishes identi-
cally for the system with a fixed number of particles,N. In
other words, the two-body interaction of Eq.~7! presents a
nontrivial and interesting problem for a fixed Hamiltonian
01431
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the first approach@16,17#, but does not introduce anythin
new to the original Lipkin model in the second approac
This is the reason why we cannot adopt the interaction of
~7! in the present work.

III. EXTENDED RPA

In this section, we explain the ERPA in terms of the e
tended Lipkin model of the preceding section. We present
ERPA first as an eigenvalue problem and second as a t
retical framework to calculate the response function us
the diagrammatical method@10#.

A. Eigenvalue problem

Let us start with a generalN-fermion system, which is
described by a HamiltonianH. The eigenstates ofH are
given by $un&,n50,1,2, . . . %, which satisfy

Hun&5Enun&. ~9!

We define an operatorQn
† that generates thenth excited state

un& from the ground stateu0& as

Qn
†u0&5un&, Qnu0&50, n51,2, . . . . ~10!

Then it is straightforward to show thatQn
† satisfies the fol-

lowing variational equation for an arbitrarydQ @1,2#:

^0u@dQ,@H,Qn
†##u0&5~En2E0!^0u@dQ,Qn

†#u0&. ~11!

Now we take the specific case of the extended Lip
model described by the HamiltonianH of Eq. ~5!. As the first
step in the ERPA, we expressQn

† in terms of the creation and
the annihilation operators of ph and 2p2h states. In our c
we need to consider only four operato
$J1 ,J1J1 ,J2 ,J2J2% because of the symmetry of th
model. Then we expandQn

† as

Qn
†5x1

(n)J12y1
(n)J21x2

(n)J1J12y2
(n)J2J2 . ~12!

After a straightforward calculation of Eq.~11!, we can show
that the coefficients in Eq.~12! satisfy the following eigen-
value equation:

S A11 B11 A12

B11 A11 A12

A12 A22

A12 A22

D S x1
(n)

y1
(n)

x2
(n)

y2
(n)

D
5~En2E0!S S11

2S11

S22

2S22

D
3S x1

(n)

y1
(n)

x2
(n)

y2
(n)

D , ~13!
2-3
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where the matrix elements are given by

A115^0u@J2 ,@H,J1##u0&.N«F11
1

2 S V

« D 2

~N21!G ,
A125^0u@J2 ,@H,J1J1##u0&.2N~N21!U,

A225^0u@J2J2 ,@H,J1J1##u0&.4N~N21!«,

B1152^0u@J2 ,@H,J2##u0&.N~N21!V,

S115^0u@J2 ,J1#u0&.N2
1

2 S V

« D 2

N~N21!,

S225^0u@J2J2 ,J1J1#u0&.2N~N21!. ~14!

The second step of the ERPA is in the above evaluation
the commutators@10#. A11, B11, andS11 are calculated ex-
actly up to the second order in powers of the residual in
actionH1. In the same way we calculateA12 up to the first
order, andA22 andS22 up to the zeroth order. This procedu
can be shown to give the response function of the system
the external one-body operators$J1 ,J2% exactly up to the
second order in the residual interaction. Note that the sec
order term is missing in the expression forB11, because of
the special form of the model interaction. This can be und
stood most easily by noticing the fact that there is no way
construct the second order processes ofB11 diagrammatically
@10# with the interaction terms in Eq.~5!.

Here we can briefly mention the derivation of the SR
theory. If we had evaluated the above commutators by
placing the real ground stateu0& by the Hartree-Fock ground
stateuN/2,2N/2&, we would have arrived at the SRPA eige
value equation@8#. It is written in the same form as Eqs.~13!
and~14!, but with the replacementA11→N«, S11→N in Eq.
~14!. It should be noted here that the SRPA was the fi
attempt toward the microscopic description of decay p
cesses of collective states.

As in the usual RPA theory, the solutions of the abo
eigenvalue problem of Eq.~13! appear pairwise, i.e., a pos
tive energy solution withEn.0 is accompanied by a nega
tive energy solution withE2n52En,0. In our case of the
extended Lipkin model, there are only two positive ene
solutions withn51,2.

It is convenient to normalize the eigenvectors in Eq.~13!
as

S11~x1
(n)22y1

(n)2!1S22~x2
(n)22y2

(n)2!5sgn~n!. ~15!

Then it can be shown that the transition amplitudes for
operatorsJ1 andJ2 are given by

S x̃1
(n)

ỹ1
(n)D 5S S11x1

(n)

S11y1
(n)D 5S ^0uJ2un&

^0uJ1un&
D . ~16!

B. ERPA response function

Here we explain the response function for the exter
operatorsJ1 andJ2 in the ERPA. A general theory to con
01431
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struct the response function from the RPA-type eigenva
equation is given in Ref.@10#.

We define the response functionD(t) as a 232 matrix
using theT-product~time-ordered product! as

D~ t !5
1

i S ^0uT@J2~ t !,J1#u0& ^0uT@J2~ t !,J2#u0&

^0uT@J1~ t !,J1#u0& ^0uT@J1~ t !,J2#u0&
D .

~17!

Then its Fourier transform in the ERPA is given by

D~v!5
N

S v2«

2v2«
D 2S S~v! ~N21!V

~N21!V S~2v!
D ,

~18!

where the ph self-energyS~v! stands for all the second orde
processes, and shall soon be explained below. The ab
matrix form of D(v) can obviously be expressed using t
diagrammatical method in the perturbation expansion, wh
allows an intuitive understanding of the dynamical pr
cesses. Note that the above expression forD(v) may be
derived directly also from Eq.~13! using the general theory
@10#, first by deriving the 434 full response function matrix
for the operator set$J1 ,J1J1 ,J2 ,J2J2%, and then by tak-
ing the 232 submatrix corresponding to$J1 ,J2%.

It is convenient to express the ph self-energy as

S~v!5S2p2h~v!1S3p3h~v!, ~19!

where S2p2h(v) and S3p3h(v) represent the self-energie
with 2p2h and 3p3h intermediate states, respectively, and
given by

S2p2h~v!5H1

1

v2H0
H152~N21!U2

1

v22«
, ~20!

S3p3h~v!52
1

2H0
H1~v2H0!H1

1

2H0

52
N21

2 S V

« D 2

~v23«!. ~21!

The above self-energies are shown in Figs. 5 and 6, and
middle expressions of Eqs.~20! and ~21! represent the cor-
responding processes in a symbolic way.

Here the difference between the ERPA and the SRPA
be stated most clearly in terms of the response function;
self-energy of the ERPA response is given by Eq.~19!, while
the SRPA takes into account onlyS2p2h(v) and neglects
S3p3h(v). In the following sections, we shall examine
detail what roles are played by these two self-energies.

By definition, the response functionD(v) can be written
using the transition amplitudesx̃1

(n) and ỹ1
(n) of Eq. ~16! as

follows:

D~v!5(
n

sgn~n!

v2En2 ihn
S x̃1

(n)

ỹ1
(n)D ~ x̃1

(n) ,ỹ1
(n)!, ~22!
2-4
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where the infinitesimal imaginary partihn5 ih sgn(n) is
written explicitly. By comparing Eqs.~18! and~22!, it can be
shown that the transition amplitudes satisfy the followi
normalization@10#:

~ x̃1
(n) ,ỹ1

(n)!M nS x̃1
(n)

ỹ1
(n)D 5sgn~n!N, ~23!

where

M n5S 1

21D 2
]

]v S S~v!

S~2v!
D U

En

. ~24!

Note that the unusual factorN in the right-hand side~rhs! of
Eq. ~23! originates from the normalization of the operators
the expansion of Eq.~12!; J1 , for example, is not so nor
malized that the norm ofJ1uN/2,2N/2& is unity. We also
mention here that a different expression for the normaliza
of the transition amplitudes is discussed in Ref.@18#.

By taking the imaginary part ofD(v) of Eq. ~22! for v
.0, we can obtain the spectrum of the transition strength
J1 andJ2 as

FIG. 5. Self-enegyS2p2h(v) with 2p2h intermediate states
These processes express the couplings of the ph to the 2p2h s
which can be referred to as the correlation in the excited~ph! states.
All the interaction vertices are assumed to be antisymmetrized

FIG. 6. Self-enegyS3p3h(v) with 3p3h intermediate states
These processes express the effects of the ground state corre
on the ph states through the Pauli principle. All the interact
vertices are assumed to be antisymmetrized.
01431
n

of

2
1

p
Im D~v!5 (

n.0
d~v2En!S x̃1

(n)

ỹ1
(n)D ~ x̃1

(n) ,ỹ1
(n)!, ~25!

which can be compared directly withexperiments.

IV. EXCITATION ENERGY

In this section, we calculate the excitation energy of t
first excited state~collective state! of the extended Lipkin
model in the following RPA-type theories.

~1! ERPA: the response function is given by Eq.~18!.
~2! SRPA: the response function is obtained from t

ERPA response by neglectingS3p3h(v).
~3! RPA: the response function is obtained from the ER

response by neglecting the whole self-energyS~v!.
~4! Ring approximation: the response function is obtain

from the RPA response by neglecting the exchange p
cesses, i.e., by the replacement (N21)V→NV. Response
diagrams are composed of simple rings that are connecte
the direct processes of the ph interactionV.

The exact eigenenergiesE0 ,E1 , . . . can be calculated by
diagonalizing the (N11)3(N11) Hamiltonian matrix for
the J5N/2 multiplet. In the RPA-type theories, excitatio
energies are obtained from the positions of the poles in
complexv plane of the response functionD(v).

We first examine the case withVÞ0, U50, which re-
duces to the original Lipkin model. We explain the idea
1/N expansion and clarify the roles ofS3p3h(v). Second, we
study the case withV50, UÞ0 to demonstrate the roles o
S2p2h(v). Finally, we investigate the general caseVÞ0, U
Þ0 of the extended Lipkin model.

A. Case 1:VÅ0, UÄ0

This case corresponds to the original Lipkin model, w
which we can discuss the ERPA, RPA, and the ring appro
mation. Note that there is no way to makeS2p2h(v) without
U, and therefore the SRPA reduces to the RPA in this ca
Here we first explain~i! the idea of 1/N expansion@3#, and
then ~ii ! the role ofS3p3h(v) @12#.

In Fig. 7, we show the excitation energyE12E0 of the
first excited state as a function of the number of the partic
N for NV/«50.8, 0.6, and 0.4.

We immediately recognize in Fig. 7 that the excitatio
energy in the ring approximation is independent ofN, and is
given by @3#

S E12E0

« D
ring

5F12S NV

« D 2G1/2

. ~26!

Note that for stronger interaction strengthsNV/«.1, Eq.
~26! gives imaginary excitation energies. This means that
Hartree-Fock ground stateuN/2,2N/2& does not correspond
any more to the local minimum of the energy surface, a
therefore it is unstable@1,2# in the ring approximation. In
such very strong coupling regimes, it is possible to discus
phase transition from asphericalto a deformedground state

tes,

tion
2-5
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DAISUKE SHINDO AND KAZUO TAKAYANAGI PHYSICAL REVIEW C 68, 014312 ~2003!
@2,19#. We shall remain, however, in the regimeNV/«,1 in
this paper to discuss the collective states inspherical sys-
tems.

Let us take into account the exchange processes of al
ph interaction in the ring approximation. This procedu
amounts to replacingNV by (N21)V in Eq. ~26!, leading to
the following RPA result:

S E12E0

« D
RPA

5F12S ~N21!V

« D 2G1/2

. ~27!

Figure 7 clearly shows that the RPA is much better than
ring approximation, especially in the smallN region.

Now we explain the idea of the 1/N expansion@3#. It is
visible in Fig. 7 that the ring approximation reproduces t
exact results in the largeN limit. Let us think of a Goldstone
diagram that represents a response process to an ext
operatorJ1 . Because each fermion loop gives a factorN due

FIG. 7. Excitation energy of the first excited state in units of« in
several theories forVÞ0, U50. Exact values are denoted b
crosses. The interaction strength is given byNV/«50.8 ~top!,
NV/«50.6 ~middle!, NV/«50.4 ~bottom!.
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to the trace over the quantum numberp, the ring approxima-
tion collects those terms with the most factors ofN at each
order in powers of the residual interactionV. This explains
why the ring approximation is exact in the largeN limit. The
above idea is completed as the 1/N expansion of the respons
function, which can be stated most easily using the langu
of the diagrammatical method; the leading term of the
pansion is given by the ring approximation, in which thenth
order processes~in powers of the residual interactionV) of
the response are composed of the diagrams withn11 fer-
mion loops. The second term of the expansion is the sum
all the nth order processes withn fermion loops, which ob-
viously gives a correction of order 1/N to the ring approxi-
mation. In the same way, the third term is the collection
the diagrams withn21 fermion loops. This procedure ca
be continued to give an expansion of the response functio
powers of 1/N. Then it is straightforward to derive an expa
sion of the excitation energy in powers of 1/N.

Let us briefly explain how to perform the 1/N expansion
in the case ofn52. We can notice that there are two possib
ways to decrease the number of the fermion loops of a gi
process for a given order: one is to open a fermion loop
taking the exchange diagram in the process; the other i
consider an exchange process with a ground state correla
diagram, which has been canceled away by the linked clu
theorem@20#. This situation is shown in Fig. 8 for the secon
order (n52) processes.

In Fig. 7, we have shown as ‘‘1/N’’ the sum of the first
~ring approximation! and the second~leading correction!
term of the 1/N expansion of the excitation energy of the fir
excited state. The figure shows clearly~i! that the leading
correction reproduces the exact results very well for largeN,
and also~ii ! that the convergence of the expansion is slow
the smallN region.

Now we compare the RPA and the 1/N expansion. We can

J-

J+

J-

J+

FIG. 8. Diagrammatic explanation of proceeding to higher
ders in the 1/N expansion of the response function for the excitati
operatorJ1 . The figure shows how to make the second ordern
52) diagrams with two (5n) fermion loops. Top: replacing a di
rect ph interaction by an exchange interaction in the left proc
reduces the number of the fermion loops fromn1153 to n52.
Bottom: exchange process of the free process with the ground
correlation diagram. This procedure gives the right diagram w
two fermion loops forn52. Note that the unlinked part~ground
state correlation! of the left diagram does not appear in the expre
sion for the response function, because it is canceled by virtu
the linked cluster theorem.
2-6
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EXTENDED RANDOM PHASE APPROXIMATION IN A . . . PHYSICAL REVIEW C68, 014312 ~2003!
see in Fig. 7 that the line denoted by ‘‘1/N’’ approximates the
exact results to a better extent with decreasing interac
strengthNV/«. On the other hand, the RPA improves on
slowly with decreasingNV/«. Consequently, the RPA is be
ter ~for N&20) in the strong coupling region (NV/«50.8),
while the 1/N expansion is better in the weak coupling r
gion (NV/«50.4). This can be understood in the followin
way. Let us expand the excitation energy in powers ofNV/«
and 1/N as

E12E0

«
5(

i , j
ci , j S NV

« D i 1

Nj

511S NV

« D 2S 2
1

2
12

1

N
2

3

2

1

N2D
1S NV

« D 4S 2
1

8
1

5

2

1

N
2

47

4

1

N2
1••• D 1•••.

~28!

The explicit form of the above double expansion can be
tained, e.g., from the results of the fourth order perturbat
theory@3#. Here the coefficientci , j represents thei th order in
NV/« and the j th order in 1/N, and the indices satisfyi
> j . We recognize that the perturbation expansion co
sponds to looking the above series from the top to the b
tom, and that the 1/N expansion is obtained by proceedin
from the left to the right. The above double expansion sho
that every term of the 1/N expansion contains terms up to th
infinite order in powers ofNV/«, while thei th order term in
the perturbation expansion can be expressed with only fi
powers$1,1/N, . . . ,1/Ni% of 1/N.

We notice thatci , j is a rapidly increasing function ofj for
i @ j . This is essentially because the number of ways to
crease the fermion loops grows very rapidly with increas
j. Consequently,ci , j for large values ofj can be important for
large values ofi, while only a few terms with smallj ~such as
ci ,0 andci ,1) can be meaningful for small values ofi.

The line ‘‘1/N’’ in Fig. 7 collects the first and the secon
terms in the double expansion of Eq.~28! for each power of
NV/«. On the other hand, the RPA sums up the excha
processes to the infinite order, and therefore takes into
count a part of the coefficientsci , j of any power 1/Nj , but
misses several important processes that contribute toci , j
with small j. In particular, the line ‘‘1/N’’ gives exactlyc2,1
52, while the RPA value forc2,1 is 1.

In the weak interaction region (NV/«50.4) where the
perturbation expansion is good, only the coefficientsci , j with
small i are important in Eq.~28!, and therefore we can limi
ourselves to the first few terms in the 1/N expansion~note
i> j ). This explains why the line ‘‘1/N’’ is better than the
RPA, because it gives the exact expression for the co
cientsci ,1 , while the RPA expression forci ,1 is wrong.

In the strong coupling region (NV/«50.8), on the other
hand, many coefficientsci , j with large i and j are important.
In order to obtain a convergent result in the 1/N expansion in
this case, we need to evaluate exactly many terms with la
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powers of 1/N. Then we can realize that it is more meanin
ful to sum up the important exchange processes to the
nite order, rather than to collect all the corrections of ord
1/N.

Finally we come to the results of the ERPA in Fig. 7
discuss the roles ofS3p3h(v). We recognize that the ERPA
reproduces exact results very well in all cases shown in
figure. Note that the difference between the ERPA and
RPA in the figure originates solely from the self-ener
S3p3h(v). One can show that the role of the self-ener
S3p3h(v) in the ph propagator is twofold@12#. One is to
increase the excitation energy of the ph state, and the oth
to reduce the amplitude of the bare ph component in
excited state. This can be understood as follows. First,
energy of the Hartree-Fock ground state is lowered by
second order processes~in powers ofV) of the ground state
correlation. Second, in the presence of the ph state, a pa
the above processes is forbidden because of the Pauli bl
ing. These two effects amount to increasing the energy of
ph state measured from the ground state. This is exactly w
S3p3h(v) expresses. If we look at the same effect from the
state, we can easily understand that the bare ph ampli
should be reduced by the ground state correlation, wh
inhibits partly the presence of the bare ph state.

At the end, let us look at Fig. 7 from the viewpoint o
improving the ring approximation. First, by taking into a
count the exchange processes, we obtain the RPA, w
increases the excitation energy by reducing the repulsive
interaction. Second, by includingS3p3h(v), the RPA excita-
tion energies are further increased to give the ERPA resu
which almost agree with the exact values in the whole ra
of N. This means that most of the effects of theV interaction
beyond the ring approximation can be expressed by the
change and the 3p3h self-energyS3p3h(v).

B. Case 2:VÄ0, UÅ0

In order to examine the roles played by the self-ene
S2p2h(v), we calculate the excitation energy of the lowe
excited state forV50, UÞ0. In this case, the ring approxi
mation reduces to the free response, and the ERPA and
SRPA coincide, because there is no ph interactions.

The numerical results are given in Fig. 9 forNU/«50.6
and 0.4. It can be seen that the ERPA reproduces the e
values very well in the whole range ofN. This means that
most of the effects of theU-interaction term on the respons
function can be represented byS2p2h(v).

The role of the self-energyS2p2h(v) on the ph propagato
is twofold. One is to lower the energy of the ph state, and
other is to reduce the amplitude of the bare ph componen
the excited state@12#. This can be understood easily in th
second order perturbation theory, becauseS2p2h(v) stands
for the couplings of the excited ph states to the 2p2h sta

From the figure, we can see that the ERPA and the f
responses reproduce the exact results in the largeN limit.
This is understandable from the viewpoint of the 1/N expan-
sion of the response; with only theU interaction at hand, one
needs at least two factors ofU to gain a factorN by making
a fermion loop. Therefore, the leading contribution of theU
2-7
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DAISUKE SHINDO AND KAZUO TAKAYANAGI PHYSICAL REVIEW C 68, 014312 ~2003!
interaction is of the order of 1/N3(NU/«)2, and vanishes as
N→`. This explains clearly that both the ERPA and t
exact results should converge to the free value asN→`.
This is in contrast with theV interaction in the ring approxi-
mation, where the number of the factors ofV is identical
with that of the fermion loops.

We can also recognize in the figure that the ERPA co
cides with the exact results forN52 ~smallest number of
particles in the figure!. It can be shown easily that all th
dynamical processes in the response forN52 are taken into
account in the framework of the ERPA, and therefore
ERPA becomes exact.

C. Case 3:VÅ0, UÅ0

Finally we examine the general case withVÞ0, UÞ0.
The numerical results are shown in Fig. 10. Here we take
interaction strengthU, which is slightly weaker than the p
interaction strengthV, which is the usual situation in actua
nuclei.

We can confirm in the figure the roles played byS2p2h(v)
andS3p3h(v) explained in the preceding subsections. Let
start with the RPA results. Then, by includingS2p2h(v) in
the RPA response, we obtain the SRPA response, which g
lower excitation energies than the RPA results. Finally,
addingS3p3h(v) to the SRPA response, we increase the
citation energies from the SRPA values to the ERPA on
which are close to the exact results.

We can also recognize that the difference between
ERPA and the exact values are slightly larger than tha
case 1 (VÞ0, U50) or in case 2 (V50, UÞ0). This is

FIG. 9. Excitation energy of the first excited state in units o«
for V50, UÞ0. Exact values are denoted by crosses. The inte
tion strength is given byNU/«50.6 ~top! andNU/«50.4 ~bottom!.
01431
-

e

e

s

es
y
-
s,

e
n

understandable because all the processes in the respon
terfere in the case withVÞ0, UÞ0.

From Fig. 10, we can see that the ERPA reproduces
exact results both in the large and the smallN limits. The
situation in the largeN limit is understandable in the 1/N
expansion. In the smallN region, the system can rarely ex
perience more complicated processes than are describe
S2p2h(v) andS3p3h(v), because of the small number of pa
ticles. This explains why the ERPA is good also in the sm
N region.

c-

FIG. 10. Excitation energy of the first excited state in units o«
for VÞ0, UÞ0.
2-8
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EXTENDED RANDOM PHASE APPROXIMATION IN A . . . PHYSICAL REVIEW C68, 014312 ~2003!
Let us summarize this section as follows. We have cla
fied explicitly the effects of the two self-energiesS2p2h(v)
and S3p3h(v) using the extended Lipkin model. We hav
demonstrated that it is important to include both self-energ
S2p2h(v) andS3p3h(v) in the ph propagator, i.e., to use th
framework of the ERPA, to reproduce the exact excitat
energies in a satisfactory way.

V. TRANSITION STRENGTH

In this section we study the transition strengths of a H
mitian operatorO5J11J2 , using the first and the zerot
moments, which are the basic quantities to characterize
spectrum of the transition strengths.

A. Energy-weighted sum rule

Generally, thekth moment of the transition strengths
defined as

mk5 (
n.0

~En2E0!ku^nuOu0&u2. ~29!

In particular, the first momentm1 ~energy-weighted sum
rule! is important theoretically because it can be given by
ground state expectation value of a simple commutato
follows @21#:

m15 (
n.0

~En2E0!u^nuOu0&u25
1

2
^0u@O,@H,O##u0&.

~30!

Accordingly it can be shown@22,23# that m1 is sensitive to
the ground state correlation, and is only weakly affected
the correlation in the excited states.

In the case of the extended Lipkin model, we can dem
strate the above statement explicitly. By substitutingJ1 and
J2 in the operatorO in Eq. ~30!, we can show thatm1 can be
written as

m15
N

2
3~1,1!S A11 2B11

2B11 A11
D S 1

1D , ~31!

where the definitions ofA11 andB11, and their ERPA values
are given in Eq.~14!. We can easily see that the ERPA e
pression form1 is given solely in terms ofV, and is not
dependent onU. This is the consequence of the fact that t
U interaction enters only the correlations in the excited sta
@S2p2h(v)#, while theV interaction causes the ground sta
correlations@S3p3h(v)#. We also notice from Eq.~31! that
the SRPA and the RPA values form1 are identical, becaus
these two approximations give the sameA11 andB11 @10,22#.

We start with the transition strengths to the first excit
state, of which the excitation energy has been examine
detail in Sec. IV. The transition strengths per particle to
first excited state,u^1uOu0&u2/N, are shown in Fig. 11. We
adopt here the interaction strengthsNV/«50.8 andNU/«
50.4, which we think realistic. It can be seen that the ER
approximates the exact values very well, and the SRPA
even worse than the RPA. Note that this is the same situa
01431
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as for the excitation energies shown in Fig. 10. This f
shows explicitly thatS3p3h(v) plays an important role no
only in the calculation of the excitation energies but also
the description of the state vectors.

In Fig. 12 we presentm1
(1)/m1, the ratio tom1 of the

contributionm1
(1) of the first excited state in the ERPA an

the SRPA theories, together with the exact results. The fig
clearly shows that the first excited states in the ERPA and
SRPA are as collective as in the exact results. It is also
ible that the collectivity of the first excited state is enhanc
with increasing number of the particlesN, as is naturally
anticipated.

Now we examine the energy-weighted sum rulem1 of the
system. In order to show the absolute values ofm1 in the
ERPA and the SRPA theories, we present in Fig. 13 th
ratios m1

ERPA/m1
ex and m1

SRPA/m1
ex to the exact valuem1

ex of
the energy-weighted sum rule. First, we notice in Fig. 13 t
both the ERPA and the SRPA values form1 are close to the
exact values in the small and the largeN limits. This situa-
tion can be explained in the same way as for the excita
energy. Second, both theories differ from the exact result
the intermediateN region. However, the error in the ERPA
much less than in the SRPA.

Let us take a different point of view, i.e., we can use t
value of m1 given by an approximation to measure ho
properly the ground state correlation is taken into accoun

 0.3

 0.35

 0.4

 0.45

 0.5

 5  10  15  20  25  30  35  40  45  50

NV / ε = 0.8
NU / ε = 0.4
     EXACT

RPA

ERPA

SRPA

ring

|<
1|

 Ο
 |0

>
|  

 / 
N

2

NUMBER OF PARTICLES     N 

FIG. 11. Transition strengths to the first excited state per p
ticle, u^1uOu0&u2/N, for NV/«50.8, NU/«50.4. Results in the
ERPA, SRPA, RPA, and the ring approximation are presented w
the exact values.

0.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

5 10 15 20 25 30 35 40 45 50
NUMBER OF PARTICLES    N

SRPA

ERPA

NV/ε= 0.8

EXACT
NU/ε= 0.4

m

m
1

1

(1)

FIG. 12. Contributionm1
(1) of the first excited state tom1 for

NV/«50.8, NU/«50.4.
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DAISUKE SHINDO AND KAZUO TAKAYANAGI PHYSICAL REVIEW C 68, 014312 ~2003!
the approximation. Then Fig. 13 exhibits first that the SR
treats the ground state correlation in the same way as
RPA, and second that the ERPA makes a significant impro
ment on the SRPA~RPA! in treating the ground state corre
lation.

At the end, let us stress again that the difference betw
the ERPA and the RPA~SRPA! stems solely fromS3p3h(v).
This fact shows clearly thatS3p3h(v) is very important in the
calculation not only of the excitation energies but also of
transition strengths.

B. Non-energy-weighted sum rule

Finally, we come to the zeroth moment~non-energy-
weighted sum rule! m0, which is given by

m05 (
n.0

u^nuOu0&u2. ~32!

Note that we do not have a simple expression form0 as Eq.
~31! for m1.

We present the numerical results form0 in Fig. 14 in the
same way as in Fig. 13 form1. Contrary to the case ofm1,
correlations in the excited as well as in the ground states,
S2p2h(v) andS3p3h(v), take place in the description ofm0.
The difference between the RPA and the SRPA can be tra
back toS2p2h(v), and the difference between the SRPA a
the ERPA originates fromS3p3h(v).

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

5 10 15 20 25 30 35 40 45 500.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

5 10 15 20 25 30 35 40 45 50
NUMBER OF PARTICLES    N

ERPA

SRPA(RPA)

m

m
1

ex
1

NV/ε = 0.8
NU/ = 0.4ε

FIG. 13. The first momentm1 in the ERPA and the SRPA nor
malized by the exact valuem1

ex for NV/«50.8, NU/«50.4. The
RPA value is the same as the SRPA one.

0.8

0.85

0.9

0.95

1

1.05

1.1

5 10 15 20 25 30
NUMBER OF PARTICLES    N

SRPA

ERPA
m

m
0

ex
0

NV/ε = 0.8
NU/ε = 0.4

RPA

FIG. 14. m0 /m0
ex for NV/«50.8, NU/«50.4 in the ERPA,

SRPA, and RPA.m0
ex represents the exact value form0.
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We can see in the figure thatS3p3h(v) has important ef-
fects in shifting the RPA value ofm0 toward the exact one
while S2p2h(v) has little effect. This can be understood usi
the idea of 1/v expansion@21,23#. Let split the response
function D(t) of Eq. ~17! as

D~ t !5u~ t !D~ t !1u~2t !D~ t !5D1~ t !1D2~ t !, ~33!

according tot.0 or t,0. It is easy to see thatD1(v), the
Fourier transform ofD1(t), is analytic in the upper half
plane ofv. Suppose we expandD1(v) in powers of 1/v.
Then it can be proven that thekth momentmk can be ob-
tained from the coefficient of 1/vk11. In order to evaluate
m0, therefore, we need to look for the processes of the
sponse that contribute to the coefficient of 1/v. It is straight-
forward to demonstrate that a Goldstone diagram ofD1(t)
with no interaction line in the time interval (0,t) behaves as
O(1) ~constant! ast→10. Then we can see that its Fourie
transform goes as 1/v asv→`, and therefore it contributes
to m0.

Now we consider the response to the external operatorJ1

for simplicity, and look for the Goldstone diagrams that ha
no interaction line in (0,t). Let us start with theV-interaction
term. We can immediately recognize that there is a contri
tion of orderV2 throughS3p3h(v), as shown in Fig. 15. Nex
we come to theU interaction term. It can be immediatel
recognized that theU interaction alone cannot make a pr
cess, which is of the order of 1/v, and also that the lowes
order contribution of theU interaction to m0 through
S2p2h(v) is of the order ofV2U2, as shown in Fig. 15. The
above observation tells thatS2p2h(v) entersm0 only in the
fourth and the higher order perturbation theory, wh
S3p3h(v) comes into play at the second order. This expla
why S3p3h(v) is much more important thanS2p2h(v) in the
description ofm0, as is visible in Fig. 14. Note that contri
butions of orderU2 appear only in higher momentsmk , k
52,3, . . . .

Let us summarize this section as follows. The transit
strengths are investigated in terms of the first and the ze
order momentsm1 and m0. It has been demonstrated th
S3p3h(v) is much more important thanS2p2h(v) in the cal-
culation of the transition strengths, which is emphasized,
pecially in m1. This fact shows explicitly that the ERPA
gives much better results than the SRPA not only in the
citation energies but also in the transition strengths.

0

t

0

t
J-

J+

J-

J+

FIG. 15. Goldstone diagrams ofD1(t) with t.0 that has no
interaction line in the time interval (0,t), and therefore contribute to
m0. The external excitation operator is taken to beJ1 . Left: lowest
order@O(V2)# process withS3p3h. Right: lowest order@O(V2U2)#
process withS2p2h.
2-10
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VI. SUMMARY

In this paper we have proposed an extended Lip
model, which has theSU(2) symmetry of the original Lip-
kin model, and therefore is solvable. It incorporates the tw
body interaction between ph↔pp and ph↔hh, which de-
scribes decay processes of collective states. The ground
of the noninteracting system satisfies the Hartree-Fock c
dition, and therefore the model can be used to examine
RPA-type theories.

We have studied the ERPA, using the newly propos
extended Lipkin model in terms of the excitation energ
and the transition strengths. The self-energy of the ph pro
gator in the ERPA is given byS2p2h(v)1S3p3h(v), each of
ys

an
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which has been explained in detail. It has been demonstr
with the extended Lipkin model that it is very important
take into account not onlyS2p2h(v) but alsoS3p3h(v) in the
ph propagator, i.e., to adopt the framework of the ERPA,
reproduce the exact excitation energies and transi
strengths.

We believe that the model offers a very useful laborato
to examine a variety of many-body systems.
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