
PHYSICAL REVIEW C 68, 014309 ~2003!
Quasiparticle random phase approximation with a nonlinear phonon operator
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We present model calculations of the quasiparticle random phase approximation~QRPA! with a new form of
the phonon operator. This modification of the QRPA is applied to the proton-neutron Lipkin model and we shall
review it briefly. The present calculations show that the inclusion of nonlinear terms in the phonon operator
leads to a much better agreement with the exact results obtained by the diagonalization of the nuclear Hamil-
tonian. It is further found that if all relevant nonlinear terms of the phonon operator are taken into account, all
odd excited states are also exactly reproduced.
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The random phase approximation~RPA! and its quasipar-
ticle generalization~QRPA! have been, for a long time, ver
important theoretical tools in investigating the collective d
grees of freedom of many-fermion systems. They have b
extensively used in various branches of physics from me
in bulk to atomic nuclei.

The instability of the QRPA@based on the quasiboso
approximation~QBA!# solution has been discussed exte
sively and several remedies have been proposed in the li
ture @1–8#. It was shown that the renormalized QRPA@1,2#
and the self-consistent QRPA@5–7# improve the results since
they go beyond the QBA by restoring the Pauli exclus
principle ~PEP! partially. In fact, this renormalization cause
a shift of the point where the QRPA becomes unstable. H
ever, the method introduces an undesirable violation of
sum rules. Thus, their behavior still remains unsatisfact
beyond the point of collapse.

Theoretically, the validities of different approximatio
schemes are studied in models that offer the possibility
comparison with exact solutions@2–9#. The solution of
QRPA with an exact consideration of the Pauli exclus
principle ~EPP QRPA! was applied to the proton-neutro
Lipkin model in Ref.@2# and compared with other method
The importance of the PEP for a reliable description of
many-fermion system has been well demonstrated. It
found that the EPP QRPA was reproducing the exact res
within the physical region of the strength of the partic
particle interaction, but it was still showing a strong d
agreement beyond the point of the collapse of the stand
QRPA. This was mainly ascribed to the simple structure
the QRPA phonon operator@2#.

It is one of the aims of this work to present an extens
of the QRPA by including nonlinear terms in the phon
operator and to check how these new terms will affect
results. Second, the dependencies of some physical ob
ables will be investigated. Keeping in mind that theoreti
results are of no use unless they allow unambiguous c
parison with exact ones, we apply this approach also to
proton-neutron Lipkin model. It will be shown that th
QRPA with a nonlinear phonon operator can be reliably
plied far beyond the collapsing point. An earlier attempt
Rowe @10# was not followed further, probably due to diffi
culties related to the construction of the excited states
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recent application of the second RPA and its extension
discussed in Ref.@11#. The nonlinear phonon operator th
we propose here is different. It reproduces exactly the res
obtained by the diagonalization of the nuclear Hamiltonia

In what follows, we briefly review those equations th
are essential to understand the implications of the introd
tion of a nonlinear operator in the QRPA formalism. Emph
sis is put on presentation of the background of the formu
and on the numerical results. We limit our attention to stu
the case of one proton and one neutron level with ang
momentumj. The Hamiltonian of the proton-neutron mono
pole Lipkin model is given by@2,3#

HF5e~N̂p1N̂n!1l1A†A1l2~A†A†1AA!, ~1!

whereN̂p (N̂n) andA† are the proton~neutron! number and
proton-neutron pair quasiparticle operators, respectively@2#.
The parametersl1 and l2 are related to the strengths o
particle-hole (x) and particle-particle (k) pn interactions as
follows:

l152x8~up
2vn

21vp
2un

2!22k8~up
2un

21vp
2vn

2!,

l252~x81k8!upvpunvn , k852Vk, x852Vx ~2!

andV5 j 1 1
2 . up ,vp andun ,vn are the BCS occupation am

plitudes for protons and neutrons, respectively. The eigen
ues and the eigenvectors of model Hamiltonian~1! can be
obtained by diagonalizingHF in the basisun&5N(A†)nu0&,
where n50, . . . ,2V and N is the normalization factor.
Within the QRPA, an excited stateuQ& is created by applying
a phonon creation operatorQ† on a stateurpa& having the
properties

uQ&5Q†urpa&, Qurpa&50. ~3!

In order to find an excited state for the model Hamiltoni
~1!, the corresponding QRPA equation has to be solved.
that purpose an appropriate form of the phonon opera
should be considered.

The new form of the QRPA phonon operator which w
propose contains nonlinear terms in the bifermionic ope
tors A andA† as follows:
©2003 The American Physical Society09-1
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Q15X1A†2Y1A1X3AA†A†2Y3AAA†. ~4!

Here, we use odd indices to discuss odd excited states w
quadratic terms are omitted since these are related to
excited states. In looking for a proper form of the phon
operator, we eliminated all other possibilities including tho
with cubic AAA and A1A1A1 terms. We note that a com
mon feature of the terms by forward~backward! amplitudes
is that the difference between number of creationA1 and
annihilationA operators in the product is plus~minus! one.
Obviously, by setting the additional variational amplitud
X3 and Y3 equal to zero, the linear phonon operator of t
EPP QRPA is recovered@2#.

As we shall see later, another advantage of this nonlin
phonon operator~4! is that it allows a simultaneous descri
tion of the first and third excited states for a given Ham
tonian. It might be argued that the inclusion of cubic ter
will give rise to huge matrix dimensions and will present
formidable problem in solving the nonlinear RPA equatio
However, this problem can be treated by a truncation of
configuration space related to the nonlinear part of the p
non operator. As for the solutions of the nonlinear equatio
they are definitely more tedious but they can be ea
handled numerically. We shall note here that a close but
ferent form of nonlinear phonon operator was suggested
Sambataro and Suhonen for the boson space in Ref.@9#. In
this interesting work the authors used a different variatio
approach to discuss separately the ground and the
excited state.

By solving the equationQurpa&50 for the RPA ground
state we find

urpa&5N(
n50

V

an~A†!2nu0&, ~5!

where

an5
Y1m2n211Y3m2n

X1m2n1X3m2n11
an21 , N 225 (

n50

V

an
2m2n ~6!

with

mn[^0uAn~A†!nu0&5
n! ~2V!!

~2 V2n!! ~2V!n
, ~7!

mn are vanishing forn.2V.
By using the machinery of the equation of motion, we g

the eigenvalue equation

S A B
B AD S X

YD 5ERPAS U V
2V 2UD S X

YD . ~8!

The elements of the submatricesA andB of the Hamiltonian
matrix H on the left-hand side of Eq.~8! are given by

A115^rpau@A,H,A†#urpa&,

52e1l112l1p22l1pF1011l1p2F020

22~ep1l1p1l1p2!F01024l2pF002,
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A125A215^rpau@A,H,AA†A†#urpa&

5~4e14ep12l1110l1p18l1p2!F101

2~4ep14l1p110l1p2!F11112l1p2F121

22l1pF2021l2@22~11p!F00212~2p1p2!F012

22p2F02224pF103#,

A225^rpau@AAA†,H,AA†A†#urpa&

52~4e14ep12l1110l1p18l1p2!F101

1~8ep14ep216l1p120l1p218l1p3!F111

1~6e116ep13l1128l1p148l1p2!F202

2~4ep216l1p2110l1p3!F12112l1p3F131

2~6ep16l1p128l1p2!F21222l1pF303

13l1p2F2221l2@~14150p160p2124p3!F002

2~42p1100p260p3!F0121~42p2150p3!F022

2~12148p164p2!F103124~p12p2!F113212p2F123

214p3F03224pF204#, ~9!

B1152^rpau@A,H,A#urpa&

522l1pF0021l2@2~11p!

2~4p12p2!F01012p2F02024pF101#,

B125B2152^rpau@A,H,AAA†#urpa&

5l1~pF00222pF1032p2F012!1l2@2~11p!

1~3p12p2!F0102~3p21p3!F020

1~6124p120p2!F1012~12p124p2!F111

1p3F03012pF00426pF20216p2F121#,

B2252^rpau@AAA†,H,AAA†#urpa&

5l1~4p14p2!F10324l1p2F11322l1pF204

1l2@2~12148p160p2124p3!F10114pF105

1~96p2136p160p3!F11128pF30316p2F024b f

2~36p2148p3!F1212~24p196p2!F212

1~12196p1156p2!F202112p2F222112p3F131

2~12p118p2!F0141~6118p112p2!F004#, ~10!

and the submatricesU and V of the norm matrixN on the
right-hand side~rhs! of Eq. ~8! take the form

U115^rpau@A,A†#urpa&512pF010,
9-2
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U225^rpau@AAA†,AA†A†#urpa&

52~2p12!F1011~4p12p2!F1111~318p!F202

22p2F12123pF212,

U125U215^rpau@A,AA†A†#urpa&5~212p!F10122pF111,

V1252V2152^rpau@A,AAA†#urpa&52F0021pF012
~11!

andV115V2250. Here the double commutators are defin
as @A,B,C#5 1

2 @A,@B,C##1 1
2 @@A,B#,C# and

^rpauAiCj~A†!kurpa&5Fi jk , p5
1

2V
. ~12!

After the diagonalization of the norm matrixN on the rhs
of Eq. ~8!, the eigenvalue equation Eq.~8! takes the form of
the standard QRPA equation

S Ā B̄
B̄ ĀD S X̄

Ȳ
D 5ERPAS 1 0

0 21D S X̄

Ȳ
D . ~13!

From the definition of the QRPA ground stateurpa& in
Eqs.~5! and ~6! it follows that the elements of theĀ and B̄
matrices are functions of theX̄ and Ȳ amplitudes. Thus, in
numerical applications the solution of the QRPA with a no
linear phonon operator~QRPA with nlo! will be obtained by
an iteration process. A new point with respect to the QR
studies with linear phonon operator is that in each iterat
by diagonalizing Eq.~13! two sets ofX̄ andȲ amplitudes are
obtained. These are associated with the two different QR
energies. For each next iteration we consider that set oX̄,
Ȳ, which produces the smaller expectation value for
ground state of the nuclear Hamiltonian^rpauHurpa&.

An interesting issue here is what is the meaning of
second QRPA energy. We recall that in the QRPA with
linear phonon operator~QRPA with lo! only the first excited
state is evaluated. There it is found that forj 51/2 the first
excited state obtained by exact diagonalization of theHF
fully coincides with the one calculated within the QRPA wi
lo. For j 51/2 there are only two excited states within
studied model. It is important to mention that the exact wa
functions of the odd~even! excited states of the nuclea
Hamiltonian contain components proportional to (A†)n with
only n5odd (even) (n<2V). In the case ofj 51/2, the
wave function of the first excited state is justA†u0&. In the
model considered here the elements ofA, B, U, and V in
Eqs. ~9!, ~10!, and ~11! coming from the nonlinear phono
operator are equal to zero, i.e., their inclusion is meaningl
However, a different situation occurs in the case ofj 53/2.
Here there are four excited states, two withn5even compo-
nents and two withn5odd components. The wave function
of the first and third excited states are of the form@a1A†

1a2(A†)3#u0&. By solving the QRPA with nlo@Eq. ~13!# we
obtain exactly the first and third excited states of the Ham
tonian in Eq.~1!. The two sets of QRPA amplitudes defin
the same ground stateurpa& in Eq. ~5! equally and fulfill the
01430
d
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requirementQurpa&50. From the above discussion it fo
lows that in order to reproduce exactly the eigenvalues gi
by the diagonalization of the nuclear Hamiltonian~1! for the
odd excited states in the case ofj .3/2, one needs to add
additional nonlinear terms in the phonon operator in Eq.~4!
as follows:

Q15X1A†2Y1A1X3AA†A†2Y3AAA†1X5AAA†A†A†

2Y5AAAA†A†1•••. ~14!

Now we shall show the influence of the nonlinear terms
phonon operator~4! by evaluating some physical QRPA ob
servables of interest for the model Hamiltonian withj
59/2,e51 MeV (Z54,N56). We use a fixed value ofx8
50.5 MeV, whilek8 is considered as a free parameter in t
interval (0,3) MeV. The same model was considered also
several previous studies~see, e.g., Ref.@2–4#!.

We note again that if only linear terms are included in t
phonon operator in Eq.~4!, our approach is reduced to th
EPP QRPA method of Ref.@2#. We shall denote it here EP
QRPA with lo in contrast to our present approach, which
shall denote EPP QRPA with nlo. Our present results, wh
are the first reported for such an operator, will be compa
with those obtained by the diagonalization of Hamiltoni
~1!, EPP QRPA with lo and the standard QRPA approach
The quality of the agreement will be assessed by looking
the expectation values of the quasiparticle operators for
ground and excited states.

In Fig. 1 we show the ground state energyEg.s.
5^rpauHurpa& calculated without any approximation and th
QRPA energyErpa associated with the first excited sta
~relative to the ground state! obtained by the above men
tioned methods as a function ofk8. We note a collapse of the
standard QRPA solution fork8'1.1. Beyond this point the
qualitative agreement of the EPP QRPA with lo with t
results of the exact diagonalization is degraded. A sign
cantly better agreement with the exact results is achieve
the case of the EPP QRPA with nlo. Obviously, this has to
with the inclusion of nonlinear terms in the phonon operat

As a simple test on the quality of the wave functions, w
performed a comparison between exact and approximate
pectation values of the quasiparticle numberC/2 in the
ground and in the first excited state. These are defined
follows:

N05^g.s.u
C

2
ug.s.&, DN5^1exc.u

C

2
u1exc.&2N0 , ~15!

whereug.s.& is the ground state andu1exc.& is the first excited
state of the system. In Fig. 2 we showN0 andDN, given by
the above approaches and by the exact calculation. We
again that the inclusion of the nonlinear terms in the phon
operator is of great importance. Indeed, for bothN0 andDN
the results achieved by the EPP QRPA with nlo are in go
agreement with the exact ones even far beyond the poin
which the standard QRPA breaks down. It is worthwhile
notice that EPP QRPA with nlo reproduces the exact re
for DN, up to the point of collapse, and still continues
follow qualitatively the same trend after this point, i.e., f
9-3
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k8.1.2. This change of behavior of the curve describ
DN as a function ofk8 was never seen before in any of th
extensions of the standard QRPA.

In summary, in this work, using a QRPA with nonline
phonon operator in the proton-neutron Lipkin model we
rive at the following conclusions.

~i! The inclusion of nonlinear terms in the phonon ope
tor of the QRPA is feasible and leads to a very good agr
ment with the exact results obtained by the diagonaliza
of the nuclear Hamiltonian.

~ii ! By adding more nonlinear terms the accuracy can
further increased. In the case all relevant nonlinear term
the phonon operator are considered, the odd excited stat
the nuclear HamiltonianHF in Eq. ~1! are reproduced ex
actly.
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FIG. 1. The excitation energiesErpa(5E12Eg.s.) ~a! and the
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This work has been a test case to see the influence o
nonlinear terms. For realistic calculations, one has to ov
come the difficulties of dealing with large matrices and so
ing the nonlinear equations. This hopefully can be done
truncating the configuration space and using the matrix
version techniques developed recently. Another diffic
problem will be the definition of the ground state since in
realistic case the RPA ground state cannot be exactly ev
ated. Here, a look at the boson space and an ansatz, e.
the way proposed in Ref.@2#, might be very useful.
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