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Quasiparticle random phase approximation with a nonlinear phonon operator
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We present model calculations of the quasiparticle random phase approxif@R&4) with a new form of
the phonon operator. This modification of the QRPA is applied to the proton-neutron Lipkin model and we shall
review it briefly. The present calculations show that the inclusion of nonlinear terms in the phonon operator
leads to a much better agreement with the exact results obtained by the diagonalization of the nuclear Hamil-
tonian. It is further found that if all relevant nonlinear terms of the phonon operator are taken into account, all
odd excited states are also exactly reproduced.
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The random phase approximati@RPA) and its quasipar- recent application of the second RPA and its extensions is
ticle generalizatiofQRPA) have been, for a long time, very discussed in Refl11]. The nonlinear phonon operator that
important theoretical tools in investigating the collective de-we propose here is different. It reproduces exactly the results
grees of freedom of many-fermion systems. They have bee@btained by the diagonalization of the nuclear Hamiltonian.
extensively used in various branches of physics from metals In what follows, we briefly review those equations that
in bulk to atomic nuclei. are essential to understand the implications of the introduc-

The instability of the QRPAbased on the quasiboson tipn_ofa nonlinear operator in the QRPA formalism. Empha-
approximation(QBA)] solution has been discussed exten-SiS is put on presentation of the background of the formulas
sively and several remedies have been proposed in the liter@d on the numerical results. We limit our attention to study
ture [1—8]. It was shown that the renormalized QRPB2] the case of one proton and one neutron level with angular
and the self-consistent QRPB—7] improve the results since momentumj. The Hamiltonian of the proton-neutron mono-
they go beyond the QBA by restoring the Pauli exclusionPole Lipkin model is given by2,3]
principle (PEP partially. In fact, this renormalization causes A
a shift of the point where the QRPA becomes unstable. How- He=e(Np+Np) + M ATA+ N (ATAT+AA), (N
ever, the method introduces an undesirable violation of the o
sum rules. Thus, their behavior still remains unsatisfactoryvhereN, (N,) andA' are the protor{neutron number and
beyond the point of collapse. proton-neutron pair quasiparticle operators, respectif@ly

Theoretically, the validities of different approximation The parametera.; and \, are related to the strengths of
schemes are studied in models that offer the possibility oparticle-hole ) and particle-particle £) pn interactions as
comparison with exact solutiong2—9]. The solution of follows:

QRPA with an exact consideration of the Pauli exclusion

principle (EPP QRPA was applied to the proton-neutron N=2x' (Usvi+osud) =2k (Udua+vivd),

Lipkin model in Ref.[2] and compared with other methods.

The importance of the PEP for a reliable description of the No=2(x"+ k" )UpvpUqv,, k'=20k, x'=2Qx (2
many-fermion system has been well demonstrated. It was

found that the EPP QRPA was reproducing the exact resultandQ=j+ 3. Up,v, andu,,v, are the BCS occupation am-
within the physical region of the strength of the particle- plitudes for protons and neutrons, respectively. The eigenval-
particle interaction, but it was still showing a strong dis- ues and the eigenvectors of model Hamilton{dh can be
agreement beyond the point of the collapse of the standardbtained by diagonalizingig in the basign)=A{A")"|0),
QRPA. This was mainly ascribed to the simple structure ofwhere n=0,...,2) and N is the normalization factor.
the QRPA phonon operat¢2]. Within the QRPA, an excited stal®) is created by applying

It is one of the aims of this work to present an extensiona phonon creation operat@®' on a state/rpa) having the
of the QRPA by including nonlinear terms in the phononproperties
operator and to check how these new terms will affect the
results. Second, the dependencies of some physical observ- |Q)=Q'|rpa), Qlrpa)=0. ©))
ables will be investigated. Keeping in mind that theoretical
results are of no use unless they allow unambiguous conin order to find an excited state for the model Hamiltonian
parison with exact ones, we apply this approach also to thél), the corresponding QRPA equation has to be solved. For
proton-neutron Lipkin model. It will be shown that the that purpose an appropriate form of the phonon operator
QRPA with a nonlinear phonon operator can be reliably apshould be considered.
plied far beyond the collapsing point. An earlier attempt by The new form of the QRPA phonon operator which we
Rowe[10] was not followed further, probably due to diffi- propose contains nonlinear terms in the bifermionic opera-
culties related to the construction of the excited states. Aors A andA' as follows:
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Q =X;AT— YA+ X;AATAT— Y AAAT, (4)

Here, we use odd indices to discuss odd excited states while
guadratic terms are omitted since these are related to even
excited states. In looking for a proper form of the phonon
operator, we eliminated all other possibilities including those
with cubic AAA andA*A"A™ terms. We note that a com-
mon feature of the terms by forwartackward amplitudes

is that the difference between number of creatih and
annihilationA operators in the product is pliminus one.
Obviously, by setting the additional variational amplitudes
X3 and Y3 equal to zero, the linear phonon operator of the
EPP QRPA is recoverg@].

As we shall see later, another advantage of this nonlinear
phonon operatof4) is that it allows a simultaneous descrip-
tion of the first and third excited states for a given Hamil-
tonian. It might be argued that the inclusion of cubic terms
will give rise to huge matrix dimensions and will present a
formidable problem in solving the nonlinear RPA equations.
However, this problem can be treated by a truncation of the
configuration space related to the nonlinear part of the pho-
non operator. As for the solutions of the nonlinear equations,
they are definitely more tedious but they can be easily
handled numerically. We shall note here that a close but dif-
ferent form of nonlinear phonon operator was suggested by
Sambataro and Suhonen for the boson space in[BEfIn
this interesting work the authors used a different variational
approach to discuss separately the ground and the first-
excited state.

By solving the equatiorQ|rpa)=0 for the RPA ground
state we find

-’422

QO
|r|oa>=Nn§0 an(Ah)2"0), (5)

where

~ YiMpn_ 1+ Y3mp,
=
X1Man+X3Man i1

Q
a An—1, ./\/’*2:;0 a’ﬁmZn (6)

with

n!(2Q)!

= noatyn —
M= (AN ATI0) = T

(@)

m, are vanishing fon>2Q.
By using the machinery of the equation of motion, we get
the eigenvalue equation
1%

o Gllvl=d 5 S0

B A
The elements of the submatricdsand 5 of the Hamiltonian
matrix H on the left-hand side of E{8) are given by

“411: <rpd[A1 H 1AT]|rpa>7

u

_v ®
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Aip= Ay =(rpa[AH,AATAT]|rpa)

=(4e+4ep+2N1+ 10N p+8N1p?)F g,
—(4ep+4AN1p+10N;p*)F 115+ 2N p?F 1
— 2N 1PFa0at No[ = 2(1+ p)F oozt 2(2p+ p?)Forp
—2p®F oo~ 4pF10dl,

=(rpd[AAA" H,AATAT]|rpa)

=—(4e+4ep+2\,+ 10N p+8N1p?)F10;
+(8ep+4ep?+ 6N p+ 20N ,p?+8\1p°)F11q
+ (6€+16ep+ 3N 1+ 28\ 1 p+ 48\ 1p?)F 50,
— (4€p®+6X\1p?+ 10N 1p®)F 1o+ 2N 1p°F 151
—(6€p+6\1p+28\1p?)F 215~ 2\ 1pFgo3
+ 3N\ 1p?F 9051 N o[ (14+ 50p+ 60p? + 24p*) F o
—(42p+100p%60p°)F g1+ (42p+50p°) oz,
—(12+48p+64p?)F 105+ 24(p+2p?) F 115~ 12p%F 13
— 14p°F g3~ 4pF04], 9

Bll: - <rpd[A1 H 1A]|rpa>
2N1PpFogat No[2(1+p)

—(4p+2p?)F 10t 2p*F o2~ 4PF 101,

Bio= By =—(rpa[A,H,AAAT|rpa)
=N1(PFooz— 2PF105~ P?Fo12) + Ao — (1+p)
+(3p+2p?)Fo10— (3p*+P°)Fozo
+(6+24p+20p®)F10,— (12p+24p*)F 1y
+p°Fogot 2PFoos— 6PF202t 6P°F 121,

B,=—(rpd[ AAAT,H,AAAM|rpa)

=N1(4p+4p®)F103— 4N1p?F 115~ 2\ 1pFogs
+N\o[ — (12+48p+60p2+ 24p®)F 191+ 4pFos
+(96p?+36p+ 60p°) F 11— 8pF 305+ 6p2F godo f
—(36p?+48p°)F 12— (24p+96p?) F 5y,
+ (124 96p+ 15602) F 5o+ 12p%F 50+ 12p%F 139

—(12p+18p?)F 14+ (6+18p+12p?)Foa],  (10)

and the submatriceld and V of the norm matrix\ on the

right-hand sidgrhs) of Eq. (8) take the form

=2e+ )\1+ 2)\1p_ 2)\1pF101+ )\1sz020
—2(ep+N1p+A1p?)Foro— 4N 2P Fopz,
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U= (rpd[ AAAT, AATAT]|rpa) requirementQ|rpay=0. From the above discussion it fol-
) lows that in order to reproduce exactly the eigenvalues given
=~ (2p+2)F 10+ (4p+2p7)F 111+ (3+8p)Fapp by the diagonalization of the nuclear Hamiltonién for the
—2p%F 19— 3pFay0, odd excited states in the case jof 3/2, one needs to add
additional nonlinear terms in the phonon operator in @&g.

Usy=Upy=(rpa[ A, AATAT]|rpa) = (2+2p)F 101~ 2pF 111, as follows:
o ATV AL tAt_ ty tATAT
V1= — Vo= —(rpd[ A, AAA"]|rpa) = — F g+ PFo1z QT=XIA = YIATXAAA = YAAAF XAAAATA
—YsAAAATAT+ ... (14)

and V;,=V2,=0. Here the double commutators are defined 5,y \ye shall show the influence of the nonlinear terms of
as[A,B,C]=3[A,[B,C]]+2[[A,B],C] and phonon operato(4) by evaluating some physical QRPA ob-
1 servables of interest for the model Hamiltonian with
(rpd A'CH (AN rpa) =Fj,  p= >q" (120 =9/2,e=1 MeV (Z=4N=6). We use a fixed value of’
=0.5 MeV, whilex’ is considered as a free parameter in the
After the diagonalization of the norm matrix on the rhs ~ Interval (0,3) MeV. The same model was considered also in
of Eq. (8), the eigenvalue equation E() takes the form of several previous studl_e(see, €g., Re(2—4]). . .
the standard QRPA equation We note again fchat if only linear terms are included in the
phonon operator in Eq4), our approach is reduced to the
A B\[X 1 0\/X EPP QRPA method of Ref2]. We shall denote it here EPP
( _ :) :) = ERPA( ) :) (13 QRPA with lo in contrast to our present approach, which we
B AJ\Y 0 -1 shall denote EPP QRPA with nlo. Our present results, which
o ) are the first reported for such an operator, will be compared
From the definition of the QRPA ground stat®a) i yith those obtained by the diagonalization of Hamiltonian
Egs.(5) and(6) it follows that the elements of the and 3 (1), EPP QRPA with lo and the standard QRPA approaches.
matrices are functions of thé andY amplitudes. Thus, in The quality of the agreement will be assessed by looking at
numerical applications the solution of the QRPA with a non-the expectation values of the quasiparticle operators for the
linear phonon operatdQRPA with nlg will be obtained by  ground and excited states.
an iteration process. A new point with respect to the QRPA In Fig. 1 we show the ground state enerdy,s.
studies with linear phonon operator is that in each iteratior=(rpgH|rpa) calculated without any approximation and the
by diagonalizing Eq(13) two sets ofX andY amplitudes are QRPA energyE,,, associated with the first excited state
obtained. These are associated with the two different QRP{){ elat(ljve t?h ”(‘je grou?d stt_a)tajt;ta\l/r\lled bty the ﬁ‘bove Tﬁ\”'
. . : . vy ioned methods as a function ef. We note a collapse of the
?erglgs. For each next iteration we consllder that set, of standard QRPA solution foe'~1.1. Beyond this point the
Y, which produces the smaller_exp_ectatmn value for thequalitative agreement of the EPP QRPA with lo with the
ground state of the nuclear HamiltonigrpgH|rpa). results of the exact diagonalization is degraded. A signifi-
An interesting issue here is what is the meaning of theanly better agreement with the exact results is achieved in
second QRPA energy. We recall that in the QRPA with & e case of the EPP QRPA with nlo. Obviously, this has to do
linear phonon operatdQRPA with lo) only the first excited \yith the inclusion of nonlinear terms in the phonon operator.
statg is evaluated._There it is founq that ]‘915 1{2 the first As a simple test on the quality of the wave functions, we
excited state obtained by exact diagonalization of Hhe  erformed a comparison between exact and approximate ex-
fully 00|r_1C|des with the one calculated V\_nthm the QRP_A Wlth pectation values of the quasiparticle numt@f2 in the
lo. For j=1/2 there are only two excited states within a4r5und and in the first excited state. These are defined as
studied model. It is important to mention that the exact waveg|ows:
functions of the odd(even excited states of the nuclear
Hamiltonian contain components proportional ®'" with C C
only n=odd (even) (=<2Q). In the case ofj=1/2, the No=<9-sl§|9-5>: AN:<lech§|lexc>_NOa (15
wave function of the first excited state is just|0). In the
model considered here the elementsAf B, U, andV in  where|g.s) is the ground state arld.,.) is the first excited
Egs. (9), (10), and (11) coming from the nonlinear phonon state of the system. In Fig. 2 we shdvy andAN, given by
operator are equal to zero, i.e., their inclusion is meaninglesshe above approaches and by the exact calculation. We see
However, a different situation occurs in the casg of3/2.  again that the inclusion of the nonlinear terms in the phonon
Here there are four excited states, two witik even compo-  operator is of great importance. Indeed, for bghandAN
nents and two wittn=odd components. The wave functions the results achieved by the EPP QRPA with nlo are in good
of the first and third excited states are of the fofmA’ agreement with the exact ones even far beyond the point at
+a,(A")%]|0). By solving the QRPA with nl¢Eq. (13)] we  which the standard QRPA breaks down. It is worthwhile to
obtain exactly the first and third excited states of the Hamil-notice that EPP QRPA with nlo reproduces the exact result
tonian in Eq.(1). The two sets of QRPA amplitudes define for AN, up to the point of collapse, and still continues to
the same ground stalgpa) in Eq. (5) equally and fulfill the  follow qualitatively the same trend after this point, i.e., for
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FIG. 1. The excitation energieS,{=E;—Eys) (& and the 00 ==
ground state energids, ¢ (b) provided, by diagonalizingg (solid 0.0 05 10 15 2.0 25 30
line), by the standard QRP&lashed ling by the EPP QRPA with K [M eV]
linear phonon operatofdot-dashed ling and by the EPP QRPA ) ) )
with nonlinear phonon operatdiong dashed lingas a function of FIG. 2. (8 The differenceAN of the gxpectaﬂon valugexcited
p state—ground stat@nd(b) the expectation valuds, (ground state

of the (half) quasiparticle number operat6r2 as a function ofk’.
Notations as in Fig. 1.
x'>1.2. This change of behavior of the curve describing

AN as afunction ofc’ was never seen before in any of the This work has been a test case to see the influence of the
extensions of the standard QRPA.

In summary, in this work, using a QRPA with nonlinear nonlinear terms. For realistic calculations, one has to over-
phonon operatbr in the prot’on-neutron Lipkin model we ar-come the difficulties of dealing with large matrices and solv-

rive at the following conclusions. ing the nonlinear equations. This hopefully can be done by
(i) The inclusion of nonlinear terms in the phonon Opera_truncating the configuration space and using the matrix in-

tor of the QRPA is feasible and leads to a very good agreeversion techniques developed recently. Another difficult

ment with the exact results obtained by the diagonalizatioProblem will be the definition of the ground state since in a

of the nuclear Hamiltonian. realistic case the RPA ground state cannot be exactly evalu-
(i) By adding more nonlinear terms the accuracy can beted. Here, a look at the boson space and an ansatz, e.g., in

further increased. In the case all relevant nonlinear terms ithe way proposed in Ref2], might be very useful.

the phonon operator are considered, the odd excited states of

the nuclear Hamiltoniam ¢ in Eq. (1) are reproduced ex-  'Nis work was supported by the VEGA Grant agency of
actly. the Slovak Republic under Contract No. 1/0249/03.
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