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Algebraic mean field theoryAMFT) for the symplectic sp(8) algebra is used to derive collective rota-
tional bands in the Riemann ellipsoidal approximation. AMFT is formulated in terms of symplectic density
matrices that are defined by the quantum mechanical expectations of thR)spp&rators. The mean field
approximation restricts the densities to a coadjoint orbit of the canonical transformation grouR)SH®&;,
principal axis rotation, a system of three algebraic equations is derived from energy minimization on an orbit
surface. The system is solved self-consistently for the axis lengths and the potential tensor.
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[. INTRODUCTION function of the ground state quadrupole deformation, a fact
which implies a simple formula for the energy of their 2
This paper presents a new many-body quantum theory dftates as a function of the deformatidv]. An explanation
the Riemann model of rotating ellipsoids. The Riemannfor the y-ray staggering in the deexcitation of some superde-
model is a classical theory of self-gravitating systems thaformed bands in the®®%Gd region with a period of # is
have an ellipsoidal boundary and a linear velocity fidl®]. achieved when the ratio of the Kelvin circulati@ to the
This model allows for rotational dynamics on a continuumangular momentunh is about one-half28,29.
from rigid rotation to irrotational fluid flow. The quantized  The nuclear Kelvin circulation and rigidity can be deter-
Riemann theory can model successfully geometrical collecmined experimentally from inelastic electron scattering mea-
tive rotation in atomic nuclei. surements of the transver&? form factor[30—34. This
The dynamical symmetry algebra of the Riemann ellipsoiform factor for a Riemann rotor is a weighted interpolation
dal model is the general collective motion algebra ¢®m of the rigid rotor and irrotational flow form factors37].
[3], which is a noncompact subalgebra of the real symplectid@here is to date no published measurement of transverse
algebra sp(R) [4—14]. The only Casimir of gcit8) [15] is  form factors in the heavy deformed region. But projected
the length C of the Kelvin circulation vector{16]. The  Hartree-Fock calculations of the transveE2form factor of
Kelvin circulation is a conserved quantity for classical fluid *56Gd [38] imply a rigidity r~0.12.
flow [17]. In its modern differential geometric formulation,  There are three established ways to derive a microscopic
the classical theory of Riemann ellipsoids is a gauge theorguantum theory of the Riemann model. By making a change
in which the nonholonomic constraints to irrotational flow or of variables from Cartesian coordinates to collective and in-
a “falling cat” are particular connections on a principal trinsic coordinates, the space of antisymmetrized many-
GL(3,R) bundle and the Kelvin circulation is a conserved nucleon wave functions may be decomposed into (§&m
gauge invarianf18]. irreps[39]. This method determines the necessary and suffi-
An irreducible unitary representatigimrep) of gcm(3) de-  cient theoretical conditions for good g€8) symmetry, de-
fines a quantum Riemann ellipsoidal model. These irreps amves rigorously the quantum collective kinetic energy corre-
indexed by the Kelvin circulation which is quantized to non- sponding to the classical Riemann model from the many-
negative integral multiples df [19—23. The original Bohr-  particle Laplacian[40], and creates a relationship with
Mottelson liquid drop model is indistinguishable from the hyperspherical harmonics thedl]. The disadvantages of
gcm(3) irrep with vanishing circulation, which corresponds this realization of the classical Riemann model are that exact
to irrotational flow. The irrotational flow model describes the gcm(3) symmetry is required and that a GLR3, intrinsic
giant quadrupole resonan¢24]. In the domain of rapidly wave function is tedious to calculate for practical applica-
rotating triaxial nuclei, the Kelvin circulation is approxi- tions.
mately constant and equals the critical angular momentum at The second method to derive the Riemann model uses the
which the nucleus bifurcates to a Jacobi triaxial shape from &nown decomposition of shell model space into holomorphic
spheroidal ond25]. But the low-energy states of the yrast discrete series irreps of spR3, as an intermediate st¢p,8].
band of a deformed rotating nucleus do not share a commoBach irrep of the symplectic algebra that arises in the shell
value for the circulatiorf26]. Typically the rigidity param- model decomposition must be reduced subsequently into ir-
eter[3], which is approximately proportional to the ratio of reps of gcni3). The gcng3) reduction of discrete series irreps
the Kelvin circulation to the angular momentum, is almostof sp(3R) is governed by a reciprocity theore2]: each
constant for the yrast band, and, therefore, @rdynamical  symplectic irrep is associated with an irrep of the Elliott
symmetry is strongly broken in the low-energy domain. Thesu3) algebra; the spectrum of the Kelvin circulation, includ-
rigidity parameterr varies continuously fronr=0 (irrota- ing multiplicity, in a given symplectic shell model irrep
tional flow) tor =1 (rigid rotation) [3]. Among the rare earth equals the angular momentum reduction of the associated
even-even nuclei, the rigidity is approximately a quadraticsu3) irrep. Although this theorem determines the ¢8m
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irreps that occur in a sp(R) irrep, the vectors that span a Lie group is encoded in the symplectic geometry of a coad-
gcm(3) irrep are not constructed explicitly. Because thejoint orbit. This Kirillov metatheorem of coadjoint orbit
Kelvin circulation is a complicated five-body operafd5],  theory means that the physical properties of a quantum sys-
its matrix elements in a symplectic irrep space have not beei¢m governed by a Lie dynamical symmetry can be calcu-
evaluated to date. As a consequence, an explicit@cne-  lated in two ways. The direct way is by explicit construction
duction of a sp(&R) discrete series irrep has not been at-of the irreducible representations of the dynamical symmetry
tained. Nevertheless, the spR3| gcm(3) reduction theorem group; the indirect method is via a geometrical analysis of
does determine the strong limitations imposed by the shelihe Lie group’s coadjoint orbits. Prior applications to the
model on the possible values of the Kelvin circulation in Elliott su(3) [53-55 and symplectic sp(8&) [27,56] models
yrast rotational bands. demonstrate a close relationship between irrep and coadjoint
The Kelvin circulation operator simplifies when it is orbit results.
evaluated in the rotating principal axis frame. The third trac- Hartree-Fock mean field theory is a special case of coad-
table microscopic realization of the Riemann theory isjoint orbit theory[57-59. The relevant Lie group is the
achieved by cranking the Hamiltonian in the rotating framegroup U() of all unitary transformations of an
simultaneously with the angular and vortex velocitid8—  n-dimensional single-particle space, the Lie algebra)ué
45]. The angular momentum is conjugate to the angular vethe set of all one-body operators, and the coadjoint orbit is
locity, and the Kelvin circulation is conjugate to the vortex the manifold of all idempotent density matrices. The Hartree-
velocity. When the anisotropic harmonic oscillator modelsFock-Bogoliubov mean field theory corresponds similarly to
the nuclear Hamiltonian in the rotating frame and the axighe Lie group O(2) [60]. When applied to many-body
lengths and oscillator frequencies are chosen selfphysics, coadjoint orbit theory is naturally called algebraic
consistently, the “Inglis” cranking energy in perturbation mean field theorfAMFT).
theory for small angular and vortex velocities equals the The fundamental ansatz of AMFT is that the densities of
classical Riemann ellipsoidal kinetic ener§®3]. An im-  model states lie on one coadjoint orbit of the Lie group. This
proved microscopic realization is attained when the anisoansatz is the mean field expression of dynamical symmetry.
tropic harmonic oscillator is replaced by a self-consisteniThe parallel ansatz in representation theory is that the model
Hartree-Fock mean field that corresponds to a realistic interstates are vectors in one unitary irreducible representation of
action[45,44. the Lie group. Although the only nontrivial unitary represen-
The physical effects of cranking the anisotropic oscillatortations of a noncompact Lie algebra such as $p 3re
with the vortex velocity are similar to the effects of adding infinite dimensional, the mean field approximation limits the
the monopole pairing interaction to the deformed oscillatortheoretical investigation to a finite-dimensional manifold. In
Hamiltonian. As the strength of the monopole pairing inter-fact, sp(3R) mean field theory requires only matrix compu-
action increases, the expectation of the Kelvin circulationtations with 6<6 real matrices.
operator in the BCS approximation diminishes until finally, ~The ideal AMFT coadjoint orbit for nuclear applications
at a critical pairing strength, the circulation vanishes and theontains the density of the exact ground state. Due primarily
system becomes an irrotational superfllAd]. to spin-orbit and pairing forces, the exact ground state of a
The “cranking” realization of the Riemann model as- heavy deformed nucleus is a sum of vectors from several
sumes a determinantal wave function. Although this ansatzreducible sp(3) representations, and it is not a single
produces a tractable theory, the simplicity is attained by seSlater determinant. As a practical matter the ideal orbit can-
verely restricting the admissible model states. For applicanot be identified precisely. In the case of heavy deformed
tions to geometrical collective states, the determinantal anisotopes, we argue in Sec. IV that the various coadjoint orbits
satz is troubling because a collective mode must be a&orresponding to the different symplectic irreps that mix to
coherent superposition of many single-particle excitations. form the ground state have very similar properties. The pre-
This paper’s realization of the Riemann model is a sub-dictions of sp(3R) mean field theory are consequently rather
model of the symplectic theory that is neither intractable noiinsensitive to the exact choice of the orbit in the heavy de-
restricted to determinantal wave functions. The relevanformed region. A physically reasonable choice for the coad-
mathematics is the theory of coadjoint orbits of Lie groups. Ajoint orbit is estimated in this paper from the deformed har-
coadjoint orbit is a manifold contained in the space of denmonic oscillator Hamiltoniaf61—-63.
sities of the Lie algebra. A density corresponding to a wave The Hohenberg-Kohn theorem of density functional
function is defined by the expectations of the Lie algebra’'sheory [64] was generalized to prove that there exists an
operators. An orbit surface that contains the density of anergy functional of the densitfyelative to a given Lie al-
highest weight vector of a semisimple Lie algebra is calledgebra whose absolute minimum is the algebraic density of
an integral coadjoint orbit. the exact ground stafé5]. At least in principle, AMFT is an
Geometric quantization is a mathematical technique foexact theory, just like the density functional theory. The ex-
the construction of irreducible representations of Lie groupsstence theorems of the density functional theory and the
[48-51. The starting point for this construction is a Lie AMFT do not construct the exact energy functional.
group’s coadjoint orbits. According to Kirilloy52], for ev- This paper presents the basic definitions and notations in
ery Lie representation theory concept, a corresponéamgl  the following section. In Sec. Ill, the energy functional is
ultimately equivalentidea exists for integral coadjoint or- assumed to be the sum of the harmonic oscillator and a col-
bits. All information about an irreducible representation of alective quadrupole potential energy. We derive the equations
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for the critical points on a coadjoint orbit of this energy tjk:<\lf|"rjk|\1f>, and njk:<\II|Njk|\lf>. The quantum me-
functional when the rotation axis is aligned with a principal chanical expectation of a symplectic Lie algebra representa-
axis. The solutions to the equations yield the density of &jon ¢(S) is

Riemann rotor with good angular momentum and Kelvin cir-
culation. In Sec. IV the theory is applied to the heavy de- 1
formed isotope'®Er. (p.S)=5tr(pS)= —i(¥|o(S)|¥). (2.5

Il SP(3R) COADJOINT ORBITS For a physical density, i.e., one that is defined by the

This section defines the symplectic sg¥B Lie algebra, expectations of sp(R) Hermitian operators with respect to
its dual space of densities, the coadjoint action of the symsome quantum mechanical state, the mairof Eq. (2.4) has
plectic group on the dual space, the sR)3Casimirs, and restrictions on it. For example, the matricgandt are real,
determines the coadjoint orbits. The definitions and notatiosymmetric, and positive definite, and the expectatjor(t
follow that of Ref.[27]. +q) of the oscillator number operator is bounded from be-

Let (X,j,P,j) denote the dimensionless Cartesian compodow by a half integer or an integer that depends on the num-
nents of the position and momentum vectors of partici@  ber of neutrons and protons.
a finite system of particles. They obey the canonical commu- When the symplectic group Spg, acts on an arbitrary
tation relation[ X, ,p ] =i6,50jc - The symplectic genera- many-body wave functiol’, the unitarily transformed vec-
tors are the Hermitian one-body operators, tor ¥— exd o(9 ]V is difficult to compute explicitly. How-
ever, the corresponding symplectic density transforms simply
according to the coadjoint actiorp,HAdangpgfl. The
coadjoint orbitO, is a smooth surface consisting of the den-
sity p and all transformed densities E\ﬂ asg ranges over

1 the entire symplectic group Sp&3.
k= ; (Xajpak_ 2! 5jk)- (2.9) The symplectic Casimir§, ¢ p] are real-valued functions
of the density,

The observableéjk and 'T'jk are the monopole-quadrupole
tensors in position and momentum space, respectively. The (-1)°

— 2s —
nine component&jk generate the Lie algebra gIi3, of the Caslp]= 2 tr(p™), s=123. 29
general linear group. The antisymmetric parts Mf L;
=sijkNjk are the vector orbital angular momentum compo-
nents. The gcitd) algebra is spanned by the operatQg

ijzg XajXak -i—jk:; PajPak,

N

The Casimirs are constant on each coadjoint orbit,
CZS[p]=CZS[Ad§p] for ge Sp(3R). The trace of an odd
power of the density is identically zero. Only the quadratic,

andNjy . , , ) , quartic, and sextet Casimirs can be functionally independent.
The 21-dimensional sp(R) matrix algebra consists of all * The geometrical model provides a physical interpretation
66 real matrices, for the quadratic sp(B) Casimir. In terms of the density
X —U components, this Casimir &=tr (tq—n?). For a linear ve-
S=< T), (2.2) locity field, as the Riemann model postulates, the kinetic
vV =X tensor simplifies td,;=n"q n, cf. Eq. (48) of Ref. [3].

The squared length of the Kelvin circulation vectorGg
=tr(n"q *hg—n?) [16]. Therefore the quadratic spEy,
Casimir is

whereX,U,V are 3x 3 real matrices antl,V are symmet-
ric. The operator representatienof the algebra of matrices
is defined by

Co=C?+tr[(t—teoq]. (2.7)
. (2.9

_ 1 .1
U(S):I'Ek XjkNjk+ EUijjk—’_ EVJkTJk
) When a system is rotating purely collectively and the intrin-

WhenSis a matrix in the symplectic Lie algebra, the opera-SiC_Kinetic tensor tj,,=t—tcy vanishes, the quadratic
tor o(S) is a skew-adjoint one-body operator. The set ofSP(3R) Casimir simplifies to the squared length of the

operators is an sp(B) representation,[o(S;),o(S,)] K_elvin _circu_lation. More typically in a rotational ba_nd, the
=o([S1,S,]). circulation increases as the angular momentum increases,

and the intrinsic kinetic energy must correspondingly de-
crease to maintain a constant value for the quadratic sym-
plectic Casimir.

n" ot Almost every symplectic coadjoint orbit contains a matrix

P‘( _q —n)’ (2.4 in the normal form,

The symplectic density matrig corresponding to a nor-
malized wave functiorW is

where the X3 real dimensionless matricagq,t are the

expectations of the algebra generatoq§+;=<\1f|ij|\P), e=

0 t
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By “almost every,” we mean that, with the exception of a setlipsoid. When the system is a real classical fluid with an
of measure zero, all symplectic densities can be transformeellipsoidal boundary and uniform mass distribution, the

by a symplectic group transformation to the normal formare proportional to this ellipsoid’s axis lengths.

(2.8) [66]. The situation is entirely equivalent to the fact that  \Whenq is diagonal, the symplectic density represents the
almost every random phase approximation matrix can be disystem in the rotating principal axis frame, and it is denoted
agonalized. Two such normal form densities lie on two dlf-by;. In the rotating principal axis frame, the angular mo-

ferent coadjoint orbits unless thd, for one density are - e o .
merely a permutation of the other densitig. The normal mentuml and Kelvin circulationC vectors are inferred from

forms label distinct orbits when an ordering is adopted, sayn€ Off-diagonal entries ofi: for i,j,k cyclic, Ij=nj—ny
N3=N,=N;. andC;=(ax/aj)njx—(a;/a)ny;. We call this vector quan-
The symplectic density of a sp), shell model highest tity C the “Kelvin circulation” of a symplectic density be-
weight vector is in normal form. Moreover, for a highest cause its definition coincides with the expression for the
weight density, A\ =N3—N, and u=N,—N; are non- Kelvin circulation vector of a classical Riemann ellipsoid, cf.
negative integers defining the(8uirrep, andNy=N;+N,  Eq.(39) of Ref.[3]. The definition has useful properties. The
+ N3 is an integer or half integer that equals the total numbesquared lengtiC? of the Kelvin circulation of a symplectic
of oscillator quanta. Yet not every density in the normal formdensity is invariant with respect to the GGBJ transforma-
is defined by a sp(8) highest weight vector. For a normal tjon subgroup of the symplectic group, and, therefore, it is a
form density, the expectations of the oscillator number OPyecm(3) Casimir function. The range of? on an integral

erators in the 1,2, and 3 directions eqd&l,Np, andNs,  coadjoint orbit of Sp(%R) was proven recently to match the
respectively, but these are not necessarily half integers. A'r'ange of the expectation of the corresponding quantum

though_the expectations of the angular mome_ntum, KeIVi'bcn’(S) Casimir in the orbit's associated irreducible unitary
circulation, and other sp(R) operators are required to van- representatioi27,42. In prior work on the quantum geo-

ish for a ”Ofma' form _densny, the cqrrespondlng quantum e tical model before its relationship with the Riemann
state vector is not required to be an eigenstate of the oscilla-

tor number operators, angular momentum, circulation, etcr.nOOIeI was understood fully, the Kelvin circulation was
Thus, the density theory we describe here is not limited toCalled the vortex momentuig89).
one symplectic irreducible representation, and the quantum
state corresponding to a normal form density may be a su-
perposition of vectors from many symplectic irreps. This ll. EQUILIBRIUM STATES
flexibility is important because pairing and spin-orbit forces
break exact sp(B) dynamical symmetry in the shell model
space of a real nucleus.

For the orbitO, , labeled by N;,N,,N3), the values of

the symplectic Casimirs are the constants,

This section derives Eq$3.13 for the critical points of
the energy functional on the algebraic variety defined by the
symplectic Casimirs in the space of symplectic densities
when the rotation axis is aligned with a principal axis and
there is no vibration of the axis lengths. These equations
must be solved self-consistently for the axis lengths and the
Cosl@1= 2 NE°. (2.9 potential tensor. We show that the total kinetic energy is a
K sum of the Riemann collective kinetic energy and an intrinsic

In general, an algebraic variety is defined as the set of point§in€tic_energy for which a concrete formula is attained

in the realR" satisfying a system of polynomial equations, (3.1). Whenw=0, thel =0 ground state is a prolate spher-

f.(X1,Xp, ... X,)=0 for i=1,2,... [67]. Because each oid, an_d we derive a simple cond|t|(iB.1_5) relatlng_ its de-

symplectic Casimir is a polynomial function of the compo- formation to the strength qf the collective potential energy.

nentsj, .ty ,nj of the densityp, the orbit®, is contained For heavy deformed nuclei, when t'he angular momentum is

in the algebraic variety consisting of all densitips Eq. much less than andNo, the equations for a critical point

(2.4), which satisfy the three algebraic equatié@®). Inthe ~ SIMPIify in perturbation theory. .

typical case of distincN, , the three Casimirs are function- "€ Symplectic energf[p] is a rotational scalar func-

ally independent, and the algebraic variety is 18 dimensionafional of the density. A simple sp(R) energy functional that

The algebraic variety associated with the Casimirs has thBas been used in prior symplectic representation theory ap-

same dimension as a coadjoint orbit, but, in general, the cd?lications[7] is the sum of the harmonic oscillator and a

adjoint orbit is contained properly as a smooth connecteguadrupole  collective potential ~energykE[p]=Eq[p]

component of the variety, cf. the Appendix of REZ7]. +V[p]. The isotropic harmonic oscillator energy is
The subgroups of the symplectic group are transformation

groups on each coadjoint orbit. The orthogonal subgroup

SO3) rotates the matrices of the symplectic density, Eq. Eo[p]= =tr(t+q)

(2.4), as follows: forRe SO@3), n—~RnR', t—RtR", and olPI=5 q

g—RqR'. Each orbit of the rotation subgroup contains a

diagonal monopole-quadrupole tensgediag(@Z,as,a3),

wherea, >0, k=1,2,3. In the classical rotor model tlag in units of Zwg. A quadrupole potential energy functional

are interpreted as the axis lengths of the abstract inertia etlepends on the quadratic and cubic rotational scalars,

(3.0
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on the space of all principal axis frame symplectic densities

b with fixed | and C, wherem,, are Lagrange multipliers
enforcing the constraint to the algebraic variety associated

1
Uzzitr(q(z))z.

1 with the sp(3R) Casimirs. An equilibrium density satisfies
v3=§tr(q(2))3=detq(2), (3.2 the six energy minimization conditions
where q(?)=q;; — 1/38;; trq. Becausev, and v are rota- %ic _%bc _ , (3.9
tional scalars, these potential terms may be evaluated in the dai
rincipal axis frame in whiclg=dia .z, is the di- _ ) ~
ggoneﬁ)l Y 9(@:.92.4s) and the three polynomial equat|06§s[p]=ENi25.
' Energy minimization determines analytically the
Vo= (054 Q95+ 95— 0205~ 9193 — G102)/3, Lagrange ml_JItipIiers, vv_hich can be eliminated, and the ki-
netic tensor in the rotating frame
v3= (201~ 02— 03)(202— 01— 03)(203— 01— q2)/27. a2
(3.3 ti=a;— Wy,
These scalars may be expressed in terms of the quadrupole a2 Wt (a,C—a3l)?
i 22— A W™ T 5 5
deformation paramete8 and vy, (a§— a§)2
Uz:;-fZEZ ¢ 2 W +(a3C_a2|)2 (3 9)
’ sz=az3~ Wt ——————, :
(a5—a3)?
U3:%f3'33cos 3y, (3.4  interms of the potential tens® in the principal axis frame
av v
wheref = (1/\/57) A(R,/b)?, with A equal to the mass num- Wij=—-aj-—=-2q;——. (3.10
g : - 92, !
ber,Ry=1.2A*"* fm is the nuclear radius, afg= A/ mwg is
the oscillator length. An elementary collective potential  For a self-gravitating systent is called the Chandrasekhar
units of4wo) is potential tensof2]. Thus, the sp(R) kinetic energyT of an
) equilibrium density is the sum of collective and intrinsic en-
VIp]=bovy+bgvs+bgus, B9  ergies,

whereb,, bz, andb, are dimensionless real constants.

Consider the special case of rotation about a principal T=trt=Teont Tinw,
axis, say the 1-axis. The nonzero components of the angular
momentum and the Kelvin circulation aflg=1 and C;
=C. For rotors in equilibrium, the axis lengths are not vi- Tine=
brating, and therefore, the diagonal components @#nish.
The kinetic tensot in the principal axis frame is diagonal for

an ellipsoidal body. Thus, the model sp{e)B,energyE[}}]
simplifies to a function of the axis lengths of the inertia

N| -

Ek (af—Wi). (3.1

The axis lengths are determined by solving the three Ca-
simir equations. In terms of the forces

ellipsoid, the diagonal components of the kinetic tensor, the W oV
angular momentum, and the Kelvin circulation. zi=—= —2;, (3.12
As measured in the rotating frame, the energy is the dif- qi 4

ference between the laboratory frame energy and the colle

the Casimir equations simplify to
tive kinetic energy of a Riemann ellipsoid with angular mo- g plify

mentuml! and Kelvin circulationC, 3\/1——21q1=N0—)\—2,u,
-1 - 1| (1+C)? (I1-C)? Mo —(D_ 12
TcoII[P]:_tr(an 1”):_ 2+ 2|1 3Vl 2202 (P \/6) !
2 4| (apt+as)? (ap—as)
(3.6) 3V1-2z505=(P+/Q)"2 (3.13

in units of #w,. Riemann rotor solutions with angular mo- where P=N2+Ng (A +2 w) + 522+ \ u+ u?—9C?/2 and

mentuml and Kelvin circulationC are critical points of the Q=9 (\2—C?)[(2Ny+\+2u)?—9C?]/4. Note that

rotating frame energy, VPZ=Q=(Ng—\+ ) (Ng+ 2\ + ). In addition to system
(3.13 for rotation about the short axis, there are similar

S lB1=El31=T-u[ 21— Mo Coal P, (3. equation systems corresponding to rotation about the long
clP)1=Elp]~Tealpl= 2 macCalpl, (3.7 SHEOE SV
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Disregarding exceptional circumstances, Es13 can- z,(€)=2;—Re;—Sep+ Teg,
not be solved analytically for the deformatiogs because
the force quantitiez; depend on ¢,,d,,d3) in a compli- Z,(€)=2,— Se;— Rer+ Teg,
cated way. This system of equations must be solved self-
consistently for the deformations and forces. All other con- Z5(€)=23+T(€1+ €,—2¢€3), (3.17

ditions have been satisfied for energy minimization on the
algebraic variety defined by the spi3, Casimirs and the Whereu=q;—q, and
final step is to solve systei(8.13 numerically. 4
When there is no collective potential enerdythe force R=—(3b,u?—bsu+3b,),
guantities vanishz;=0, and the total energy is just the har- 9
monic oscillator energyE[ p]=Eg[p]. In this special case,
system(3.13 is easily solved. When the circulation van- S=z(4b u—3h,)
ishes, the deformations reduce to theif3wsingle oscillator- 9 3 2
shell values for the ground state.
T=R+S. (3.18
A. Ground state Thus, equilibrium equation.13 for small circulation sim-
For a nonrotating ground state, the angular momentunplify to
and Kelvin circulation are zero. Equatio(3.13 relate the

axis lengths to the potential energy, Ryt Se,—Tey -
3V1= 2,01 =No—A—2p, 2No—r =22 o
3\/1——22(]2=N0—)\+,u, M_FEZM_CZ,
3V1-2303=No+ 2\ + . (3.14 2(No=N+p)® 905 903

A pure quadrupole potential energy has the invariance prop- —T(e1+€,—2€3) & MCZ_ 519

erty V(q,+€,0,+ €,03+ €)=V(0;,0,,93,) for all real e, 2(No+20+u)2 903 92

which implies the identityz; +z,+z3=0. Whenu=0 the _ ) .
ground state is a prolate spheroi,=q,<qs, z,=2,<0  These linear equations may be solved for the skifts the

<z3=—2z,, and Eqs(3.14 specialize to ground state deformationg as the circulatiorC changes. In
the following section, we are able to solve for the low-energy
3V1-2,0;=Ng—A, states of a heavy deformed nucleus using these perturbation
formulas.
3\1+221q3:N0+2)\ (315

IV. APPLICATION TO A HEAVY DEFORMED NUCLEUS
for —3<z;=<0. Thus the ground state deformation of a pro-
late spheroid depends parametrically on one force parametﬁre
z,. The sy3) limit of the sp(3R) theory is attained when
z,=0. Since the quadrupole deformation of a well-deforme
prolate ground state is considerably greater than the theor
ical su3) prediction, the value of, is certainly negative for
such states.

To apply the Riemann approximation of symplectic mean
Id theory to a heavy deformed isotope, e§%t, a coad-
d’oint orbit must be selected based on physical considerations.
Qur pragmatic choice fol%®Er is the coadjoint orbit corre-
sponding to the leading sp@), irrep that has the highest
weight quantum numbeidy=813, A =108, andu=0. This
highest weight vector is an eigenstate of the deformed har-
monic oscillator Hamiltoniaf62,63).

A better choice for the orbit could be calculated from the

WhenN, and\ are large compared to the circulati@) Nilsson model Hamiltonian that adds the spin-orbit force to
accurate solutions to the equilibrium equations are obtainethe deformed oscillator Hamiltonian. The eigenvectors of the
in perturbation theory. The right hand sides of E§s13 are Nilsson model are a mixture of vectors from several in-

B. Low-energy states

given for smallC by the Maclaurin series, equivalent sp(&) irreps. Adding the pairing interaction will
induce further mixing of sp(®) irreps into the ground state
(P=VQ)Y2=(Ng— N+ w)[1+MC?+ - -], configuration. Certainly the coadjoint orbit containing the

density of the reaf®®Er ground state is not an integral orbit,
(P+Q)Y2=(Np+ 2\ +u)[1-MC2+---], (3.16 i.e., it does not correspond to a unique irreducible represen-
tation of the symplectic algebra.
whereM =3/[2N(2Ng+ N +2u)]. Letq, denote the ground Suppose a quantum mechanical stdteis selected to
state deformation, and,(e)=q,+ ¢, be the deformation model the nuclear deformed ground state, €.,is an
when C>0. For smalle,, a first-order Maclaurin series eigenstate of the Nilsson Hamiltonian. The dengitgorre-
yields the force terms sponding toV is calculated from the expectations of the
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one-body sp(R) operators using Eq2.4). To identify the 0.40
coadjoint orbitO, that containg, the matrixp can be trans-
formed to the normal formp by a symplectic group trans-
formation, Ad;‘pze for some ge Sp(3R). A simple
method to find the normal forn2.8) is to evaluate the real
eigenvalues;t N;,*=N,,* N3, of the complex matrixXp.

The calculation of the density matrixsimplifies when¥
lies entirely in one major oscillator shell, i.aV, is an eigen-
state of the isotropic harmonic oscillator Hamiltonidg. In
this case the matrix is antisymmetric and is determined
completely by the expectations of the angular momentum
operators. This simplifying observation follows from the 0.20
commutation relatiom;, + Ny;=i[F,Qj]. In addition, the 35
expectations of the momentum and position tensors are Wi
equal,tj = qji -

The different sp(R) irreps that contribute substantially

0.35 4

Q. 0.30

0.25 4

FIG. 1. The theoretical quadrupole deformation of the prolate

6 . _ ground state of%®Er is plotted against the potential tensor compo-
to the heavy deformed®Er ground state have similar quan nentW,, in MeV. AMFT yields the experimental ground stage

tum numbersr@o_,)\,u)~(8}3,108,.0). This assertlon ISSUP~ _0 342 when the component of the potential tensorWs,;
ported by experiment and is predicted by the Nilsson model_ 5, 7 vey.

Note that the quantum numbBliy must be large for a heavy
nucleus because the nuclear radius is large. Indeed, in t
isotropic oscillator shell model, the value &fy~0.9A%3
when i wo~41/AY3 MeV [68]. For a heavy deformed pro-
late nucleus, the dominant contributions to the ground state For the isotope'®Er, the oscillator frequency i%w
must have a large value for the quantum numberThe  _7 36 \ay, the oscillat’or length=2.37 F, the nuclear ?a-
reason is that a substantial excess of quanta in the directiof) .« r —6 60 E. and the parameter.of E(éii 4 is f=323
of the long axis relative to the short axis is necessary tc{Nhen% -0 Eq:5 (3.15 determine the dimensionless defor-
produce the experimentally observed quadrupole deforme}hationslq =,q :'23;5 andq,=343 of the prolate ground
tion. The value ofu must be small or zero for a prolate ... i thle sé) approximataion. Using Eq3.4), the quad-
spr|1:er0|d. AMET lication to the | tat frupole deformation in the ¢8) limit is calculated to beB
16 or an | appiication fo Ine low-energy states ol _g 553 pgecause the experimental quadrupole deformation
®Er, it is not imperative to adopt the exact values of theiS 5=0.342[69] and effective charges are not used in the
guantum numbersNy,\, ) for this isotope’s ground state. sp(3R) .theory, a nonzero value fax, is required. In Fig. 1

;L‘g ti)épgﬁiq_og \L/J?a.lttijc?r?sot{’]g:T?SZﬁEé](:Saénlgs][Ea?é (rit%]er the theoretical quadrupole deformation of the prolate ground
q S state is plotted versus the potential tensor compoieént

insensitive to the precise choice of coadjoint orbit quanturT]JSing Egs.(3.15. The measured ground state deformation

numbers. e _ ‘o i -
To be well defined, symplectic representation theory re 91~ 2= 223 andqy= 389, is fitted wheW,,= —24.7 MeV

. . . ) o ) andz;=—0.111. This value foz,; in the ground state im-
quires a single sp(B) irrep with a precise integral highest : i

. ! . . . poses a constraint on the potential parameters of the collec-
weight. When spin-orbit and pairing forces break symplecti ive potential energy3.5)
dynamical symmetry, a pure spi3,algebraic structure must o
be abandoned, and the full shell modeugmented with
symplectic core excitationsshould be invoked. This is a
more realistic theory, but it is unnecessarily complicated to
explain many properties of geometrical collective states. InThe monopole moment is proportional todj( To maintain
essence, the shell model constructs state vectors which, f constant value for the nuclear radius, the monopole mo-
principle, allow for the prediction of the expectations of all ment of excited yrast band states must equal the monopole
Hermitian N-body operators. AMFT only makes predictions moment of the ground state. In the perturbation theory, this
about the expectations of symplectic algebra operators; déavariance is assured whehe, =0, or, using Eqs(3.19,
tails about the mixing of sp(R) irreps are not required to

I'}'ﬁodel wave function, yet the Hartree-Fock density matrix
may approximate accurately the expectations of one-body
operators with respect to the shell model wave function.

—997,—(5.52x 10" b;—(1.83x 10")b,=1. (4.1)

achieve this limited aim. Thus, although one leading ) 3, 2 (q3— 1) (Ng—N)2(Ng+21)?
irrep provides a poor approximation to th&Er ground state T= 7 2N - ANt 22 (4.2
wave function, the symplectic density of one leading coad- 9193[A5(No =)~ a1(Ng )]

joint orbit can yield an excellent approximation to the sym- _ )
plectic density of the exact ground state. Similar consider-Thus, a constant monopole moment imposes the following
ations apply to any heavy deformed nucleus. The theoreticionstraint on the collective potential parameters Ger:
situation is similar to the Hartree-Fock one. A Hartree-Fock

determinant may have a very small overlap with a shell 907b,+ (1.00< 10°)by+(5.00x 10")b,=1. (4.3
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B

FIG. 2. The collective potential enerd¥(3,v) in MeV is plot-

ted versus3 for several values of.

0.6

o

0.0 4 p— - - 0
r=1 r=0.125 experimental

FIG. 3. The yrast band spectrum 8¥Er is compared with the
theoretical spectrum of a rigid roter=1 and a Riemann ellipsoid
with r=0.125.

Since a physical collective quadrupole potential is bounded

from below, the coefficienb, of the highest power iB is levels are compared to experiment and to the compressed
positive. For prolate solutions, the coefficidny of cos(3y)  spectrum of a rigid rotor.

is negative. For simplicity, we sét equal to zero. Then Egs. The quadrupole deformatig=0.342 decreases less than
(4.1) and (4.3 imply by=—7.43x10"°, b,=1.69x10 7, 0.1% froml =0 to | =8. Similarly, the shape remains a pro-

and

V(B,y)=10418*—628B%cog3Yy).

late spheroid;y=0°. Equation(4.5) then implies a constant
ratio of the Kelvin circulation to the angular momentum,

(4.9 C/1=0.635. This constant ratio in our calculations is in har-

mony with the explanation ofy-ray staggering made by

This potential is drawn in Fig. 2. The prolate ground stateMikhailov and Quentir{28].

deformation=0.342 does not coincide with the minimum  The expectations of the harmonic oscillator excitation
of the quadrupole potential because the sR{3Casimirs number operatoN — N, for the yrast band of®%Er are listed
impose constraints on the energy minimization. From an Table I. The s(B) limit corresponds toN—Ny=0, and
physical perspective, these constraints are a consequencevedve functions in this limit are restricted to vectors from the

the nuclear shell structure.

0 2wy harmonic oscillator major shell. The nonzero expec-

The circulation of a Riemann ellipsoid is proportional to tation (=3.4) for the oscillator excitation number in the
the angular momentum, with a factor that is a function of thesp(3R) calculations shows that significant admixtures of
rigidity and the axis lengths perpendicular to the rotation axisore-excited vectors are necessary to build the observed

(31,

2a,ag(as+aj3)r

(a5—a3)?+4a2asr

(4.

quadrupole deformation. The mean field expectation for the
oscillator excitation number is consistent with prior symplec-
tic representation theory calculatiof&l,62.

5 Table | also shows the breakdown of the total excitation
energy of yrast states into collective kinetic energy, intrinsic
kinetic energy, and potential energy. The energies of this

To complete the analysis, a value for the rigidity must betable are zeroed at the ground state. The collective kinetic
adopted. Energy levels and deformations for the yrast rotaenergy accounts for most of the excitation energy. Indeed, it
tional band can then be calculated using E@13 and  overshoots the total energy by about 10%, while the other
(4.5). The energy of the 2 excited state of'®*Er is fitted  energy terms lower the total energy by 10%.

when the rigidityr =0.125. In Fig. 3, the theoretical energy  The intrinsic kinetic energy for yrast band states is nearly

TABLE I. Sp(3R) principal axis Riemann rotor fot*®Er.

I(%) N—No Teon (keV)

Tiner (keV) T (keV) Eo (keV) V (keV) E (keV)

0 3.36 0

2 3.37 88.6
4 3.39 295
6 3.43 620
8 3.48 1063

0
—6.9
—-23.1
—48.5
—83.1

0 0 0 0
81.7 75.3 55 80.8
272 251 18.4 269
572 527 38.6 565
980 903 66.3 969
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a constant negative 8% of the total kinetic energy. The inin AMFT, while its calculation is beyond the reach of shell

trinsic kinetic energy is the difference between the total ki-model technology.

netic energy and the collective kinetic energy. The latter is The application of sp(®) AMFT in the Riemann ellip-

the kinetic energy due to the collective rotational and vortexsoid approximation shows that the Kelvin circulation, which

motion of a Riemann ellipsoid. The calculation demonstratess sensitive to the collective nuclear current, is proportional

that the total kinetic energy is dominated by geometrical colto the angular momentum among yrast band states in heavy

lective motion. The qualitative conclusion is that the poten-deformed nuclei. The model’s assertion about the vortex dy-

tial energy fixes the quadrupole deformation, while the col-namics of nuclear collective rotation, as characterized by the

lective kinetic energy determines the excitation energy. rigidity parameter, needs to be tested independently and di-

rectly via inelastic electron scattering measurements of the

V. CONCLUSION transversé=2 form factor in the heavy deformed regif30—

. ) ) 36]. There is a simple formula for the transvefsg2 form
The geometrical collective model plays an important roleactor in the Riemann ellipsoidal approximatifsi].

in the Riemann approximation to spk3, AMFT. The geo-  one of the benefits of the algebraic mean field method is
metrical model motivates the mathematical assumptions ifts computational simplicity compared to the representation
the derivation of Eqs(3.13), e.g., the energy is minimized in theory. Although this paper used a simple potential energy
the rotating frame, the potential energy is a function qf the[Eq_ (3.5)], to study the ground band, very complicated po-
quadrupole deformation parametes f), and the potential = tential energy surface¥(3,y) present no substantial theo-
tensorW and force quantitieg; are defined by the gradient yetical or computational impediments. The application of
of the collective potential. Yet, sp(B) AMFT differs signifi-  AMFET to v bands requires a nonzeo for the coadjoint
cantly from the simple geometrical collective model. The g pit.
ground state density in AMFT does not minimize the poten- The symplectic mean field Hamiltonian is, in general, a
tial energy unlesg; =0, which is the s(8) limit. The reason density-dependent element of the sR)BLie algebra. In a
is that the energy minimum in AMFT is constrained to lie on subsequent paper we plan to derive the 9R(3nean field
a coadjoint orbit surface. The constraints imposed by th@jamiltonian from the energy functional using the symplectic
three symplectic Casimirs depend on the labéls,&, 1)  geometry of a coadjoint orbit. The mean field Hamiltonian
that, in turn, depend on the Nilsson model and the Paulgan pe applied to the description of normal mode oscillations
exclusion principle. Thus, microscopic quantum physics isyf symplectic equilibrium states. For @) dynamical sym-
an essential part of AMFT. Another difference betweenmetry, the mean field Hamiltonian and normal mode theory
sp(3R) AMFT and the collective model is that the sgR3,  have been determined alreals,55).
kinetic energy is the exact microscopic kinetic energy—not The AFMT method may be applied to other group theo-
just the collective Riemann kinetic energy. Yet another dif-retical models to derive simple approximations to represen-
ference with the geometrical model is that the Riemann modiation theory results. At the present time, based on this paper
e_I’s kinetic energy is a fixed fun<_:t|0n of the _Kelvm C|_rcula- and prior applications to $8) and sp(3R), there seems to
tion, angular momentum, and axis lengths with no adjustablge no serious obstruction that prevents the method’s practical
mass parameter. _ . application to any Lie algebra. The algebraic mean field
An earhe_r paper27] |nve_st|gated the class of SPF& _method may prove to be especially useful in cases where the
AMFT solutions corresponding to the cranked anisotropicrepresentation theory is intractable because either matrix el-

oscillator Hamiltonian of conventional mean field theory. ements of generators are unavailable or the dimension of the
This paper shows that the AMFT method can be used for fepresentation is infinite or prohibitively large.

rotational scalar Hamiltonian that is the sum of the isotropic

harmonic oscillator Hamiltonian plus a collective quadrupole

potenjual energy. This is just the Hamllt9n|an that has been ACKNOWLEDGMENT

used in prior sp(R) shell model applications; e.g., see Ref.

[8]. One significant difference between AMFT and shell G.R. is pleased to acknowledge insightful comments by
model studies is that the Kelvin circulation can be evaluated's. Dankova.
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