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Sp„3,R… mean field theory for heavy deformed nuclei

J. L. Graber and G. Rosensteel
Department of Physics, Tulane University, New Orleans, Louisiana 70118, USA

~Received 19 January 2003; published 21 July 2003!

Algebraic mean field theory~AMFT! for the symplectic sp(3,R) algebra is used to derive collective rota-
tional bands in the Riemann ellipsoidal approximation. AMFT is formulated in terms of symplectic density
matrices that are defined by the quantum mechanical expectations of the sp(3,R) operators. The mean field
approximation restricts the densities to a coadjoint orbit of the canonical transformation group Sp(3,R). For
principal axis rotation, a system of three algebraic equations is derived from energy minimization on an orbit
surface. The system is solved self-consistently for the axis lengths and the potential tensor.
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I. INTRODUCTION

This paper presents a new many-body quantum theor
the Riemann model of rotating ellipsoids. The Riema
model is a classical theory of self-gravitating systems t
have an ellipsoidal boundary and a linear velocity field@1,2#.
This model allows for rotational dynamics on a continuu
from rigid rotation to irrotational fluid flow. The quantize
Riemann theory can model successfully geometrical col
tive rotation in atomic nuclei.

The dynamical symmetry algebra of the Riemann ellips
dal model is the general collective motion algebra gcm~3!
@3#, which is a noncompact subalgebra of the real symple
algebra sp(3,R) @4–14#. The only Casimir of gcm~3! @15# is
the length C of the Kelvin circulation vector@16#. The
Kelvin circulation is a conserved quantity for classical flu
flow @17#. In its modern differential geometric formulation
the classical theory of Riemann ellipsoids is a gauge the
in which the nonholonomic constraints to irrotational flow
a ‘‘falling cat’’ are particular connections on a princip
GL(3,R) bundle and the Kelvin circulation is a conserv
gauge invariant@18#.

An irreducible unitary representation~irrep! of gcm~3! de-
fines a quantum Riemann ellipsoidal model. These irreps
indexed by the Kelvin circulation which is quantized to no
negative integral multiples of\ @19–23#. The original Bohr-
Mottelson liquid drop model is indistinguishable from th
gcm~3! irrep with vanishing circulation, which correspond
to irrotational flow. The irrotational flow model describes t
giant quadrupole resonance@24#. In the domain of rapidly
rotating triaxial nuclei, the Kelvin circulation is approx
mately constant and equals the critical angular momentum
which the nucleus bifurcates to a Jacobi triaxial shape fro
spheroidal one@25#. But the low-energy states of the yra
band of a deformed rotating nucleus do not share a com
value for the circulation@26#. Typically the rigidity param-
eter @3#, which is approximately proportional to the ratio o
the Kelvin circulation to the angular momentum, is almo
constant for the yrast band, and, therefore, gcm~3! dynamical
symmetry is strongly broken in the low-energy domain. T
rigidity parameterr varies continuously fromr 50 ~irrota-
tional flow! to r 51 ~rigid rotation! @3#. Among the rare earth
even-even nuclei, the rigidity is approximately a quadra
0556-2813/2003/68~1!/014301~10!/$20.00 68 0143
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function of the ground state quadrupole deformation, a f
which implies a simple formula for the energy of their 21

states as a function of the deformation@27#. An explanation
for theg-ray staggering in the deexcitation of some super
formed bands in the156Gd region with a period of 4\ is
achieved when the ratio of the Kelvin circulationC to the
angular momentumI is about one-half@28,29#.

The nuclear Kelvin circulation and rigidity can be dete
mined experimentally from inelastic electron scattering m
surements of the transverseE2 form factor @30–36#. This
form factor for a Riemann rotor is a weighted interpolati
of the rigid rotor and irrotational flow form factors@37#.
There is to date no published measurement of transv
form factors in the heavy deformed region. But project
Hartree-Fock calculations of the transverseE2 form factor of
156Gd @38# imply a rigidity r'0.12.

There are three established ways to derive a microsc
quantum theory of the Riemann model. By making a chan
of variables from Cartesian coordinates to collective and
trinsic coordinates, the space of antisymmetrized ma
nucleon wave functions may be decomposed into gcm~3!
irreps @39#. This method determines the necessary and su
cient theoretical conditions for good gcm~3! symmetry, de-
rives rigorously the quantum collective kinetic energy cor
sponding to the classical Riemann model from the ma
particle Laplacian@40#, and creates a relationship wit
hyperspherical harmonics theory@41#. The disadvantages o
this realization of the classical Riemann model are that ex
gcm~3! symmetry is required and that a GL(3,R) intrinsic
wave function is tedious to calculate for practical applic
tions.

The second method to derive the Riemann model uses
known decomposition of shell model space into holomorp
discrete series irreps of sp(3,R) as an intermediate step@5,8#.
Each irrep of the symplectic algebra that arises in the s
model decomposition must be reduced subsequently into
reps of gcm~3!. The gcm~3! reduction of discrete series irrep
of sp(3,R) is governed by a reciprocity theorem@42#: each
symplectic irrep is associated with an irrep of the Ellio
su~3! algebra; the spectrum of the Kelvin circulation, inclu
ing multiplicity, in a given symplectic shell model irre
equals the angular momentum reduction of the associ
su~3! irrep. Although this theorem determines the gcm~3!
©2003 The American Physical Society01-1
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irreps that occur in a sp(3,R) irrep, the vectors that span
gcm~3! irrep are not constructed explicitly. Because t
Kelvin circulation is a complicated five-body operator@15#,
its matrix elements in a symplectic irrep space have not b
evaluated to date. As a consequence, an explicit gcm~3! re-
duction of a sp(3,R) discrete series irrep has not been
tained. Nevertheless, the sp(3,R)↓gcm(3) reduction theorem
does determine the strong limitations imposed by the s
model on the possible values of the Kelvin circulation
yrast rotational bands.

The Kelvin circulation operator simplifies when it
evaluated in the rotating principal axis frame. The third tra
table microscopic realization of the Riemann theory
achieved by cranking the Hamiltonian in the rotating fram
simultaneously with the angular and vortex velocities@43–
45#. The angular momentum is conjugate to the angular
locity, and the Kelvin circulation is conjugate to the vorte
velocity. When the anisotropic harmonic oscillator mod
the nuclear Hamiltonian in the rotating frame and the a
lengths and oscillator frequencies are chosen s
consistently, the ‘‘Inglis’’ cranking energy in perturbatio
theory for small angular and vortex velocities equals
classical Riemann ellipsoidal kinetic energy@43#. An im-
proved microscopic realization is attained when the an
tropic harmonic oscillator is replaced by a self-consist
Hartree-Fock mean field that corresponds to a realistic in
action @45,46#.

The physical effects of cranking the anisotropic oscilla
with the vortex velocity are similar to the effects of addin
the monopole pairing interaction to the deformed oscilla
Hamiltonian. As the strength of the monopole pairing int
action increases, the expectation of the Kelvin circulat
operator in the BCS approximation diminishes until final
at a critical pairing strength, the circulation vanishes and
system becomes an irrotational superfluid@47#.

The ‘‘cranking’’ realization of the Riemann model a
sumes a determinantal wave function. Although this ans
produces a tractable theory, the simplicity is attained by
verely restricting the admissible model states. For appl
tions to geometrical collective states, the determinantal
satz is troubling because a collective mode must be
coherent superposition of many single-particle excitation

This paper’s realization of the Riemann model is a s
model of the symplectic theory that is neither intractable
restricted to determinantal wave functions. The relev
mathematics is the theory of coadjoint orbits of Lie groups
coadjoint orbit is a manifold contained in the space of d
sities of the Lie algebra. A density corresponding to a wa
function is defined by the expectations of the Lie algebr
operators. An orbit surface that contains the density o
highest weight vector of a semisimple Lie algebra is cal
an integral coadjoint orbit.

Geometric quantization is a mathematical technique
the construction of irreducible representations of Lie grou
@48–51#. The starting point for this construction is a L
group’s coadjoint orbits. According to Kirillov@52#, for ev-
ery Lie representation theory concept, a corresponding~and
ultimately equivalent! idea exists for integral coadjoint or
bits. All information about an irreducible representation o
01430
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Lie group is encoded in the symplectic geometry of a co
joint orbit. This Kirillov metatheorem of coadjoint orbi
theory means that the physical properties of a quantum
tem governed by a Lie dynamical symmetry can be cal
lated in two ways. The direct way is by explicit constructio
of the irreducible representations of the dynamical symme
group; the indirect method is via a geometrical analysis
the Lie group’s coadjoint orbits. Prior applications to th
Elliott su~3! @53–55# and symplectic sp(3,R) @27,56# models
demonstrate a close relationship between irrep and coad
orbit results.

Hartree-Fock mean field theory is a special case of co
joint orbit theory @57–59#. The relevant Lie group is the
group U(n) of all unitary transformations of an
n-dimensional single-particle space, the Lie algebra u(n) is
the set of all one-body operators, and the coadjoint orbi
the manifold of all idempotent density matrices. The Hartre
Fock-Bogoliubov mean field theory corresponds similarly
the Lie group O(2n) @60#. When applied to many-body
physics, coadjoint orbit theory is naturally called algebra
mean field theory~AMFT!.

The fundamental ansatz of AMFT is that the densities
model states lie on one coadjoint orbit of the Lie group. T
ansatz is the mean field expression of dynamical symme
The parallel ansatz in representation theory is that the mo
states are vectors in one unitary irreducible representatio
the Lie group. Although the only nontrivial unitary represe
tations of a noncompact Lie algebra such as sp(3,R) are
infinite dimensional, the mean field approximation limits t
theoretical investigation to a finite-dimensional manifold.
fact, sp(3,R) mean field theory requires only matrix comp
tations with 636 real matrices.

The ideal AMFT coadjoint orbit for nuclear application
contains the density of the exact ground state. Due prima
to spin-orbit and pairing forces, the exact ground state o
heavy deformed nucleus is a sum of vectors from sev
irreducible sp(3,R) representations, and it is not a sing
Slater determinant. As a practical matter the ideal orbit c
not be identified precisely. In the case of heavy deform
isotopes, we argue in Sec. IV that the various coadjoint or
corresponding to the different symplectic irreps that mix
form the ground state have very similar properties. The p
dictions of sp(3,R) mean field theory are consequently rath
insensitive to the exact choice of the orbit in the heavy
formed region. A physically reasonable choice for the co
joint orbit is estimated in this paper from the deformed h
monic oscillator Hamiltonian@61–63#.

The Hohenberg-Kohn theorem of density function
theory @64# was generalized to prove that there exists
energy functional of the density~relative to a given Lie al-
gebra! whose absolute minimum is the algebraic density
the exact ground state@65#. At least in principle, AMFT is an
exact theory, just like the density functional theory. The e
istence theorems of the density functional theory and
AMFT do not construct the exact energy functional.

This paper presents the basic definitions and notation
the following section. In Sec. III, the energy functional
assumed to be the sum of the harmonic oscillator and a
lective quadrupole potential energy. We derive the equati
1-2
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for the critical points on a coadjoint orbit of this energ
functional when the rotation axis is aligned with a princip
axis. The solutions to the equations yield the density o
Riemann rotor with good angular momentum and Kelvin c
culation. In Sec. IV the theory is applied to the heavy d
formed isotope166Er.

II. Sp„3,R… COADJOINT ORBITS

This section defines the symplectic sp(3,R) Lie algebra,
its dual space of densities, the coadjoint action of the sy
plectic group on the dual space, the sp(3,R) Casimirs, and
determines the coadjoint orbits. The definitions and nota
follow that of Ref.@27#.

Let (xa j ,pa j ) denote the dimensionless Cartesian com
nents of the position and momentum vectors of particlea in
a finite system of particles. They obey the canonical comm
tation relation@xa j ,pbk#5 idabd jk . The symplectic genera
tors are the Hermitian one-body operators,

Q̂jk5(
a

xa j xak , T̂jk5(
a

pa j pak ,

N̂jk5(
a

S xa j pak2
1

2
id jkD . ~2.1!

The observablesQ̂jk and T̂jk are the monopole-quadrupo
tensors in position and momentum space, respectively.
nine componentsN̂jk generate the Lie algebra gl(3,R) of the
general linear group. The antisymmetric parts ofN, L̂ i

5« i jk N̂jk are the vector orbital angular momentum comp
nents. The gcm~3! algebra is spanned by the operatorsQ̂jk

and N̂jk .
The 21-dimensional sp(3,R) matrix algebra consists of a

636 real matrices,

S5S X 2U

V 2XTD , ~2.2!

whereX,U,V are 333 real matrices andU,V are symmet-
ric. The operator representations of the algebra of matrices
is defined by

s~S!5 i(
jk

S XjkN̂jk1
1

2
U jkQ̂jk1

1

2
VjkT̂jkD . ~2.3!

WhenS is a matrix in the symplectic Lie algebra, the oper
tor s(S) is a skew-adjoint one-body operator. The set
operators is an sp(3,R) representation,@s(S1),s(S2)#
5s(@S1 ,S2#).

The symplectic density matrixr corresponding to a nor
malized wave functionC is

r5S nT t

2q 2nD , ~2.4!

where the 333 real dimensionless matricesn,q,t are the
expectations of the algebra generators:qjk5^CuQ̂jkuC&,
01430
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t jk5^CuT̂jkuC&, and njk5^CuN̂jkuC&. The quantum me-
chanical expectation of a symplectic Lie algebra represe
tion s(S) is

^r,S&[
1

2
tr~rS!52 i ^Cus~S!uC&. ~2.5!

For a physical density, i.e., one that is defined by
expectations of sp(3,R) Hermitian operators with respect t
some quantum mechanical state, the matrixr of Eq. ~2.4! has
restrictions on it. For example, the matricesq and t are real,
symmetric, and positive definite, and the expectation1

2 tr(t
1q) of the oscillator number operator is bounded from b
low by a half integer or an integer that depends on the nu
ber of neutrons and protons.

When the symplectic group Sp(3,R) acts on an arbitrary
many-body wave functionC, the unitarily transformed vec
tor C° exp@s(S)#C is difficult to compute explicitly. How-
ever, the corresponding symplectic density transforms sim
according to the coadjoint action,r°Adg* r5grg21. The
coadjoint orbitOr is a smooth surface consisting of the de
sity r and all transformed densities Adg* r as g ranges over
the entire symplectic group Sp(3,R).

The symplectic CasimirsC2s@r# are real-valued functions
of the density,

C2s@r#5
~21!s

2
tr~r2s!, s51,2,3. ~2.6!

The Casimirs are constant on each coadjoint or
C2s@r#5C2s@Adg* r# for gP Sp(3,R). The trace of an odd
power of the density is identically zero. Only the quadrat
quartic, and sextet Casimirs can be functionally independ

The geometrical model provides a physical interpretat
for the quadratic sp(3,R) Casimir. In terms of the density
components, this Casimir isC25tr (tq2n2). For a linear ve-
locity field, as the Riemann model postulates, the kine
tensor simplifies totcoll5nTq21n, cf. Eq. ~48! of Ref. @3#.
The squared length of the Kelvin circulation vector isC2

5tr(nTq21nq2n2) @16#. Therefore the quadratic sp(3,R)
Casimir is

C25C21tr@~ t2tcoll!q#. ~2.7!

When a system is rotating purely collectively and the intr
sic kinetic tensor t intr5t2tcoll vanishes, the quadrati
sp(3,R) Casimir simplifies to the squared length of th
Kelvin circulation. More typically in a rotational band, th
circulation increases as the angular momentum increa
and the intrinsic kinetic energy must correspondingly d
crease to maintain a constant value for the quadratic s
plectic Casimir.

Almost every symplectic coadjoint orbit contains a mat
in the normal form,

%5S 0 t

2q 0D , t5q5diag~N1 ,N2 ,N3!. ~2.8!
1-3



e
m
rm
a
d
if

sa

st

be
rm
l

op

A
lvi
-

um
ill

et
t

tu
s
is

es
l

in
s,

o-

-
na
th
c
te

tio
u
q

a

e

an

the
ted

o-

the
f.
e

s a

e
um
ry
-
nn
s

the
ies
nd
ons
the

s a
sic
ed
r-

gy.
is

t

-

ap-
a

l

J. L. GRABER AND G. ROSENSTEEL PHYSICAL REVIEW C68, 014301 ~2003!
By ‘‘almost every,’’ we mean that, with the exception of a s
of measure zero, all symplectic densities can be transfor
by a symplectic group transformation to the normal fo
~2.8! @66#. The situation is entirely equivalent to the fact th
almost every random phase approximation matrix can be
agonalized. Two such normal form densities lie on two d
ferent coadjoint orbits unless theNk for one density are
merely a permutation of the other density’sNk . The normal
forms label distinct orbits when an ordering is adopted,
N3>N2>N1.

The symplectic density of a sp(3,R) shell model highest
weight vector is in normal form. Moreover, for a highe
weight density, l5N32N2 and m5N22N1 are non-
negative integers defining the su~3! irrep, andN05N11N2
1N3 is an integer or half integer that equals the total num
of oscillator quanta. Yet not every density in the normal fo
is defined by a sp(3,R) highest weight vector. For a norma
form density, the expectations of the oscillator number
erators in the 1,2, and 3 directions equalN1 ,N2, and N3,
respectively, but these are not necessarily half integers.
though the expectations of the angular momentum, Ke
circulation, and other sp(3,R) operators are required to van
ish for a normal form density, the corresponding quant
state vector is not required to be an eigenstate of the osc
tor number operators, angular momentum, circulation,
Thus, the density theory we describe here is not limited
one symplectic irreducible representation, and the quan
state corresponding to a normal form density may be a
perposition of vectors from many symplectic irreps. Th
flexibility is important because pairing and spin-orbit forc
break exact sp(3,R) dynamical symmetry in the shell mode
space of a real nucleus.

For the orbitO% , labeled by (N1 ,N2 ,N3), the values of
the symplectic Casimirs are the constants,

C2s@%#5(
k

Nk
2s . ~2.9!

In general, an algebraic variety is defined as the set of po
in the realRn satisfying a system of polynomial equation
f i(x1 ,x2 , . . . ,xn)50 for i 51,2, . . . @67#. Because each
symplectic Casimir is a polynomial function of the comp
nentsqjk ,t jk ,njk of the densityr, the orbitO% is contained
in the algebraic variety consisting of all densitiesr, Eq.
~2.4!, which satisfy the three algebraic equations~2.9!. In the
typical case of distinctNk , the three Casimirs are function
ally independent, and the algebraic variety is 18 dimensio
The algebraic variety associated with the Casimirs has
same dimension as a coadjoint orbit, but, in general, the
adjoint orbit is contained properly as a smooth connec
component of the variety, cf. the Appendix of Ref.@27#.

The subgroups of the symplectic group are transforma
groups on each coadjoint orbit. The orthogonal subgro
SO~3! rotates the matrices of the symplectic density, E
~2.4!, as follows: forRP SO~3!, n°RnRT, t°RtRT, and
q°RqRT. Each orbit of the rotation subgroup contains
diagonal monopole-quadrupole tensorq5diag(a1

2 ,a2
2 ,a3

2),
whereak.0, k51,2,3. In the classical rotor model theak
are interpreted as the axis lengths of the abstract inertia
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lipsoid. When the system is a real classical fluid with
ellipsoidal boundary and uniform mass distribution, theak

are proportional to this ellipsoid’s axis lengths.
Whenq is diagonal, the symplectic density represents

system in the rotating principal axis frame, and it is deno

by r̃. In the rotating principal axis frame, the angular m

mentumIW and Kelvin circulationCW vectors are inferred from
the off-diagonal entries ofn: for i , j ,k cyclic, I i5njk2nk j

andCi5(ak /aj )njk2(aj /ak)nk j . We call this vector quan-

tity CW the ‘‘Kelvin circulation’’ of a symplectic density be-
cause its definition coincides with the expression for
Kelvin circulation vector of a classical Riemann ellipsoid, c
Eq. ~39! of Ref. @3#. The definition has useful properties. Th
squared lengthC2 of the Kelvin circulation of a symplectic
density is invariant with respect to the GCM~3! transforma-
tion subgroup of the symplectic group, and, therefore, it i
gcm~3! Casimir function. The range ofC2 on an integral
coadjoint orbit of Sp(3,R) was proven recently to match th
range of the expectation of the corresponding quant
gcm~3! Casimir in the orbit’s associated irreducible unita
representation@27,42#. In prior work on the quantum geo
metrical model before its relationship with the Riema
model was understood fully, the Kelvin circulation wa
called the vortex momentum@39#.

III. EQUILIBRIUM STATES

This section derives Eqs.~3.13! for the critical points of
the energy functional on the algebraic variety defined by
symplectic Casimirs in the space of symplectic densit
when the rotation axis is aligned with a principal axis a
there is no vibration of the axis lengths. These equati
must be solved self-consistently for the axis lengths and
potential tensor. We show that the total kinetic energy i
sum of the Riemann collective kinetic energy and an intrin
kinetic energy for which a concrete formula is attain
~3.11!. Whenm50, theI 50 ground state is a prolate sphe
oid, and we derive a simple condition~3.15! relating its de-
formation to the strength of the collective potential ener
For heavy deformed nuclei, when the angular momentum
much less thanl and N0, the equations for a critical poin
simplify in perturbation theory.

The symplectic energyE@r# is a rotational scalar func
tional of the density. A simple sp(3,R) energy functional that
has been used in prior symplectic representation theory
plications @7# is the sum of the harmonic oscillator and
quadrupole collective potential energy,E@r#5E0@r#
1V@r#. The isotropic harmonic oscillator energy is

E0@r#5
1

2
tr~ t1q! ~3.1!

in units of \v0. A quadrupole potential energy functiona
depends on the quadratic and cubic rotational scalars,
1-4
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v25
1

2
tr~q(2)!2,

v35
1

3
tr~q(2)!35detq(2), ~3.2!

where qi j
(2)5qi j 21/3d i j tr q. Becausev2 and v3 are rota-

tional scalars, these potential terms may be evaluated in
principal axis frame in whichq5diag(q1 ,q2 ,q3) is the di-
agonal,

v25~q1
21q2

21q3
22q2q32q1q32q1q2!/3,

v35~2q12q22q3!~2q22q12q3!~2q32q12q2!/27.
~3.3!

These scalars may be expressed in terms of the quadru
deformation parametersb andg,

v25
3

4
f 2b2,

v35
1

4
f 3b3cos 3g, ~3.4!

wheref 5(1/A5p)A(R0 /b)2, with A equal to the mass num
ber,R051.2A1/3 fm is the nuclear radius, andb5A\/mv0 is
the oscillator length. An elementary collective potential~in
units of \v0) is

V@r#5b2v21b3v31b4v2
2 , ~3.5!

whereb2 , b3, andb4 are dimensionless real constants.
Consider the special case of rotation about a princ

axis, say the 1-axis. The nonzero components of the ang
momentum and the Kelvin circulation areI 15I and C1
5C. For rotors in equilibrium, the axis lengths are not v
brating, and therefore, the diagonal components ofn vanish.
The kinetic tensort in the principal axis frame is diagonal fo
an ellipsoidal body. Thus, the model sp(3,R) energyE@ r̃#
simplifies to a function of the axis lengths of the iner
ellipsoid, the diagonal components of the kinetic tensor,
angular momentum, and the Kelvin circulation.

As measured in the rotating frame, the energy is the
ference between the laboratory frame energy and the co
tive kinetic energy of a Riemann ellipsoid with angular m
mentumI and Kelvin circulationC,

Tcoll@ r̃#5
1

2
tr~nTq21n!5

1

4 F ~ I 1C!2

~a21a3!2
1

~ I 2C!2

~a22a3!2G ,

~3.6!

in units of \v0. Riemann rotor solutions with angular mo
mentumI and Kelvin circulationC are critical points of the
rotating frame energy,

EIC@ r̃#5E@ r̃#2Tcoll@ r̃#2 (
k51,2,3

m2k C2k@ r̃#, ~3.7!
01430
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on the space of all principal axis frame symplectic densit
r̃ with fixed I and C, wherem2k are Lagrange multipliers
enforcing the constraint to the algebraic variety associa
with the sp(3,R) Casimirs. An equilibrium density satisfie
the six energy minimization conditions

]EIC

]ai
5

]EIC

]t i i
50, ~3.8!

and the three polynomial equationsC2s@ r̃#5(Ni
2s .

Energy minimization determines analytically th
Lagrange multipliers, which can be eliminated, and the
netic tensor in the rotating frame

t115a1
22W11,

t225a2
22W221

~a2C2a3I !2

~a3
22a2

2!2
,

t335a3
22W331

~a3C2a2I !2

~a3
22a2

2!2
, ~3.9!

in terms of the potential tensorW in the principal axis frame

Wii 52ai

]V

]ai
522 qi

]V

]qi
. ~3.10!

For a self-gravitating system,W is called the Chandrasekha
potential tensor@2#. Thus, the sp(3,R) kinetic energyT of an
equilibrium density is the sum of collective and intrinsic e
ergies,

T5
1

2
tr t5Tcoll1Tintr ,

Tintr5
1

2 (
k

~ak
22Wkk!. ~3.11!

The axis lengths are determined by solving the three
simir equations. In terms of the forces

zi5
Wii

qi
522

]V

]qi
, ~3.12!

the Casimir equations simplify to

3A12z1q15N02l22m,

3A12z2q25~P2AQ!1/2,

3A12z3q35~P1AQ!1/2, ~3.13!

whereP5N0
21N0 (l12 m)15l2/21lm1m229C2/2 and

Q59 (l22C2)@(2N01l12m)229 C2#/4. Note that
AP22Q5(N02l1m) (N012l1m). In addition to system
~3.13! for rotation about the short axis, there are simi
equation systems corresponding to rotation about the l
and middle axes.
1-5
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Disregarding exceptional circumstances, Eqs.~3.13! can-
not be solved analytically for the deformationsqi because
the force quantitieszi depend on (q1 ,q2 ,q3) in a compli-
cated way. This system of equations must be solved s
consistently for the deformations and forces. All other co
ditions have been satisfied for energy minimization on
algebraic variety defined by the sp(3,R) Casimirs and the
final step is to solve system~3.13! numerically.

When there is no collective potential energyV, the force
quantities vanish,zi50, and the total energy is just the ha
monic oscillator energy,E@r#5E0@r#. In this special case
system~3.13! is easily solved. When the circulation van
ishes, the deformations reduce to their su~3! single oscillator-
shell values for the ground state.

A. Ground state

For a nonrotating ground state, the angular momen
and Kelvin circulation are zero. Equations~3.13! relate the
axis lengths to the potential energy,

3A12z1q15N02l22m,

3A12z2q25N02l1m,

3A12z3q35N012l1m. ~3.14!

A pure quadrupole potential energy has the invariance p
erty V(q11e,q21e,q31e)5V(q1 ,q2 ,q3 ,) for all real e,
which implies the identityz11z21z350. Whenm50 the
ground state is a prolate spheroid,q15q2,q3 , z15z2,0
,z3522z1, and Eqs.~3.14! specialize to

3A12z1q15N02l,

3A112z1q35N012l ~3.15!

for 2 1
2 ,z1<0. Thus the ground state deformation of a pr

late spheroid depends parametrically on one force param
z1. The su~3! limit of the sp(3,R) theory is attained when
z150. Since the quadrupole deformation of a well-deform
prolate ground state is considerably greater than the the
ical su~3! prediction, the value ofz1 is certainly negative for
such states.

B. Low-energy states

WhenN0 andl are large compared to the circulationC,
accurate solutions to the equilibrium equations are obtai
in perturbation theory. The right hand sides of Eqs.~3.13! are
given for smallC by the Maclaurin series,

~P2AQ!1/25~N02l1m!@11MC21•••#,

~P1AQ!1/25~N012l1m!@12MC21•••#, ~3.16!

whereM53/@2l(2N01l12m)#. Let qk denote the ground
state deformation, andqk(e)5qk1ek be the deformation
when C.0. For small ek , a first-order Maclaurin serie
yields the force terms
01430
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z1~e!5z12Re12Se21Te3 ,

z2~e!5z22Se12Re21Te3 ,

z3~e!5z31T~e11e222e3!, ~3.17!

whereu5q32q1 and

R5
4

9
~3 b4 u22b3 u13 b2!,

S5
2

9
~4 b3 u23 b2!,

T5R1S. ~3.18!

Thus, equilibrium equations~3.13! for small circulation sim-
plify to

Re11Se22Te3

2~N02l22m!2
1

e1

9q1
3

50,

Se11Re22Te3

2~N02l1m!2
1

e2

9q2
3

5
MC2

9q2
2

,

2T~e11e222e3!

2~N012l1m!2
1

e3

9q3
3

52
MC2

9q3
2

. ~3.19!

These linear equations may be solved for the shiftsek in the
ground state deformationsqk as the circulationC changes. In
the following section, we are able to solve for the low-ener
states of a heavy deformed nucleus using these perturba
formulas.

IV. APPLICATION TO A HEAVY DEFORMED NUCLEUS

To apply the Riemann approximation of symplectic me
field theory to a heavy deformed isotope, e.g.,166Er, a coad-
joint orbit must be selected based on physical considerati
Our pragmatic choice for166Er is the coadjoint orbit corre-
sponding to the leading sp(3,R) irrep that has the highes
weight quantum numbersN05813, l5108, andm50. This
highest weight vector is an eigenstate of the deformed h
monic oscillator Hamiltonian@62,63#.

A better choice for the orbit could be calculated from t
Nilsson model Hamiltonian that adds the spin-orbit force
the deformed oscillator Hamiltonian. The eigenvectors of
Nilsson model are a mixture of vectors from several
equivalent sp(3,R) irreps. Adding the pairing interaction wil
induce further mixing of sp(3,R) irreps into the ground state
configuration. Certainly the coadjoint orbit containing th
density of the real166Er ground state is not an integral orbi
i.e., it does not correspond to a unique irreducible repres
tation of the symplectic algebra.

Suppose a quantum mechanical stateC is selected to
model the nuclear deformed ground state, e.g.,C is an
eigenstate of the Nilsson Hamiltonian. The densityr corre-
sponding toC is calculated from the expectations of th
1-6
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one-body sp(3,R) operators using Eq.~2.4!. To identify the
coadjoint orbitO% that containsr, the matrixr can be trans-
formed to the normal form% by a symplectic group trans
formation, Adg* r5% for some gP Sp(3,R). A simple
method to find the normal form~2.8! is to evaluate the rea
eigenvalues,6N1 ,6N2 ,6N3, of the complex matrixir.

The calculation of the density matrixr simplifies whenC
lies entirely in one major oscillator shell, i.e.,C is an eigen-
state of the isotropic harmonic oscillator HamiltonianH0. In
this case the matrixn is antisymmetric and is determine
completely by the expectations of the angular moment
operators. This simplifying observation follows from th

commutation relationN̂jk1N̂k j5 i @Ĥ0 ,Q̂jk#. In addition, the
expectations of the momentum and position tensors
equal,t jk5qjk .

The different sp(3,R) irreps that contribute substantiall
to the heavy deformed166Er ground state have similar quan
tum numbers (N0 ,l,m)'(813,108,0). This assertion is sup
ported by experiment and is predicted by the Nilsson mo
Note that the quantum numberN0 must be large for a heav
nucleus because the nuclear radius is large. Indeed, in
isotropic oscillator shell model, the value ofN0'0.9A4/3

when \v0'41/A1/3 MeV @68#. For a heavy deformed pro
late nucleus, the dominant contributions to the ground s
must have a large value for the quantum numberl. The
reason is that a substantial excess of quanta in the direc
of the long axis relative to the short axis is necessary
produce the experimentally observed quadrupole defor
tion. The value ofm must be small or zero for a prolat
spheroid.

For an AMFT application to the low-energy states
166Er, it is not imperative to adopt the exact values of t
quantum numbers (N0 ,l,m) for this isotope’s ground state
The expectation values of the sp(3,R) Casimirs@Eq. ~2.9!#
and the AMFT equations themselves@Eqs.~3.13!#, are rather
insensitive to the precise choice of coadjoint orbit quant
numbers.

To be well defined, symplectic representation theory
quires a single sp(3,R) irrep with a precise integral highes
weight. When spin-orbit and pairing forces break symplec
dynamical symmetry, a pure sp(3,R) algebraic structure mus
be abandoned, and the full shell model~augmented with
symplectic core excitations! should be invoked. This is a
more realistic theory, but it is unnecessarily complicated
explain many properties of geometrical collective states
essence, the shell model constructs state vectors whic
principle, allow for the prediction of the expectations of a
HermitianN-body operators. AMFT only makes prediction
about the expectations of symplectic algebra operators;
tails about the mixing of sp(3,R) irreps are not required to
achieve this limited aim. Thus, although one leading sp(3R)
irrep provides a poor approximation to the166Er ground state
wave function, the symplectic density of one leading co
joint orbit can yield an excellent approximation to the sy
plectic density of the exact ground state. Similar consid
ations apply to any heavy deformed nucleus. The theore
situation is similar to the Hartree-Fock one. A Hartree-Fo
determinant may have a very small overlap with a sh
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model wave function, yet the Hartree-Fock density mat
may approximate accurately the expectations of one-b
operators with respect to the shell model wave function.

For the isotope166Er, the oscillator frequency is\v0
57.36 MeV, the oscillator lengthb52.37 F, the nuclear ra
dius R056.60 F, and the parameter of Eq.~3.4! is f 5323.
Whenz150, Eqs.~3.15! determine the dimensionless defo
mations q15q25235 andq35343 of the prolate ground
state in the su~3! approximation. Using Eq.~3.4!, the quad-
rupole deformation in the su~3! limit is calculated to beb
50.223. Because the experimental quadrupole deforma
is b50.342 @69# and effective charges are not used in t
sp(3,R) theory, a nonzero value forz1 is required. In Fig. 1
the theoretical quadrupole deformation of the prolate grou
state is plotted versus the potential tensor componentW11
using Eqs.~3.15!. The measured ground state deformatio
q15q25223 andq35389, is fitted whenW115224.7 MeV
and z1520.111. This value forz1 in the ground state im-
poses a constraint on the potential parameters of the co
tive potential energy~3.5!,

2997b22~5.523104!b32~1.833107!b451. ~4.1!

The monopole moment is proportional to tr(q). To maintain
a constant value for the nuclear radius, the monopole m
ment of excited yrast band states must equal the mono
moment of the ground state. In the perturbation theory,
invariance is assured when(ek50, or, using Eqs.~3.19!,

T5
2 ~q32q1!~N02l!2~N012l!2

27q1q3@q3
2~N02l!22q1

2~N012 l!2#
. ~4.2!

Thus, a constant monopole moment imposes the follow
constraint on the collective potential parameters of166Er:

907b21~1.003105!b31~5.003107!b451. ~4.3!

W11

-35 -30 -25 -20 -15 -10 -5 0

β

0.20

0.25

0.30

0.35

0.40

166Er

FIG. 1. The theoretical quadrupole deformation of the prol
ground state of166Er is plotted against the potential tensor comp
nent W11 in MeV. AMFT yields the experimental ground stateb
50.342 when the component of the potential tensor isW11

5224.7 MeV.
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Since a physical collective quadrupole potential is boun
from below, the coefficientb4 of the highest power inb is
positive. For prolate solutions, the coefficientb3 of cos(3g)
is negative. For simplicity, we setb2 equal to zero. Then Eqs
~4.1! and ~4.3! imply b3527.4331025, b451.6931027,
and

V~b,g!51041b42628b3cos~3g!. ~4.4!

This potential is drawn in Fig. 2. The prolate ground st
deformationb50.342 does not coincide with the minimum
of the quadrupole potential because the sp(3,R) Casimirs
impose constraints on the energy minimization. From
physical perspective, these constraints are a consequen
the nuclear shell structure.

The circulation of a Riemann ellipsoid is proportional
the angular momentum, with a factor that is a function of
rigidity and the axis lengths perpendicular to the rotation a
@3#,

C5
2a2a3~a2

21a3
2! r

~a2
22a3

2!214a2
2a3

2 r
I . ~4.5!

To complete the analysis, a value for the rigidity must
adopted. Energy levels and deformations for the yrast r
tional band can then be calculated using Eqs.~3.13! and
~4.5!. The energy of the 21 excited state of166Er is fitted
when the rigidityr 50.125. In Fig. 3, the theoretical energ

β

0.0 0.1 0.2 0.3 0.4 0.5 0.6

V
( β

,γ
M

eV
)

-15

-10

-5

0

γ=0o

γ=10o

γ=20o

166Er

FIG. 2. The collective potential energyV(b,g) in MeV is plot-
ted versusb for several values ofg.
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levels are compared to experiment and to the compres
spectrum of a rigid rotor.

The quadrupole deformationb50.342 decreases less tha
0.1% fromI 50 to I 58. Similarly, the shape remains a pro
late spheroid,g50°. Equation~4.5! then implies a constan
ratio of the Kelvin circulation to the angular momentum
C/I 50.635. This constant ratio in our calculations is in ha
mony with the explanation ofg-ray staggering made by
Mikhailov and Quentin@28#.

The expectations of the harmonic oscillator excitati
number operatorN2N0 for the yrast band of166Er are listed
in Table I. The su~3! limit corresponds toN2N050, and
wave functions in this limit are restricted to vectors from t
0 \v0 harmonic oscillator major shell. The nonzero expe
tation ('3.4) for the oscillator excitation number in th
sp(3,R) calculations shows that significant admixtures
core-excited vectors are necessary to build the obse
quadrupole deformation. The mean field expectation for
oscillator excitation number is consistent with prior symple
tic representation theory calculations@61,62#.

Table I also shows the breakdown of the total excitat
energy of yrast states into collective kinetic energy, intrin
kinetic energy, and potential energy. The energies of
table are zeroed at the ground state. The collective kin
energy accounts for most of the excitation energy. Indeed
overshoots the total energy by about 10%, while the ot
energy terms lower the total energy by 10%.

The intrinsic kinetic energy for yrast band states is nea

166Er 

E
ne

rg
y 

(M
eV

)

0.0

0.2

0.4

0.6

0.8

1.0

r = 1 experimentalr = 0.125

2+

4+

6+

8+

0+

FIG. 3. The yrast band spectrum of166Er is compared with the
theoretical spectrum of a rigid rotorr 51 and a Riemann ellipsoid
with r 50.125.
TABLE I. Sp(3,R) principal axis Riemann rotor for166Er.

I (\) N2N0 Tcoll ~keV! Tintr ~keV! T ~keV! E0 ~keV! V ~keV! E ~keV!

0 3.36 0 0 0 0 0 0
2 3.37 88.6 26.9 81.7 75.3 5.5 80.8
4 3.39 295 223.1 272 251 18.4 269
6 3.43 620 248.5 572 527 38.6 565
8 3.48 1063 283.1 980 903 66.3 969
1-8
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a constant negative 8% of the total kinetic energy. The
trinsic kinetic energy is the difference between the total
netic energy and the collective kinetic energy. The latte
the kinetic energy due to the collective rotational and vor
motion of a Riemann ellipsoid. The calculation demonstra
that the total kinetic energy is dominated by geometrical c
lective motion. The qualitative conclusion is that the pote
tial energy fixes the quadrupole deformation, while the c
lective kinetic energy determines the excitation energy.

V. CONCLUSION

The geometrical collective model plays an important r
in the Riemann approximation to sp(3,R) AMFT. The geo-
metrical model motivates the mathematical assumption
the derivation of Eqs.~3.13!, e.g., the energy is minimized i
the rotating frame, the potential energy is a function of
quadrupole deformation parameters (b,g), and the potential
tensorW and force quantitieszi are defined by the gradien
of the collective potential. Yet, sp(3,R) AMFT differs signifi-
cantly from the simple geometrical collective model. T
ground state density in AMFT does not minimize the pote
tial energy unlesszi50, which is the su~3! limit. The reason
is that the energy minimum in AMFT is constrained to lie
a coadjoint orbit surface. The constraints imposed by
three symplectic Casimirs depend on the labels (N0 ,l,m)
that, in turn, depend on the Nilsson model and the P
exclusion principle. Thus, microscopic quantum physics
an essential part of AMFT. Another difference betwe
sp(3,R) AMFT and the collective model is that the sp(3,R)
kinetic energy is the exact microscopic kinetic energy—
just the collective Riemann kinetic energy. Yet another d
ference with the geometrical model is that the Riemann m
el’s kinetic energy is a fixed function of the Kelvin circula
tion, angular momentum, and axis lengths with no adjusta
mass parameter.

An earlier paper@27# investigated the class of sp(3,R)
AMFT solutions corresponding to the cranked anisotro
oscillator Hamiltonian of conventional mean field theo
This paper shows that the AMFT method can be used fo
rotational scalar Hamiltonian that is the sum of the isotro
harmonic oscillator Hamiltonian plus a collective quadrup
potential energy. This is just the Hamiltonian that has be
used in prior sp(3,R) shell model applications; e.g., see Re
@8#. One significant difference between AMFT and sh
model studies is that the Kelvin circulation can be evalua
01430
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in AMFT, while its calculation is beyond the reach of she
model technology.

The application of sp(3,R) AMFT in the Riemann ellip-
soid approximation shows that the Kelvin circulation, whi
is sensitive to the collective nuclear current, is proportio
to the angular momentum among yrast band states in he
deformed nuclei. The model’s assertion about the vortex
namics of nuclear collective rotation, as characterized by
rigidity parameter, needs to be tested independently and
rectly via inelastic electron scattering measurements of
transverseE2 form factor in the heavy deformed region@30–
36#. There is a simple formula for the transverseE2 form
factor in the Riemann ellipsoidal approximation@37#.

One of the benefits of the algebraic mean field method
its computational simplicity compared to the representat
theory. Although this paper used a simple potential ene
@Eq. ~3.5!#, to study the ground band, very complicated p
tential energy surfacesV(b,g) present no substantial theo
retical or computational impediments. The application
AMFT to g bands requires a nonzerom for the coadjoint
orbit.

The symplectic mean field Hamiltonian is, in general,
density-dependent element of the sp(3,R) Lie algebra. In a
subsequent paper we plan to derive the sp(3,R) mean field
Hamiltonian from the energy functional using the symplec
geometry of a coadjoint orbit. The mean field Hamiltoni
can be applied to the description of normal mode oscillatio
of symplectic equilibrium states. For su~3! dynamical sym-
metry, the mean field Hamiltonian and normal mode the
have been determined already@54,55#.

The AFMT method may be applied to other group the
retical models to derive simple approximations to repres
tation theory results. At the present time, based on this pa
and prior applications to su~3! and sp(3,R), there seems to
be no serious obstruction that prevents the method’s prac
application to any Lie algebra. The algebraic mean fi
method may prove to be especially useful in cases where
representation theory is intractable because either matrix
ements of generators are unavailable or the dimension o
representation is infinite or prohibitively large.
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1997!, Vol. 149.

@50# J. Sniatycki,Geometric Quantization and Quantum Mechani
~Springer-Verlag, New York, 1980!.

@51# D.A. Vogan, Jr., inAlgebraic and Analytic Methods in Repre
sentation Theory, Perspectives in Mathematics, edited by S.
Helgason~Academic, New York, 1997!, Vol. 17.

@52# A. Kirillov, Bull., New Ser., Am. Math. Soc.36, 433 ~1999!,
and references therein.

@53# Ts. Dankova and G. Rosensteel, Phys. Rev. C63, 054303
~2001!.

@54# G. Rosensteel and Ts. Dankova, J. Phys. A35, 1055~2002!.
@55# G. Rosensteel and Ts. Dankova, Phys. Rev. C64, 064303

~2001!.
@56# G. Rosensteel and J.L. Graber, J. Phys. A35, L535 ~2002!.
@57# G. Rosensteel and D.J. Rowe, Phys. Rev. A24, 673 ~1981!.
@58# D.J. Rowe, M. Vassanji, and G. Rosensteel, Phys. Rev. A28,

1951 ~1983!.
@59# P. Kramer and M. Saraceno,Geometry of the Time-Depende

Variational Principle in Quantum Mechanics~Springer-Verlag,
Berlin, 1981!.

@60# G. Rosensteel, Phys. Rev. A23, 2794~1981!.
@61# J. Carvalho, P. Park, D.J. Rowe, and G. Rosensteel, Phys.

119B, 249 ~1982!.
@62# P. Park, J. Carvalho, M. Vassanji, D.J. Rowe, and G. Ros

steel, Nucl. Phys.A414, 93 ~1984!.
@63# C.N.M. Ng and M.J. Carvalho, Comput. Phys. Commun.96,

288 ~1996!.
@64# P. Hohenberg and W. Kohn, Phys. Rev.136, 864 ~1964!.
@65# G. Rosensteel and Ts. Dankova, J. Phys. A31, 8933~1998!.
@66# J. Williamson, Am. J. Math.58, 141 ~1936!.
@67# M.F. Atiyah and I.G. MacDonald,Introduction to Commutative

Algebra ~Perseus, Cambridge, MA, 1969!.
@68# A. Bohr and B.R. Mottelson,Nuclear Structure~Benjamin,

New York, 1969!, Vol. I, p. 222.
@69# S. Raman, C.W. Nestor, and P. Tikkanen, At. Data Nucl. D

Tables78, 1 ~2001!.
1-10


