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Neutrino emission in neutron stars
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Neutrino emissivities in a neutron star are computed for the neutrino bremsstrahlung process. In the first
part, the electroweak nucleon-nucleon bremsstrahlung is calculated in free space in terms of an Dn-shell
matrix using a generalized low-energy theorem. In the second part, the emissivities are calculated in terms of
the hadronic polarization at the two-loop level. Various medium effects, such as finite particle width, Pauli
blocking in theT matrix are considered. Compared to the pioneering work of Friman and Maxwell in terms of
(antisymmetrizeflone-pion exchange, the resulting emissivity is about a factor 4 smaller at saturation density.
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[. INTRODUCTION glected. It is the aim of the present paper to investigate and
possibly improve these assumptions.
The cooling of neutron stars proceeds via the weak inter- In the first part we consider reactiof®) and(2) in free
action. Since in general one-body processes are kinematépace. Using the fact that the energy release in the brems-
cally forbidden, the dominant reactions are assumed to be th&rahlung process is very small, we apply the soft brems-

neutral current two-particle processes strahlung formalism of Hanhast al. [2] and Timmermans
o et al.[3]. This allows one to express the bremsstrahlung pro-
n+n—n+n+wv¢+ vy, (1) cess in the soft limit model independently in terms of an
on-shellT matrix, i.e., phase shifts. In this way we are able to
n+p—n+p+ Vf+jf , (2) judge the accuracy of past bremsstrahlung calculations,

which were mostly based upon the use of a one-pion ex-
change (OPE) approximation in the nonrelativistic limit
[1,4]. In the latter case simplifications occur, such as the
vanishing of the vector current matrix elements.

In the second part we consider the procglgsn the me-
dium. To describe the cooling process of neutron stars

Standard cooling scenarios are mostly based upon the pl?ﬁrough neutrino emission, the application of Fermi's golden

neering work of Friman and Maxwe]lL]. In essence, their rule in the quasiparticle approximatic@PA) was most
approach amounts to a convolution of the soft free space q P PP Y

neutrino pair emission and two-bodsnodified URCA pro- Used in the past. To compute emissivities beyond QPA, one

cesses(1)—(3) with a finite temperature free Fermi-gas needs to start from quantum transport equations. The essen-

model using Fermi’s golden rule to obtain the emission rate'Fial physics is then contained in the neutrino self-energies,

In doing so, a number of simplifying assumptions Werevv_hich appear in the loss and gain terms. We will compare the
made; in particulafi) the two-body interaction between the diagrams at the hadron two-loop level. It appears that only in
nucleons was approximated by a central Landau interactiolpwest order in the imaginary part of the hadronic self-
p|us a One_pion exchange to represent the tensor f((]"ae, energies the use of closed diagrams and the application of
only the nonrelativistic limit was consideregij) since itis  Fermi’s golden rule coincide.
based upon the quasiparticle approximation, nonperturbative From the generalized low-energy theorgsp2] it follows
effects such as the Landau-Pomeranchuk-Migt&M) ef-  that the use of the QPA leads to an infrared divergent ampli-
fect were not taken into accour{ty) other medium effects tude, 1&. The latter is predicted to be quenchis] in a
such as Pauli blocking in the strong interaction were nemedium whenever the mean free path of the nucleons be-
comes on the order of the formation length of the lepton pair.
This is also known as the LPM effect in case of electromag-

and the charged current “modified URCA” process

N+n—>N+p+7e+e*. 3

*Email address: vandalen@kvi.nl netic interactions. We study the importance of this effect by
"Email address: dieperink@kvi.nl including a finite single-particle widttimaginary part of the
*Email address: tjion@jlab.org self-energy that depends on energy and temperature.
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In practice, in calculating the collision integral one needs q q,
to specify the appropriate diagrams and make assumptions

about hadronic interactions. In doing so, one must be careful 02 GQ
that symmetries such as gauge invariance of the vector cur—pl ~N B N R
rent are not violated. We also estimate the Pauli blocking by @ , @ ,
replacing theT matrix by an in-mediumG matrix. In the R’ ¢ R R v Py

work of Sedrakian and Dieperifj6], the neutrino emissivity
was computed including the LPM effect, however, in the

OPE approximation. G 4
Many properties of superfluid matter such as pairing are {<‘:/\ G, {< UQ
still known with large uncertainty. Therefore only non- B ~ LR ~ P,

superfluid matter will be considered. For recent papers about @ @
pairing, we refer to GusakoW’] and Yakovlevet al. [8]. % ¥ p, R v p;
Although we will apply the present formalism to neutrino
pair emission in neutral weak current processes, it is equally FIG. 1. Diagrams for neutrino pair bremsstrahlung of order 1/
valid for soft electromagnetic bremsstrahlung. with radiation from external legs.
This paper is organized as follows. In Sec. Il we discuss
electroweak bremsstrahlung in free space; in Sec. lll the in-
medium process is discussed at the two-loop level. In Sec. T,=To—q- 0—T0+ T
IV, results are presented showing the effects of various ap- P1
proximations. In the Appendixes a summary of quantum J
transport theory and finite temperature Green’s functions are Ti=To+q- —To+ -, (6)
presented. apq

Il. ELECTROWEAK BREMSSTRAHLUNG and the nucleon propagat8ras

IN FREE SPACE

_AT(P+AT(p) | 2mAT(p)

prg-m  2p:d o

A. Soft electroweak bremsstrahlung amplitude S(p*
The vjpair emission in a neutron star is characterized by e
a very small energy transféon the order of the temperature With A=(p)=(+p+m)/2m. _ o
T=1MeV), much smaller than any other scale in the pro- The hadronic weak interaction vertex in the limit-0 is
cess likem,, or pg. Therefore it is natural to consider the 91Ve€Nn by

NN— NNwvv process in the ultrasoft limit. For simplicity and G -
also to be consistent with the low density limit of the me- TaV:—F%(Cv—CAys)—a, (8)
dium, we will first consider this process in free space. V2 2

Here the treatment of softiN electroweak bremsstrah- ) ] ) )
lung, discussed in more detail in RéB], is summarized. Where Ge is the Fermi weak coupling constant andis
Analogous to the electromagnetic bremsstrahlgsee the the isospin operator. The vector and axial-vector coupling
work of Low, Ref.[9]), the first two terms of the expansion constants for neutrons aog=—1, ca=—ga=—1.26, and
in powers of the energy-momentum transfaf<w of the  fOF Protons,cy= _1_‘_15'nzW_’“’ 0.08,cR=ga=1.26.
electroweak bremsstrahlung amplitude are determined by the Since the initial/final particles are on mass shell, one has
amplitude for the corresponding nonradiative procéss the relations p+m)y,u(p)=2p,u(p) andu(p)y,(p+m)
=A/w+B+O(w). Inthe ultrasoft regimed/p<<1, wherep  =2p,u(p), which are useful for the vector current. As a
is the nucleon momentunthe B and higher order terms can result, in the ultrasoft regiong{p<1) the vector and axial-
be neglected. The amplitude of the diagrams in Fig. 1 withvector current matrix elements are given by
radiation from external legs only is givé&,3] by

G C 14 ,V
M 2=T, S(p,— q)T2+T3S(p,+ ) T)+{1<2}. (4) MYaz FV g P ey e Pl gy
22 P10 P1-q
The A term in the Low expansion is obtained by considering (€)
the limit |q|<w—0 of ®M®**2; to this end we expand the gnq
variousT’s with one nucleon off its mass shell,
2mGeCp A" (py)
T1=(p1.P5/TIP1—a.P2), M3= - Y57
1=(P1,P2|TIP1—0a,p2) 22 °2p,-q YvYs
T£:<pi+Q1pé|T|p1,p2>' (5) A‘*’(pi)
+ 9,y ————To| +{1=2}, (10
around the on-shell point,, 2p;-q
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respectively. Naturally, the vector current is conserved: 5
q'MY2=0. T=2 T,(st,u)0,, (17)
v=1
B. Structure of the elasticNN scattering amplitude where

It is clear that the amplitudes in Eq®) and(10) depend
on the Lorentz structure df,. For the elastidNN scattering
amplitude [10,11 for the processN(p;)+N(p,)—N(p;)
+N(p3), the covariant form of the on-shéllmatrix can be
expressed as

1,=(11.T5,13.74,75)=(Tc, Tq, T11,T12. Tso), (18
and the five independent two-body operators

O,=(1,01-noy-n,01-Koy-K,o1-K' 05-K';01- N+ 05-n),

T:Tdir+Texch (19)
5 _ _ with k=(pi—py)/|p1—Pal. k'=(pi+py)/|p1+pal. andn

:|:201 azl Fo (st w)[u(p2)Qu(p2)u(p) Q“u(py) = (k' xKk)/|k" xk| in the center of mas&.m) system. The

’ termsTc, To, Tr1, andTsg correspond to the central, qua-
+(—)U(p)Qu(pHU(py) Qu(py) 1B, (11)  dratic spin-orbit, tensor, and spin-orbit force, respectively;
T+, stands for a second type tensor fol@btained by re-
where the five Fermi covariants are placingk by k').
Q,=(01,05,093,94,Q5)=(1,0,,/N2, 757, , 70, ¥5)- C. The nnww process

We first treat then+ n—n-+n+ u+7process. The vector

The projection operators on isosinglet and isotriplet state§urrent amplitude follows from Ed9),
are

V_ GFC(‘/ _ P1y + p:II.V _ P2, + pév
Bo=(1— 71" 72)/4, "o2\2 P-4 p;-qg P24 pj)-q
5

Brm (@t mem), 9 X 3 FUTU(PYQU(p U U(Py)

respectively.F{(s,t,u) are the invariant functions of the o
Mandelstam variables= — (p; +p,)2, t= — (p,—p;)2, and +(—)p2=patl- (20)

_ r_ 2 o S, i - . .
u=—(p;—p1)". Forthennvy andnprv processes the isos- g ayial.vector current amplitude follows from E4.0),
pin combinations needed are

5
F"(s,t,u)=FPP(st,u)=F V(s t,u), Mﬁ:% S FM U(ppQu(p)u(pl)
2\/5 a=1
FOP=[FN(s,t,u)+F(st,u)]/2, 14
o =[Fg (s tu)+Fg7(s,t,u)] (14 A*(py) A(py)
L . Qoo Ve Ys T Y Ys Q% u(py)
for «=1,...,5. For later use, it is convenient to put the Pi-q 2p;-q
spinors in the exchange term in the “normal order” by intro- .
ducing the functions — — A7 (p1)
T(=)*u(p)Qu(p2)u(py) —QaT7V75
5 149
TO(s,t,u)=F(s,t,u)+ X (—1)PC,4F (s t,u), A*(pY)
p=1 @
(15 Frs e 0 Julby) | +(102), (21

whereC,; are elements of the Fierz transformation, the ex-por |ater use we also give the nonrelativistic limit and the

plicit form is given[10,11. Then Eq(11) can be rewritten as first relativistic correction for thenvy process by expand-

5 B B ing the propagator in terms ¢p|/m,
T=2 2 TOLWUP;)Qu(p)u(p)Q u(py)B;. .. .
1=0,1a=1 1 1 p-q Ip|?
(16) —=—|1+—+0| —||. (22)
pqg Mo M m?
Since for a comparison we will need the cross section inthe ) )
nonrelativistic limit, we also give the required nonrelativistic APPlication to the vector current amplitude yields
decomposition ofT (we will reserve latin indices for the v VNR v »a,
nonrelativisticT matrix), My=M; " "+AM,+O(|p|*/m?), (23
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where the nonrelativistic amplituded ¥"N? vanish and the ' :
. . . v \V GF n nV nV pV pV
leading corrections are given by M,=——=|cy|l ——+ +cf| - +
2\2 n-q n'-q P-4 p'-q
aV_ GFC(]/ S (mo. Al nn > — —
M —m[m(pl'm—Dl(pl'Q)+{1<—>2}]T : le F"Plu(p’)Qu(p)u(n’)Qu(n)
(24)
+(=){p'en't], (30)
v a,mv and the axial-vector current amplitude from Eg0)
AMg=—", (25 p ,

Mﬁ: Mﬁ,dir+ M,ﬁ\,exch
with T"" the nonrelativistic reduction of thie=1 part of the

T matrix in Eq. (11). The vanishing of the nonrelativistic _ 2mGegp ° ol — —
vector amplitude generalizes the result of Friman and Max- - 22 ;1 FOPlu(p')Qu(p)u(n’)
well [1], where this cancellation was observed for Landau-
type interaction and OPE, to the complete T matrix. This AT (n) AT(n")
result is, in fact, analogous to the absence of electric-dipole X Qam VY5~ Vu¥s Q%] u(n)
radiation in photon bremsstrahlung processes when the cen- 2n"-q
ter of mass coincides with the center of charge of the radiat-
ing system, e.g., ipp bremsstrahlung. —{(n,n")=(p,p")}|+(—)*FP
For the axial-vector current amplitude, one obtains
A_ nsANR A PI) — — AT(n)
M2=MNR+AM2+O(|pl?/m?), (26) X u(n')Qau(p)u(p’)(QamyVﬁ,

where the nonrelativistic amplitudes are given by A (D)

Y7
MA'NR: GFgA 2

!

Q‘“)U(n)—{(n,n’)H(p,p’)}H-
nn &i. ANR_
2\/Em[T SI; Mp 0, 27 31

The exchange terms of the axial-vector current matrix ele-
ment are included explicitly in Eq31). The direct part is

Geg analogous to the expression in Eg1) for thennvv process.
AMA=—22 [T (py- Q) — o, T(p,-q)+{12}],  The only difference is the appearance of a minus sign in the
2\2mo? term, where the neutron and proton momenta are inter-
(28)  changed. This is a consequence of the sign difference of the

axial-vector coupling constants for neutrons and protons.

The different structure of the exchange p@s$ compared

to the nnvy proces$s comes from the sign difference be-
29  tweencd andc{".

Expressiong30) and (31) simplify considerably, if one
with §= §1+§2 the total spin of thenn system. Equation takes the nonrelativistic limit. Using E¢R2) one obtains for
(27) has also been derived by Hanhertal.[2] and Timmer- the vector current amplitude from E(80),
manset al. [3]. One sees from Ed27) that in the nonrela-
tivistic limit there is no contribution from the central inter- MV=_ —F -
action T, but the axial-vector current amplitude receives V2 20 m
contributions from all other terms. _ .

Thepprv process can be treated analogously torthey  @nd for the axial-vector amplitude from EG1),
process. The only differences are the coupling strength to the
neutral weak current and the Coulomb corrections in the co- A= Grga ([Tnp,dir'5]+ PU{Tnp,exch’ﬁ}), M§=O,

and the leading relativistic corrections are

A Grda nn >l . p/\yThn
AMp m[T (01-p1) = (o1-p) T +{1-2}],

>

q

w

Ge cl—cP k

TP, Mg=( ).|\7|V, (32

efficientsF(!) of the T matrix. 2\2w
(33
D. The npww process wherek=n'—n=p—p’, D=(0,— 7,), the spin exchange
In the n+p—n+p+ v+ v process the momenta will be operator isP,=(1+c-0,)/2, { ..., ...} denotes the an-
denoted byn andn’ (p andp’), for the neutror(proton in  ticommutator, and"P4" and T"P¢X¢" gre given by the non-
the initial and final states, respectively. In the ultrasoft regiorrelativistic reduction of the direct and exchange parts of the
(w/p<1) the vector current amplitude follows from E®), np T matrix.
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10»22 -

FIG. 2. Cross sectiomo/dw for n+n—n
+n+v+v as a function of neutron momentum
in the c.m. system, fow=1 MeV, and summed
over neutrino flavors. Shown are the result for the
OPE (long-dashed curyeand the full T matrix
(full curve); in addition, the separate contribu-
tions of theT matrix, i.e.,Tt;+ T1, (short-dashed
curve, Tgo (dotted curvg and Ty (dashed
double-dotted curvyeare shown.

1023

do/dw (mb MeV™!)

1024

T T T

100 200 300

p (MeVc?)

Note that in ordeik/m~p/m in the np case there is a one-pion exchange interaction in the nonrelativistic limit.
nonvanishing contribution for the vector current amplitude.The nn phase shifts are, for simplicity, assumed to be equal
This is analogous to the case of photon bremsstrahlung ito the pp phase shifts, which are taken from REE2].

NN scattering, where electric-dipole radiation is dominant In Fig. 2 the contribution of the various terms of tfie
for thenp case. The commutator in E(83) receives contri- ~matrix, Tt + Tz, Tso, andTq, to the cross section in the
butions from tensoff; and Ty,, quadratic spin-orbilg nonrelativistic limit are shown separately fion bremsstrah-
and spin-orbifT s components of the direct part of thep T ung in free space. The contributions of the quadratic spin-

matrix. The anticommutator also receives a cenfiglcon- ?rbit (the -LQ term) and the tensolfthel Trp andTr, terrr]ns)
tribution in addition toT;, Tra, To, andTso contributions  [OTCES 1O the cross section cancel at low momenta. The tensor

: forces(the T+, and Ty, termg dominate over the spin-orbit
from the exchange part of t T matrix. T1 T2 X . i
gerp frep (the Tso term) and quadratic spin-orbitthe T term) for
_ _ momenta between 200 Me¥/and 300 MeVE. From Fig. 2
E. Comparison with one-boson exchangéOBE) one may conclude that at larger neutron momentum in the
In this section we will calculate the neutrino emission C-M- System, the spin-orbit for¢the Tso term) also becomes

cross section in free space. The expression for the cross se§aPortant. i .
tion in the c.m. system is Several results for the OBE contributions are shown in

Fig. 3 for comparisori.In the OBE potential contributions
do N mg\/m considered in this section, the meson-nucleon form factors
— _ f dQzd3q(M,q*M* g” are not included. They can be neglected because of the rela-
do 4 6(2m)"(E-w/2)|p| ! tively small momentum transfetk|<2|p| involved. The
— MM 34 OPE result overpredicts the fulkmatrix result. At a neutron

q A (34) momentum ofp~300 MeV/c in the c.m. system, the use of

the full T matrix leads to a reduction by a factor of 4-5.

which is also given in Timmermaret al. [3] with the num-  |ncluding the tensor part of the opeexchangeORE) to the
ber of neutrino flavordN;=3. Neutrino pair bremsstrahlung OPE result is a much better idea. The cancellation of the
has been calculated mostly, in Born approximation, with aensor from OPE at short distance by the tensor from ORE,
two-nucleonNN interaction consisting of a long range OPE which has an opposite sign, leads to a result much closer to
and a phenomenological Landau interaction as shown by Frihat obtained with the full matrix. The result for OPE with-
man and Maxwel[1]. However, the use of lowest order OPE out the exchange contribution, which is used in most “stan-
represents a severe approximation. First, it is known thatlard cooling scenarios,” is smaller than that for the full OPE,
there is a substantial cancellation between the tensor contiput has a different behavior than the result obtained with the
butions fromp and pion exchange. Second, it is questionabldull T matrix. From a neutron momentum of 250 Me&Vih
whether othefmomentum dependeninteractions such as c.m. system, the difference with the result of the futhatrix
the spin-orbit interactiof o may be ignored. Hanhaet al.  increases. The contribution from one exchange, which
[2] found that the use of the full matrix leads to a reduction gives rise to a spin-orbit force, is also shown to give an
by a factor 4 compared to OPE farn bremsstrahlung estimate of the effect of the other mesons. The effect obthe
around saturation density. Our results for andnp brems-  is quite small.
strahlung is a generalization of Friman and Maxwell's re-
sults: The amplitude is computed in terms of ttmodel
independenton-shell T matrix instead of the Landau plus Numerical values are taken from the OBE model Nijni23].
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1022 4

FIG. 3. Cross sectiomlo/dw for n+n—n
+n+v+v as a function of neutron momentum
in the c.m. system, fow=1 MeV, and summed
over neutrino flavors. Shown are the results for
the OPE(long-dashed curye one piont+tensor
part of p exchangdOPtRB (short-dashed curye
one pion +p+ o exchange(OPRSE (dotted
curve), OPE without the “exchange” contribution
(dashed double-dotted cupyeand the fullT ma-
trix (full curve).

1023 4

do/dew (mb MeV™)

1024 -

T T T

100 200 300

p (MeVct)

The calculations in Figs. 2 and 3 are done in the nonrelR for the T matrix remains below 10%. Due to the chosen
ativistic limit. Therefore it is important to check, whether the representation, the spin-spin force is hiddefip, T+», and
relativistic corrections are small. We can estimate the imporTo. Some components of the on-sh€&lmatrix have a non-
tance of the relativistic effects for OPE as well as for therelativistic charactefscalar, spin-spin while others do not
on-shell T matrix taken as th& N interaction. (tensor, spin orbit, quadratic spin orbitn elastic scattering,

In Fig. 4 the relative relativistic correctidR, in which the ~ scalar and spin-spin forces dominate especially at low mo
magnitude of the relativistic effects are compared to the nonmenta. In thennvv process these forces vanish in the non-
relativistic cross section, with OPE taken M8l-interaction,  relativistic limit of the bremsstrahlung amplitude, because
is shown. For thexnvv and thenpvv processes the nonrel- they do not survive the commutator. They still have a non-
ativistic contribution comes from the axial-vector current.vanishing relativistic term in the bremsstrahlung amplitude,
The relative relativistic correctioR for the nnvv process Which explains the increasing importance of the relativistic
remains below 15%, and for thepyv process it remains corrections in the bremsstrahlung amplitude at very low mo-

even below 5%. Also in Fig. 4R is shown for thennyy ~ MeNta.

process using th& matrix for theNN interaction instead of Il NEUTRINO EMISSIVITY IN MEDIUM

OPE. The only contributions surviving the nonrelativistic '

commutator in Eq(27) come from theTy, Tr,, Tg, and In this section we consider neutrino bremsstrahlung in a

Tso parts of theT matrix. The relative relativistic correction dense hadronic medium at finite temperature. In the simplest

0.15

nn T-matrix
....... nn OPE

— — np OPE
0.10 1 FIG 4. R:|(TNR7(TR|/(TNR, Wlth ONR the

nonrelativistic cross section afrk the cross sec-
tion, in which also the first-order relativistic cor-
rections are included. Taking the OPE as ithd
interaction, thenn andnp bremsstrahlung ratios
R are given by the dotted curve and the dashed
curve, respectively. Also, then bremsstrahlung
ratio R is shown using thd matrix for theNN
interaction.

0.05 4

100 200 300 400
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approach one can use the so-called convolution approximarolume uni} is obtained by multiplying the energy with the
tion (followed by Friman and Maxwe[l1]) in which the free left hand sidglhs) of BE (see Appendixedor neutrinos and
space bremsstrahlung process is folded with Fermi-Dira@ntineutrinos, respectively, summing the neutrino and an-
single-particle wave functions and the emission rate is obtineutrino expression and integrating over a phase space el-
tained with the use of Fermi’'s golden rule. This approach issment:

not applicable in more general cases, e.g., if one takes into

account dressed propagators. To go beyond the convolution o d d3q
approach, the more general framework of quantum transport €= q¢ (2m)° ——5lf @0+ 0]e(@. (38
theory[14—-16 is needed. The latter formalism and the ap-

plication of the finite temperature Green's functions is sSuUm-yom Eq.(35) follows

marized in the Appendixes.

A. The emissivity in quantum transport €= f

A reng) - =) e(@),  (39)

(2m)®
To compute the emissivity it is convenient to start from
the Boltzmann equatiofBE) for neutrinos(and antineutri-  \herel ;+,err(a) and |i*'em(a) are the terms of the colli-
nos, which schematically takes the forteee Appendix A gjon integrals, which correspond to the neutrino emission
. s s 4= > process.
[ai+ dqo(@)ax]t.(a.)=1, " (a,x) =1, (a,x), (39 To obtain the emissivity, the leptonic tensor has to be

- ) . . o . contracted with the structure function
where f,(q,x) is the single-time distribution function

(Wigner function of the neutrino withq the momentum and d3q, d3q,
x being the space-time coordinate. The right hand &ibg €= —22 f 3 = f 3 =
of Eq. (35) corresponds to the gain and loss collision integral f (2m)20(q2) ) (27)°2w(q1)

(Appendixes A and B A similar equation holds for the an- d4q

tineutrinos. For a homogeneous system in Wigner represen- xf (277)4é€(q1+q2 q)
tation, the distribution functions become space independent. (2m)*

Furthermore, the time dependence of the collision integrals - - - -
can be neglected. Therefore we drop thargument at the X dlw(qy) +o(d) —w][w(gy) + w(dz)]
rhs of Eq.(35). The use of the BE provides a general for- Y R

malism l%r neutrino and antineutrinF:) emissionfJ absorption, X Ge(@) A" (qs,02)Im IT,,(q). (40)
and scattering. The collision integrdlS ™ and|1*~ are di-
rectly related to the neutrino self-energi®ds * and ®*~
[Eq. (B2)], which in turn are expressed in terms of the had-
ronic poIarizatiorS;;'+ ~(q) and the leptonic couplings and
propagatorg Eq. (B1)]. The former are closely related to

The number of neutrino flavors is included by the summation
over f. For neutrino pair bremsstrahlung, it is more conve-
nient to use in the leptonic tensqe=q,+q, instead ofq,
andqg,. Using Lorentz covariance, we can write

retarded polarization or the current-current correlation func- ds3 q1
tions, Leta)= | - 6“(q 01— 02) A*"(01,02)
S, (@=S,, (-9 3, d%
: . =—(q"q -q%g*") f “ =, Sl a—ay)
:ZlgB(w)Im H,LLV(q)
16m v 2 v
=47rif d*¢ exp(iqé)(31(0)3,(8),  (36) =3 (@"a"—q°g""). (41)

with the retarded polarization functidiR(q). The general This simplifies the expression of the emissivity,
polarization receives contributions from vector, axial-vector,

and interference terms, _ 2 Jd“qu(q) 42)
21V 277A VA o 4(277
I, (q)=cyll, (q) +ciIl), (a) +cacyll (a), (37)

where IT} (q), I15,(q), and I1}%(q) are the vector, the
axial-vector, and the mixed parts. In general, one has four
independent componentsly(q), I13,(q), I1(g), and
I1VA(q) [17]. The lepton couplings and propagators give Which type of correlation diagrams are dominant in the
the leptonic tensor A*"=8[qgkqs+q}as—(q,-go)g*?  heutrino-hadron interaction processes depends strongly
_|6a,3MVqqu2a] on the kinematics. In particular, in the spacelike region
In the present case of emission we take the neutrinos to b(¢q|>w scattering, the one-loop QPA diagram and its ran-
free. The emissivity(the power of the energy radiated per dom phase approximation type iteration dominate; in con-

with W(q) = — 2gg(w)L*"(q)Im I1,(q).

B. Hadronic polarization
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< s, @= | T O r,Gs (PTG ()]
[ = 1
2% q (2 ) (2 )4 0 p 0 p
X(2m)*s*(q+p'—p), (43)
- wherel" ,=(Gg/2y2)y,,(cy—Cavs).
o L In the nonrelativistic QPA limit, Eq43) can be factorized
FIG. 5. One-loop contribution t§,, . in terms of a hadronic loop and couplinis,,,

trast, in the timelike regime«{>|q|), the QPA process is

kinematically forbidden and two-bodand many-bodycol-

lisions are required as was already clear from the discussion is_ " (q)= —ZgB(w)f

of the free space case. (2m)® (2m)°
For practical calculations of the polarization one has to 4 ,

make a choice between the use of dressed Green’s functions X (2m)*oha+p’— )Xo

and the use of quasiparticle Green’s functions. On the one =20g(0)X,,lo(q), (44)

hand the use of QPA in the soft limit @—0 leads to the

property that IniIR behaves as &7 in all orders, i.e., an

infrared divergencéthis behavior is correct only for the free with

case, where the external legs are on-shell prigdence one

expects that in the soft limit nonperturbative effects play a

d3p d3pr

[f(ep) —flepr)]

role (see the LPM effect given belowOn the other hand, as Gﬁ 0\2,, u=r=0
pointed out in Ref[5], in using dressed propagators special XMV:7 2, u=v=123 (49
e ,2,3.

care has to be taken to avoid double counting; i.e., one has to
restrict oneself to the so-called proper “skeleton diagrams.”
(An example is the two-loop self-energy insertion in Fig'After intearation.| —(m*2/2 r ith 117
6(a), which is already effectively included in the one-loop g To(a)=( mBA)£(a), with [17]
diagram with full Green’s functionsAnother problem con-

nected with the use of dressed Green’s functions and bare L(q)=In((L+exp{— Ble_(q)— u]})/
vertices is the conservation of the vector current.
In general, an expansion in terms of QPA diagrams is (I+exp—Bler(a)—ulh), (46)

simpler (than in terms of full Green'’s functiopsince there
are no such spurious diagrams, and also current conservation
is satisfied at each loop level. Below we will show that in thewhere e. (q)=(w?+ € )/4eai /2, with ed—q2/(2m ).

special case of an imaginary part of the self-eneigiith),  One sees that in the one- loop approximation in the QPA,

there exists a’l -1 co_rrespondence between_ the QPA arlﬂﬂy the spacelike contributiorm(>|(§|) does not vanish.
dressed Green'’s function diagram expansion, i.e., the proper

full diagrams can be expressed as multiplicative correction _
factor w?/(w?+1'?) to the QPA result. This result allows us 2. Two loops in QPA
to use the QPA and include the finite width at the end. In Fig. 6 the three different types of “closed diagrams” at
At low temperatures the leading diagrams are those whiclhe two-loop level are shown. These diagrams can be consid-
contain a minimum number of off-diagon@” ~ andG ™" ered as(lowest ordey propagator, vertex, and interaction
In the closed diagrams the — and— + lines are cut. Inthe renormalization of the one loop in QPA, respectively. We
QPA limit this gives back the original Feynman graphs. Thebegin considering the simple caserof neutrino pair brems-
“+” part is the Feynman amplitude and the-" part be-  strahlung with the on-shell matrix in Eq.(11). Figure Ga)
longs to the conjugated Feynman amplitude. contains terms with the acausal propagafr* and the
causal propagatde~ ~ with the same arguments, which can
be p;—q or p{ +q, whereas Fig. ®) contains terms with a
For completeness, we give the one-ldiig. 5 polariza- G** andG™~ with different argumentgopposite signs for

1. One loop in QPA

tion function in the QPA limit, d), and one obtains for Figs(® and &b),
b + c + . «
FIG. 6. The three different types of “closed
(Tr + b diagrams” at the two-loop level. These diagrams
can be considered d8) (lowest ordey propaga-
tor, (b) vertex, andc) interaction renormalization
- - - of the QPA.
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i[s,,”@@+s,,"®(g)]

4

2 d*p; d4pi,

=1 (2m)* (2m)*

k
X oy 118" (T2 Go " (P22 G5 ™ (Py)]
m

XTrA, ,.1Go +(pl)A;;lG(J)r “(py)]
+{1-2})(2m)88%(k+ps—po) 8*(q+p;—k—py),
(47

with A, =Q7 "Gy "(pi—a)l,+T,Gg "(p{ +q)Q, ",
A" =(A"")*, and T',=(Gg/2y2)y,(cy—Cays). The

definition of Q" * is given in Eq.(12) and Q™ ~ follows

from the relation) ™ ~ = y,Q2 " " y,. Thus in the nonrelativ-
istic limit, Figs. 6a) and 6b) have opposite signs 1/w.

One obtains for Fig. @),

5

5
18, =] 3
a=1 pB=1

2 d*k

(2m)*

d4pi d4pi,
<1 (2m)* (2m)*
XToT5* (A, .G T (p2)Q ) "G ~(p))]

XTQ™ #Gy "(p1)A,,,1G0  (P)]+{1-2})
X(2m)®8*(k+py—p2) 8 (q+pi—k—p1). (48
Note that only the- + and+ — lines are cut in the diagrams

of Fig. 6, since cutting thd matrix would lead to double
counting.

. . . V, =
The above expressions become simpler if the QPA m

Green’s functions are usddee Eqs(C7)—(C9)],
? dp; dp/
i=1(2m)° (2m)°

5
d*k
>

B=1 (2m)*

5
iS;J(q)=Z,l

X F(EN[1-F(E])]

(2m)88%(k+p5—p2)

X 8*(q+p;—k—pyX (49

pv
where X contains all operators ant(Ei)z{exp:,B(Ei—;L)]

+1}1 with E the relativistic energy ang the relativistic
chemical potential. In particular, for Figs(ed and b), we
obtain

5 5

xﬁfhxﬁf’g:;l ﬁ; TLT(TQT A (p3)Q = F
XAT(P'S)ITHA L AT (PT) AL LA T (P'])]
+{1<2}),

(50

and for Fig. &c), we obtain

PHYSICAL REVIEW ®&7, 065807 (2003

5 5
Xin= 2, 2 TuTy* (TTA, 5 "% (p) QA" (p'3)]

XTI, AT (PP AL AT (p'D)]+H{1=2}). (5D

One verifies that the sum of all two-loop diagrams conserves
the vector current, i.eq”S;,f(q)zo. First, Fig. &c) is cur-
rent conserving on its own. That the sum of Fig&)6nd
6(b) is current conserving can easily be deduced from Eq.
(20) by noting thatg“[p,/(p;-q) — p;,/(pi -9)])=0. In the
following, the hadronic part of interaction matriX,,, is
evaluated in the nonrelativistic limit for the cas&sv,VA,
separately.

C. The nonrelativistic limit

Although in principleX can be evaluated relativistically,
we will use the simpler nonrelativistic formalism. First we
consider the vector currerxxv. Expanding the Green’s
functionsG™" and G~ (see Appendix €in powers of

(p-q)/(m* w) leads to

2~2
cyGE -
X@V 4 XP)V 4 xjfg‘V=TvaV|T"“|2+ O(|p|3/m*3),
(52)
where
1 P1-d P'1i-q
= - 1+ +pg,| 1+

m* @ pl#( m* @ P m* w

+{1<2} (53

and

[T 2= 4(| T|?+ | Tol?+ | Tra|2+ | T2l ?+ 2| Tsd?).

We see that in leading order in the nonrelativistic limit, with
G*" " (pxg)I',—*p,/(m*w), the vector contributions
cgncel due topg, + pgﬂ—piﬂ—pélﬁo, while the separate
diagrams do not vanish.

For the axial-vector current to obtain the nonrelativistic
limit we expand theG~~ andG™** functions in powers of
(p-0)/(m*w), and replace the couplingl’,— o p/

m* &,0t0;6,;. For Figs. 6a) and @b), the hadronic part
of the interaction matrix is

XA+ X A~0(|p|2m*2), (55)
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are only of the order of 10%. Therefore, one may conclude
T (o x1,) (a1 T,))]  that the leading order nonrelativistic result with only the

axial-vector current constitutes a good approximation. Con-

tracting the polarization functio,, (q) with the leptonic

2G2 5
CaGF
Xi(ja)'A’LXi(jb)’A Bw? UZ: 8|7,|?

x(1+w+o(|5|2/m*2)) tensorL*"(q) = (167/3)(g*q* —q gf’“”) yields
m*
N W(o) =iT[L*"(q)(S,, @ () +S,, P (q) +S,, ()]
+{12} (56) 27g2G2 2 | d%p, d3p!
- SR 1(E)]
3w (2m)° (2m)
and ) L,
X[M[25%(q+pi+ps—pi—P2), (63
cf\G2 >
XE A+ X A= » Z 8|7, AT (o, XT,)] where
5
X (51%T,)-(py+p'1)]+O0(| pl2/m*2) M[2=322, |ToAL(20%=|a%)IT,|2~(d-T,)%]
+{1=2}) (57) s 2
11 1 1 r P \2
with 16;2 UZZ (AT + T TYH[((T,xTy) - q)
[,=(T1,12.05.04,T9)=(n,n,kK n). (59) +(T,xT)2(w2—|q?)]. (64)

Hence in leading order in the nonrelativistic limit there is a
contribution to the axial-vector currenthe contribution
from the central interactions to the axial-vector current van- The free spac®&N neutrino-pair bremsstrahlung process
ishes, since they commute with the weak spin operakmr  exhibits an infrared 1 divergencesee Sec. Il € The QPA
Fig. 6(c), one has result in Eq.(63) also shows an infrared divergence, remi-
niscent of the free space bremsstrahlung. It is well known
XQA~0(|p|2m*?), (59)  that the singularity in the electromagnetic bremsstrahlung
process is suppressed in a medium, the Landau-
c2g2 A ¢ Pomeranchuk-MigdalLPM) effect, whenever the mean free
XA oA 2F Z > A§TATE + 7T path of the emitting particle becomes comparable to the pho-
Bw® v=2u=2 ton formation lengthw—u-q. The former is characterized
(51+5,1+52+5,2)_a by the imaginary part of the selfjenergy, of the emitting .
1+ particle, while the photon formation length can be approxi-
m* w mated in the nonrelativistic limit by the formation energy,
Therefore, the LPM effect is expected to become effective
(60) whenevero~T".
The LPM effect has been discussed recently in various
contexts. For instance, for photon emission in a quark gluon

D. The LPM effect

X (T, T (yxT,)]

+0(|p[2/m*?) |,

ciGZ 4 4 plasma by Aurenchet al. [18] and Cleymant al.[19] in
XA = 2 2 16(THTE* + TETE) terms of thermal field theory. Analogously, one expects simi-
8w? v=2i=2 lar effects in the electroweak casas noted by Raffelf20]
R, - > for neutrino pair and axion production in supernovas and
X (I o X I u)J{I v’ [(pl+ P2+t pll+ p,Z) X1 u]} neutron stans
+O(|p|m*?), 61) Here we estimate the LPM effect on the response function

S and the emissivity as a function of the temperature and
with i =] =1,2,3. The definitions fof are given in Eq(1g).  density by using the dressed propagators Gor”, G,
As for the mixedVA contribution in the nonrelativistic @ndG~ ™ in Egs.(C11)—(C13. Note that in a fully dressed
limit, the traces vanish, and hence Green’s function formalism the diagram of Figabis not a
proper skeleton diagram and its contribution is already in-
X@:VAL X (0). VAL % (0).VAL O(pZ/m*2). (62) cluded in the fully dressed one-loop diagram. In this case the
appropriate irreducible diagrams to be considered are given
Therefore, we obtain théwell-known) result[1] that in by the dressed one loop, the corresponding two-loop vertex
leading order in the nonrelativistic limit there is only a non- correction (these together conserve already the vector cur-
vanishing contribution from the axial-vector current. In freerenf and the two-loop interaction normalization. We evalu-
space, Fig. 4 shows that at momenta relevant at nuclear matte these in the limit of' =2 ImX <ReX. Following Ref.
ter densities thg/m corrections to neutrino pair emission [5] we note that in the limif’= const andy— 0, it is possible
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to write the fully dressed diagrams in terms of the lowestglecting ®P,-3F, tensor coupling. Here we estimate the me-

nonvanishing order in the QPA in the low temperature limit.djum effect by using aG matrix at zero temperature to

A remark has to be made about the one-loop result, account for Pauli blocking, which includes the full tensor
force. The Bethe-Goldstone equation for Bematrix is

g m*pro T 65

SO e ®5 e p=vi.p)
We note that it is possible to relate the one-loop result to the d°p” >, >, Qpauli >, >

b . e +2J V(P p") == —=G(p",p),
lowest nonvanishing order in the QPA, if the quasiparticle o (2r)3 E(p”)—e(p)
width I" in the numerator is represented by the one-loop QPA
self-energy (70)

-- where\, i are the helicities and isospin of the intermediate
I'=1Im __O (66) state, respectively. The single-nucleon energy above and be-

low the Fermi momentunpg are E(p) and &(p), respec-
In the low temperature limit one can make the approximadtively. Here theG matrix of Banerjee and Tjofi22] in the
tions f(Ep + w)~0 andf(E,— w)~1, which lead to lowest order Brueckner theoy. OBT) is used; the single-
nucleon energies are given by

_ oo, [ 67) . )
::@ =) :@O o p p?

E(P)= 5 (P)=AT o

®) (68) _ —
=C%w) ora The gapA and the effective mass* are determined in the

LOBT in a self-consistent way. As an interaction in EfQ),

- - the Bonn C potential is used, and @, in Eg. (70) an
N@_ = 09 () ~O' (69 angle averaged Pauli operator is used to construdBthe-

QPA, trix.

whereC®(w)=C®(w)=C)(w)=w?/(w?+T?).

We note that with the prese®® [which differs from the IV. RESULTS AND DISCUSSION
H : b) _ 2 2 2 2 . L. . .
result given in Ref[5], namely, CO=[0*(w?~T*)]/(w We will compare the emissivity of than neutrino pair
+1'%)“] the conserved vector current relation holds, becausgremsstrahlung for the differetN interactions at densities
the vector current is conserved in the QPA limit. n=1/2ny, Ny, and 2, at T=10° K. We will derive the ex-
If only the dressed off-shell propagatd®" " andG™~  pression of the emissivity in the nonrelativistic QPA limit

are kept whileG™ ™ is replaced byG, ~, we find a different  starting from Eq(42). From Egs.(63) and (64) the function
result for the dampingC=w®/(w’+1'%4). From this we \(q) is obtained. Here, the momentugris neglected in the
conclude that the dressing of &ls should be considered on' momentum conservings function, because it is much
equal footing. In some previous worke.g., Raffelt and smaller than the neutron momenta. Next we separate the an-
Seckel[20]), the quasiparticle width has been included di-gular and energy parts of the nucleon phase space by per-
rectly (in a ratherad hocfashion in the cross section by forming the angular integrals with the momenta of the de-
replacing 1b? by a modified one, 14>+ a®l'?), whereais  generate neutrons approximated by the neutron Fermi
taken to be unity. In this cadeis purely a parameter with no momenta. Finally, we use the independence of the matrix
microscopic origin; in reality,l" depends on momentum, glements ofg and introduce the dimensionless parameter
density, and temperature. = wl/T to simplify the expression, and one obtains

E. Modification of the T matrix in the medium

AGEgAM* “Pen

Above, we have considered tAematrix in free space. In €ry= 1527)° T f dydcod 6;2)d
the past, the possible medium modification of thenatrix
has been addressed only in a very few papers. The Rostock H(s 1)
group has studied the effect of the medium on neutrino emis- X cog 611/) I(y), (71
sivities[21] in the framework of a thermal dynamniicmatrix. V2+2cosb;,
It was found that aT =4 MeV, the ratioR of emissivities for
the in-mediumT matrix to the freeT-matrix result is about Where
0.8 for nuclear saturation density for the modified URCA o5 7
process, and a striking:0.05 for the neutral current brems- (4m°y>+y’) (72)

. . (Y)=
strahlung process. The latter effect was ascribed to the Pauli ) 6[1+expy)]
blocking of the low momentum states. The results were ob-
tained using a separable approximation to the potential neand the hadronic part of the interaction matrix
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TABLE I. Emissivity in 10° ergcm ?s™* at T=10° K. and TBE contribution becomes even smaller than theTull
matrix result. These momentum dependent interactions do
Neutron matter Symmetric matter  not appear in the conventional Landau—Fermi liquid interac-
Density W2n, no 2ny (U2n, ng  2ng tion, bu't do seem _to play a role in the yvea!< bremsgtrahlung.
m*/m 077 064 049 066 058 049 We attrlbutg th_e finding that th& matrix gives a sllghtly_
larger contribution than the fre€ matrix mainly to a Pauli
OPE 7.3 48 21 2.7 2.4 1.6 blocking of the TBE contributions, and hence a smaller de-
OPRE 3.9 23 1.0 1.7 1.3 0.8 structive interference. We note that the present result deviates
OPROE 3.2 20 0.9 1.4 1.0 0.7 from thatin Ref[21] where ath=n, in neutron matter the
OBE 3.7 25 1.3 15 12 0.9 ratio of the rates computed witB matrix andT matrix was
OPE+TPE 102 69 3.7 35 32 213 found to be 0.05; a possible explanation could be the neglect
OPRELTPRE 44 28 14 18 14 10 Ofthe3P,-3F, tensor coupling in that work.
OPROE+TPROE 1.2 12 27 0.4 03 04 As to the density dependence the decrease of the rate with
OBE+TBE 1.4 06 03 0.8 05 02 Increasing density is mainly caused by the variatiomdfin
T matrix 59 11 11 07 04 EO (71) and to a lesser extent by the different ranges of the
R matrix o5 14 12 08 05 various meson _exchanges. For comple_teness we also show
G matrix 57 16 06 12 09 05 the corresponding results for symmetric nuclear matter in

Table I. The weaker density dependence in this case can be

attributed to less variation af*.

5 4 4 Finally, we turn to the LPM effect. Clearly, its possible

H(s,t)= 82 |7—3|2+22 2 (T,}Tﬁ*+7’,f*7’ﬁ) releva_nce in thr—; prgsent case depends on the magnitude of
v=1 2 the widthT", which is a function ofw, temperaturel, and

(73)  density. Here we use the parametrizatiéi

v=2 v#uU;u=

is a function of the Mandelstam variablsg and pg,, is the 2

neutron Fermi momentum. The integration varia®|gis the F(va):a< F+T2) (74)

angle betweemp, andp,, and 6, is the angle betweep, m

and p;. We note that in the limit that th& matrix is re-  to be able to estimate the importance of the LPM effect. For

placed by the antisymmetrized one-pi@mn onep) exchange <60 MeV andT<20 MeV, this roughly coincides within

potential, Eq.(71) reduces to the result of Friman and Max- a factor 2 with Almet al. [24]. Including the LPM effect in

well [1]. the emissivity the functior(y) in Eq. (71) has to be re-
The results for the emissivities are summarized in Table placed by

for neutron matter for three different densities)

=1/2ng, Ng, and My at T=10° K. It is seen thatsimilarly, ILem(y, T)=Y?*f(y, T)I(y) (79)

as in free spagecompared to thél matrix result the anti- )

symmetrized OPE overestimates the emission rate byt

roughly a factor of 4; this is in agreement with the conclu- 2
sion by Hanhartt al.[2]. If the exchange terms in OPE are f(y T)=1/ y2+ Iy )
(arbitrarily) omitted, the result is close to that of thema- ' T? '

trix. In the past, in some cases phenomelogical correction
factors are also introduced to simulate initial and final statavhich can be derived from Eq467)—(69). The function
interactions as a correction to OFE,23], which tend to  f(y,T) describes very roughly the behavior of Iif. To
reduce the OPE result. Contrary to naive expectations, basdive an indication of the importance of the LPM effect and to
on the Pauli blocking mechanism we find a slight increase irdlemonstrate the influence of the weighting factor in the
the rate if theT matrix is replaced by the in-mediu@ ma-  emissivity, we show in Fig. 7 how the functiorigy, T) and
trix as calculated by the Bethe-Goldstone equation describeld py(Yy,T) in Eq. (75) are modified for various values of the
in the preceding section. temperature. The value of the paramededepends weakly
To obtain more insight in the medium effects we alsoon the density and is<0.2 MeVc~!. One sees that the
listed in the table the separate results for one-pion,pipn  function f(y,T) has a singularity ay=0 in the QPA. The
pion+p+ w (OPROH, and full OBE(which includes alser LPM effect suppresses this infrared divergence. The function
exchangg and also for the corresponding OBE plus iteratedl  py(y,T) is less sensitive to the LPM effect compared to
OBE (i.e, OBE+ TBE). It is seen that ong-exchange gives the function f(y,T), because the weighting factor in the
a substantial cancellation of the OR&lso observed by Fri- emissivity strongly suppresses thie-0 contribution. There-
man and Maxwel[1]). On the other hand, the iterated OPE fore, the LPM effect in the emissivity is negligible for
(referred to as TPEleads to a stronger tensor force, and T<5 MeV. Comparing the ratio of the emissivity with and
hence a larger rate. It is also seen that the contributions of without LPM effect R py=€/€,n, at T=5MeV, T=10
exchange andr exchange(which contribute mainly to the MeV, and T=20 MeV gives 0.89, 0.68, and 0.35, respec-
spin-orbit interactions are non-negligible, in particular, in tively. The influence of the LPM effect increases with tem-
the TBE process; and as a consequence, the combined ORfrature and becomes appreciable abbwes MeV. There-
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fore, in practice in calculating the emissivity the LPM effect that are not included in the standard cooling scenario of Ref.
does not play an important role for small sayT<5 MeV. [1], which is based upon a nonrelativistic quasiparticle ap-
Finally, we note that an additional medium effect, notproximation and the use of the one-pion exchange potential.
considered here, is the possible medium effect of the axialfhe effects considered, namely, the description of kHé
vector couplingg,. It has been considered in RgR5], interaction, the LPM effect, and relativistic effects, influence
where it was found that the spacelike axial coupling isthe neutrino emission of the neutral current bremsstrahlung
guenched by about 20%. However, the timelike axial couprocess. Therefore these effects are also expected to affect
pling is not necessarily equal, since Lorentz invariance ither neutrino emission processes in a similar way.
broken. Experiments with first-forbidde decay of light First, we studied how the description of thNN interac-
nuclei give indications for an enhancement of the timeliketion influences theNN bremsstrahlung process. In the low
axial charge of about 25% in the mediuy®6]. This is in  density limit using the fact thab is small, the Low theorem
agreement with meson exchange calculations in the soft piof®] can be applied, which allows us to use the on-shell

approximationg 27]. matrix, specified by empirical phase shifts, and to compare it
with OPE. At typical neutron momenta in neutron stars, ap-
V. SUMMARY AND CONCLUSION proximately 300 MeV¢, the resulting free space cross sec-

tion is roughly a factor 4—5 reduced compared to the appli-

In this paper we studied the neutrino emissivity for thecation of OPE. Although adding ORE to OPE is an
neutral currenNN bremsstrahlung process, relevant for neu-improvement, the result still differs a factor 2—3 with that
tron star cooling. In particular, we considered some effect®btained using th& matrix. We also analyzed which Fermi
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components of th& matrix dominate the rate, namely, the Sometimes it is more convenient to use the retarded and

tensor-type and the spin-orbit-type terms. advanced functions:
To evaluate neutrino-pair bremsstrahlung in a finite me- -
dium at finite temperature, we have used a closed diagram iG1R2: 0t —t) ({(Xq), ¥(X2)}),

technique up to two loops. It is found that at-ng, the
neutrino emissivity, applying the on-shéll matrix to de-

scribe theNN interaction is roughly a factor 4 smaller than 1G1,= 0t~ t) ({¢(x0), Y(x2)})- (A2)
those based upon OPE. This is in qualitative agreement wit : ;

the conclusion of Hanharf2]. Including medium effects tllhe propagators satisfy the Dyson equation,

from Pauli blocking by replacing th& matrix by an in- _ +

mediumG matrix,we find a small increase of the emissivity G(x1,X2) =GolX1.%2) EO(Xl’X3)9(X3’X2)§(X2’X1()A3)

of 20—30 %.
Second, in order to investigate the many-body correlawhere® is the proper self-energy. Equivalently, in integro-

tions, we can go beyond QPA by considering dressed propaifferential form,

gators with a temperature dependent imaginary parOf

course gauge invariance of the vector current is conserved in

our approach. In particular, we find that in the medium the 41G12= 51,222*’24 d30,5Gs3,, (A4)

damping of the infrared divergence, the LPM effect, has a

negligible effect for low temperatures €5 MeV); this is

due to both the small single-particle widtli€T?) and a 03G10= 51,2gz+j d3G; 3P3.0,, (AS5)

weighting factor depending oé in the phase space integral.

Finally, we estimated relativistirecoil) effects to be rather whereo, is the Pauli spin matrix. The semiclassical neutrino

small, of the order of 10%, at nuclear saturation densities. transport equations are obtained by subtracting the Dyson
In short, the description of theN interaction by the on-  equations(A4) and (A5) for 4, andd,,

shell T matrix OPE has the largest impact on the neutrino

emission of the bremsstrahlung process; roughly a redUCtionig(Xl,Xz)ﬂxz—iﬂXIE(Xl,XZ):g(Xl,X3)9(X3,X2)ﬁ

factor of 4. Other effects are relatively small; below 30%

percent forT<5 MeV. — 07 P(X1,X3)G(X3,X2).
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1
APPENDIX A: NEUTRINO TRANSPORT + E{q)**'**(xl,xz),G**'*+(x3,x2)}. (A7)

In the present paper we use the finite temperature real
time Schwinger-Keldysh formalism to compute the collisionAs a result of the assumption of the existence of the Leh-
integrals in the transport formalism. For the sake of com-mann representation, we have ®8=ReG"=ReG and
pleteness, the main steps are summarized in this appendiRe®"=Red”=Red. The Wigner transforms of the off-
for more details we refer to Reff6]. In this formalism one diagonal Green'’s functions correspond to Wigner densities in
must distinguish between vertices with indides) and(—).  four-coordinate and four-momentum space. In the gradient
For given real interaction, these are associated with the valugxpansion the Wigner transforms of convolution integrals
—iV (time-ordered paytand with adjoint vertext+iV (anti- can be expressed in terms of Poisson brackds)
time-ordered payt The corresponding finite temperature {A,B}pg=dAdxB— 3,Ad,B. This leads to the quasiclassical
Green’s functiongapplied to neutrinos as well as the nucle- neutrino transport equation in which the neutrino self-
ong can be expressed as &2 matrix propagator: energies enter in the loss and gain terms,

iGlz=<G£2_ Gl;{ i{ReG™(p,x),G" " *(p.x)}pe
— G Gp +i{ReG(p,x),®" " (p,x)}pp
:(<T¢<x1>_$(x2>> —~<J<x2>f<x1>>)_ A =G T (P T (pX)
(p(x)¥(X2))  (Th(X1) Ph(X2)) +OT T (p,x)GT T T (pX). (A8)
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The first Poisson bracket at the lhs leddtasov parj to the whereslj{ "*7(q) is the baryon polarization tensor aihf
Boltzmann drift term, whereas the second one corresponds g the weak leptonic interaction vertex.
off-mass shell effects. After separating the pole and nonpole The collision integrals in EqA12), which are expressed
terms: as a convolution of the lepton self-energisand the inter-
R Ly . mediate(antijneutrino propagator, consist of a sum of a loss
G T (pX)=Gy 1 T(PX)+ Gy T (PX), and a gain term; e.g., the neutrino gain part

the quasiparticle part of the transport equation is given by q
N (eLc -
i{Re G 1(p,x),G¢ " " (p.X)}ps L, (OI.X)—f0 > 1P (4G (a.x)] (B2

=G (px)® " T (p,x) _ _ _ _
R R contains a (spacelike scattering [proportional to f,(1
=P (pX)GT T T (pX), (A9)  —£)] and a (timelike) pair emission termj o(1—f3)(1
—f,)]. The antineutrino one is obtained by replacing the

-1 _ _ R
where ReG™*(p,x) =4, —Red"(p,x). The Ihs corresponds Jositive energy range by the negative one.

to the drift term of the Boltzmann equation and the rhs to th
collision integrals. The remainder part of the transport equa-
tion, APPENDIX C: FINITE T HADRONIC GREEN'S

) . N FUNCTIONS
H{ReG P X)Gorr ™~ (PX)jpe Although in the neutrino sector the stationary condition
+i{ReG(p,x),®" " (p,X)}pg=0, (AL0) @ "G =dT G, " is not satisfiedsee Appendix B in
) ) the hadronic sector it is. Therefore the nucleons can be
describes the off-shell effects, which we neglect. treated in the equilibrium Green’s function formalism. The
The on-mass-shell neutrino propagator is related to thesigrded self-energy R can be decomposed in Lorentz com-
single-time distribution functionéWigner functiong of neu-  honents, in nuclear matter only the scalar and vector compo-

trinos and antineutrinod,,(q) andf.,(q), nents are nonzero,
i - -
Go " (@)= (c?){5[%_w(qnfy(qyx)_5[%"'0’((1)] 2R(p)=23(p) + XV(P)
w
X[1-f(—a,x)1}, (A11)  with p=(p°p). The retarded relativistic dressed baryon

Green's functiof15] is
and in theG{ ~ propagatorf,(q) is replaced by + f,(q)

and 1-f,(q) by 1—f,(q). In this limit the Boltzmann equa-
A a A ‘ p+m-X5(p)+35(p)

tion for the neutrino distributions is obtained, GR(p)=
L [P—23(PIlp—2%(p)]—[m+25(p)]?
[¢+dq w(d)dx]f,(d,X) (Cy

= F ?Tr[cp*(q,x)GS’(qw and the spectral function

0 an

— " (q,%)G; T (q,X)] A(p)=—2 Im G*(p). (C2
=1, (@)~ 1, " (a), (A12)  uUsing Egs.(C1) and (C2) we can now give the following

relations:

where the rhs corresponds to the gain and loss téhma
Boltzmann equation for antineutrino follows by integration

over the negative). G~ (p)=if(p°)A(p), (C3)
APPENDIX B: COLLISION INTEGRALS G (p)=—i[1-f(p?)]A(p), (CH
In the lowest(second order in the weak interaction, the o R .
neutrino transport self-energies are given by G (p)=[1-f(p)]IG (p)+f(p")G(p), (CH
4 4
—id>‘+'+‘(q,x)=f d"a, &(277)454(q1+qz—q) G (p)=—[1-f(p°)IGAP) —f(p)G (p), (CB)
(2m)* (2m)*

with f(po) = 1{exd B(p°—w)]+1}, B=1KT, and the chemi-
cal potentialy = Ep.t ReE?,’R(p,:). We will now define the

(B1) relativistic effective Dirac mass mp=m+Re3&(p),

XiThiGg " (g2 X)L NS, (A1),
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P°=p°—RexIR(p), p=p+ReSl(p), E,
=V(p)2+(mp)2, and T'=2Im[ —SIR~(mp/E,)SR(p)

+(§/Ep)§5(p)]. We will consider two casegj) the QPA
Green’s functions Inx(p)—0 and (ii) the nonrelativistic
Green’s functions.

1. Green'’s functions in QPA

PHYSICAL REVIEW C67, 065807 (2003

We point out that, when taking complex conjugates, it is
understood that Diracy matrices are not conjugated. The
free case can easily be obtained from this. By replaaifng

P by mandp, we obtain the free Green’s functions.

2. The nonrelativistic Green’s functions

In this part will be given the nonrelativistic Green’s func-
tions. Besides the nonrelativistic limit, we will assume that
the width of the quasiparticle state is small, ¥f(p)

In the QPA case, the imaginary part of self-energy<Rre3R(p). We will now define the Green'’s functions in the

Im3 (p) vanishes. This gives the following definitions for the
Green’s functions in EqQC3)—(C6),

At (p —
Gy (m=—2im2n Py 01550,
(C7)
AT(p —

Ga+<p>=2iw%.ﬁ—(fmfm%(p"—Ep), (]

2mp At (p
Ga‘<p>=[ea+<p>1*=~'§—(2m, (C9)

pT—mp

where we have the positive-energy operator (p)=(p
+mp)/2mp. The causal propagato@, ~ andG, * are off-
mass-shall. I is on-mass-shefp?—m3=0, thenG™~~ can
be rewritten as

2mpA " (p)

Go (P=a)=[Gy "(P=a)]*= . (C10

nonrelativistic limit as

ir'(p)

G "(p)= f(p?), C11
®= i P C
_ —ir'(p)
G* = 1-f(p%], (C12
(p) (p0—7,5)2+r(p)2/4[ (P)1 (
and
G (p=[G"T (M
_ p0_77p
[p%— 73]?+T(p)?/4
T
[P 2+ T(p2a 1 2" s
where T(p)=-2Im2IR(p)+38(p)], tanhe?)=1

—2f(2p%, and 5= eg with eg=|5|2/(2m*) and m* the
nonrelativistic effective mass.
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