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Neutrino emission in neutron stars

E. N. E. van Dalen*
Theory Group, Kernfysisch Versneller Instituut, University of Groningen, Zernikelaan 25, 9747 AA Groningen, The Netherlan

A. E. L. Dieperink†

Theory Group, Kernfysisch Versneller Instituut, University of Groningen, Zernikelaan 25, 9747 AA Groningen, The Netherlan
and ECT, I-38050, Villazzano, Trento, Italy

J. A. Tjon‡

Theory Group, Kernfysisch Versneller Instituut, University of Groningen, Zernikelaan 25, 9747 AA Groningen, The Netherlan
and Jefferson Laboratory, Newport News, Virginia 23606
~Received 22 November 2002; published 27 June 2003!

Neutrino emissivities in a neutron star are computed for the neutrino bremsstrahlung process. In the first
part, the electroweak nucleon-nucleon bremsstrahlung is calculated in free space in terms of an on-shellT
matrix using a generalized low-energy theorem. In the second part, the emissivities are calculated in terms of
the hadronic polarization at the two-loop level. Various medium effects, such as finite particle width, Pauli
blocking in theT matrix are considered. Compared to the pioneering work of Friman and Maxwell in terms of
~antisymmetrized! one-pion exchange, the resulting emissivity is about a factor 4 smaller at saturation density.
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I. INTRODUCTION

The cooling of neutron stars proceeds via the weak in
action. Since in general one-body processes are kinem
cally forbidden, the dominant reactions are assumed to be
neutral current two-particle processes

n1n→n1n1n f1 n̄ f , ~1!

n1p→n1p1n f1 n̄ f , ~2!

and the charged current ‘‘modified URCA’’ process

N1n→N1p1 n̄e1e2. ~3!

Standard cooling scenarios are mostly based upon the
neering work of Friman and Maxwell@1#. In essence, thei
approach amounts to a convolution of the soft free sp
neutrino pair emission and two-body~modified! URCA pro-
cesses~1!–~3! with a finite temperature free Fermi-ga
model using Fermi’s golden rule to obtain the emission ra
In doing so, a number of simplifying assumptions we
made; in particular~i! the two-body interaction between th
nucleons was approximated by a central Landau interac
plus a one-pion exchange to represent the tensor force~ii !
only the nonrelativistic limit was considered,~iii ! since it is
based upon the quasiparticle approximation, nonperturba
effects such as the Landau-Pomeranchuk-Migdal~LPM! ef-
fect were not taken into account,~iv! other medium effects
such as Pauli blocking in the strong interaction were
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glected. It is the aim of the present paper to investigate
possibly improve these assumptions.

In the first part we consider reactions~1! and ~2! in free
space. Using the fact that the energy release in the bre
strahlung process is very small, we apply the soft brem
strahlung formalism of Hanhartet al. @2# and Timmermans
et al. @3#. This allows one to express the bremsstrahlung p
cess in the soft limit model independently in terms of
on-shellT matrix, i.e., phase shifts. In this way we are able
judge the accuracy of past bremsstrahlung calculatio
which were mostly based upon the use of a one-pion
change ~OPE! approximation in the nonrelativistic limi
@1,4#. In the latter case simplifications occur, such as
vanishing of the vector current matrix elements.

In the second part we consider the process~1! in the me-
dium. To describe the cooling process of neutron st
through neutrino emission, the application of Fermi’s gold
rule in the quasiparticle approximation~QPA! was mostly
used in the past. To compute emissivities beyond QPA,
needs to start from quantum transport equations. The es
tial physics is then contained in the neutrino self-energ
which appear in the loss and gain terms. We will compare
diagrams at the hadron two-loop level. It appears that only
lowest order in the imaginary part of the hadronic se
energies the use of closed diagrams and the applicatio
Fermi’s golden rule coincide.

From the generalized low-energy theorem@3,2# it follows
that the use of the QPA leads to an infrared divergent am
tude, 1/v. The latter is predicted to be quenched@5# in a
medium whenever the mean free path of the nucleons
comes on the order of the formation length of the lepton p
This is also known as the LPM effect in case of electrom
netic interactions. We study the importance of this effect
including a finite single-particle width~imaginary part of the
self-energy! that depends on energy and temperature.
©2003 The American Physical Society07-1
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In practice, in calculating the collision integral one nee
to specify the appropriate diagrams and make assumpt
about hadronic interactions. In doing so, one must be car
that symmetries such as gauge invariance of the vector
rent are not violated. We also estimate the Pauli blocking
replacing theT matrix by an in-mediumG matrix. In the
work of Sedrakian and Dieperink@6#, the neutrino emissivity
was computed including the LPM effect, however, in t
OPE approximation.

Many properties of superfluid matter such as pairing
still known with large uncertainty. Therefore only non
superfluid matter will be considered. For recent papers ab
pairing, we refer to Gusakov@7# and Yakovlevet al. @8#.

Although we will apply the present formalism to neutrin
pair emission in neutral weak current processes, it is equ
valid for soft electromagnetic bremsstrahlung.

This paper is organized as follows. In Sec. II we discu
electroweak bremsstrahlung in free space; in Sec. III the
medium process is discussed at the two-loop level. In S
IV, results are presented showing the effects of various
proximations. In the Appendixes a summary of quant
transport theory and finite temperature Green’s functions
presented.

II. ELECTROWEAK BREMSSTRAHLUNG
IN FREE SPACE

A. Soft electroweak bremsstrahlung amplitude

Thenn̄ pair emission in a neutron star is characterized
a very small energy transfer~on the order of the temperatur
T.1 MeV), much smaller than any other scale in the p
cess likemp or pF . Therefore it is natural to consider th
NN→NNnn̄ process in the ultrasoft limit. For simplicity an
also to be consistent with the low density limit of the m
dium, we will first consider this process in free space.

Here the treatment of softNN electroweak bremsstrah
lung, discussed in more detail in Ref.@3#, is summarized.
Analogous to the electromagnetic bremsstrahlung~see the
work of Low, Ref. @9#!, the first two terms of the expansio
in powers of the energy-momentum transferuqW u,v of the
electroweak bremsstrahlung amplitude are determined by
amplitude for the corresponding nonradiative processM
5A/v1B1O(v). In the ultrasoft regime (v/p!1, wherep
is the nucleon momentum!, theB and higher order terms ca
be neglected. The amplitude of the diagrams in Fig. 1 w
radiation from external legs only is given@2,3# by

M n
ext,a5T1S~p12q!Gn

a1Gn
aS~p181q!T181$1↔2%. ~4!

TheA term in the Low expansion is obtained by consideri
the limit uqW u,v→0 of vM n

ext,a ; to this end we expand th
variousT’s with one nucleon off its mass shell,

T15^p18 ,p28uTup12q,p2&,

T185^p181q,p28uTup1 ,p2&, ~5!

around the on-shell pointT0 ,
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T15T02q•
]

]p1
T01•••,

T185T01q•
]

]p18
T01•••, ~6!

and the nucleon propagatorS as

S~p6q!5
L1~p!1L2~p!

p”6q”2m
'6

2mL1~p!

2p•q
1O~1! ~7!

with L6(p)5(6p”1m)/2m.
The hadronic weak interaction vertex in the limitq→0 is

given by

Gn
a5

GF

A2
gn~cV2cAg5!

ta

2
, ~8!

where GF is the Fermi weak coupling constant andt is
the isospin operator. The vector and axial-vector coupl
constants for neutrons arecV

n521, cA
n52gA521.26, and

for protons,cV
p5124sin2QW ' 0.08, cA

p5gA51.26.
Since the initial/final particles are on mass shell, one

the relations (p”1m)gnu(p)52pnu(p) and ū(p)gn(p”1m)
52pnū(p), which are useful for the vector current. As
result, in the ultrasoft region (q/p!1) the vector and axial-
vector current matrix elements are given by

M n
V,a5

GFcV

2A2
S 2T0

p1n

p1•q
ta1ta

p1n8

p18•q
T0D 1$1↔2%

~9!

and

M n
A,a5

2mGFcA

2A2
S 2T0

L1~p1!

2p1•q
gng5ta

1gng5ta
L1~p18!

2p18•q
T0D 1$1↔2%, ~10!
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FIG. 1. Diagrams for neutrino pair bremsstrahlung of order 1v
with radiation from external legs.
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respectively. Naturally, the vector current is conserv
qnM n

V,a50.

B. Structure of the elasticNN scattering amplitude

It is clear that the amplitudes in Eqs.~9! and~10! depend
on the Lorentz structure ofT0 . For the elasticNN scattering
amplitude @10,11# for the processN(p1)1N(p2)→N(p18)
1N(p28), the covariant form of the on-shellT matrix can be
expressed as

T5Tdir1Texch

5 (
I 50,1

(
a51

5

Fa
(I )~s,t,u!@ ū~p28!Vau~p2!ū~p18!Vau~p1!

1~2 !aū~p18!Vau~p2!ū~p28!Vau~p1!#BI , ~11!

where the five Fermi covariants are

Va5~V1 ,V2 ,V3 ,V4 ,V5!5~1,smn /A2,g5gn ,gn ,g5!.
~12!

The projection operators on isosinglet and isotriplet sta
are

B05~12tW1•tW2!/4,

B15~31tW1•tW2!/4, ~13!

respectively.Fa
(I )(s,t,u) are the invariant functions of th

Mandelstam variabless52(p11p2)2, t52(p182p1)2, and

u52(p282p1)2. For thennnn̄ andnpnn̄ processes the isos
pin combinations needed are

Fa
(nn)~s,t,u!5Fa

(pp)~s,t,u!5Fa
(1)~s,t,u!,

Fa
(np)5@Fa

(1)~s,t,u!1Fa
(0)~s,t,u!#/2, ~14!

for a51,...,5. For later use, it is convenient to put t
spinors in the exchange term in the ‘‘normal order’’ by intr
ducing the functions

Ta
(I )~s,t,u!5Fa

(I )~s,t,u!1 (
b51

5

~21!bCabFb
I ~s,t,u!,

~15!

whereCab are elements of the Fierz transformation, the e
plicit form is given@10,11#. Then Eq.~11! can be rewritten as

T5 (
I 50,1

(
a51

5

Ta
(I )~s,t,u!ū~p28!Vau~p2!ū~p18!Vau~p1!BI .

~16!

Since for a comparison we will need the cross section in
nonrelativistic limit, we also give the required nonrelativis
decomposition ofT ~we will reserve latin indices for the
nonrelativisticT matrix!,
06580
:
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T5 (
v51

5

Tv~s,t,u!Ov , ~17!

where

Tv[~T1 ,T2 ,T3 ,T4 ,T5![~TC ,TQ ,TT1 ,TT2 ,TSO!, ~18!

and the five independent two-body operators

Ov[~1,sW 1•nW sW 2•nW ,sW 1•kWsW 2•kW ,sW 1•kW8sW 2•kW8,sW 1•nW 1sW 2•nW !,
~19!

with k̂5(pW 182pW 1)/upW 182pW 1u, k̂85(pW 181pW 1)/upW 181pW 1u, and n̂

5(kW83kW )/ukW83kW u in the center of mass~c.m.! system. The
termsTC , TQ , TT1 , andTSO correspond to the central, qua
dratic spin-orbit, tensor, and spin-orbit force, respective
TT2 stands for a second type tensor force~obtained by re-
placingk by k8!.

C. The nnnn̄ process

We first treat then1n→n1n1n1 n̄ process. The vecto
current amplitude follows from Eq.~9!,

M n
V5

GFcV
n

2A2
S 2

p1n

p1•q
1

p1n8

p18•q
2

p2n

p2•q
1

p2n8

p28•q
D

3 (
a51

5

Fa
(nn)@ ū~p28!Vau~p2!ū~p18!Vau~p1!

1~2 !a$p28↔p18%#. ~20!

The axial-vector current amplitude follows from Eq.~10!,

M n
A5

2mGFgA

2A2
(
a51

5

Fa
(nn)F ū~p28!Vau~p2!ū~p18!

3S 2Va

L1~p1!

2p1•q
gng51gng5

L1~p1!

2p18•q
VaD u~p1!

1~2 !aū~p18!Vau~p2!ū~p28!S 2Va

L1~p1!

2p1•q
gng5

1gng5

L1~p28!

2p28•q
VaD u~p1!G1~1↔2!. ~21!

For later use we also give the nonrelativistic limit and t
first relativistic correction for thennnn̄ process by expand
ing the propagator in terms ofupW u/m,

1

pq
5

1

mv F11
pW •qW

mv
1OS upW u2

m2 D G . ~22!

Application to the vector current amplitude yields

M n
V5M n

V,NR1DM n
V1O~ upW u3/m3!, ~23!
7-3
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where the nonrelativistic amplitudesM n
V,NR vanish and the

leading corrections are given by

DMW V5
GFcV

n

2A2v2m2
@pW 1~pW 1•qW !2pW 18~pW 18•qW !1$1↔2%#Tnn,

~24!

DM0
V5

qW •DMW V

v
, ~25!

with Tnn the nonrelativistic reduction of theI 51 part of the
T matrix in Eq. ~11!. The vanishing of the nonrelativisti
vector amplitude generalizes the result of Friman and M
well @1#, where this cancellation was observed for Landa
type interaction and OPE, to the completenn Tmatrix. This
result is, in fact, analogous to the absence of electric-dip
radiation in photon bremsstrahlung processes when the
ter of mass coincides with the center of charge of the rad
ing system, e.g., inpp bremsstrahlung.

For the axial-vector current amplitude, one obtains

M n
A5M n

A,NR1DM n
A1O~ upW u2/m2!, ~26!

where the nonrelativistic amplitudes are given by

MW A,NR5
GFgA

2A2v
@Tnn,SW #; M0

A,NR50, ~27!

and the leading relativistic corrections are

DMW A5
GFgA

2A2mv2
@TnnsW 1~pW 1•qW !2sW 1Tnn~pW 18•qW !1$1↔2%#,

~28!

DM0
A5

GFgA

2A2mv
@Tnn~sW 1•pW 1!2~sW 1•pW 18!Tnn1$1↔2%#,

~29!

with SW 5sW11sW2 the total spin of thenn system. Equation
~27! has also been derived by Hanhartet al. @2# and Timmer-
manset al. @3#. One sees from Eq.~27! that in the nonrela-
tivistic limit there is no contribution from the central inte
action TC , but the axial-vector current amplitude receiv
contributions from all other terms.

Theppnn̄ process can be treated analogously to thennnn̄
process. The only differences are the coupling strength to
neutral weak current and the Coulomb corrections in the
efficientsFa

(1) of the T matrix.

D. The npnn̄ process

In the n1p→n1p1n1 n̄ process the momenta will b
denoted byn andn8 (p andp8), for the neutron~proton! in
the initial and final states, respectively. In the ultrasoft reg
(v/p!1) the vector current amplitude follows from Eq.~9!,
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M n
V5

GF

2A2
F cV

nS 2
nn

n•q
1

nn8

n8•q
D 1cV

pS 2
pn

p•q
1

pn8

p8•q
D G

3 (
a51

5

Fa
(np)@ ū~p8!Vau~p!ū~n8!Vau~n!

1~2 !a$p8↔n8%#, ~30!

and the axial-vector current amplitude from Eq.~10!,

M n
A5M n

A,dir1M n
A,exch

52
2mGFgA

2A2
H (

a51

5

Fa
(np)F ū~p8!Vau~p!ū~n8!

3S Va

L1~n!

2n•q
gng52gng5

L1~n8!

2n8•q
VaD u~n!

2$~n,n8!↔~p,p8!%G1~2 !aFa
~np!

3F ū~n8!Vau~p!ū~p8!S Va

L1~n!

2n•q
gng5

1gng5

L1~p8!

2p8•q
VaD u~n!2$~n,n8!↔~p,p8!%G J .

~31!

The exchange terms of the axial-vector current matrix e
ment are included explicitly in Eq.~31!. The direct part is
analogous to the expression in Eq.~21! for thennnn̄ process.
The only difference is the appearance of a minus sign in
term, where the neutron and proton momenta are in
changed. This is a consequence of the sign difference of
axial-vector coupling constants for neutrons and protons

The different structure of the exchange part~as compared
to the nnnn̄ process! comes from the sign difference be
tweencA

(p) andcA
(n) .

Expressions~30! and ~31! simplify considerably, if one
takes the nonrelativistic limit. Using Eq.~22! one obtains for
the vector current amplitude from Eq.~30!,

MW V52
GF

A2

cV
n2cV

p

2v

kW

m
Tnp, M0

V5S qW

v
D •MW V, ~32!

and for the axial-vector amplitude from Eq.~31!,

MW A5
GFgA

2A2v
~@Tnp,dir ,DW #1Ps$Tnp,exch,DW %!, M0

A50,

~33!

wherekW5nW 82nW 5pW 2pW 8, DW 5(sW 12sW 2), the spin exchange
operator isPs5(11sW 1•sW 2)/2, $ . . . , . . .% denotes the an-
ticommutator, andTnp,dir andTnp,exch are given by the non-
relativistic reduction of the direct and exchange parts of
np T matrix.
7-4
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FIG. 2. Cross sectionds/dv for n1n→n

1n1n1 n̄ as a function of neutron momentum
in the c.m. system, forv51 MeV, and summed
over neutrino flavors. Shown are the result for t
OPE ~long-dashed curve! and the full T matrix
~full curve!; in addition, the separate contribu
tions of theT matrix, i.e.,TT11TT2 ~short-dashed
curve!, TSO ~dotted curve!, and TQ ~dashed
double-dotted curve! are shown.
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Note that in orderk/m'p/m in the np case there is a
nonvanishing contribution for the vector current amplitud
This is analogous to the case of photon bremsstrahlun
NN scattering, where electric-dipole radiation is domina
for thenp case. The commutator in Eq.~33! receives contri-
butions from tensorTT1 and TT2 , quadratic spin-orbitTQ
and spin-orbitTSO components of the direct part of thenp T
matrix. The anticommutator also receives a centralTC con-
tribution in addition toTT1 , TT2 , TQ , andTSO contributions
from the exchange part of thenp T matrix.

E. Comparison with one-boson exchange„OBE…

In this section we will calculate the neutrino emissi
cross section in free space. The expression for the cross
tion in the c.m. system is

ds

dv
5

Nf

4

m3AupW u22vE1v2/4

6~2p!7~E2v/2!upW u
E dV p̃d3q~MlqlM r* qr

2q2MlMl* !, ~34!

which is also given in Timmermanset al. @3# with the num-
ber of neutrino flavorsNf53. Neutrino pair bremsstrahlun
has been calculated mostly, in Born approximation, with
two-nucleonNN interaction consisting of a long range OP
and a phenomenological Landau interaction as shown by
man and Maxwell@1#. However, the use of lowest order OP
represents a severe approximation. First, it is known
there is a substantial cancellation between the tensor co
butions fromr and pion exchange. Second, it is questiona
whether other~momentum dependent! interactions such as
the spin-orbit interactionTSO may be ignored. Hanhartet al.
@2# found that the use of the fullT matrix leads to a reduction
by a factor 4 compared to OPE fornn bremsstrahlung
around saturation density. Our results fornn andnp brems-
strahlung is a generalization of Friman and Maxwell’s
sults: The amplitude is computed in terms of the~model
independent! on-shell T matrix instead of the Landau plu
06580
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one-pion exchange interaction in the nonrelativistic lim
The nn phase shifts are, for simplicity, assumed to be eq
to thepp phase shifts, which are taken from Ref.@12#.

In Fig. 2 the contribution of the various terms of theT
matrix, TT11TT2 , TSO, andTQ , to the cross section in the
nonrelativistic limit are shown separately fornn bremsstrah-
lung in free space. The contributions of the quadratic sp
orbit ~the TQ term! and the tensor~the TT1 and TT2 terms!
forces to the cross section cancel at low momenta. The te
forces~the TT1 andTT2 terms! dominate over the spin-orbi
~the TSO term! and quadratic spin-orbit~the TQ term! for
momenta between 200 MeV/c and 300 MeV/c. From Fig. 2
one may conclude that at larger neutron momentum in
c.m. system, the spin-orbit force~theTSO term! also becomes
important.

Several results for the OBE contributions are shown
Fig. 3 for comparison.1 In the OBE potential contributions
considered in this section, the meson-nucleon form fac
are not included. They can be neglected because of the
tively small momentum transfer,ukW u,2upW u involved. The
OPE result overpredicts the fullT-matrix result. At a neutron
momentum ofp'300 MeV/c in the c.m. system, the use o
the full T matrix leads to a reduction by a factor of 4–
Including the tensor part of the oner exchange~ORE! to the
OPE result is a much better idea. The cancellation of
tensor from OPE at short distance by the tensor from OR
which has an opposite sign, leads to a result much close
that obtained with the fullT matrix. The result for OPE with-
out the exchange contribution, which is used in most ‘‘sta
dard cooling scenarios,’’ is smaller than that for the full OP
but has a different behavior than the result obtained with
full T matrix. From a neutron momentum of 250 MeV/c in
c.m. system, the difference with the result of the fullT matrix
increases. The contribution from ones exchange, which
gives rise to a spin-orbit force, is also shown to give
estimate of the effect of the other mesons. The effect of ths
is quite small.

1Numerical values are taken from the OBE model Nijm93@13#.
7-5
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FIG. 3. Cross sectionds/dv for n1n→n

1n1n1 n̄ as a function of neutron momentum
in the c.m. system, forv51 MeV, and summed
over neutrino flavors. Shown are the results f
the OPE~long-dashed curve!, one pion1tensor
part ofr exchange~OPtRE! ~short-dashed curve!,
one pion 1r1s exchange~OPRSE! ~dotted
curve!, OPE without the ‘‘exchange’’ contribution
~dashed double-dotted curve!, and the fullT ma-
trix ~full curve!.
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The calculations in Figs. 2 and 3 are done in the non
ativistic limit. Therefore it is important to check, whether th
relativistic corrections are small. We can estimate the imp
tance of the relativistic effects for OPE as well as for t
on-shellT matrix taken as theNN interaction.

In Fig. 4 the relative relativistic correctionR, in which the
magnitude of the relativistic effects are compared to the n
relativistic cross section, with OPE taken asNN-interaction,
is shown. For thennnn̄ and thenpnn̄ processes the nonre
ativistic contribution comes from the axial-vector curre
The relative relativistic correctionR for the nnnn̄ process
remains below 15%, and for thenpnn̄ process it remains
even below 5%. Also in Fig. 4,R is shown for thennnn̄
process using theT matrix for theNN interaction instead of
OPE. The only contributions surviving the nonrelativis
commutator in Eq.~27! come from theTT1 , TT2 , TQ , and
TSO parts of theT matrix. The relative relativistic correction
06580
l-

r-

-

.

R for the T matrix remains below 10%. Due to the chos
representation, the spin-spin force is hidden inTT1 , TT2 , and
TQ . Some components of the on-shellT matrix have a non-
relativistic character~scalar, spin-spin!, while others do not
~tensor, spin orbit, quadratic spin orbit!. In elastic scattering,
scalar and spin-spin forces dominate especially at low m
menta. In thennnn̄ process these forces vanish in the no
relativistic limit of the bremsstrahlung amplitude, becau
they do not survive the commutator. They still have a no
vanishing relativistic term in the bremsstrahlung amplitud
which explains the increasing importance of the relativis
corrections in the bremsstrahlung amplitude at very low m
menta.

III. NEUTRINO EMISSIVITY IN MEDIUM

In this section we consider neutrino bremsstrahlung i
dense hadronic medium at finite temperature. In the simp
-

ed
p (MeV c-1)

100 200 300 400

R

0.00

0.05

0.10

0.15

nn T-matrix
nn OPE
np OPE

FIG. 4. R5usNR2sRu/sNR , with sNR the
nonrelativistic cross section andsR the cross sec-
tion, in which also the first-order relativistic cor
rections are included. Taking the OPE as theNN
interaction, thenn andnp bremsstrahlung ratios
R are given by the dotted curve and the dash
curve, respectively. Also, thenn bremsstrahlung
ratio R is shown using theT matrix for theNN
interaction.
7-6
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NEUTRINO EMISSION IN NEUTRON STARS PHYSICAL REVIEW C67, 065807 ~2003!
approach one can use the so-called convolution approx
tion ~followed by Friman and Maxwell@1#! in which the free
space bremsstrahlung process is folded with Fermi-D
single-particle wave functions and the emission rate is
tained with the use of Fermi’s golden rule. This approach
not applicable in more general cases, e.g., if one takes
account dressed propagators. To go beyond the convolu
approach, the more general framework of quantum trans
theory @14–16# is needed. The latter formalism and the a
plication of the finite temperature Green’s functions is su
marized in the Appendixes.

A. The emissivity in quantum transport

To compute the emissivity it is convenient to start fro
the Boltzmann equation~BE! for neutrinos~and antineutri-
nos!, which schematically takes the form~see Appendix A!

@] t1]Wqv~qW !]W x# f n~qW ,x![I n
21~qW ,x!2I n

12~qW ,x!, ~35!

where f n(qW ,x) is the single-time distribution function
~Wigner function! of the neutrino withqW the momentum and
x being the space-time coordinate. The right hand side~rhs!
of Eq. ~35! corresponds to the gain and loss collision integ
~Appendixes A and B!. A similar equation holds for the an
tineutrinos. For a homogeneous system in Wigner repre
tation, the distribution functions become space independ
Furthermore, the time dependence of the collision integ
can be neglected. Therefore we drop thex argument at the
rhs of Eq.~35!. The use of the BE provides a general fo
malism for neutrino and antineutrino emission, absorpti
and scattering. The collision integralsI 21 and I 12 are di-
rectly related to the neutrino self-energiesF21 and F12

@Eq. ~B2!#, which in turn are expressed in terms of the ha
ronic polarizationSmn

21,12(q) and the leptonic couplings an
propagators@Eq. ~B1!#. The former are closely related t
retarded polarization or the current-current correlation fu
tions,

Smn
21~q!5Smn

12~2q!

52igB~v!Im Pmn
R ~q!

54p i E d4j exp~ iqj!^Jm
† ~0!Jn~j!&, ~36!

with the retarded polarization functionPR(q). The general
polarization receives contributions from vector, axial-vect
and interference terms,

Pmn~q!5cV
2Pmn

V ~q!1cA
2Pmn

A ~q!1cAcVPmn
VA~q!, ~37!

where Pmn
V (q), Pmn

A (q), and Pmn
VA(q) are the vector, the

axial-vector, and the mixed parts. In general, one has f
independent componentsP00

V (q), P22
V (q), PA(q), and

PVA(q) @17#. The lepton couplings and propagators gi
the leptonic tensor Lmn58@q1

mq2
n1q1

nq2
m2(q1•q2)gm,n

2 i eabmnq1,bq2,a#.
In the present case of emission we take the neutrinos t

free. The emissivity~the power of the energy radiated p
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volume unit! is obtained by multiplying the energy with th
left hand side~lhs! of BE ~see Appendixes! for neutrinos and
antineutrinos, respectively, summing the neutrino and
tineutrino expression and integrating over a phase space
ement:

enn̄5
d

dtE d3q

~2p!3
@ f n~qW ,t !1 f n̄~qW ,t !#v~qW !. ~38!

From Eq.~35! follows

enn̄5E d3q

~2p!3
@ I n

21,em~qW !2I n̄
12,em

~qW !#v~qW !, ~39!

where I n
21,em(qW ) and I n̄

12,em(qW ) are the terms of the colli-
sion integrals, which correspond to the neutrino emiss
process.

To obtain the emissivity, the leptonic tensor has to
contracted with the structure function

enn̄522(
f
E d3q2

~2p!32v~qW 2!
E d3q1

~2p!32v~qW 1!

3E d4q

~2p!4
~2p!4d3~qW 11qW 22qW !

3d@v~qW 1!1v~qW 2!2v#@v~qW 1!1v~qW 2!#

3gB~v!Lmn~q1 ,q2!Im Pmn
R ~q!. ~40!

The number of neutrino flavors is included by the summat
over f. For neutrino pair bremsstrahlung, it is more conv
nient to use in the leptonic tensorq5q11q2 instead ofq1
andq2 . Using Lorentz covariance, we can write

Lmn~q!5E d3q1

v1

d3q2

v2
d4~q2q12q2!Lmn~q1 ,q2!

5
8

3
~qmqn2q2gmn!E d3q1

v1

d3q2

v2
d4~q2q12q2!

5
16p

3
~qmqn2q2gmn!. ~41!

This simplifies the expression of the emissivity,

enn̄5
1

4~2p!6 (
f
E d4qvW~q!, ~42!

with W(q)522gB(v)Lmn(q)Im Pmn
R (q).

B. Hadronic polarization

Which type of correlation diagrams are dominant in t
neutrino-hadron interaction processes depends stro
on the kinematics. In particular, in the spacelike regi
(uqW u.v; scattering!, the one-loop QPA diagram and its ran
dom phase approximation type iteration dominate; in c
7-7
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trast, in the timelike regime (v.uqW u), the QPA process is
kinematically forbidden and two-body~and many-body! col-
lisions are required as was already clear from the discus
of the free space case.

For practical calculations of the polarization one has
make a choice between the use of dressed Green’s func
and the use of quasiparticle Green’s functions. On the
hand the use of QPA in the soft limit ofv→0 leads to the
property that ImPR behaves as 1/v2 in all orders, i.e., an
infrared divergence~this behavior is correct only for the fre
case, where the external legs are on-shell ones!. Hence one
expects that in the soft limit nonperturbative effects play
role ~see the LPM effect given below!. On the other hand, a
pointed out in Ref.@5#, in using dressed propagators spec
care has to be taken to avoid double counting; i.e., one ha
restrict oneself to the so-called proper ‘‘skeleton diagram
~An example is the two-loop self-energy insertion in F
6~a!, which is already effectively included in the one-loo
diagram with full Green’s functions.! Another problem con-
nected with the use of dressed Green’s functions and
vertices is the conservation of the vector current.

In general, an expansion in terms of QPA diagrams
simpler ~than in terms of full Green’s functions! since there
are no such spurious diagrams, and also current conserv
is satisfied at each loop level. Below we will show that in t
special case of an imaginary part of the self-energy~width!,
there exists a 1-1 correspondence between the QPA
dressed Green’s function diagram expansion, i.e., the pr
full diagrams can be expressed as multiplicative correc
factor v2/(v21G2) to the QPA result. This result allows u
to use the QPA and include the finite width at the end.

At low temperatures the leading diagrams are those wh
contain a minimum number of off-diagonalG12 andG21.
In the closed diagrams the12 and21 lines are cut. In the
QPA limit this gives back the original Feynman graphs. T
‘‘ 1 ’’ part is the Feynman amplitude and the ‘‘2 ’’ part be-
longs to the conjugated Feynman amplitude.

1. One loop in QPA

For completeness, we give the one-loop~Fig. 5! polariza-
tion function in the QPA limit,

+

-

FIG. 5. One-loop contribution toSmn
12 .
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iSmn
21~q!5E d4p

~2p!4

d4p8

~2p!4
Tr@GmG0

21~p!GnG0
12~p8!#

3~2p!4d4~q1p82p!, ~43!

whereGm5(GF/2A2)gm(cV2cAg5).
In the nonrelativistic QPA limit, Eq.~43! can be factorized

in terms of a hadronic loop and couplingsXmn ,

iSmn
21~q!522gB~v!E d3p

~2p!3

d3p8

~2p!3
@ f ~epW !2 f ~epW 8!#

3~2p!4d4~q1p82p!Xmn

[2gB~v!XmnI 0~q!, ~44!

with

Xmn5
GF

2

2 H cV
2 , m5n50

cA
2 , m5n51,2,3.

~45!

After integration,I 0(q)5(m* 2/2pbq)L(q), with @17#

L~q!5 ln~„11exp$2b@e2~q!2m#%…/

„11exp$2b@e1~q!2m#%…!, ~46!

where e6(q)5(v21eqW
2)/4eqW6v/2, with eqW5qW 2/(2m* ).

One sees that in the one-loop approximation in the Q
only the spacelike contribution (v.uqW u) does not vanish.

2. Two loops in QPA

In Fig. 6 the three different types of ‘‘closed diagrams’’
the two-loop level are shown. These diagrams can be con
ered as~lowest order! propagator, vertex, and interactio
renormalization of the one loop in QPA, respectively. W
begin considering the simple case ofnn neutrino pair brems-
strahlung with the on-shellT matrix in Eq.~11!. Figure 6~a!
contains terms with the acausal propagatorG11 and the
causal propagatorG22 with the same arguments, which ca
be pi2q or pi81q, whereas Fig. 6~b! contains terms with a
G11 andG22 with different arguments~opposite signs for
d
s

T

T

-

+

-

+

-

+
a

T

T

-

+

-

+

-

+

b

T

T

-

+

-

+

-

+
c

FIG. 6. The three different types of ‘‘close
diagrams’’ at the two-loop level. These diagram
can be considered as~a! ~lowest order! propaga-
tor, ~b! vertex, and~c! interaction renormalization
of the QPA.
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i @Smn
21,(a)~q!1Smn

21,(b)~q!#

5 (
a51

5

(
b51

5 E F)
i 51

2
d4pi

~2p!4

d4pi8

~2p!4G
3

d4k

~2p!4
Ta

1Tb
1* ~Tr@Vb

22G0
21~p2!Va

11G0
12~p28!#

3Tr@Da,m,1
22 G0

21~p1!Da,n,1
11 G0

12~p18!#

1$1↔2%!~2p!8d4~k1p282p2!d4~q1p182k2p1!,

~47!

with Da,m,i
11 5Va

11G0
11(pi2q)Gm1GmG0

11(pi81q)Va
11 ,

D225(D11)* , and Gm5(GF/2A2)gm(cV2cAg5). The
definition of V11 is given in Eq.~12! and V22 follows
from the relationV225g0V11g0 . Thus in the nonrelativ-
istic limit, Figs. 6~a! and 6~b! have opposite signs61/v.
One obtains for Fig. 6~c!,

iSmn
21,(c)5E (

a51

5

(
b51

5 F)
i 51

2
d4pi

~2p!4

d4pi8

~2p!4G d4k

~2p!4

3Ta
1Tb

1* ~Tr@Da,n,2
22 G0

21~p2!Va
11G0

12~p28!#

3Tr@V22,bG0
21~p1!Da,n,1

11 G0
12~p18!#1$1↔2%!

3~2p!8d4~k1p282p2!d4~q1p182k2p1!. ~48!

Note that only the21 and12 lines are cut in the diagram
of Fig. 6, since cutting theT matrix would lead to double
counting.

The above expressions become simpler if the Q
Green’s functions are used@see Eqs.~C7!–~C9!#,

iSmn
21~q!5 (

a51

5

(
b51

5 E d4k

~2p!4 F)i 51

2
d3pi

~2p!3

d3pi8

~2p!3

3 f ~Ẽi !@12 f ~Ẽi8!#G ~2p!8d4~k1p282p2!

3d4~q1p182k2p1!Xmn , ~49!

where X contains all operators andf (Ẽi)5$exp@b(Ẽi2m)#
11%21 with Ẽ the relativistic energy andm the relativistic
chemical potential. In particular, for Figs. 6~a! and 6~b!, we
obtain

Xmn
(a)1Xmn

(b)5 (
a51

5

(
b51

5

Ta
1Tb

1* ~Tr@V11,aL1~p2* !V22,b

3L1~p82* !#Tr@Da,m,1
11 L1~p1* !Db,n,1

22 L1~p81* !#

1$1↔2%!, ~50!

and for Fig. 6~c!, we obtain
06580
A

Xmn
(c)5 (

a51

5

(
b51

5

Ta
1Tb

1* ~Tr@Dm,2
11,aL1~p2* !V22,bL1~p82* !#

3Tr@Va
11L1~p1* !Db,n,1

22 L1~p81* !#1$1↔2%!. ~51!

One verifies that the sum of all two-loop diagrams conser
the vector current, i.e.,qmSmn

21(q)50. First, Fig. 6~c! is cur-
rent conserving on its own. That the sum of Figs. 6~a! and
6~b! is current conserving can easily be deduced from
~20! by noting thatqm@pm /(pi•q)2pim8 /(pi8•q)#)50. In the
following, the hadronic part of interaction matrixXmn is
evaluated in the nonrelativistic limit for the casesA,V,VA,
separately.

C. The nonrelativistic limit

Although in principleX can be evaluated relativistically
we will use the simpler nonrelativistic formalism. First w
consider the vector currentXmn

V . Expanding the Green’s
functions G11 and G22 ~see Appendix C! in powers of
(pW •qW )/(m* v) leads to

Xmn
(a),V1Xmn

(b),V1Xmn
(c),V5

cV
2GF

2

8
VmVnuTnnu21O~ upW u3/m* 3!,

~52!

where

Vm5
1

m* v
F2p1mS 11

pW 1•qW

m* v
D 1p1m8 S 11

pW 81•qW

m* v
D

1$1↔2%G ~53!

and

uTnnu254~ uTCu21uTQu21uTT1u21uTT2u212uTSOu2!.
~54!

We see that in leading order in the nonrelativistic limit, wi
G11(p6q)Gm→6pm /(m* v), the vector contributions
cancel due top1m8 1p2m2p1m8 2p2m8 '0, while the separate
diagrams do not vanish.

For the axial-vector current to obtain the nonrelativis
limit we expand theG22 andG11 functions in powers of
(pW •qW )/(m* v), and replace the couplingGm

A→sW •pW /
m* dm,01s idm,i . For Figs. 6~a! and 6~b!, the hadronic part
of the interaction matrix is

X00
(a),A1X00

(b),A'O~ upW u2/m* 2!, ~55!
7-9
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Xi j
(a),A1Xi j

(b),A5
cA

2GF
2

8v2 (
v52

5

8uT vu2FTr@~sW 13 lWv! i~sW 13 lWv! j #

3S 11
~pW 11pW 18!•qW

m* v
1O~ upW u2/m* 2!D

1$1↔2%G ~56!

and

X0 j
(a),A1X0 j

(b),A5
cA

2GF
2

8v2 (
v52

5

8uT vu2~Tr@~sW 13 lWv! j

3~sW 13 lWv!•~pW 11pW 81!#1O~ upW u2/m* 2!

1$1↔2%! ~57!

with

lWv5~ lW1 , lW2 , lW3 , lW4 , lW5!5~nW ,nW ,kW ,kW8,nW !. ~58!

Hence in leading order in the nonrelativistic limit there is
contribution to the axial-vector current~the contribution
from the central interactions to the axial-vector current v
ishes, since they commute with the weak spin operator!. For
Fig. 6~c!, one has

X00
(c),A'O~ upW u2/m* 2!, ~59!

Xi j
(c),A5

cA
2GF

2

8v2 (
v52

4

(
u52

4

16~T v
1T u

1* 1T u
1T v

1* !

3~ lWv3 lWu! i~ lWu3 lWv! j S 11
~pW 11pW 811pW 21pW 82!.qW

m* v

1O~ upW u2/m* 2!D , ~60!

X0 j
(c),A5

cA
2GF

2

8v2 (
v52

4

(
u52

4

16~T v
1T u

1* 1T u
1T v

1* !

3~ lWv3 lWu! j$ lWv•@~pW 11pW 21pW 811pW 82!3 lWu#%

1O~ upW u2/m* 2!, ~61!

with i 5 j 51,2,3. The definitions forT are given in Eq.~18!.
As for the mixedVA contribution in the nonrelativistic

limit, the traces vanish, and hence

X(a),VA1X(b),VA1X(c),VA'O~p2/m* 2!. ~62!

Therefore, we obtain the~well-known! result @1# that in
leading order in the nonrelativistic limit there is only a no
vanishing contribution from the axial-vector current. In fr
space, Fig. 4 shows that at momenta relevant at nuclear
ter densities thep/m corrections to neutrino pair emissio
06580
-

at-

are only of the order of 10%. Therefore, one may conclu
that the leading order nonrelativistic result with only th
axial-vector current constitutes a good approximation. C
tracting the polarization functionSmn

21(q) with the leptonic
tensorLmn(q)5(16p/3)(qmql2q2gml) yields

W~q!5 iTr@Lmn~q!„Smn
21,(a)~q!1Smn

21,(b)~q!1Smn
21,(c)~q!…#

5
2pgA

2GF
2

3v2 E )
i 51

2 F d3pi

~2p!3

d3pi8

~2p!3
f ~Ei !@12 f ~Ei !#G

3uM u2d4~q1p181p282p12p2!, ~63!

where

uM u2532(
v52

5

uT v
1u2@~2v22uqW u2!u lWvu22~qW • lWv!2#

116(
v52

4

(
u52

4

~T v
1T u

1* 1T v
1* T u

1!@„~ lWv3 lWu!•qW …2

1~ lWv3 lWu!2~v22uqW u2!#. ~64!

D. The LPM effect

The free spaceNN neutrino-pair bremsstrahlung proce
exhibits an infrared 1/v divergence~see Sec. II C!. The QPA
result in Eq.~63! also shows an infrared divergence, rem
niscent of the free space bremsstrahlung. It is well kno
that the singularity in the electromagnetic bremsstrahlu
process is suppressed in a medium, the Land
Pomeranchuk-Migdal~LPM! effect, whenever the mean fre
path of the emitting particle becomes comparable to the p
ton formation length,v2vW •qW . The former is characterized
by the imaginary part of the self-energy,G, of the emitting
particle, while the photon formation length can be appro
mated in the nonrelativistic limit by the formation energy,v.
Therefore, the LPM effect is expected to become effect
wheneverv'G.

The LPM effect has been discussed recently in vario
contexts. For instance, for photon emission in a quark glu
plasma by Aurencheet al. @18# and Cleymanset al. @19# in
terms of thermal field theory. Analogously, one expects si
lar effects in the electroweak case~as noted by Raffelt@20#
for neutrino pair and axion production in supernovas a
neutron stars!.

Here we estimate the LPM effect on the response func
S and the emissivity as a function of the temperature a
density by using the dressed propagators forG21, G12,
andG22 in Eqs.~C11!–~C13!. Note that in a fully dressed
Green’s function formalism the diagram of Fig. 6~a! is not a
proper skeleton diagram and its contribution is already
cluded in the fully dressed one-loop diagram. In this case
appropriate irreducible diagrams to be considered are g
by the dressed one loop, the corresponding two-loop ve
correction ~these together conserve already the vector c
rent! and the two-loop interaction normalization. We eval
ate these in the limit ofG52 ImS,ReS. Following Ref.
@5# we note that in the limitG5const andq→0, it is possible
7-10
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NEUTRINO EMISSION IN NEUTRON STARS PHYSICAL REVIEW C67, 065807 ~2003!
to write the fully dressed diagrams in terms of the low
nonvanishing order in the QPA in the low temperature lim
A remark has to be made about the one-loop result,

iS21~q!'
m* pFv

p2

G

v21G2
. ~65!

We note that it is possible to relate the one-loop result to
lowest nonvanishing order in the QPA, if the quasiparti
width G in the numerator is represented by the one-loop Q
self-energy

~66!

In the low temperature limit one can make the approxim
tions f (Ep81v)'0 and f (Ep2v)'1, which lead to

~67!

~68!

~69!

whereC(a)(v)5C(b)(v)5C(c)(v)5v2/(v21G2).
We note that with the presentC(b)

†which differs from the
result given in Ref.@5#, namely,C(b)5@v2(v22G2)#/(v2

1G2)2
‡ the conserved vector current relation holds, beca

the vector current is conserved in the QPA limit.
If only the dressed off-shell propagatorsG11 and G22

are kept whileG12 is replaced byG0
12 , we find a different

result for the damping,C̃5v2/(v21G2/4). From this we
conclude that the dressing of allG’s should be considered o
equal footing. In some previous works~e.g., Raffelt and
Seckel@20#!, the quasiparticle width has been included
rectly ~in a ratherad hoc fashion! in the cross section by
replacing 1/v2 by a modified one, 1/(v21a2G2), wherea is
taken to be unity. In this caseG is purely a parameter with no
microscopic origin; in reality,G depends on momentum
density, and temperature.

E. Modification of the T matrix in the medium

Above, we have considered theT matrix in free space. In
the past, the possible medium modification of theT matrix
has been addressed only in a very few papers. The Ros
group has studied the effect of the medium on neutrino em
sivities@21# in the framework of a thermal dynamicT matrix.
It was found that atT54 MeV, the ratioR of emissivities for
the in-mediumT matrix to the freeT-matrix result is about
0.8 for nuclear saturation density for the modified URC
process, and a striking'0.05 for the neutral current brems
strahlung process. The latter effect was ascribed to the P
blocking of the low momentum states. The results were
tained using a separable approximation to the potential
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glecting 3P2-3F2 tensor coupling. Here we estimate the m
dium effect by using aG matrix at zero temperature t
account for Pauli blocking, which includes the full tens
force. The Bethe-Goldstone equation for theG matrix is

G~pW 8,pW !5V~pW 8,pW !

1(
l,i

E d3p9

~2p!3
V~pW 8,pW 9!

QPauli

E~pW 9!2e~pW !
G~pW 9,pW !,

~70!

wherel, i are the helicities and isospin of the intermedia
state, respectively. The single-nucleon energy above and
low the Fermi momentumpF are E(pW ) and e(pW ), respec-
tively. Here theG matrix of Banerjee and Tjon@22# in the
lowest order Brueckner theory~LOBT! is used; the single-
nucleon energies are given by

E~pW !5
pW 2

2m
, e~p!5A1

pW 2

2m*
.

The gapA and the effective massm* are determined in the
LOBT in a self-consistent way. As an interaction in Eq.~70!,
the Bonn C potential is used, and forQPauli in Eq. ~70! an
angle averaged Pauli operator is used to construct theG ma-
trix.

IV. RESULTS AND DISCUSSION

We will compare the emissivity of thenn neutrino pair
bremsstrahlung for the differentNN interactions at densities
n51/2n0 , n0 , and 2n0 at T5109 K. We will derive the ex-
pression of the emissivity in the nonrelativistic QPA lim
starting from Eq.~42!. From Eqs.~63! and~64! the function
W(q) is obtained. Here, the momentumqW is neglected in the
momentum conservingd function, because it is much
smaller than the neutron momenta. Next we separate the
gular and energy parts of the nucleon phase space by
forming the angular integrals with the momenta of the d
generate neutrons approximated by the neutron Fe
momenta. Finally, we use the independence of the ma
elements ofqW and introduce the dimensionless parametey
5v/T to simplify the expression, and one obtains

en,n5
4GF

2gA
2m* 4pFn

15~2p!9
T8E dydcos~u12!d

3cos~u118!
H~s,t !

A212cosu12

I ~y!, ~71!

where

I ~y!5
~4p2y51y7!

6@11exp~y!#
~72!

and the hadronic part of the interaction matrix
7-11
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H~s,t !5S 8(
v51

5

uT v
1u212(

v52

4

(
v5” u;u52

4

~T v
1T u

1* 1T v
1* T u

1!D
~73!

is a function of the Mandelstam variabless,t andpFn is the
neutron Fermi momentum. The integration variableu12 is the
angle betweenpW 1 andpW 2 , andu118 is the angle betweenpW 1

and pW 18 . We note that in the limit that theG matrix is re-
placed by the antisymmetrized one-pion~or one-r) exchange
potential, Eq.~71! reduces to the result of Friman and Ma
well @1#.

The results for the emissivities are summarized in Tab
for neutron matter for three different densities,n
51/2n0 , n0 , and 2n0 at T5109 K. It is seen that~similarly,
as in free space! compared to theT matrix result the anti-
symmetrized OPE overestimates the emission rate
roughly a factor of 4; this is in agreement with the conc
sion by Hanhartet al. @2#. If the exchange terms in OPE ar
~arbitrarily! omitted, the result is close to that of theT ma-
trix. In the past, in some cases phenomelogical correc
factors are also introduced to simulate initial and final st
interactions as a correction to OPE@1,23#, which tend to
reduce the OPE result. Contrary to naive expectations, b
on the Pauli blocking mechanism we find a slight increase
the rate if theT matrix is replaced by the in-mediumG ma-
trix as calculated by the Bethe-Goldstone equation descr
in the preceding section.

To obtain more insight in the medium effects we al
listed in the table the separate results for one-pion, pion1 r,
pion1r1v ~OPROE!, and full OBE~which includes alsos
exchange!, and also for the corresponding OBE plus iterat
OBE ~i.e, OBE1 TBE!. It is seen that one-r exchange gives
a substantial cancellation of the OPE~also observed by Fri-
man and Maxwell@1#!. On the other hand, the iterated OP
~referred to as TPE! leads to a stronger tensor force, a
hence a larger rate. It is also seen that the contributions ov
exchange ands exchange~which contribute mainly to the
spin-orbit interactions! are non-negligible, in particular, in
the TBE process; and as a consequence, the combined

TABLE I. Emissivity in 1019 erg cm22 s21 at T5109 K.

Neutron matter Symmetric matter

Density ~1/2!n0 n0 2n0 ~1/2!n0 n0 2n0

m* /m 0.77 0.64 0.49 0.66 0.58 0.4

OPE 7.3 4.8 2.1 2.7 2.4 1.6
OPRE 3.9 2.3 1.0 1.7 1.3 0.8
OPROE 3.2 2.0 0.9 1.4 1.0 0.7
OBE 3.7 2.5 1.3 1.5 1.2 0.9
OPE1TPE 10.2 6.9 3.7 3.5 3.2 2.3
OPRE1TPRE 4.4 2.8 1.4 1.8 1.4 1.0
OPROE1TPROE 1.2 1.2 2.7 0.4 0.3 0.4
OBE1TBE 1.4 0.6 0.3 0.8 0.5 0.2
T matrix 2.2 1.1 1.1 0.7 0.4
R matrix 2.5 1.4 1.2 0.8 0.5
G matrix 2.7 1.6 0.6 1.2 0.9 0.5
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and TBE contribution becomes even smaller than the fuT
matrix result. These momentum dependent interactions
not appear in the conventional Landau–Fermi liquid inter
tion, but do seem to play a role in the weak bremsstrahlu
We attribute the finding that theG matrix gives a slightly
larger contribution than the freeT matrix mainly to a Pauli
blocking of the TBE contributions, and hence a smaller d
structive interference. We note that the present result devi
from that in Ref.@21# where atn5n0 in neutron matter the
ratio of the rates computed withG matrix andT matrix was
found to be 0.05; a possible explanation could be the neg
of the 3P2-3F2 tensor coupling in that work.

As to the density dependence the decrease of the rate
increasing density is mainly caused by the variation ofm* in
Eq. ~71! and to a lesser extent by the different ranges of
various meson exchanges. For completeness we also s
the corresponding results for symmetric nuclear matter
Table I. The weaker density dependence in this case ca
attributed to less variation ofm* .

Finally, we turn to the LPM effect. Clearly, its possib
relevance in the present case depends on the magnitud
the width G, which is a function ofv, temperatureT, and
density. Here we use the parametrization@6#

G~v,T!5aS v2

4p2
1T2D ~74!

to be able to estimate the importance of the LPM effect. F
v,60 MeV andT,20 MeV, this roughly coincides within
a factor 2 with Almet al. @24#. Including the LPM effect in
the emissivity the functionI (y) in Eq. ~71! has to be re-
placed by

I LPM~y,T!5y2f ~y,T!I ~y! ~75!

with

f ~y,T!51Y S y21
G~yT,T!2

T2 D ,

which can be derived from Eqs.~67!–~69!. The function
f (y,T) describes very roughly the behavior of ImPR. To
give an indication of the importance of the LPM effect and
demonstrate the influence of the weighting factor in t
emissivity, we show in Fig. 7 how the functionsf (y,T) and
I LPM(y,T) in Eq. ~75! are modified for various values of th
temperature. The value of the parametera depends weakly
on the density and is'0.2 MeV c21. One sees that the
function f (y,T) has a singularity aty50 in the QPA. The
LPM effect suppresses this infrared divergence. The func
I LPM(y,T) is less sensitive to the LPM effect compared
the function f (y,T), because the weighting factor in th
emissivity strongly suppresses they50 contribution. There-
fore, the LPM effect in the emissivity is negligible fo
T,5 MeV. Comparing the ratio of the emissivity with an
without LPM effect RLPM5e/e lpm at T55 MeV, T510
MeV, and T520 MeV gives 0.89, 0.68, and 0.35, respe
tively. The influence of the LPM effect increases with tem
perature and becomes appreciable aboveT55 MeV. There-
7-12
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FIG. 7. The functionsf (y,T) and I LPM(y,T)
are shown at temperatureT52 MeV ~dotted
curve!, T55 Mev ~dashed curve!, and T
510 MeV ~dash-dotted curve!. The QPA result is
given by the solid line.
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fore, in practice in calculating the emissivity the LPM effe
does not play an important role for smallT, sayT,5 MeV.

Finally, we note that an additional medium effect, n
considered here, is the possible medium effect of the ax
vector couplinggA . It has been considered in Ref.@25#,
where it was found that the spacelike axial coupling
quenched by about 20%. However, the timelike axial c
pling is not necessarily equal, since Lorentz invariance
broken. Experiments with first-forbiddenb decay of light
nuclei give indications for an enhancement of the timel
axial charge of about 25% in the medium@26#. This is in
agreement with meson exchange calculations in the soft
approximations@27#.

V. SUMMARY AND CONCLUSION

In this paper we studied the neutrino emissivity for t
neutral currentNN bremsstrahlung process, relevant for ne
tron star cooling. In particular, we considered some effe
06580
t
l-

-
is

n

-
ts

that are not included in the standard cooling scenario of R
@1#, which is based upon a nonrelativistic quasiparticle a
proximation and the use of the one-pion exchange poten
The effects considered, namely, the description of theNN
interaction, the LPM effect, and relativistic effects, influen
the neutrino emission of the neutral current bremsstrahl
process. Therefore these effects are also expected to a
other neutrino emission processes in a similar way.

First, we studied how the description of theNN interac-
tion influences theNN bremsstrahlung process. In the lo
density limit using the fact thatv is small, the Low theorem
@9# can be applied, which allows us to use the on-shelT
matrix, specified by empirical phase shifts, and to compar
with OPE. At typical neutron momenta in neutron stars, a
proximately 300 MeV/c, the resulting free space cross se
tion is roughly a factor 4–5 reduced compared to the ap
cation of OPE. Although adding ORE to OPE is a
improvement, the result still differs a factor 2–3 with th
obtained using theT matrix. We also analyzed which Ferm
7-13
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components of theT matrix dominate the rate, namely, th
tensor-type and the spin-orbit-type terms.

To evaluate neutrino-pair bremsstrahlung in a finite m
dium at finite temperature, we have used a closed diag
technique up to two loops. It is found that atn;n0 , the
neutrino emissivity, applying the on-shellT matrix to de-
scribe theNN interaction is roughly a factor 4 smaller tha
those based upon OPE. This is in qualitative agreement
the conclusion of Hanhart@2#. Including medium effects
from Pauli blocking by replacing theT matrix by an in-
mediumG matrix,we find a small increase of the emissivi
of 20–30 %.

Second, in order to investigate the many-body corre
tions, we can go beyond QPA by considering dressed pro
gators with a temperature dependent imaginary partG. Of
course gauge invariance of the vector current is conserve
our approach. In particular, we find that in the medium
damping of the infrared divergence, the LPM effect, ha
negligible effect for low temperatures (T,5 MeV); this is
due to both the small single-particle width (G'T2) and a
weighting factor depending onv in the phase space integra
Finally, we estimated relativistic~recoil! effects to be rather
small, of the order of 10%, at nuclear saturation densitie

In short, the description of theNN interaction by the on-
shell T matrix OPE has the largest impact on the neutr
emission of the bremsstrahlung process; roughly a reduc
factor of 4. Other effects are relatively small; below 30
percent forT,5 MeV.
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APPENDIX A: NEUTRINO TRANSPORT

In the present paper we use the finite temperature
time Schwinger-Keldysh formalism to compute the collisi
integrals in the transport formalism. For the sake of co
pleteness, the main steps are summarized in this appe
for more details we refer to Ref.@6#. In this formalism one
must distinguish between vertices with indices~1! and~2!.
For given real interaction, these are associated with the v
2 iV ~time-ordered part! and with adjoint vertex1 iV ~anti-
time-ordered part!. The corresponding finite temperatu
Green’s functions~applied to neutrinos as well as the nucl
ons! can be expressed as a 232 matrix propagator:

iG1,25S G12
22 G12

21

G12
12 G12

11D
5S ^Tc~x1!c̄~x2!& 2^c̄~x2!c~x1!&

^c~x1!c̄~x2!& ^T̃c~x1!c̄~x2!&
D . ~A1!
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Sometimes it is more convenient to use the retarded
advanced functions:

iG12
R 5u~ t12t2!^$c~x1!,c̄~x2!%&,

iG12
A 5u~ t12t2!^$c~x1!,c̄~x2!%&. ~A2!

The propagators satisfy the Dyson equation,

G~x1 ,x2!5G0~x1 ,x2!1G0~x1 ,x3!F~x3 ,x2!G~x2 ,x1!,
~A3!

whereF is the proper self-energy. Equivalently, in integr
differential form,

]” 1G1,25d1,2sz1szE d3F13G3,2, ~A4!

]” 2* G1,25d1,2sz1E d3G1,3F3,2sz , ~A5!

wheresz is the Pauli spin matrix. The semiclassical neutri
transport equations are obtained by subtracting the Dy
equations~A4! and ~A5! for ]1 and]2 ,

iG~x1 ,x2!]” x2
2 i ]” x1

G~x1 ,x2!5G~x1 ,x3!F~x3 ,x2!sz

2sz F~x1 ,x3!G~x3 ,x2!.

~A6!

In particular, the transport equation for the off-diagonal m
trix Green’s function reads

@]” x3
2Re FR~x1 ,x3!,G12,21~x3 ,x2!#

2@Re GR~x1 ,x2!,F12,21~x3 ,x2!#

5
1

2
$G12,21~x1 ,x3!,F12,21~x3 ,x2!%

1
1

2
$F12,21~x1 ,x2!,G12,21~x3 ,x2!%. ~A7!

As a result of the assumption of the existence of the L
mann representation, we have ReGR5ReGA5ReG and
ReFR5ReFA5ReF. The Wigner transforms of the off
diagonal Green’s functions correspond to Wigner densitie
four-coordinate and four-momentum space. In the grad
expansion the Wigner transforms of convolution integr
can be expressed in terms of Poisson brackets~PB!
$A,B%PB5]kA]xB2]xA]kB. This leads to the quasiclassic
neutrino transport equation in which the neutrino se
energies enter in the loss and gain terms,

i $Re G21~p,x!,G12,21~p,x!%PB

1 i $Re G~p,x!,F12,21~p,x!%PB

5G12,21~p,x!F12,21~p,x!

1F12,21~p,x!G12,21~p,x!. ~A8!
7-14
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The first Poisson bracket at the lhs leads~Vlasov part! to the
Boltzmann drift term, whereas the second one correspond
off-mass shell effects. After separating the pole and nonp
terms:

G12,21~p,x!5G0
12,21~p,x!1Goff

12,21~p,x!,

the quasiparticle part of the transport equation is given b

i $Re G21~p,x!,G0
12,21~p,x!%PB

5G12,21~p,x!F12,21~p,x!

2F12,21~p,x!G12,21~p,x!, ~A9!

where ReG21(p,x)5]” p2ReFR(p,x). The lhs corresponds
to the drift term of the Boltzmann equation and the rhs to
collision integrals. The remainder part of the transport eq
tion,

i $Re G21~p,x!Go f f
12,21~p,x!%PB

1 i $Re G~p,x!,F12,21~p,x!%PB50, ~A10!

describes the off-shell effects, which we neglect.
The on-mass-shell neutrino propagator is related to

single-time distribution functions~Wigner functions! of neu-
trinos and antineutrinos,f n(q) and f n̄(q),

G0
21~q,x!5

ipq”

v~qW !
$d@q02v~qW !# f n~q,x!2d@q01v~qW !#

3@12 f n̄~2q,x!#%, ~A11!

and in theG0
12 propagatorf n(q) is replaced by 12 f n(q)

and 12 f n̄(q) by 12 f n̄(q). In this limit the Boltzmann equa
tion for the neutrino distributions is obtained,

@] t1]Wq v~qW !]W x# f n~qW ,x!

5E
0

` dq0

2p
Tr@F21~q,x!G0

12~q,x!

2F12~q,x!G0
21~q,x!#

[I n
21~qW ,x!2I n

12~qW ,x!, ~A12!

where the rhs corresponds to the gain and loss term~the
Boltzmann equation for antineutrino follows by integratio
over the negativeq0).

APPENDIX B: COLLISION INTEGRALS

In the lowest~second! order in the weak interaction, th
neutrino transport self-energies are given by

2 iF21,12~q,x!5E d4q1

~2p!4

d4q2

~2p!4
~2p!4d4~q11q22q!

3 iGq1

m iG0
21~q2 ,x!iGq1

†liSml
21,12~q1 ,x!,

~B1!
06580
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whereSml
21,12(q) is the baryon polarization tensor andGq

m

is the weak leptonic interaction vertex.
The collision integrals in Eq.~A12!, which are expressed

as a convolution of the lepton self-energiesF and the inter-
mediate~anti!neutrino propagator, consist of a sum of a lo
and a gain term; e.g., the neutrino gain part

I n
21~qW ,x!5E

0

` dq0

2p
Tr@F21~q,x!G0

12~q,x!# ~B2!

contains a ~spacelike! scattering @proportional to f n(1
2 f n)] and a ~timelike! pair emission term@}(12 f n̄)(1
2 f n)#. The antineutrino one is obtained by replacing t
positive energy range by the negative one.

APPENDIX C: FINITE T HADRONIC GREEN’S
FUNCTIONS

Although in the neutrino sector the stationary conditi
F21Gn

125F12Gn
21 is not satisfied~see Appendix B!, in

the hadronic sector it is. Therefore the nucleons can
treated in the equilibrium Green’s function formalism. Th
retarded self-energySR can be decomposed in Lorentz com
ponents, in nuclear matter only the scalar and vector com
nents are nonzero,

SR~p!5SS
R~p!1S” V

R~p!

with p5(p0,pW ). The retarded relativistic dressed baryo
Green’s function@15# is

GR~p!5
p”1m2S” V

R~p!1SS
R~p!

@p2SV
R~p!#@p2SV

R~p!#2@m1SS
R~p!#2

,

~C1!

and the spectral function

A~p!522 Im GR~p!. ~C2!

Using Eqs.~C1! and ~C2! we can now give the following
relations:

G21~p!5 i f ~p0!A~p!, ~C3!

G12~p!52 i @12 f ~p0!#A~p!, ~C4!

G22~p!5@12 f ~p0!#GR~p!1 f ~p0!GA~p!, ~C5!

G11~p!52@12 f ~p0!#GA~p!2 f ~p0!GR~p!, ~C6!

with f (p0)51/$exp@b(p02m)#11%, b51/kT, and the chemi-
cal potentialm5EpF

1ReSV
0,R(pF). We will now define the

relativistic effective Dirac mass mD5m1ReSS
R(p),
7-15
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p̃05p02ReSV
0,R(p), p̃W 5pW 1ReSW V

R(p), Ẽp

5A( p̃W )21(mD)2, and G52Im@2SV
0,R2(mD /Ẽp)SS

R(p)

1( p̃W /Ẽp)SW V
R(p)#. We will consider two cases,~i! the QPA

Green’s functions ImS(p)→0 and ~ii ! the nonrelativistic
Green’s functions.

1. Green’s functions in QPA

In the QPA case, the imaginary part of self-ener
ImS(p) vanishes. This gives the following definitions for th
Green’s functions in Eqs.~C3!–~C6!,

G0
12~p!522ip

mDL1~ p̃!

p̃0
@12 f ~p0!#d~ p̃02Ẽp!,

~C7!

G0
21~p!52ip

mDL1~ p̃!

p̃0
f ~p0!d~ p̃02Ẽp!, ~C8!

G0
22~p!5@G0

11~p!#* 5
2mDL1~ p̃!

p̃22mD
2

, ~C9!

where we have the positive-energy operatorL1( p̃)5(p”̃
1mD)/2mD. The causal propagatorsG0

22 andG0
11 are off-

mass-shall. Ifp̃ is on-mass-shellp̃22mD
2 50, thenG22 can

be rewritten as

G0
22~p6q!5@G0

11~p6q!#* 5
2mDL1~ p̃!

62p̃•q
. ~C10!
L.

iz

in

.

d

d

06580
We point out that, when taking complex conjugates, it
understood that Diracg matrices are not conjugated. Th
free case can easily be obtained from this. By replacingmD ,
p̃ by m andp, we obtain the free Green’s functions.

2. The nonrelativistic Green’s functions

In this part will be given the nonrelativistic Green’s fun
tions. Besides the nonrelativistic limit, we will assume th
the width of the quasiparticle state is small, ImSR(p)
!ReSR(p). We will now define the Green’s functions in th
nonrelativistic limit as

G21~p!5
iG~p!

~p02hpW !21G~p!2/4
f ~p0!, ~C11!

G12~p!5
2 iG~p!

~p02hpW !21G~p!2/4
@12 f ~p0!#, ~C12!

and

G22~p!5@G11~p!#*

5
p02hp

@p02hpW #
21G~p!2/4

2
iG~p!

@p02hpW #
21G~p!2/4

tanhS p0

2 D , ~C13!

where G(p)522 Im@SV
0,R(p)1SS

R(p)#, tanh(p0)51

22f(2p0), and hpW5epW
0 with epW

0
5upW u2/(2m* ) and m* the

nonrelativistic effective mass.
ev.
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