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A continuum expression for the trace of the massive dressed-quark propagator is used to explicate a con-
nection between the infrared limit of the QCD Dirac operator’s spectrum and the quark condensate appearing
in the operator product expansion. This connection is verified via comparison with a lattice-QCD simulation.
The pseudoscalar vacuum polarization provides a good approximation to the condensate over a larger range of
current-quark masses.
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I. INTRODUCTION The operator is anti-Hermitian and hence the eigenfunctions
form a complete set, and except for zero modes they occur in
Dynamical chiral symmetry breakinCSB) is a corner-  pairs:{u,(X), ysu,(X)}, with eigenvalues of opposite sign. It
stone of hadron physics. This phenomenon whereby, even iiollows that in an external gauge field one can write the
the absence of a current-quark mass, self-interactions geneggreen function for a massive propagating quark in the form
ate a momentum-dependent running quark magp?) that

is large in the infraredM (0)~0.5 GeV, but, in the chiral _ — up(X)ut(y)
limit, power-law suppressed in the ultraviolgt], S(x,y,A)—(q(x)q(y))A—; ingtm &)
5 'arngZZWZYm (—(Eq)o) wherem is the current-quark mass and, naturally, the eigen-
M(p% = 3 1 p2 I=m’ @) values depend oA. [The expectation value denotes a Grass-
pz(—m 5 ) mannian functional integral evaluated with a fixed gauge
2 AGep field configuration. This equation merely expresses the resol-

vent of the Dirac operator in terms of the complete set of
is impossible in weakly interacting theories. In Ed), y,,  eigenfunctions in Eq(2).] Taking the matrix trace in Ed3)
=12/(33-2Ny) is the mass anomalous dimension, wh ~ and the limity—x, and assuming, e.g., a lattice regulariza-

the number of light-quark flavors, andqq)® is the  ftion, one obtains
renormalization-group-invariant vacuum quark condensate
[2], to which we shall hereafter refer as the OPE condensate.
While Eq. (1) is expressed in Landau gaudeg)® is gauge
parameter independent. In the chiral limit the OPE conden-
sate plays a role analogous to that played by theyhereV is the lattice volume and herris the current-quark
renormalization-group-invariant current-quark mass in theanass at the lattice regularization scgs.

massive theory: it sets the scale of the mass function in the one may now define a quark condensate as the infinite

ultraviolet. ~_ volume limit of the average of the left-hand side in E4)
The evolution of the dressed'quark mass function in quver all gauge field ConﬁgurationS,

(1) to a large and finite constituent-quark-like mass in the
infrared, M(0)~0.5 GeV, is a longstanding prediction of _ 1 _
Dyson-Schwinger equatiofDSE) studies[3], which has re- (0[qq|0):= lim <Vf d4X<Q(X)Q(X)>A>- ©)
cently been confirmed in simulations of quenched lattice- Vo v
QCD [4]. A determination of the OPE condensate directly o
from lattice-QCD simulations must await an accurate chiralln the limitV—co, the operator spectrum becomes dense and
extrapolation5], but DSE models tuned to reproduce mod- Eds.(4) and(5) yield
ern lattice data givg6] (—(qq)®) ~Adcp.
Another view of DCSB is obtained by considering the —/0lanl0 — fx p(N)

- ; : : (0lqg|0y=2m | dx (6)
eigenvalues and eigenfunctions of the massless Euclidean 0 AN+m?
Dirac operatoff 7],

1] a5 B 2m 2 1
vy X<Q(X)Q(X)>A—_7)\n>o W

4

with p(\) the spectral density. This equation expresses an
v-Duy(X) =1Npun(X). (2 assumption that in QCD the full two-point massive-quark
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Schwinger function, when viewed as a function of thecompletion of all calculations. The quark-gluon vertex and
current-quark mass, has a spectral representation. It followguark wave function renormalization constar#s(Z?,A?)

formally from Eqg.(6) that and Z,(Z2,A?) respectively, depend on the renormalization
point, the regularization mass scale, and the gauge parameter.
. * p(N) 1 If the current-quark mass changes with flavor, then the
J:Tom 0 dr Nrm? > mp(0), (M) solution of Eq.(9) is flavor dependent:
-1_; 2 #2 2 #2
and hence one arrives at the chiral limit result Si(p) =iy -pAi(p*, &%) +Bi(p,{%)
—(0[qq|0)=mp(0). ®) [iy-p+Me(p2¢d], (10

Zf(pzigz)

This is the so-called Banks-Casher relatj@f,11]. (The dis-
cussion hitherto is a motivation, not a derivation: rigorousand is obtained subject to the condition that at some large,
understanding is provided in Ref9] and subsequently spacelikel?,
herein) )

The Banks-Casher relation has long been advocated as a Si(p) Hpz-z=iy-p+mi($), (1D
means by which a quark condensate may be measured in . .
lattice-QCD simulationg11]. It has also been used in ana- wheremy(¢) is the renormalized current-quark mass,
lyzing chiral symmetry restoration at nonzero temperature
[12] and chemical potentidll3], and to explore the connec-
tion between magnetic monopoles and chiral symmetr
breaking in U(1) gauge theofd4]. Much has been learnt
[15,16 by exploiting the fact that qualitative features of the
behavior ofp(\) for A~0 can be understood using chiral
random matrix theory; i.e., from considerations based solely Z,(2A)MP™(A)=0, A>( (13
on QCD'’s global symmetries.

Our main goal is to explicate a correspondence betweennd in this case the scalar projection of Ef) does not
the condensate in E(ﬁl) and that in Eq.(8) In Sec. Il we exhibit an ultraviolet divergeno@,]_?]_
discuss the OPE condensate and its connection with QCD’s |mportant in describing chiral symmetry is the axial-
gap equation, and emphasize that the residue of the lowesfector Ward-Takahashi identity:
mass pole contribution to the flavor-nonsinglet pseudoscalar
vacuum polarization is a direct measure of the OPE conden- H , A L ,
sate[17]. A natural ability to express DCSB through the Pulsu(kiP)=8""(ky)iys o +ivs oS (k)
formation of a nonzero OPE condensate is fundamental to
the success of DSE models of hadron phenon{dg In —MHiTE(k;P)—iTE(k;P)M
Sec. Il we carefully define the trace of the massive dressed- (14)
quark propagator and use that to illustrate a connection be-
tweenp(0) and the OPE condensate, which we verify viayhereP is the total momentum entering the vertex. In Eq.
Icomparlson with a lattice simulation. Section IV is an epi-(14), M o =diad m,(£),mg(2).my(O)], §=dlag[SU,Sd,Ss],
ogue. and {TH} are flavor matrices, e.gT™ =3(A+i\?) [we
consider SW(3) because chiral symmetry is unimportant for
heavier quarks Fgﬂ(k;P) is the renormalized axial-vector
A. Gap and Bethe-Salpeter equations vertex, which is obtained from the inhomogeneous Bethe-
Salpeter equation

Z4(&N)mMi(O)=Z5(L,A)mP™(A), (12)

Xvith Z, the renormalization constant for the scalar part of the
quark self-energy. Since QCD is an asymptotically free
theory, the chiral limit is defined by

Il. OPE CONDENSATE

Dynamical chiral symmetry breaking in QCD is readily
explored using the DSE for the quark self-energy: ™

[rEﬂ(k;P>]w=zz[ YsVu g

A

S(p)‘1=Zz(iy-p+mbm)+21J 9°D,.,(p—Q) "
q A
X5 7, S(@)3(a,p), 9)
where xg,:=8(q:)'5,(d;P)S(d-), 9.=q+P/2, and

whereD (k) is the renormalized dressed-gluon propagatorK(d,k;P) is the LU_”y renormalized quark-antiquark scatter-
I'%(q,p) is the renormalized dressed-quark-gluon vertex;ng kernel; and's is the pseudoscalar vertex,
mPMis the A -dependent current-quark bare mass that appears K
in the Lagrangian; anﬁqA::_fAd_“q/(Zar)“ represents atrans- [ pH:py], =7, +j [xE(q:P) 1o KI(q,k: P),
lationally invariant regularization of the integral, with the w Ja
regularization mass scale that is removed to infinity as the (16

TH
7’57
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with x£:=8(q,)TH(q;P)S(g-). Multiplicative renormaliz- _ _ A
ability ensures that no new renormalization constants appear for6?=—(qa)?= lim Z4(§1A)thrDJ So(q), (22
in Egs.(15) and (16). A= a
Flavor-octet pseudoscalar bound states appear as coingihere the trace is only over Dirac indices. This result and
dent pole solutions of Eq¢15) and(16), namely, multiplicative renormalizability entail

A\ 0
Iy(k;P), (17 taa; =Z4(4.8)Z 18 =280, (23

P2+ ma <aq>(g)'

where Z,,, is the mass-renormalization constant. It is thus

whereTl'y, is the bound state’s Bethe-Salpeter amplitude angypparent that the chiral limit behavior off yields the OPE
my, its mass.(Regular terms are overwhelmed at the pole. condensate evolved to a renormalization pdint

Iy, (k;P)«Ig(k;P)x

Consequently, Eq14) entails[2,17] It is important to recall that the DSEs reproduce every
diagram in perturbation theory. Therefore a weak coupling
fam2=rOm @, (18 expansion of Eq(9) yields the perturbative series for the

dressed-quark propagator. This may be illustrated by the re-
where M %):tfﬂavor[l\/l(g){TH,(TH)t}] is the sum of the con- Sult for the scalar piece of the propagator calculated in this
stituents’ current-quark massést” denotes matrix trans- way,

pose; and 2
2 @ | P
Bi(p )=mf<1——ln — |t (29
M Hyt ToLmi
fP=Zf—trT) @P)] (19
B q2 I vs7uXn(Q:P)] Every term in the series is proportional to the current-quark
mass and hence a nonzero value of the OPE condensate is
Al impossible in perturbation theory.
irf=2z, f ST ysxn(a:P)l, (20 n
q B. Pseudoscalar vacuum polarization

, Consider the color singlet Schwinger function describing
whelre XHd’=‘t5;(2q+)l;H(%? P)S(q-) and the expressions are the pseudoscalar vacuum polarization
evaluated aP“+mg=0.

Equation(19) is the pseudovector projection of the me- — 1. — 1

son’s Bethe-Salpeter wave function evaluated at the origin in As(x)={a(x) 57\ ysa(x)a(0) 51 %y5a(0) ), (29
configuration space. It is the precise expression for the lep- ) ) o )
tonic decay constant. The renormalization consBut, A) which can be estimated, e.g., in lattice simulations. Its renor-
ensures that the right-hand sid#s) is independent of: the Malized form can completely be expressed in momentum
regularization scalé\, which may therefore be removed to SPace using quantities introduced already,
infinity; the renormalization point; and the gauge parameter.

A
Hence it is truly an observable. w;g(P)=Z§tff %Afyss(m)F%(q;P)S(q_)- (26)
Equation (20) is the pseudoscalar analog. Therein the 4
renormalization constar#,({,A) entails that the rhs is in- Equation(16) can be rewritten in terms of the fully am-
dependent of the regularization scaleand the gauge pa- putated quark-antiquark scattering amplitudevl =K
rameter. It also ensures that thi@lependence of(Hg) is pre- +K(S9K+---, and in the neighborhood of the lowest

cisely that required to guarantee that the rhs of @) is  mass pole
independent of the renormalization poi[m,(f) is finite, and

Eq. (18) valid, for arbitrary values of the current-quark Py — ) 1 = . )
In the chiral limit the existence of a solution of E(®) 27

with By(p?)#0; i.e., DCSB, necessarily entai[d47] that

Egs.(15) and(16) exhibit a massless pole solution: the Gold- WhereR is regular in this neighborhood.
stone mode, which is described by ~ Assuming _Su(3) flavor symmetry, substituting E§27)
into Eq. (26) gives

I'3(kiP)=N9ys[iEqo(k;P)+ - PFo(k;P) fo(p) 50
w!9(P)=
+y-kk- PGy(k;P) + .k, P, Ho(k;P)], ° P2+ m3

pvut v

Z A+ (28)

(21) (the ellipsis denotes terms regular in the pole’s neighbor-
hood. The renormalizable correlation function in Eg5) is
wherein f2E(k;0)=By(k?). (The index “0” indicates a the Fourier transform of Eq28), and using this fact plus the
quantity calculated in the chiral limjtit follows immedi-  definitions in Eqs(12) and(23) it is evident that the large
ately[17] that (Euclidean x? behavior of the product
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MErds(X) (29 - N,
PN =-——2\%, (35
is a direct measure of the renormalization-group invariant 4m
[m( g)rff)]z (30) The one-loop contribution tp(\) has been evaluated us-

ing the same proceduf@3]. It is also proportional ta.> and

that appears in Eq18). (This observation merely adapts the arises from then®in m?/¢? terms ina-(m). In fact, every term

technique for extracting masses in numerical simulations obbtainable in perturbation theory is proportional X8, for

lattice-QCD) Hence the correlator in Eq25) provides a  precisely the same reason that each term in the perturbative

means of estimating the OPE condensate in lattice simulaxpression for the scalar part of the quark propagator is pro-

tions [21], one whose ultraviolet behavior ensures a well-portional tom, see Eq(24). Hence, at every order in pertur-

defined and calculable evolution under the renormalizatiorpation theory,

group for any value of the current-quark mdsfs, can simi- ~

larly be extracted from the axial-vector correlator analogous p(A=0)=0 (36)

to Eq. (25).] The model of Ref[22] yields a meson mass _

trajectory via Eq.(18) that provides a qualitative and quan- and(0|qq|0)=0. A nonzero value 0p(0) is plainly an es-

titative understanding of recent quenched lattice simulationsentially nonperturbative effect.

[20]. A precise analysis requires that attention be paid to renor-
malization. Consider then the gauge-parameter-independent

IIl. BANKS-CASHER RELATION trace of the renormalizeq ql_Jark propagator evaluated at a
fixed value of the regularization scale:
A. Continuum analysis

_ A
It is readily apparent that E6) is meaningless as writ-  g(m,¢):=— “m<Q(X)Q(0)>:Z4(§,A)thfof Sn(p;0),
ten: dimensional counting reveals that the rhs has mass- X—0 p

dimension three and since will at some point be greater (37

than any relevant internal scale, the integral must diverge as . b C .
A2, whereA is the regularizing mass scale. where the argument remaims=m°"(A), which is permit-

To learn more, consider the trace of the unrenormalizeded b(_acausmbm(A) is proportional to the renormalization-
massive dressed-quark propagator: pomt—lndepend_ent currentjqua_rk mass. The ren_ormahzatlon
constantZ, vanishes logarithmically with increasingy and
~ A hence one still has-(m)~A2mPM(A). However, using Eq.
o(m):=Nctrp fp Sm(P) BD (22 it is clear that for any finite but large value of and
tolerancesd, it is always possible to finmgm(A) such that
evaluated at a fixed value of the regularization scaleThis — 0 b . bm
Schwinger function can be identified with the left-hand side a(m,0)+(qa); <6, ¥Ym>"<m;". (38)
of Eq. (6). Furthermore, assume thafm) has a spectral
representation, since this is the essence of the Banks-CasPHe1
relation:

This is true in QCD. It can be illustrated using the DSE
bdel of Ref.[2], which preserves the one-loop renormal-
ization group properties of QCD. In Fig. 1 we pletm,?),
N ~ evaluated using a hard cutoff on the integral in Eq(37),
F(m):=2m j dn p(N) (32) calculated with the massive dressed-quark propagators ob-
o A2+m? tained by solving the gap equation as described in the Ap-
pendix. Since Eq(38) specifies the domain on which the
wherem=mP""(A). Equation(32) entails value of o(m,{) is determined by nonperturbative effects,
one anticipates

~ 1 ~ . _

p()\)=z |In;+[a'(l)\+ n)—a(ix—7n)]. (33 m2M(A)~ —(qq)%/ A2~10"° (39)
77*}

for A=2.0 TeV in QCD Where}(aq>0|~A%CD, an estimate

confirmed in Fig. 1.

The dotted line in Fig. 1 is

The content and meaning of this sequence of equations
well illustrated by inserting the free quark propagator in Eq.
(31). The integral thus obtained is readily evaluated using
dimensional regularization: N

Cc
472

XmM[AZ=m?In(1+ A%/m?)]. (40)

— 4\ 0 2 A
) o(m,0)=~(qa)] —arctan_ +Z,({,A)

Im+l+ In4 34
n?;ynw. ()

~ Nc
_ 3
Oired M) = A2 m

With Eq. (33) the regularization dependent terms cancel andWe used the one-loop formul@,(Z,A)=[ a(A)/a({)]"™,
one obtains for the numerical comparisgnThe difference between Eq.
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0'10 o 10‘9 - 1o‘8 - 10‘7 - 10‘6 FIG. 2. Spectral density of the staggered Dirac operator in

m,.(A) (GeV) quenched SU(3) gauge theory calculated ot tattice. (Measured
in units of the lattice spacingThe deconfinement transition takes
FIG. 1. Circles/solid lineo(m)Y?in Eq. (37) as a function of  place at3=5.6.
the current-quark bare mass, evaluated using the dressed-quark
propagator obtained in the model of RE]; dashed line: the mod- agreement with Eq42) and Fig. 1: a nonzero OPE conden-
el's value of ((qa)?_, ge)=(0.24 GeV¥; and dotted line: Eq.  Sate dominates the Dirac spectrum in the confined domain;
(40). Diamonds:o(m)*”® evaluated in a nonconfining version of the and it vanishes in the deconfined domain whereup(®)
model; dot-dashed line: E¢40) with (qq)°=0. =0 and the perturbative evolution, E@5), is manifest.
To be more quantitative, we note that@5.4, p(0)a®
(40) and the curve is 0O «(A)m(A)A?] because the DSE ~70, so that
model incorporates QCD’s one-loop behavior. In Fig. 1 we
also plota(m,{) obtained in the absence of confinement, in
which casd24] (qq)°=0, as is evident.
The discussion establishes thgtm, {) has a regular chi-
ral limit in QCD and is a monotonically increasing
convex-up function. It follows that-(m,{) has a spectral

mp(0)a3/V~(0.95°. (43

The value of the lattice spacing was not measured in Ref.
[12] but one can, nevertheless, assess the scale ¢#iBjdoy
supposinga~0.3 fm~0.3/Aocp, @ value typical of small
couplings,B, wherewith the rhs iSv(BAQCD)*". This is too

representation: . .
large but not unreasonable given the parameters of the simu-
A p(N) Iation, its errors, and the syster_natic uncertainties in our es-

a(m,§)=2mf T - (41  timate. One can also fit the lattice data/t5.8, whereby

0 AN°+m one findsp(\) A3 on A <0.1 but with a proportionality con-

stant larger than that anticipated from perturbation theory
rQ/iz., Eqg. (42). Some mismatch is to be expected because at
B=5.8 one has only just entered the deconfined domain and
close to the transition boundary nonperturbative effects are
still material, as seen, e.g., in the heavy-quark potential and
. N equation of statg¢25]. It is a modern challenge to determine
mp(N)= —(qq)2+ Z4(§,A)4—°)\3+ cee (420  those gauge couplings and lattice parameters for which the
m data are quantitatively consistent with E¢2).

where the ellipsis denotes contributions from the higher-
order terms implicit in Eq(40). IV. EPILOGUE

the condensates in Egd.) and(8). On the domain specified
by Eq.(39), the behavior ofr(m,{) in Eq. (37) is given by
Eq. (40), which yields, via Eq(33),

We verified that the gauge-invariant trace of the massive
dressed-quark propagator possesses a spectral representation

In Fig. 2 we plot the spectral density of the staggeredwhen considered as a function of the current-quark mass.
Dirac operator in quenche8U(3) gauge theory calculated This is key to establishing that the OPE condensate, which
with 3000 configurations obtained on\Va=4* lattice, in the  sets the ultraviolet scale for the momentum dependence of
vicinity of the deconfining phase transition A&5.6. De- the trace of the dressed-quark propagator, does indeed mea-
tails of the simulation are given in Rdf12]. Dimensioned sure the density of far-infrared eigenvalues of the gauge-
guantities are measured in units o&liherea is the lattice  averaged massless Dirac operator, in the manner of the
spacing, and it i9(\)/V that should be compared with the Banks-Casher relation. This relation is intuitively appealing
continuum spectral density. because a measurable accumulation of eigenvalues of the

While the effect of finite lattice volume is apparent in Fig. massless Dirac operator at zero virtuality expresses a mass
2 for na=0.1, the behavior at smala is qualitatively in  gap in its spectrum.

B. Comparison with a lattice-QCD simulation
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In practice, there are three main parameters in a simula- The leading order term in one such schef@€] is the
tion of lattice-QCD: the lattice volume, characterized by arenormalization-group-improved rainbow truncation of the
lengthL; the lattice spacing; and the current-quark mass  gap equation@Q=p—q),

So long as the lattice size is large compared with the current-

quark’s Compton wavelength, viZ,>1/m, then dynamical S(p) t=Zy(iy- p+mPm)

chiral symmetry breaking can be expressed in the simulation. A X a

Supposing that to be the case then, as we have explicated, so + f G(Q3)D™Q) =y S(q) =7,

long as the lattice spacing is small compared with the q r 2" 27"

current-quark’s Compton wavelength, i.asc1/m<L, (A1)
mp(0)~— (A0 (449 The ultraviolet Q2=1 Ge\?) behavior of G(Q?) in Eq.

. (A1) is fixed by the known behavior of the quark-antiquark
vl/k;\er_el}he; rEs 'ithe scale-dependent OPE conderjgate scattering kerndl2]. The form of that kernel on the infrared
B | —-ain ?'( ). Ivsi found that ._domain is currently unknown and a model is employed to

n our con3|r_1uum analysis we foun at one requ'rescomplete the specification of the kernel. An efficacious form
am=(alAqcp)” if p(A=0) is to provide a veracious esti-

mate of the OPE condensate. The residue at the Iowest—ma'g's[z]

pole in the flavor-nonsinglet pseudoscalar vacuum polariza- G(Q?) P
tion provides a measure of the OPE condensate that is accu- —= 87*D 8*(k)+ _6|;)QZesz/w2
rate for larger current-quark masses. )

n
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