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Concerning the quark condensate
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A continuum expression for the trace of the massive dressed-quark propagator is used to explicate a con-
nection between the infrared limit of the QCD Dirac operator’s spectrum and the quark condensate appearing
in the operator product expansion. This connection is verified via comparison with a lattice-QCD simulation.
The pseudoscalar vacuum polarization provides a good approximation to the condensate over a larger range of
current-quark masses.
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I. INTRODUCTION

Dynamical chiral symmetry breaking~DCSB! is a corner-
stone of hadron physics. This phenomenon whereby, eve
the absence of a current-quark mass, self-interactions ge
ate a momentum-dependent running quark massM (p2) that
is large in the infrared,M (0);0.5 GeV, but, in the chiral
limit, power-law suppressed in the ultraviolet@1#,

M ~p2! 5
large2p2

2p2gm

3

~2^q̄q&0!

p2S 1

2
lnF p2

LQCD
2 G D 12gm

, ~1!

is impossible in weakly interacting theories. In Eq.~1!, gm
512/(3322Nf) is the mass anomalous dimension, withNf

the number of light-quark flavors, and̂q̄q&0 is the
renormalization-group-invariant vacuum quark condens
@2#, to which we shall hereafter refer as the OPE condens
While Eq. ~1! is expressed in Landau gauge,^q̄q&0 is gauge
parameter independent. In the chiral limit the OPE cond
sate plays a role analogous to that played by
renormalization-group-invariant current-quark mass in
massive theory: it sets the scale of the mass function in
ultraviolet.

The evolution of the dressed-quark mass function in
~1! to a large and finite constituent-quark-like mass in
infrared, M (0);0.5 GeV, is a longstanding prediction o
Dyson-Schwinger equation~DSE! studies@3#, which has re-
cently been confirmed in simulations of quenched latti
QCD @4#. A determination of the OPE condensate direc
from lattice-QCD simulations must await an accurate ch
extrapolation@5#, but DSE models tuned to reproduce mo
ern lattice data give@6# (2^q̄q&0);LQCD

3 .
Another view of DCSB is obtained by considering th

eigenvalues and eigenfunctions of the massless Euclid
Dirac operator@7#,

g•Dun~x!5 ilnun~x!. ~2!
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The operator is anti-Hermitian and hence the eigenfuncti
form a complete set, and except for zero modes they occu
pairs:$un(x),g5un(x)%, with eigenvalues of opposite sign.
follows that in an external gauge fieldA, one can write the
Green function for a massive propagating quark in the fo

S~x,y;A!5^q~x!q̄~y!&A5(
n

un~x!un
†~y!

iln1m
, ~3!

wherem is the current-quark mass and, naturally, the eig
values depend onA. @The expectation value denotes a Gra
mannian functional integral evaluated with a fixed gau
field configuration. This equation merely expresses the re
vent of the Dirac operator in terms of the complete set
eigenfunctions in Eq.~2!.# Taking the matrix trace in Eq.~3!
and the limity→x, and assuming, e.g., a lattice regulariz
tion, one obtains

1

VEV
d4x^q̄~x!q~x!&A52

2m

V (
ln.0

1

ln
21m2

, ~4!

whereV is the lattice volume and herem is the current-quark
mass at the lattice regularization scale@8#.

One may now define a quark condensate as the infi
volume limit of the average of the left-hand side in Eq.~4!
over all gauge field configurations,

^0uq̄qu0&ª lim
V→`

K 1

VEV
d4x^q̄~x!q~x!&AL . ~5!

In the limit V→`, the operator spectrum becomes dense
Eqs.~4! and ~5! yield

2^0uq̄qu0&52mE
0

`

dl
r~l!

l21m2
~6!

with r(l) the spectral density. This equation expresses
assumption that in QCD the full two-point massive-qua
©2003 The American Physical Society06-1
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Schwinger function, when viewed as a function of t
current-quark mass, has a spectral representation. It foll
formally from Eq.~6! that

lim
m→0

mE
0

`

dl
r~l!

l21m2
5

1

2
pr~0!, ~7!

and hence one arrives at the chiral limit result

2^0uq̄qu0&5pr~0!. ~8!

This is the so-called Banks-Casher relation@10,11#. ~The dis-
cussion hitherto is a motivation, not a derivation: rigoro
understanding is provided in Ref.@9# and subsequently
herein.!

The Banks-Casher relation has long been advocated
means by which a quark condensate may be measure
lattice-QCD simulations@11#. It has also been used in an
lyzing chiral symmetry restoration at nonzero temperat
@12# and chemical potential@13#, and to explore the connec
tion between magnetic monopoles and chiral symme
breaking in U(1) gauge theory@14#. Much has been learn
@15,16# by exploiting the fact that qualitative features of th
behavior ofr(l) for l;0 can be understood using chir
random matrix theory; i.e., from considerations based so
on QCD’s global symmetries.

Our main goal is to explicate a correspondence betw
the condensate in Eq.~1! and that in Eq.~8!. In Sec. II we
discuss the OPE condensate and its connection with QC
gap equation, and emphasize that the residue of the low
mass pole contribution to the flavor-nonsinglet pseudosc
vacuum polarization is a direct measure of the OPE cond
sate @17#. A natural ability to express DCSB through th
formation of a nonzero OPE condensate is fundamenta
the success of DSE models of hadron phenomena@18#. In
Sec. III we carefully define the trace of the massive dress
quark propagator and use that to illustrate a connection
tweenr(0) and the OPE condensate, which we verify v
comparison with a lattice simulation. Section IV is an e
logue.

II. OPE CONDENSATE

A. Gap and Bethe-Salpeter equations

Dynamical chiral symmetry breaking in QCD is readi
explored using the DSE for the quark self-energy:

S~p!215Z2~ ig•p1mbm!1Z1E
q

L

g2Dmn~p2q!

3
la

2
gmS~q!Gn

a~q,p!, ~9!

whereDmn(k) is the renormalized dressed-gluon propaga
Gn

a(q,p) is the renormalized dressed-quark-gluon vert
mbm is theL-dependent current-quark bare mass that app
in the Lagrangian; and*q

L
ª*Ld4q/(2p)4 represents a trans

lationally invariant regularization of the integral, withL the
regularization mass scale that is removed to infinity as
06520
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completion of all calculations. The quark-gluon vertex a
quark wave function renormalization constants,Z1(z2,L2)
and Z2(z2,L2) respectively, depend on the renormalizati
point, the regularization mass scale, and the gauge param

If the current-quark mass changes with flavor, then
solution of Eq.~9! is flavor dependent:

Sf~p!215 ig•pAf~p2,z2!1Bf~p2,z2!

5
1

Zf~p2,z2!
@ ig•p1M f~p2,z2!#, ~10!

and is obtained subject to the condition that at some la
spacelikez2,

Sf~p!21up25z25 ig•p1mf~z!, ~11!

wheremf(z) is the renormalized current-quark mass,

Z4~z,L!mf~z!5Z2~z,L!mf
bm~L!, ~12!

with Z4 the renormalization constant for the scalar part of
quark self-energy. Since QCD is an asymptotically fr
theory, the chiral limit is defined by

Z2~z2,L2!mf
bm~L![0, L@z ~13!

and in this case the scalar projection of Eq.~9! does not
exhibit an ultraviolet divergence@2,17#.

Important in describing chiral symmetry is the axia
vector Ward-Takahashi identity:

PmG5m
H ~k;P!5S 21~k1!ig5

TH

2
1 ig5

TH

2
S 21~k2!

2M (z)iG5
H~k;P!2 iG5

H~k;P!M (z) ,

~14!

whereP is the total momentum entering the vertex. In E
~14!, M (z)5diag@mu(z),md(z),ms(z)#, S5diag@Su ,Sd ,Ss#,
and $TH% are flavor matrices, e.g.,Tp1

5 1
2 (l11 il2) @we

consider SUf(3) because chiral symmetry is unimportant f
heavier quarks#; G5m

H (k;P) is the renormalized axial-vecto
vertex, which is obtained from the inhomogeneous Bet
Salpeter equation

@G5m
H ~k;P!# tu5Z2Fg5gm

TH

2 G
tu

1E
q

L

@x5m
H ~q;P!#srKtu

rs~q,k;P!, ~15!

where x5m
H
ªS(q1)G5m

H (q;P)S(q2), q65q6P/2, and
K(q,k;P) is the fully renormalized quark-antiquark scatte
ing kernel; andG5

H is the pseudoscalar vertex,

@G5
H~k;P!# tu5Z4Fg5

TH

2 G
tu

1E
q

L

@x5
H~q;P!#srKtu

rs~q,k;P!,

~16!
6-2
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with x5
H
ªS(q1)G5

H(q;P)S(q2). Multiplicative renormaliz-
ability ensures that no new renormalization constants ap
in Eqs.~15! and ~16!.

Flavor-octet pseudoscalar bound states appear as co
dent pole solutions of Eqs.~15! and ~16!, namely,

G5m
H ~k;P!}G5

H~k;P!}
1

P21mH
2

GH~k;P!, ~17!

whereGH is the bound state’s Bethe-Salpeter amplitude a
mH its mass.~Regular terms are overwhelmed at the pol!
Consequently, Eq.~14! entails@2,17#

f HmH
2 5r H

(z)M H
(z) , ~18!

whereM H
(z)5trflavor@M (z)$T

H,(TH) t%# is the sum of the con-
stituents’ current-quark masses~‘‘ t ’’ denotes matrix trans-
pose!; and

f HPm5Z2E
q

L1

2
tr@~TH! tg5gmxH~q;P!#, ~19!

ir H
(z)5Z4E

q

L1

2
tr@~TH! tg5xH~q;P!#, ~20!

where xHªS(q1)GH(q;P)S(q2) and the expressions ar
evaluated atP21mH

2 50.
Equation~19! is the pseudovector projection of the m

son’s Bethe-Salpeter wave function evaluated at the origi
configuration space. It is the precise expression for the
tonic decay constant. The renormalization constantZ2(z,L)
ensures that the right-hand side~rhs! is independent of: the
regularization scaleL, which may therefore be removed t
infinity; the renormalization point; and the gauge parame
Hence it is truly an observable.

Equation ~20! is the pseudoscalar analog. Therein t
renormalization constantZ4(z,L) entails that the rhs is in
dependent of the regularization scaleL and the gauge pa
rameter. It also ensures that thez dependence ofr H

(z) is pre-
cisely that required to guarantee that the rhs of Eq.~18! is
independent of the renormalization point.@r H

(z) is finite, and
Eq. ~18! valid, for arbitrary values of the current-quar
masses@19,20#.#

In the chiral limit the existence of a solution of Eq.~9!
with B0(p2)Þ0; i.e., DCSB, necessarily entails@17# that
Eqs.~15! and~16! exhibit a massless pole solution: the Gol
stone mode, which is described by

G0
g~k;P!5lgg5@ iE0~k;P!1g•PF0~k;P!

1g•kk•PG0~k;P!1smnkmPnH0~k;P!#,

~21!

wherein f p
0 E0(k;0)5B0(k2). ~The index ‘‘0’’ indicates a

quantity calculated in the chiral limit.! It follows immedi-
ately @17# that
06520
ar

ci-

d
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0 r 0

(z)52^q̄q&z
05 lim

L→`

Z4~z,L!NctrDE
q

L

S0~q!, ~22!

where the trace is only over Dirac indices. This result a
multiplicative renormalizability entail

^q̄q&z
0

^q̄q&z8
0 5Z4~z,z8!Z2

21~z,z8!5Zm~z,z8!, ~23!

where Zm is the mass-renormalization constant. It is th
apparent that the chiral limit behavior ofr H

(z) yields the OPE
condensate evolved to a renormalization pointz.

It is important to recall that the DSEs reproduce eve
diagram in perturbation theory. Therefore a weak coupl
expansion of Eq.~9! yields the perturbative series for th
dressed-quark propagator. This may be illustrated by the
sult for the scalar piece of the propagator calculated in
way,

Bf~p2!5mfS 12
a

p
lnF p2

mf
2G1••• D . ~24!

Every term in the series is proportional to the current-qu
mass and hence a nonzero value of the OPE condensa
impossible in perturbation theory.

B. Pseudoscalar vacuum polarization

Consider the color singlet Schwinger function describi
the pseudoscalar vacuum polarization

D5~x!5 K q̄~x!
1

2
l fg5q~x!q̄~0!

1

2
lgg5q~0!L , ~25!

which can be estimated, e.g., in lattice simulations. Its ren
malized form can completely be expressed in moment
space using quantities introduced already,

v5
f g~P!5Z2

2trE
q

L1

2
l fg5S~q1!G5

g~q;P!S~q2!. ~26!

Equation~16! can be rewritten in terms of the fully am
putated quark-antiquark scattering amplitude:M5K
1K(SS)K1•••, and in the neighborhood of the lowe
mass pole

M ~q,k;P!5GH~q;P!
1

P21mH
2

Ḡ~k;2P!1R~q,k;P!,

~27!

whereR is regular in this neighborhood.
Assuming SUf(3) flavor symmetry, substituting Eq.~27!

into Eq. ~26! gives

v5
f g~P!5d f g

1

P21mH
2

Zm
22r H

2 1••• ~28!

~the ellipsis denotes terms regular in the pole’s neighb
hood!. The renormalizable correlation function in Eq.~25! is
the Fourier transform of Eq.~28!, and using this fact plus the
definitions in Eqs.~12! and ~23! it is evident that the large
~Euclidean! x2 behavior of the product
6-3
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mbm
2 D5~x! ~29!

is a direct measure of the renormalization-group invarian

@m~z!r H
(z)#2 ~30!

that appears in Eq.~18!. ~This observation merely adapts th
technique for extracting masses in numerical simulations
lattice-QCD.! Hence the correlator in Eq.~25! provides a
means of estimating the OPE condensate in lattice sim
tions @21#, one whose ultraviolet behavior ensures a we
defined and calculable evolution under the renormaliza
group for any value of the current-quark mass.@ f p can simi-
larly be extracted from the axial-vector correlator analogo
to Eq. ~25!.# The model of Ref.@22# yields a meson mas
trajectory via Eq.~18! that provides a qualitative and qua
titative understanding of recent quenched lattice simulati
@20#.

III. BANKS-CASHER RELATION

A. Continuum analysis

It is readily apparent that Eq.~6! is meaningless as writ
ten: dimensional counting reveals that the rhs has m
dimension three and sincel will at some point be greate
than any relevant internal scale, the integral must diverg
L2, whereL is the regularizing mass scale.

To learn more, consider the trace of the unrenormali
massive dressed-quark propagator:

s̃~m!ªNctrDE
p

L

S̃m~p!, ~31!

evaluated at a fixed value of the regularization scale,L. This
Schwinger function can be identified with the left-hand s
of Eq. ~6!. Furthermore, assume thats̃(m) has a spectra
representation, since this is the essence of the Banks-Ca
relation:

s̃~m!ª2mE
0

L

dl
r̃~l!

l21m2
, ~32!

wherem5mbm(L). Equation~32! entails

r̃~l!5
1

2p
lim

h→01

@s̃~ il1h!2s̃~ il2h!#. ~33!

The content and meaning of this sequence of equation
well illustrated by inserting the free quark propagator in E
~31!. The integral thus obtained is readily evaluated us
dimensional regularization:

s̃ free~m!5
Nc

4p2
m3F ln

m2

z2
1

1

«
1g2 ln 4pG . ~34!

With Eq. ~33! the regularization dependent terms cancel a
one obtains
06520
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r̃~l!5
Nc

4p2
l3. ~35!

The one-loop contribution tor̃(l) has been evaluated us
ing the same procedure@23#. It is also proportional tol3 and
arises from them3ln m2/z2 terms ins̃(m). In fact, every term
obtainable in perturbation theory is proportional tol3, for
precisely the same reason that each term in the perturba
expression for the scalar part of the quark propagator is p
portional tom, see Eq.~24!. Hence, at every order in pertur
bation theory,

r̃~l50!50 ~36!

and ^0uq̄qu0&50. A nonzero value ofr(0) is plainly an es-
sentially nonperturbative effect.

A precise analysis requires that attention be paid to ren
malization. Consider then the gauge-parameter-indepen
trace of the renormalized quark propagator evaluated a
fixed value of the regularization scale:

s~m,z!ª2 lim
x→0

^q̄~x!q~0!&5Z4~z,L!NctrDE
p

L

Sm~p;z!,

~37!

where the argument remainsm5mbm(L), which is permit-
ted becausembm(L) is proportional to the renormalization
point-independent current-quark mass. The renormaliza
constantZ4 vanishes logarithmically with increasingL and
hence one still hass(m);L2mbm(L). However, using Eq.
~22! it is clear that for any finite but large value ofL and
toleranced, it is always possible to findmd

bm(L) such that

s~m,z!1^q̄q&z
0,d,;mbm,md

bm. ~38!

This is true in QCD. It can be illustrated using the DS
model of Ref.@2#, which preserves the one-loop renorma
ization group properties of QCD. In Fig. 1 we plots(m,z),
evaluated using a hard cutoffL on the integral in Eq.~37!,
calculated with the massive dressed-quark propagators
tained by solving the gap equation as described in the
pendix. Since Eq.~38! specifies the domain on which th
value of s(m,z) is determined by nonperturbative effect
one anticipates

md
bm~L!'2^q̄q&0/L2;1029 ~39!

for L52.0 TeV in QCD whereu^q̄q&0u;LQCD
3 , an estimate

confirmed in Fig. 1.
The dotted line in Fig. 1 is

s~m,z!52^q̄q&z
0 2

p
arctan

L

m
1Z4~z,L!

Nc

4p2

3m@L22m2ln~11L2/m2!#. ~40!

~We used the one-loop formula:Z4(z,L)5@a(L)/a(z)#gm,
for the numerical comparison.! The difference between Eq
6-4
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~40! and the curve is ofO@a(L)m(L)L2# because the DSE
model incorporates QCD’s one-loop behavior. In Fig. 1
also plots(m,z) obtained in the absence of confinement,
which case@24# ^q̄q&0[0, as is evident.

The discussion establishes thats(m,z) has a regular chi-
ral limit in QCD and is a monotonically increasin
convex-up function. It follows thats(m,z) has a spectra
representation:

s~m,z!52mE
0

L r~l!

l21m2
. ~41!

This lays the vital plank in a veracious connection betwe
the condensates in Eqs.~1! and~8!. On the domain specified
by Eq. ~39!, the behavior ofs(m,z) in Eq. ~37! is given by
Eq. ~40!, which yields, via Eq.~33!,

pr~l!52^q̄q&z
01Z4~z,L!

Nc

4p
l31•••, ~42!

where the ellipsis denotes contributions from the high
order terms implicit in Eq.~40!.

B. Comparison with a lattice-QCD simulation

In Fig. 2 we plot the spectral density of the stagger
Dirac operator in quenchedSU(3) gauge theory calculate
with 3000 configurations obtained on aV544 lattice, in the
vicinity of the deconfining phase transition atb*5.6. De-
tails of the simulation are given in Ref.@12#. Dimensioned
quantities are measured in units of 1/a, wherea is the lattice
spacing, and it isr(l)/V that should be compared with th
continuum spectral density.

While the effect of finite lattice volume is apparent in Fi
2 for la*0.1, the behavior at smallla is qualitatively in

10–10 10–9 10–8 10–7 10–6

mbm(Λ) (GeV)

0.0

0.1

0.2

0.3

0.4

0.5
σ(

m
)1/

3  (
G

eV
)

FIG. 1. Circles/solid line:s(m)1/3 in Eq. ~37! as a function of
the current-quark bare mass, evaluated using the dressed-
propagator obtained in the model of Ref.@2#; dashed line: the mod

el’s value of (2^q̄q&z51 GeV
0 )5(0.24 GeV)3; and dotted line: Eq.

~40!. Diamonds:s(m)1/3 evaluated in a nonconfining version of th

model; dot-dashed line: Eq.~40! with ^q̄q&0[0.
06520
n

r-

d

agreement with Eq.~42! and Fig. 1: a nonzero OPE conde
sate dominates the Dirac spectrum in the confined dom
and it vanishes in the deconfined domain whereuponr(0)
50 and the perturbative evolution, Eq.~35!, is manifest.

To be more quantitative, we note that atb55.4, r(0)a3

'70, so that

pr~0!a3/V'~0.95!3. ~43!

The value of the lattice spacing was not measured in R
@12# but one can, nevertheless, assess the scale of Eq.~43! by
supposinga;0.3 fm;0.3/LQCD, a value typical of small
couplings,b, wherewith the rhs is;(3LQCD)3. This is too
large but not unreasonable given the parameters of the s
lation, its errors, and the systematic uncertainties in our
timate. One can also fit the lattice data atb55.8, whereby
one findsr(l)}l3 on l,0.1 but with a proportionality con-
stant larger than that anticipated from perturbation the
viz., Eq. ~42!. Some mismatch is to be expected because
b55.8 one has only just entered the deconfined domain
close to the transition boundary nonperturbative effects
still material, as seen, e.g., in the heavy-quark potential
equation of state@25#. It is a modern challenge to determin
those gauge couplings and lattice parameters for which
data are quantitatively consistent with Eq.~42!.

IV. EPILOGUE

We verified that the gauge-invariant trace of the mass
dressed-quark propagator possesses a spectral represen
when considered as a function of the current-quark ma
This is key to establishing that the OPE condensate, wh
sets the ultraviolet scale for the momentum dependenc
the trace of the dressed-quark propagator, does indeed
sure the density of far-infrared eigenvalues of the gau
averaged massless Dirac operator, in the manner of
Banks-Casher relation. This relation is intuitively appeali
because a measurable accumulation of eigenvalues of
massless Dirac operator at zero virtuality expresses a m
gap in its spectrum.

ark

0

20

40

60

80

100

0 0.1 0.2

ρ 
( 

λ 
)

λ

β=5.4

β=5.6 β=5.8

FIG. 2. Spectral density of the staggered Dirac operator
quenched SU(3) gauge theory calculated on a 44 lattice.~Measured
in units of the lattice spacing.! The deconfinement transition take
place atb*5.6.
6-5
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In practice, there are three main parameters in a sim
tion of lattice-QCD: the lattice volume, characterized by
lengthL; the lattice spacinga; and the current-quark massm.
So long as the lattice size is large compared with the curr
quark’s Compton wavelength, viz.,L@1/m, then dynamical
chiral symmetry breaking can be expressed in the simulat
Supposing that to be the case then, as we have explicate
long as the lattice spacing is small compared with
current-quark’s Compton wavelength, i.e.,a!1/m!L,

pr~0!'2^q̄q&1/a
0 , ~44!

where the rhs is the scale-dependent OPE condensat@z
5L51/a in Eq. ~42!#.

In our continuum analysis we found that one requi
am&(aLQCD)3 if r(l50) is to provide a veracious est
mate of the OPE condensate. The residue at the lowest-m
pole in the flavor-nonsinglet pseudoscalar vacuum polar
tion provides a measure of the OPE condensate that is a
rate for larger current-quark masses.
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APPENDIX: MODEL GAP EQUATION

The gap equation’s kernel is built from a product of t
dressed-gluon propagator and dressed-quark-gluon verte
can be calculated in perturbation theory but that is in
equate for the study of intrinsically nonperturbative pheno
ena. To make model-independent statements about DC
one must employ an alternative systematic and chiral s
metry preserving truncation scheme.
D

er

dt
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The leading order term in one such scheme@26# is the
renormalization-group-improved rainbow truncation of t
gap equation (Q5p2q),

S~p!215Z2~ ig•p1mbm!

1E
q

L

G~Q2!Dmn
free~Q!

la

2
gmS~q!

la

2
gn .

~A1!

The ultraviolet (Q2*1 GeV2) behavior of G(Q2) in Eq.
~A1! is fixed by the known behavior of the quark-antiqua
scattering kernel@2#. The form of that kernel on the infrare
domain is currently unknown and a model is employed
complete the specification of the kernel. An efficacious fo
is @2#

G~Q2!

Q2
58p4Dd4~k!1

4p2

v6
DQ2e2Q2/v2

14p
gmp

1

2
ln@t1~11Q2/LQCD

2 !2#

F~Q2!, ~A2!

where, F(Q2)5$12exp(2Q2/@4mt
2#)%/Q2, mt50.5 GeV; t

5e221; gm512/(3322Nf), Nf54; and LQCD5LMS
(4)

50.234 GeV. The true parameters in Eq.~A2! areD andv;
however, they are not independent: in fitting, a change in
is compensated by altering the other, with fitted observab
changing little along a trajectoryvD5(0.6 GeV)3. Herein
we used

D5~0.884 GeV!2, v50.3 GeV. ~A3!

A nonconfining model is obtained withD50.
Equation ~A1! is readily solved for the dressed-qua

propagator, with the renormalization constants fixed via
~11!. That solution provides the elements used in the illust
tion of Sec. III.
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