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Triple-Pomeron matrix model for dispersive corrections to nucleon-nucleus total cross section
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Dispersive corrections to the total cross section for high-energy scattering from a heavy nucleus are calcu-
lated using a matrix model, based on the triple-Pomeron behavior of diffractive scattering from a single
nucleon, for the cross section operator connecting different states of the projectile nucleon. Energy-dependent
effects due to the decrease in longitudinal momentum transfers and the opening of more channels with
increasing energy are included. The three leading terms in an expansion in the number of inelastic transitions
are evaluated and compared to exact results for the model in the uniform nuclear density approximation for the
the scattering of nucleons froffCa and?°%Pb for laboratory momenta ranging from 50 to 200 GeV/
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[. INTRODUCTION momentum transfer. Using the uniform density model will
also introduce errors since it cannot be accurate in the outer
One consequence of the composite nature of nucleons islayers of the nucleus where most the dispersive correction
decrease in nucleon-nucleus total cross sections due to trafriginates. It is used partly because it simplifies the calcula-
sitions between different internal states of the projectiletion of higher order terms in the expansion in the number of
nucleon[1,2]. This decrease can be calculaf&#] using an transitions but mainly because it allows the exact result to be
operator to represent a generalized nucleon-nucleon totgRlculated, allowing for a real test of the accuracy of the
cross section, with the matrix elements representing th&xpansion.
probability amplitudes for forward scattering transitions be- Section Il reviews the transition expansion for the disper-
tween different states of the nucleon. sive corrections to the nucleon-nucleus total cross section,

The general problem of the propagation of high-energyincluding the effects of the longitudinal momentum transfers
Composite partides through a nucleus has a |0ng historyue to the different masses of the different excited states of
[5_11] If one has a Simp|e model for the Composite partidethe nucleon. In Sec. Il it is shown that the terms in this
and the longitudinal momentum transfer due to the differen€xpansion simplify considerably in the uniform nuclear den-
masses of the different states of the composite system can B#Y limit, with each term in the expansion represented as a
ignored the calculation of the dispersive corrections issum over products of transition amplitudes weighted by a
equiva|ent to Glauber theory for Composite-composite Scatf.unction of the differences among Cross sections and differ-
tering and is relatively straightforwafd1]. In general, how- ences in the masses of the different nucleonic states. In the
ever, simple models are not realistic and the mass differencéfiform density limit it is also possible to write the exact
cannot be ignored and the calculation becomes quite Comp"’ESU“, including all orders in the number of transitions, in
cated. Because of the difficulty of this calculation, and un-terms of the exponential of a single position-independent op-
certainties in the nature of the cross section operator, only thérator, as shown in Sec. IV. The representation of the transi-
leading term in an expansion in the number of inelastic trantion operator by a finite matrix, with a dimension which in-
sitions has been evaluatéti?]. (A closely related effect is Creases with energy, is discussed in Sec. V. This matrix is
involved in the analysis of color transparency in reactions orfhosen to have a form consistent with the triple-Pomeron
nuclei [13—15.) In this paper we test the accuracy of the behavior of the nucleon-nucleon single-diffraction dissocia-
leading order approximation, and the convergence of the exion, but is otherwise highly arbitrary. Using this matrix the
pansion, using a simple finite matrix model for the crossformulas are evaluated and the results are presented in Sec.
section operator and taking the uniform nuclear density limitVl. The results are summarized and discussed in Sec. VIL.
for which the exact result, including all orders in transitions,
can also be calculated. This matrix model is consistent with
the known triple-Pomeron behavior of high-energy, high- Il. EXPANSION IN INELASTIC TRANSITIONS

mass single-diffraction dissociation from a single nucleon, i has long been known that a version of the eikonal ap-
but cannot describe accurately the low-mass productioproximation holds for an infinite but restricted class of Feyn-
which clearly contributes significantly to the dispersive cor-man diagrams, which includes inelastic transitions among
rections. Furthermore, the model has a high degree of arbjjitferent states of the projectif@6]. The result is equivalent
trariness. Itis used only for the lack of a reliable microscopicig the eikonal approximation in coupled-channel potential
model for the internal degrees of freedom of highly excitediyeory [17-19, and leads to an expression for projectile-
nucleons. It has some features in common with a “simplifiedncleus total cross sections, which can be written as
example” used by HovE9] for the limit of zero longitudinal
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where |A) is the ground state of the nucleus ant) Since the dispersive corrections are small compared to the
is the lowest-mass eigenstate of the projectile system. Thtal cross section, it is useful to separdtéb) into two

profile functioni™ is an operator in the internal space of the parts:

projectile, I'(b)=Tg(b)—Tp(b). 1y
f“(b,{ra})= 1—Zexr{ —iz j dzAua(r)} 2) Defining the dimensionless absorption parameter
where Z indicates az-ordered product and t(b)=(A/2)an dzp(b.2), (12)
ﬁa(r)z(m/pl)e*“azfj(r—ra)e”az, (3  the main Glauber contribution, which does not include dis-
persive corrections, is simply
with v (r—r,) the effective potential operator produced by a I'o(b)=1—exg —t(b)], (13)

static target nucleon at,. Herep is the longitudinal mo-
mentum operator, diagonal in the mass eigenstates of thehile the diffractive correction is given by
projectile, with

1)

pj=py— (M= m)/(2py), 7 rD(b)=<1|2exp{—(A/2)f dzp(b,2)0(2)

where p; is the initial momentum of the projectile in the —exd —t(b)]. (14)

laboratory s_ystem yvhere the nucleus IS aF restrands the Previous calculations taking into account longitudnal mo-

mass of thgth excited Stat? of the projectile. mentum transfergl2] of I'p have included only the leading
Assuming the differentv, do not overlap, ignoring second-order term in an expansion in the number of inelastic

nuclear correlations, and assuming a large nucleon numbeansition. While this is almost certainly accurate for light

A, the expression fof' simplifies to nuclei, it is not clear whether or not it is adequate for heavy
A A nuclei. Below we develop expressions for the general terms
I'(b)=(A|T(b);{r }|A) in the expansion and evaluate them in a simple but possibly

not completely unrealistic model.
~1—Zexp{ —(AIZ)I dzp(b,z))0(zy)|,  (5) We begin by separating the cross section operat@rto
its diagonal and off-diagondtransition parts:

wherep is the nuclear density, normalized to 1, and o=0g+ 0y, (15)

o(z)=exp(—ipz;)oexpipzy), (6)  where

with & the cross section operatp4] for scattering of the (ilogliy=8,(ilali), (16)

projectile from a single target nucleon. Assuming that the ~ _ _

corresponding elastic and diffractive scattering amplitudeso thato, has only off-diagonal matrix elements. We now
are purely imaginary, the total projectile-nucleon cross secexpandl’y in powers of the transition operator,

tion is

oo

or=(1lo[1), (7) Ip(b)= 2 TP (b). 17

n=2

while the cross section for single-diffraction dissociation of Here the leadingn= 2 term contains contributions from pro-

the projectile interacting with a single nucleon, summed ovegesses in which the nucleon makes two transitions: one from

all diffractively excited states of the projectile, at momentumthe ground state to a higher-mass state, then another back to

transfer squareti=0, is the ground state. The nexh£ 3) term contains the contri-
butions from processes with three transitions, with the two

dogifs /dt=[(1|c?|1)— (1| o|1)?])/(16m). (8) intermediate projectile states being neither the ground state

nor equal to each other.

If Using a derivation analogous to that for time-dependent

A perturbation theory20], one can show that thEg”(b) are
I'(b)=(1|T'(b)|1), (9  given by thez-ordered integrals

o Z
then PR b)= (A" | dzpvz)- - [ dzpib.zy

"(A)Tm':ZRef *bT(b). (10 (1] 6(z0) - - o1 Zo) (20| 1), (18)

064904-2



TRIPLE-POMERON MATRIX MODEL FOR DISPERSIE. .. PHYSICAL REVIEW C 67, 064904 (2003
with fO;j102, - - in-1)

514(2)=0(2) 25 0(2), (19 =n fold“"' h foustZ

where ”
« f duexf t(b)un(x;—x; )
0 "~

U(z):ex;{ —(A/2) fﬁmdzlp(b,zl)(}dﬂﬁz (20) —izo(pr—py, )1 exelt(b)us(x;,— X; )

o , , , —iz,(p;,— pj,) Jexet(b)us (X}, —X,)
is diagonal in mass eigenstates. These expressions can be

simplified if we replacez by the dimensionless variable —iz1(pj,— P11, (29
_ z with z;=z(b,u;) and x;=(j|x|j). SinceX, has only off-
u(b,2)= (A/Z)UTf,xdzlp(b’zl)/t(b)’ @1 diagonal matrix elements, terms with equal successiseo

not contribute to the sum in Eq22).

The functionsf(™ defined above depend only on the dif-
ferences between successMs and pj’s, and thus are un-
changed if these variables are replaced by

so thatu(b,—«)=0 andu(b,»)=1, if we also define the
dimensionless cross section operators

;(E(}/(TT, (22) ;JEXJ_]. (30)
Xq=0g4lor, (23 and
. Pj=p;—P1. (31)
XtEO't/(TT, (24)
Thenf(™ can be written as
and, for future use, FOD: 1000 - o)

~_ - ~ 1 u u
x=x-1. (25 =n!f dun~~~J 3duzf 2du1

0 0 0

We can then write ~
xexp[—txjnfl(un—un_l)

F(D“)(b)=[—t(b)]”ex;{—t(b)]fldun- . J'Usdu2 +ipj (Za=2Zn-1)]- - -exd —tx) (U~ Uy)
0 0

N ) +ipj(z2=21)], (32

Xf du(1[Xg(Up) - - - Xg(ug)|1), (26) . .
0 where, because of the (and z) ordering, the differences

betweenu’s andz’s in the parenthesis are never negative,

where and the real parts df"’s, needed to calculate the total cross

sections, are always less than their Iimitsﬁjs approach
Xig(W)=U0[z(b,u)]~ %0 z(b,u)], (27)  zero. Each exponential in this expression acts as a propagator
for the projectile from the location of one transition to that of
the next, and includes absorptive and phase-changing parts
rqlgpending upon the state of the projectile at this stage of its
journey through the nucleus.

with z(b,u) the inverse olu(b,z) for fixed b.
Inserting complete sets of mass eigenstates between t

§<td(u) operators in Eq(20) gives

I1l. UNIFORM DENSITY LIMIT
T8 (b)={[~t(b)]"/n!}exd ~t(b)]
The evaluation of the expressions for tH®'s is compli-
X > (Axine1) - alxdin) cated by the fact that andu are in general not simple func-
jio - dn-1 tions of one another. The relation between them is deter-
A e ] mined by the shape of the nuclear density functpmand
X(Jalx| DFO(bij1,ja, - jn-1), (28 depends upon the impact parameter. For heavy nyelés,
well approximated by the simple Woods-Saxon form, but the
where relation betweerz andu is still not simple. For the heaviest
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FIG. 1. Integrands for diffractive reductions in nucletfiPb
total cross sections as a function of impact paramietar 50 GeV. b (fm)
The solid curves show the exact result along with the contributions
from second through fourth order in the number of inelastic transi- FIG. 2. Integrands for diffractive reductions in nucle8tiPb
tions. The dashed curve shows the sum of the second- throud®tal cross sections as a function of impact paranigtr200 GeV.
fourth-order terms. The solid curves show the exact result along with the contributions

from second through fourth order in the number of inelastic transi-

nuclei the surface thickness is much less than the nucleajons. The dashed curve shows the sum of the second- through
radius so that it may not introduce excessive errors to replac®urth-order terms.
p by its uniform density limit, especially at small momentum
transfers and, in particular, for evaluating the dispersive con-
tribution to the total cross section. As can be seen in Figs. 1
and 2, however, even for the total cross section the dispersive Yi E;(jAUTpO— ZiBj (38
corrections originate mainly in the outer layers where the

uniform density differs most from the actual density, so somds independent ob and theu's. In the uniform density limit,
errors are certainly introduced by this simplification. then, the effects of longitudinal momentum transfers are

In the uniform density limit, taken into account simply by adding an imaginary part to
e each diagonal matrix eIemeﬁ}, and modifying the calcu-
P()=po®(R=T), (33 |ations of the functiong ™ accordingly.
giving

IV. EXACT RESULT
t(b)=AopoVR?— b0 (R—b), (34 _ o )
In the uniform density limit an exact expression for the

where dispersive correction to the total cross section can be found
in terms of the exponential of zindependent operator. The
po=1U(4mRI3) (35 simplest derivatiorl? of this result staFr)ts with E(g) and re-
and R~r,AY3, with ry~1.14 fm. [With this expression for moves thez dependence ofr(z) by adding a term propor-
t(b), there is an analytic expressip] for the main Glauber tional to p to the operator in the exponent. For a given im-
contribution t0a(A)otar-] In this limit zandu are linearly  pact parameter, a singigindependent matrix is involved so
related, that thez ordering in Eqg.(2) can be ignored, giving

z=VR°-bi(2u-1), (36) I'o(b)=(1]exd — M(b)]|1)—exd —t(b)],  (39)

for O=<u<1. The arguments of the exponentials in E2f)

then simplify considerably, with the zindependent operator

_’;(jnt(b)(unJrl_un)+i5jn(zn+1_zn) M (b)=[Apoo—2i(p—p1)]VRZ—b2. (40)
=y, JRZ=b%(Ups1—Up), (37)  This can also be written as
where the complex number I'p(b)=exd —t(b)|{(1lexd —M(b)]|1)—1}, (41)
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where from M2, ~1.5 (GeVk?)? to M2, ~mi+2p;m,, the lat-
~ N . ~ o~ — ter condition following from the requirement that the longi-
M(b)=M(b)—t(b)1=[Apoorx—2ip]yR*—b". tudinal momentum transfer should be less tiap, the in-

(42)  verse of the range of the strong for¢At very high energies
the effective Pomeron intercept is greater than 1, and the

Either of the expression&39) or (41) can be evaluated by above must be modified. Details can be found in Refs

expanding the exponential of tlzéndependent operator in a
. . . [21,25,26.)

power series, with the second converging somewhat mor . 2 2 2

rapidly. (Using the matrix model below, one has to include of The continuous range o betW(_angImm andef?X _car:

the order of 50 terms in the expansion, and there is consid2€ @PProximately replaced by a finite number of “bins” of

erable cancellation, so the individual terms must be calcuwidth Am? centered am?. The operatoix is then repre-

lated to high accuracy. sented by a finite matrix with elemen(tix|i) constrained by
Another approach for evaluatifig,(b) depends upon the

fact that, since the nucleon always enters the reaction in its do;/dt~ o2(j|x|1)?(167)~[da/(dtd MZ)]ijAmjz,

ground state, the full operator expi) is not needed. It is (48)
sufficient to work with the reaction-modified state,
or
Vy=exp —M)|1), (43 R
v v (ilX11)*~gpppAm?/(a7m?). (49
with
To complete the model, one must also have a prescription for
I'p(b)=exd —t(b)J[(1[V)—1]. (44)  the sizes of the mass bins. For simplicity, equal spacing in

_ _ m? is used below:
Expanding the exponential

. m?=ms+mj(j—1), (50)
|V>=n§=‘,o V), 49 with m, a parameter determined by the spacing of the low-
energy diffractively produced resonances. Equat&5 then
where takes the simple form
[VR)=(Lnl)(~=M)"1)=~(LUn)M|V(n-1)) (46) (ilX|1)?~(gppp/otD/[(My/me)*+j—1].  (51)
can be calculated recursively starting wjth0o)=|1). With the expression above fi2,.,, the dimensiom of the

matrix is given by
V. MATRIX MODEL 2
N~2p;m,/mg, (52
The expressions foF ") above involve the matrix ele-
ments of the dimensionless cross section operatand the which increases linearly with;, the momentum of the inci-

longitudinal momentum operatgy. In this section a model dent proton in the rest frame of the target nucleus. This ex-

: . : ression forN is clearly only a rough estimate, but fortu-
for these operators is developed, which, although highly ar? : . :
bitrary, is consistent with the experimental high-energy be_nately excited states withnearN do not contribute much to

havior of diffraction dissociation, which is in turn approxi- the dispersive correction compared to lower states. Changing

mately consistent with that expected from the leading triple-N slightly does not affect the results below appreciably. Un-

Pomeron behavior. There is no reason why this model shoulf rtunattlaly, dlfffractlonhdlssomatlon constrains t;nly one row
be accurate for the important low-mass diffractively pro- F_’lrld_ column, romzt € assumezd symmgtof the matrix
duced states: two-component dualigi] suggests that in the (i|X[i). For smalim{ and largem;, one can argue that the
resonance region it could give a smooth background but ndfiple-Pomeron  behavior should still be valid and the
the contribution due to the resonances themselves. Thdm:/m’ dependence should still hold. For simplicity, here it
model, however, should give some idea of the importance o assumed thatvery off-diagonal element of the matrix is
high-mass states and the convergence of the expansion in tB&/en by
number of inelastic transitions. Ignoring contributions from .
secondary Regge poles, and taking the Pomeron intercept (ilxliy=gppp/[aH@2+[j—i])], (53

a(0)=1, this leads to the simple behavior at momentum ] o . .
transfer squaret=0 [22,23 wherea=m,;/mg. This expression is consistent with both

experiment and the triple-Pomeron behavior ferl and
do/(dtdM?) = 032gppp/(167M?), (47 largej, but is only a guess elsewhere, especially whand
j are comparable in size. Furthermore, although the matrix is
where o1 is the nucleon-nucleon total cross section andin general complex, it will below be assumed real. This is
gppp~0.364 mB’? [24] is the triple-Pomeron vertex, while done mainly because the phases of the matrix elements other
the mass square of the diffractively excited nucleon runghan x;; are unknown, and is consistent with the fact that
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TABLE |. Dispersive reductions in the total cross sections for scattering of high-energy nucleons from
4Ca. The figures in parentheses are obtained if the longitudinal momentum transfers are set to zero.

Dispersive reductions iorrq4(A=40)(mb) Ap,_=0)

Lab Order in inelastic transitions
momentum
(GeV) 2 3 4 Sum Exact
50 20.8(24.2 —7.4(—-11.8) 2.9(6.3 16.4(18.7 15.7(16.9
100 26.4(28.5 —15.2(-19.7) 9.4(14.9 20.6(23.7) 17.4(17.9)
150 29.0(30.5 —20.5(—24.2) 15.7(21.9 24.2(27.9 17.8(18.0
200 30.6(31.7) —24.4(—27.4) 21.2(26.9 27.5(30.9 18.0(18.1)

the real part of the forward proton-proton scattering ampli-with an imaginary part which is independentmfand a real
tude at high energies is known to be small. part which increases linearly with momentum.
Finally, we need an expression for the diagonal elements

x;=(jIx[j) VI. RESULTS

Xj=1+d(j—1), (54 The formulas above have been evaluated for scattering of
nucleons from*°Ca and?°®%Pb for incident laboratory mo-
which allows the cross section for nucleons to scatter froninenta from 50 to 200 Ge¢/ and forn, the number of in-
excited nucleons to increase with the degree of excitationelastic diffractive transitions, ranging from 2 to 4. The cor-

This means that hlgh'y excite_d states WI" be absorbed morksponding reductions in the total cross sections can be
strongly than lower states while propagating between transiyritten as

tions. (If d=0, all diagonal elements of are unity, and the
expressions above simplify consideraply.would probably
be more reasonable fog; to approach a limiting value gs gg‘):f db4mb Rel'{)(b). (58)
increases, but this would introduce still more parameters and
assumptions into the model.
With these assumptions bothandm? are linear inj, and ~ Using gppp=0.363 mbB’ anﬁ or=38.5 mb gives the cozef-
so are the complex numbeys defined in Eq(34), ficient in Eq. (39) (gppp/o7?)"?=0.24. We also taken
=1.5 GeV, a’=0.5, andd=0.1, although any values of
yi=(—1)y2, (55 the same order of magnitude would be just as reasonable.
The shapes of the integrands fé¥Pb for 50 and 200
where GeV are shown in Figs. 1 and 2, respectively, while the val-
ues of the diffractive reductions in the total cross sections are
Y2=Aorpod+img/p;. (56)  given in Tables | and II. The most surprising feature of these
results is that, although the contributions are all small com-
For smallj’s the influence of the longitudinal momentum pared to the uncorrected Glauber cross section of about 2582
transfer, given by the imaginary part 9%, decreases as mb for 2°%°b and 737 mb for*°Ca, at high energies the
1/p;, but the dimension of the matrix increasegpasso that  expansion in the number of inelastic transitions does not con-

for the heaviest excited nucleon included we have verge well at all. As noted above, as the energy increases
, more and heavier excited nucleons are included and the cor-
yn=2A0rpodm,py/mg+iz2m,, (57) rection at each order increases. Because of the poor conver-

TABLE II. Dispersive reductions in the total cross sections for scattering of high-energy nucleons from
208, The figures in parentheses are obtained if the longitudinal momentum transfers are set to zero.

Dispersive reductions iorqq5(A=208)(mb) Ap,_=0)

Lab Order in inelastic transitions
Momentum
(GeV) 2 3 4 Sum Exact
50 45.4(57.9 —16.4(—39.2) 5.6(31.9 34.6(50.1) 34.2(37.)
100 59.6(66.9 —40.6(—61.4) 29.6(65.7) 48.6(71.2 37.6(38.5
150 66.0(70.6) —56.9(— 73.0) 54.4(88.2) 63.5(85.9 38.5(38.9
200 69.7(72.9 —68.2(—80.6) 75.3(104.8 76.8(97.1) 38.9(39.2
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gence, however, the expansion in the number of inelastia single nucleon. In particular, the amplitudes for transitions
transitions is not very useful, especially at higher energies. lfrom one highly excited nucleon state to another are essen-
gives only an order of magnitude for the exact result, withtially unknown, and the expressions used in the model are
the individual terms oscillating in sign. The leading second-simply guesses based on the known behavior of the ampli-
order term in particular is always of the right order of mag-tudes for excitation from the nucleon itself. It would be use-
nitude but larger than the exact result, with the error increasful to repeat the calculations with other assumptions for these
ing from 33% at 50 GeW to nearly 80% at 200 Ge¢/ amplitudes in order to get some idea of the dependence of
These results can be compared with the results of highthe results on the assumptions: a better treatment of the con-
energy neutron-nucleus total cross section measurerf@nts tributions from low-mass resonances should be included if
The experimental values of the total cross sections are someessible.
what larger than our calculations, presumably reflecting the In the model used here, the diffractive corrections to the
errors introduced by the uniform density approximation. Thetotal cross sections are all small compared to the total cross
experimental results are definitely lower than the results ofection itself, but their expansion in the number of inelastic
careful Glauber theory calculation, and the differences aréransitions does not converge well at higher energies. In par-
comparable to the leading order dispersive reductions calcuicular, the leading second-order correction, which has been
lated from experimental diffractive dissociation cross sec-used to estimate the size of the diffractive correction, is too
tions. These reductions are about twice as large as those cédrge by nearly 80% at a laboratory momentum of
culated here, presumably because the model here does 220 GeveE.
include properly the contributions from the important low- It would be interesting to extend these calculations to
mass resonant states. single-diffraction dissociation from nuclei, since for these
The influence of the longitudinal momentum transfer wasprocesses there is no zeroth-order term, corresponding to the
studied by comparing the result calculated from the formulasarge Glauber contribution to the total cross section, so that
above with those with the longitudinal momentum transferghe corrections due to higher order terms might be relatively
dropped(so thaty, becomes a real numbeiThe results in  quite large. A preliminary investigation suggests that it
this limit are given as the numbers in parentheses in Tablesdhould also be possible to do an exact calculation in this case
and II. Although the longitudinal momentum transfers reducen the uniform density limit. (A calculation of single-
significantly the magnitudes of the individual terms in thediffraction dissociation from the deuteron would also be very
expansion, they have a relatively small effect, decreasininteresting, and might put additional constraints on the as-
with increasing energy, on the exact results. sumptions that go into the matrix modetCoherent” dif-
fraction dissociation, where the nucleus remains in its ground
state, would be particularly simple to calculate, but probably
experimentally challenging. One could also calculate a

Previ lculati fthe di . i ,d“nuclearinclusive" cross section in which all nuclear excited
revious calculations of the dispersive corrections considg;aias are summed over.

ered here have considered only a small number of channels,

ignored the longitudinal momentum transfer, or included

only the lowest order term in the the transition expansion. In ACKNOWLEDGMENT
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