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Triple-Pomeron matrix model for dispersive corrections to nucleon-nucleus total cross section
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Dispersive corrections to the total cross section for high-energy scattering from a heavy nucleus are calcu-
lated using a matrix model, based on the triple-Pomeron behavior of diffractive scattering from a single
nucleon, for the cross section operator connecting different states of the projectile nucleon. Energy-dependent
effects due to the decrease in longitudinal momentum transfers and the opening of more channels with
increasing energy are included. The three leading terms in an expansion in the number of inelastic transitions
are evaluated and compared to exact results for the model in the uniform nuclear density approximation for the
the scattering of nucleons from40Ca and208Pb for laboratory momenta ranging from 50 to 200 GeV/c.
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I. INTRODUCTION

One consequence of the composite nature of nucleons
decrease in nucleon-nucleus total cross sections due to
sitions between different internal states of the projec
nucleon@1,2#. This decrease can be calculated@3,4# using an
operator to represent a generalized nucleon-nucleon
cross section, with the matrix elements representing
probability amplitudes for forward scattering transitions b
tween different states of the nucleon.

The general problem of the propagation of high-ene
composite particles through a nucleus has a long his
@5–11#. If one has a simple model for the composite parti
and the longitudinal momentum transfer due to the differ
masses of the different states of the composite system ca
ignored the calculation of the dispersive corrections
equivalent to Glauber theory for composite-composite s
tering and is relatively straightforward@11#. In general, how-
ever, simple models are not realistic and the mass differen
cannot be ignored and the calculation becomes quite com
cated. Because of the difficulty of this calculation, and u
certainties in the nature of the cross section operator, only
leading term in an expansion in the number of inelastic tr
sitions has been evaluated@12#. ~A closely related effect is
involved in the analysis of color transparency in reactions
nuclei @13–15#.! In this paper we test the accuracy of th
leading order approximation, and the convergence of the
pansion, using a simple finite matrix model for the cro
section operator and taking the uniform nuclear density li
for which the exact result, including all orders in transition
can also be calculated. This matrix model is consistent w
the known triple-Pomeron behavior of high-energy, hig
mass single-diffraction dissociation from a single nucle
but cannot describe accurately the low-mass produc
which clearly contributes significantly to the dispersive c
rections. Furthermore, the model has a high degree of a
trariness. It is used only for the lack of a reliable microsco
model for the internal degrees of freedom of highly excit
nucleons. It has some features in common with a ‘‘simplifi
example’’ used by Hove@9# for the limit of zero longitudinal
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momentum transfer. Using the uniform density model w
also introduce errors since it cannot be accurate in the o
layers of the nucleus where most the dispersive correc
originates. It is used partly because it simplifies the calcu
tion of higher order terms in the expansion in the number
transitions but mainly because it allows the exact result to
calculated, allowing for a real test of the accuracy of t
expansion.

Section II reviews the transition expansion for the disp
sive corrections to the nucleon-nucleus total cross sect
including the effects of the longitudinal momentum transfe
due to the different masses of the different excited state
the nucleon. In Sec. III it is shown that the terms in th
expansion simplify considerably in the uniform nuclear de
sity limit, with each term in the expansion represented a
sum over products of transition amplitudes weighted by
function of the differences among cross sections and dif
ences in the masses of the different nucleonic states. In
uniform density limit it is also possible to write the exa
result, including all orders in the number of transitions,
terms of the exponential of a single position-independent
erator, as shown in Sec. IV. The representation of the tra
tion operator by a finite matrix, with a dimension which in
creases with energy, is discussed in Sec. V. This matri
chosen to have a form consistent with the triple-Pome
behavior of the nucleon-nucleon single-diffraction dissoc
tion, but is otherwise highly arbitrary. Using this matrix th
formulas are evaluated and the results are presented in
VI. The results are summarized and discussed in Sec. V

II. EXPANSION IN INELASTIC TRANSITIONS

It has long been known that a version of the eikonal a
proximation holds for an infinite but restricted class of Fey
man diagrams, which includes inelastic transitions amo
different states of the projectile@16#. The result is equivalen
to the eikonal approximation in coupled-channel poten
theory @17–19#, and leads to an expression for projectil
nucleus total cross sections, which can be written as

s~A!Total52ReE d2b^Au^1uĜ~b,$ra%!u1&uA&, ~1!
©2003 The American Physical Society04-1
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where uA& is the ground state of the nucleus andu1&
is the lowest-mass eigenstate of the projectile system.
profile functionĜ is an operator in the internal space of t
projectile,

Ĝ~b,$ra%!512Z expF2 i(
a

E dzûa~r !G , ~2!

whereZ indicates az-ordered product and

ûa~r !5~m/p1!e2 i p̂zv̂~r2ra!eip̂z, ~3!

with v̂(r2ra) the effective potential operator produced by
static target nucleon atra . Here p̂ is the longitudinal mo-
mentum operator, diagonal in the mass eigenstates of
projectile, with

pj'p12~mj
22m1

2!/~2p1!, ~4!

where p1 is the initial momentum of the projectile in th
laboratory system where the nucleus is at rest andmj is the
mass of thej th excited state of the projectile.

Assuming the differentv̂a do not overlap, ignoring
nuclear correlations, and assuming a large nucleon num
A, the expression forĜ simplifies to

Ĝ~b!5^AuĜ~b!;$ra%uA&

'12Z expF2~A/2!E dz1r~b,z1!ŝ~z1!G , ~5!

wherer is the nuclear density, normalized to 1, and

ŝ~z1![exp~2 i p̂z1!ŝ exp~ i p̂z1!, ~6!

with ŝ the cross section operator@4# for scattering of the
projectile from a single target nucleon. Assuming that
corresponding elastic and diffractive scattering amplitu
are purely imaginary, the total projectile-nucleon cross s
tion is

sT5^1uŝu1&, ~7!

while the cross section for single-diffraction dissociation
the projectile interacting with a single nucleon, summed o
all diffractively excited states of the projectile, at momentu
transfer squaredt50, is

dsdi f f /dt5@^1uŝ2u1&2^1uŝu1&2#/~16p!. ~8!

If

G~b![^1uĜ~b!u1&, ~9!

then

s~A!Total52ReE d2bG~b!. ~10!
06490
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Since the dispersive corrections are small compared to
total cross section, it is useful to separateG(b) into two
parts:

G~b!5GG~b!2GD~b!. ~11!

Defining the dimensionless absorption parameter

t~b!5~A/2!sTE dzr~b,z!, ~12!

the main Glauber contribution, which does not include d
persive corrections, is simply

GG~b!512exp@2t~b!#, ~13!

while the diffractive correction is given by

GD~b!5^1uZ expF2~A/2!E dzr~b,z!ŝ~z!G u1&

2exp@2t~b!#. ~14!

Previous calculations taking into account longitudnal m
mentum transfers@12# of GD have included only the leading
second-order term in an expansion in the number of inela
transition. While this is almost certainly accurate for lig
nuclei, it is not clear whether or not it is adequate for hea
nuclei. Below we develop expressions for the general te
in the expansion and evaluate them in a simple but poss
not completely unrealistic model.

We begin by separating the cross section operatorŝ into
its diagonal and off-diagonal~transition! parts:

ŝ5ŝd1ŝ t , ~15!

where

^ i uŝdu j &5d i j ^ j uŝu j &, ~16!

so thatŝ t has only off-diagonal matrix elements. We no
expandGD in powers of the transition operator,

GD~b!5 (
n52

`

GD
(n)~b!. ~17!

Here the leadingn52 term contains contributions from pro
cesses in which the nucleon makes two transitions: one f
the ground state to a higher-mass state, then another ba
the ground state. The next (n53) term contains the contri
butions from processes with three transitions, with the t
intermediate projectile states being neither the ground s
nor equal to each other.

Using a derivation analogous to that for time-depend
perturbation theory@20#, one can show that theGD

(n)(b) are
given by thez-ordered integrals

GD
(n)~b!5~2A/2!ne2t(b)E

2`

`

dznr~b,zn!•••E
2`

z2
dz1r~b,z1!

3^1uŝ td~zn!•••ŝ td~z2!ŝ td~z1!u1&, ~18!
4-2
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TRIPLE-POMERON MATRIX MODEL FOR DISPERSIVE . . . PHYSICAL REVIEW C 67, 064904 ~2003!
with

ŝ td~z!5Û~z!21ŝ tÛ~z!, ~19!

where

Û~z!5expF2~A/2!E
2`

z

dz1r~b,z1!ŝd1 i p̂zG ~20!

is diagonal in mass eigenstates. These expressions ca
simplified if we replacez by the dimensionless variable

u~b,z![~A/2!sTE
2`

z

dz1r~b,z1!/t~b!, ~21!

so thatu(b,2`)50 andu(b,`)51, if we also define the
dimensionless cross section operators

x̂[ŝ/sT , ~22!

x̂d[ŝd /sT , ~23!

x̂t[ŝ t /sT , ~24!

and, for future use,

x̃[ x̂21̂. ~25!

We can then write

GD
(n)~b!5@2t~b!#nexp@2t~b!#E

0

1

dun•••E
0

u3
du2

3E
0

u2
du1^1ux̂td~un!••• x̂td~u1!u1&, ~26!

where

x̂td~u!5Û@z~b,u!#21x̂tÛ@z~b,u!#, ~27!

with z(b,u) the inverse ofu(b,z) for fixed b.
Inserting complete sets of mass eigenstates between

x̂td(u) operators in Eq.~20! gives

GD
(n)~b!5$@2t~b!#n/n! %exp@2t~b!#

3 (
j 1 , . . . ,j n21

^1ux̂tu j n21&•••^ j 2ux̂tu j 1&

3^ j 1ux̂tu1& f (n)~b; j 1 , j 2 , . . . ,j n21!, ~28!

where
06490
be

the

f (n)~b; j 1 , j 2 , . . . ,j n21!

[n! E
0

1

dun•••E
0

u3
du2

3E
0

u2
du1exp@ t~b!un~x12xj n21

!

2 izn~p12pj n21
!#•••exp@ t~b!u2~xj 2

2xj 1
!

2 iz2~pj 2
2pj 1

!#exp@ t~b!u1~xj 1
2x1!

2 iz1~pj 1
2p1!#, ~29!

with zj5z(b,uj ) and xj5^ j ux̂u j &. Since x̂t has only off-
diagonal matrix elements, terms with equal successivej i8s do
not contribute to the sum in Eq.~22!.

The functionsf (n) defined above depend only on the d
ferences between successivexj8s and pj8s, and thus are un-
changed if these variables are replaced by

x̃ j[xj21 ~30!

and

p̃ j[pj2p1 . ~31!

Then f (n) can be written as

f (n)~b; j 1 , j 2 , . . . ,j n21!

5n! E
0

1

dun•••E
0

u3
du2E

0

u2
du1

3exp@2t x̃ j n21
~un2un21!

1 i p̃ j n21
~zn2zn21!#•••exp@2t x̃ j 1

~u22u1!

1 i p̃ j 2
~z22z1!#, ~32!

where, because of theu ~and z) ordering, the differences
betweenu8s and z8s in the parenthesis are never negativ
and the real parts off (n)8s, needed to calculate the total cro
sections, are always less than their limits asp̃ j8s approach
zero. Each exponential in this expression acts as a propag
for the projectile from the location of one transition to that
the next, and includes absorptive and phase-changing p
depending upon the state of the projectile at this stage o
journey through the nucleus.

III. UNIFORM DENSITY LIMIT

The evaluation of the expressions for thef (n)8s is compli-
cated by the fact thatz andu are in general not simple func
tions of one another. The relation between them is de
mined by the shape of the nuclear density functionr and
depends upon the impact parameter. For heavy nuclei,r is
well approximated by the simple Woods-Saxon form, but
relation betweenz andu is still not simple. For the heavies
4-3
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DAVID R. HARRINGTON PHYSICAL REVIEW C67, 064904 ~2003!
nuclei the surface thickness is much less than the nuc
radius so that it may not introduce excessive errors to rep
r by its uniform density limit, especially at small momentu
transfers and, in particular, for evaluating the dispersive c
tribution to the total cross section. As can be seen in Fig
and 2, however, even for the total cross section the disper
corrections originate mainly in the outer layers where
uniform density differs most from the actual density, so so
errors are certainly introduced by this simplification.

In the uniform density limit,

r~r !5r0Q~R2r !, ~33!

giving

t~b!5AsTr0AR22b2Q~R2b!, ~34!

where

r051/~4pR3/3! ~35!

andR'r 0A1/3, with r 0'1.14 fm. @With this expression for
t(b), there is an analytic expression@6# for the main Glauber
contribution tos(A)Total .] In this limit z andu are linearly
related,

z5AR22b2~2u21!, ~36!

for 0<u<1. The arguments of the exponentials in Eq.~26!
then simplify considerably,

2 x̃ j n
t~b!~un112un!1 i p̃ j n

~zn112zn!

52yj n
AR22b2~un112un!, ~37!

where the complex number

FIG. 1. Integrands for diffractive reductions in nucleon-208Pb
total cross sections as a function of impact parameterb at 50 GeV.
The solid curves show the exact result along with the contributi
from second through fourth order in the number of inelastic tran
tions. The dashed curve shows the sum of the second- thro
fourth-order terms.
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yj[ x̃ jAsTr022i p̃ j ~38!

is independent ofb and theu’s. In the uniform density limit,
then, the effects of longitudinal momentum transfers
taken into account simply by adding an imaginary part
each diagonal matrix elementx̃ j , and modifying the calcu-
lations of the functionsf (n) accordingly.

IV. EXACT RESULT

In the uniform density limit an exact expression for th
dispersive correction to the total cross section can be fo
in terms of the exponential of az-independent operator. Th
simplest derivation of this result starts with Eq.~5! and re-
moves thez dependence ofŝ(z) by adding a term propor-
tional to p̂ to the operator in the exponent. For a given im
pact parameter, a singlez-independent matrix is involved s
that thez ordering in Eq.~2! can be ignored, giving

GD~b!5^1uexp@2M̂ ~b!#u1&2exp@2t~b!#, ~39!

with the z-independent operator

M̂ ~b!5@Ar0ŝ22i ~ p̂2p1!#AR22b2. ~40!

This can also be written as

GD~b!5exp@2t~b!#$^1uexp@2M̃ ~b!#u1&21%, ~41!

s
i-
gh

FIG. 2. Integrands for diffractive reductions in nucleon-208Pb
total cross sections as a function of impact parameterb at 200 GeV.
The solid curves show the exact result along with the contributi
from second through fourth order in the number of inelastic tran
tions. The dashed curve shows the sum of the second- thro
fourth-order terms.
4-4
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TRIPLE-POMERON MATRIX MODEL FOR DISPERSIVE . . . PHYSICAL REVIEW C 67, 064904 ~2003!
where

M̃ ~b!5M̂ ~b!2t~b!1̂5@Ar0sTx̃22i p̃#AR22b2.
~42!

Either of the expressions~39! or ~41! can be evaluated by
expanding the exponential of thez-independent operator in
power series, with the second converging somewhat m
rapidly. ~Using the matrix model below, one has to include
the order of 50 terms in the expansion, and there is con
erable cancellation, so the individual terms must be ca
lated to high accuracy.!

Another approach for evaluatingGD(b) depends upon the
fact that, since the nucleon always enters the reaction in
ground state, the full operator exp(2M̃) is not needed. It is
sufficient to work with the reaction-modified state,

uV&[exp~2M̃ !u1&, ~43!

with

GD~b!5exp@2t~b!#@^1uV&21#. ~44!

Expanding the exponential

uV&5 (
n50

`

uVn&, ~45!

where

uVn&[~1/n! !~2M̃ !nu1&52~1/n!M̃ uV~n21!& ~46!

can be calculated recursively starting withuV0&5u1&.

V. MATRIX MODEL

The expressions forGD
(n) above involve the matrix ele

ments of the dimensionless cross section operatorx̂ and the
longitudinal momentum operatorp̂. In this section a mode
for these operators is developed, which, although highly
bitrary, is consistent with the experimental high-energy
havior of diffraction dissociation, which is in turn approx
mately consistent with that expected from the leading trip
Pomeron behavior. There is no reason why this model sho
be accurate for the important low-mass diffractively pr
duced states: two-component duality@21# suggests that in the
resonance region it could give a smooth background but
the contribution due to the resonances themselves.
model, however, should give some idea of the importanc
high-mass states and the convergence of the expansion i
number of inelastic transitions. Ignoring contributions fro
secondary Regge poles, and taking the Pomeron inter
a(0)51, this leads to the simple behavior at momentu
transfer squaredt50 @22,23#

ds/~dtdM2!5sT
3/2gPPP /~16pM2!, ~47!

where sT is the nucleon-nucleon total cross section a
gPPP'0.364 mb1/2 @24# is the triple-Pomeron vertex, while
the mass square of the diffractively excited nucleon ru
06490
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from Mmin
2 '1.5 (GeV/c2)2 to Mmax

2 'm1
212p1mp , the lat-

ter condition following from the requirement that the long
tudinal momentum transfer should be less thanmp , the in-
verse of the range of the strong force.~At very high energies
the effective Pomeron intercept is greater than 1, and
above must be modified. Details can be found in Re
@21,25,26#.!

The continuous range ofm2 betweenMmin
2 andMmax

2 can
be approximately replaced by a finite number of ‘‘bins’’ o
width Dmj

2 centered atmj
2 . The operatorx̂ is then repre-

sented by a finite matrix with elements^ j ux̂u i & constrained by

ds j /dt'sT
2^ j ux̂u1&2/~16p!'@ds/~dtdM2!#m

j
2Dmj

2 ,

~48!

or

^ j ux̂u1&2'gPPPDmj
2/~sT

1/2mj
2!. ~49!

To complete the model, one must also have a prescription
the sizes of the mass bins. For simplicity, equal spacing
m2 is used below:

mj
25m1

21m0
2~ j 21!, ~50!

with m0 a parameter determined by the spacing of the lo
energy diffractively produced resonances. Equation~35! then
takes the simple form

^ j ux̂u1&2'~gPPP /sT
1/2!/@~m1 /m0!21 j 21#. ~51!

With the expression above forMmax
2 , the dimensionN of the

matrix is given by

N'2p1mp /m0
2 , ~52!

which increases linearly withp1, the momentum of the inci-
dent proton in the rest frame of the target nucleus. This
pression forN is clearly only a rough estimate, but fortu
nately excited states withj nearN do not contribute much to
the dispersive correction compared to lower states. Chan
N slightly does not affect the results below appreciably. U
fortunately, diffraction dissociation constrains only one ro
~and column, from the assumed symmetry! of the matrix

^ j ux̂u i &. For smallmi
2 and largemj

2 , one can argue that th
triple-Pomeron behavior should still be valid and t
Dmj

2/mj
2 dependence should still hold. For simplicity, here

is assumed thateveryoff-diagonal element of the matrix is
given by

^ j ux̂u i &5AgPPP /@sT
1/2~a21u j 2 i u!#, ~53!

where a5m1 /m0. This expression is consistent with bo
experiment and the triple-Pomeron behavior fori 51 and
large j, but is only a guess elsewhere, especially wheni and
j are comparable in size. Furthermore, although the matri
in general complex, it will below be assumed real. This
done mainly because the phases of the matrix elements o
than x11 are unknown, and is consistent with the fact th
4-5
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TABLE I. Dispersive reductions in the total cross sections for scattering of high-energy nucleons
40Ca. The figures in parentheses are obtained if the longitudinal momentum transfers are set to zero

Lab
momentum

~GeV!

Dispersive reductions insTotal(A540)(mb) (DpL50)

Order in inelastic transitions

2 3 4 Sum Exact

50 20.8~24.2! 27.4(211.8) 2.9~6.3! 16.4 ~18.7! 15.7 ~16.7!
100 26.4~28.5! 215.2(219.7) 9.4~14.9! 20.6 ~23.7! 17.4 ~17.7!
150 29.0~30.5! 220.5(224.2) 15.7~21.4! 24.2 ~27.6! 17.8 ~18.0!
200 30.6~31.7! 224.4(227.4) 21.2~26.6! 27.5 ~30.8! 18.0 ~18.1!
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the real part of the forward proton-proton scattering am
tude at high energies is known to be small.

Finally, we need an expression for the diagonal eleme
xj5^ j ux̂u j &,

xj511d~ j 21!, ~54!

which allows the cross section for nucleons to scatter fr
excited nucleons to increase with the degree of excitat
This means that highly excited states will be absorbed m
strongly than lower states while propagating between tra
tions. ~If d50, all diagonal elements ofx are unity, and the
expressions above simplify considerably.! It would probably
be more reasonable forxj to approach a limiting value asj
increases, but this would introduce still more parameters
assumptions into the model.

With these assumptions bothxj andmj
2 are linear inj, and

so are the complex numbersyj defined in Eq.~34!,

yj5~ j 21!y2 , ~55!

where

y25AsTr0d1 im0
2/p1 . ~56!

For small j’s the influence of the longitudinal momentu
transfer, given by the imaginary part ofy2, decreases a
1/p1, but the dimension of the matrix increases asp1, so that
for the heaviest excited nucleon included we have

yN52AsTr0dmpp1 /m0
21 i2mp , ~57!
06490
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with an imaginary part which is independent ofp1 and a real
part which increases linearly with momentum.

VI. RESULTS

The formulas above have been evaluated for scatterin
nucleons from40Ca and 208Pb for incident laboratory mo-
menta from 50 to 200 GeV/c, and forn, the number of in-
elastic diffractive transitions, ranging from 2 to 4. The co
responding reductions in the total cross sections can
written as

sD
(n)5E db4pb ReGD

(n)~b!. ~58!

Using gPPP50.363 mb1/2 and sT538.5 mb gives the coef-
ficient in Eq. ~39! (gPPP /sT

1/2)1/250.24. We also takem0
2

51.5 GeV2, a250.5, andd50.1, although any values o
the same order of magnitude would be just as reasonab

The shapes of the integrands for208Pb for 50 and 200
GeV are shown in Figs. 1 and 2, respectively, while the v
ues of the diffractive reductions in the total cross sections
given in Tables I and II. The most surprising feature of the
results is that, although the contributions are all small co
pared to the uncorrected Glauber cross section of about 2
mb for 208Pb and 737 mb for40Ca, at high energies the
expansion in the number of inelastic transitions does not c
verge well at all. As noted above, as the energy increa
more and heavier excited nucleons are included and the
rection at each order increases. Because of the poor con
from
o.
TABLE II. Dispersive reductions in the total cross sections for scattering of high-energy nucleons
208Pb. The figures in parentheses are obtained if the longitudinal momentum transfers are set to zer

Lab
Momentum

~GeV!

Dispersive reductions insTotal(A5208)(mb) (DpL50)

Order in inelastic transitions

2 3 4 Sum Exact

50 45.4~57.9! 216.4(239.2) 5.6~31.4! 34.6 ~50.1! 34.2 ~37.1!
100 59.6~66.9! 240.6(261.4) 29.6~65.7! 48.6 ~71.2! 37.6 ~38.5!
150 66.0~70.6! 256.9(273.0) 54.4~88.2! 63.5 ~85.8! 38.5 ~38.9!
200 69.7~72.9! 268.2(280.6) 75.3~104.8! 76.8 ~97.1! 38.9 ~39.2!
4-6
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gence, however, the expansion in the number of inela
transitions is not very useful, especially at higher energie
gives only an order of magnitude for the exact result, w
the individual terms oscillating in sign. The leading secon
order term in particular is always of the right order of ma
nitude but larger than the exact result, with the error incre
ing from 33% at 50 GeV/c to nearly 80% at 200 GeV/c.

These results can be compared with the results of h
energy neutron-nucleus total cross section measurement@2#.
The experimental values of the total cross sections are so
what larger than our calculations, presumably reflecting
errors introduced by the uniform density approximation. T
experimental results are definitely lower than the results
careful Glauber theory calculation, and the differences
comparable to the leading order dispersive reductions ca
lated from experimental diffractive dissociation cross s
tions. These reductions are about twice as large as those
culated here, presumably because the model here doe
include properly the contributions from the important low
mass resonant states.

The influence of the longitudinal momentum transfer w
studied by comparing the result calculated from the formu
above with those with the longitudinal momentum transf
dropped~so thaty2 becomes a real number!. The results in
this limit are given as the numbers in parentheses in Tab
and II. Although the longitudinal momentum transfers redu
significantly the magnitudes of the individual terms in t
expansion, they have a relatively small effect, decreas
with increasing energy, on the exact results.

VII. CONCLUSION

Previous calculations of the dispersive corrections con
ered here have considered only a small number of chann
ignored the longitudinal momentum transfer, or includ
only the lowest order term in the the transition expansion
the context of our model it has been shown that all of th
can lead to large errors. It should be remembered, howe
that the matrix model used above has many arbitrary
tures, even though it is roughly consistent with what
known about high-mass single-diffraction dissociation fro
nd

.
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a single nucleon. In particular, the amplitudes for transitio
from one highly excited nucleon state to another are ess
tially unknown, and the expressions used in the model
simply guesses based on the known behavior of the am
tudes for excitation from the nucleon itself. It would be us
ful to repeat the calculations with other assumptions for th
amplitudes in order to get some idea of the dependenc
the results on the assumptions: a better treatment of the
tributions from low-mass resonances should be include
possible.

In the model used here, the diffractive corrections to
total cross sections are all small compared to the total c
section itself, but their expansion in the number of inelas
transitions does not converge well at higher energies. In
ticular, the leading second-order correction, which has b
used to estimate the size of the diffractive correction, is
large by nearly 80% at a laboratory momentum
200 Gev/c.

It would be interesting to extend these calculations
single-diffraction dissociation from nuclei, since for the
processes there is no zeroth-order term, corresponding to
large Glauber contribution to the total cross section, so t
the corrections due to higher order terms might be relativ
quite large. A preliminary investigation suggests that
should also be possible to do an exact calculation in this c
in the uniform density limit. ~A calculation of single-
diffraction dissociation from the deuteron would also be ve
interesting, and might put additional constraints on the
sumptions that go into the matrix model.! ‘‘Coherent’’ dif-
fraction dissociation, where the nucleus remains in its grou
state, would be particularly simple to calculate, but proba
experimentally challenging. One could also calculate
‘‘nuclear inclusive’’ cross section in which all nuclear excite
states are summed over.
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