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Axially symmetric Hartree-Fock-Bogoliubov calculations for nuclei near the drip lines
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Nuclei far from stability are studied by solving the Hartree-Fock-Bogoliubid¥B) equations, which
describe the self-consistent mean field theory with pairing interaction. Calculations for even-even nuclei are
carried out on a two-dimensional axially symmetric lattice, in coordinate space. The quasiparticle continuum
wave functions are considered for energies up to 60 MeV. Nuclei near the drip lines have a strong coupling
between weakly bound states and the particle continuum. This method gives a proper description of the ground
state properties of such nuclei. High accuracy is achieved by representing the operators and wave functions
using the technique of basis splines. The detailed representation of the HFB equations in cylindrical coordi-
nates is discussed. Calculations of observables for nuclei near the neutron drip line are presented to demon-
strate the reliability of the method.
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[. INTRODUCTION described by a small residual interaction. It becomes neces-
sary to treat the mean field and the pairing field in a single
The latest experimental developmeftg as well as re- self-consistent theory. Furthermore, the outermost nucleons
cent advances in computational physics have sparked r&re weakly bound, which implies a large spatial extent, and
newed interest in nuclear structure theory. In contrast to théhey are strongly coupled to the particle continuum. These
well-understood behavior near the valley of stability, therefeatures represent major challenges for the mean field theo-
are many open questions as we move towards the proton arig¢s. We overcome these difficulties by solving the Hartree-
neutron drip lines and towards the limits in mass numbeiFock-Bogoliubov (HFB) equations for deformed, axially
(superheavy regionThe neutron drip line represents mostly Symmetric even-even nuclei on a two-dimensiofzb) lat-
“terra incognita.” In these exotic regions of the nuclear tice, without any further approximations. So far, most of
chart, one expects to see several new phenorfzB6h near HFB calculations are based on spherical symmetry or up to a
the neutron drip line, the neutron-matter distribution will be limited energy in the quasiparticle spectrum continuum. The
very diffuse and of large size giving rise to “neutron halos” importance of the axial symmetry lies in the ability to emu-
and “neutrons skins.” There are also expected collectivelate a big range of nuclei that are not spherical in nature, e.g.,
modes associated with this neutron skin, e.g., the “scissorsnhuclei that have a nontrivial intrinsic deformation. We have
vibrational mode[4,5] or the “pygmy” resonance[6]. In  developed and tested a new mean-field nuclear structure code
proton-rich nuclei, we have recently seen both spherical anthat specifically addresses the computational challenges and
deformed proton emitters; this “proton radioactivity” is Opportunities presented by nuclei near the drip lines.
caused by the tunneling of weakly bound protons through the The present work represents an introduction of the splines
Coulomb barrier. With RIB facilities, nuclear theorists see anmethod to the solution of the HFB approach in axial symme-
opportunity to study the effectivtl-N interaction at large try. For now, we will focus on the methodology of our ap-
isospin, as well as large pairing correlations. proach. We outline here briefly the theoretical and computa-
It is generally acknowledged that an accurate treatment dfonal details. We also present results for a few nuclear
the pairing interaction is essential for describing exotic nu-Systems to demonstrate the convergence of the results.
clei [7,8]. This work is specifically aimed at calculating
ground state observables such as the total binding energy,
charge radii, proton and neutron densities, separation ener- [l. STANDARD HFB FORMALISM
gies for neutrons and protons, and pairing gaps. There are
several types of approaches in nuclear structure thgjry
for the lightest nucleiab initio calculations(Green’s func-
tion Monte Carlo, no-core shell modeabased on the bare
N-N interaction are possibl]. Medium-mass nuclei up to 1
A~60 may be trea’ged in th_e Iarge_—;cale _sheII model ap- H:Z (i|t|j>f:f“t‘:j+ 7. 2 (j |v(2)|mn>@ife;r@n@m,
proach[10]. For heavier nuclei one utilizes either nonrelativ- ] ij,mn
istic[7,11,1 or relativistic[13—15 mean field theories. The (2.1
large pairing correlations near the drip lines can no longer be

The many-body Hamiltonian in occupation number repre-
sentation has the form

where(ij [v®?|mn) is the antisymmetrized matrix element of
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,73 ut vh/e The basis wave functiong; depend on the coordinate vector
! :( T T (w) (2.2 r, the spin projectiono=+3, and the isospin projectioq
B vi o uUljie (g=+3 corresponds to protons arg=—3 to neutrons

. The quasiparticle energy spectrum is discrete|fr< —\
The HFB approximate ground state of the many-body systemynq continuous fofE|>—\ [8]. For practical calculations

is defined as a vacuum with respect to quasiparticles the continuum states are discretized, thus replacing integra-
tion over continuum energies with a summati@j. With

Bl ®o)=0. this approximation the particle density matrix for the HFB
The basic building blocks of the theory are the density maJdround state assumes a very simple mathematical structure in
trix terms of p; and ¢, [8]:
pij=(Dol&[&i|Do)=(V*VT);, 2.3 p(roq,r’ o' q")=(Po| 4" (r'a'q") d(roq)|do)

and the pairing tensor

=i2j pijdi(raq) ¢} (r'o’q")

Kij=(Do|€j&i| Do) =(V*UT);; . (2.4
which give form to the generalized density matrix _ 2 bo(Eo o) B3 (Eyrr’a'q)).
(1>0
- ° ‘ (2.10
e )

Instead of the standard antisymmetric pairing tensate-
The equations of motion are derived from the variationalfined as

principle,
S[E(R)—trA(R?2—R)]=0, 2.5 K(raq,r’ o' q")=(Po|(r'a’q’)ih(roq)|®g), (2.11

we introduce the pairing density matfixwhich is Hermitian
for a time-reversal invariant ground state and hence more

E(R)=(Do/H—AN|D), (2.9 ~ convenient to usés:

where

which corresponds to a variation under the constraint on the E(rcrq,r’cr’q’)=(—2cr’):<(roq,r’—cr’q’)
particle numbemN and on the generalized density matrix to

. . 2_ . .
satisfy the relatiork “=R. This results in the standard HFB =(—20") 2, kiji(roq)d(r'—a'q’)
formulation ]
[H,R]=0, 2.7 ¢ -

== 2 ¢o(Ea o001 (Eait'a’q).

with the generalized single-particle Hamiltonian Ea=0
(2.12
(h—=Nx) A
| A —(h=x\)* " (2.9 In principle, the sums go over all the energy states, but in

practice a cutoff in the number of states is done up to a
whereh and A denote the mean-field Hamiltonian and pair- reasonable numbér-60 MeV).
ing potential, respectively, and the Lagrange multipheis Proceeding in analogy to the pairing density matrix, we
the Fermi energy of the system. replace the antisymmetric pairing potentialin Eq. (2.8
with the Hermitian pairing field,
A. Quasiparticle wave functions in coordinate space

In practice, it is convenient to transform the standard HFB h(roq,r'e’q’)=(-2¢")A(roq,r'~o'q"). (213

equations into a coordinate space representation and solve
the resulting differential equations on a lattice. For this pur- B. Normal density and pairing density

pose, we define two t;_/pes of quasipar_ticle_wave functions, £rom expression&.10 and(2.12 for the density matri-
¢, and ¢,, corresponding to each quasiparticle energy stal@es e obtain the following expressions for the normal den-

Ea: sity pq(r) and pairing densitipq(r), which are defined as
the spin-averaged diagonal elements of their corresponding
¢ (Eq,roq)=2, Ui (20)di(r—oq), (292  matrices:
I

pq(r)=2 p(r«rq,r«rq)=2r Y baaroq)ds(raq),

¢2<Ea,rao|>=2i Vi bi(raq). (2.9 (.14
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Pa(r)= E p(roq,roq)= E 2 b2o(raq) % (roq). h(ro,r’o'>=t<ro,r'o'>+fd%Jd3r§
(2.15

X > ;2)(ra,r202;r’o’,r§o§)
The quasiparticle enerdy, is denoted by indexx for sim- 72,07
plicity. The physical interpretation G)‘q has been discussed r
in Ref. [8]: the quantity[54(r)AV/2]* gives the probability Xp(1202,1202). (220
to find acorrelatedpair of nucleons with opposite spin pro-

T The kinetic energy matrix elements are given b
jection in the volume elememtV. 9y 9 y

hZ
t(ro,r' o’ )=86(r—r")é, .| —==V?|. (2.2
C. Kinetic and spin-orbit densities (ro.rio’) =4 ) ”’”( 2m ) (.23
The kinetic energy density,(r) is defined as a functional
of wave functionsg,,

(1N =V -V pg(r,F)] 1=y

In a similar way, we find for the pairing mean fidid i.e., for
the p-h andh-h channels of the interaction

E(ra,r’a’)=J d3rif dr, > 20"

r !
01,05

:V-V’(E p(roq,r’aq))

r=r’
- 1(2) [ I r_
Xoupai(ro,r' —a'iry oy,ry’ —o3)

= 2 -~
; Za |V¢2,a(ro-q)| . (216 Xp(rl,g'i,l’zl(]'é), (222
The spin-orbit density does not appear directly in the nuclear E. Pairing interaction
potential, but rather its divergence In practice, we utilizadifferenteffectiveN-N interactions

for the p-h and for thep-p channels. If one assumes that the
. effective interactiorv (2, is local
V34N ==12 (V5,10 (VX0) bp(r,0). vel iory 5 |
(2.17) ;&,alr(ra'r —a'irio,r) —o5)

:5([‘1’—I’)5oi'05(r2’—I”)50£’01Vp(r0',r'—0'),
D. Energy functional and mean fields

Standard HFB theory yields the following expression forthe pairing mean field Hamiltonian becomes

the total binding energy of the nucleus in its ground state,
with contributions from the mean field and the pairing field:

Enre=(PnrelHIPure) = Emit Epair-

F(ro',r’o-’)IVp(r(r,r'—o");(ro',r'o”).
For the pairing interactiov, we utilize the form

Vp(ra,r' =o' )=Vod(r—r") 8, ,F(r).
To simplify the notation, we drop the isospin indiags]’ in
this section and in the following section. In coordinate spaceThis parametrization describes two primary pairing forces: a
the mean-field contribution is given ] pure § interaction £=1) that gives rise tavolume pairing
and a density dependedtinteraction(DDDI) that gives rise
to surface pairing In the latter case, one uses the following

Em:%f d3rf d3’ > [t(ro,r'o’) phenomenological ansaft7] for the factorF:
! ! ! ! p(r) 7
+h(ro,r'a’)]p(r'c’,ro), (2.18 F(ry=1- p_ , (2.23
0
and pairing energy contribution has the form wherep(r) is the mass density.

The DDDI interaction generates the following pairing
mean field for the two isospin orientatiogs= + 3:

1 ~ g
Epairzzj d3rf d3r’2, h(ro,r'a")p(r'c’ ro).
’ (2.19 'ﬁq(ro,r'a')—2 VEB(NF()S(r—1")8,, . (2.24

The quantityh denotes the mean field, i.e., the particle-holeThe pairing contribution to the nuclear binding energy is
(p-h) channel of the interaction then
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Vv
Epair=E®, +EW, = —pp(r)+—pn(r) F(r). SYSTEMS

pair pair—

J [ (p) V(ﬂ) I1l. 2D REDUCTION FOR AXIALLY SYMMETRIC
d3

For simplicity, we assume that the HFB quasiparticle
An important related quantity is the average pairing gap folHamiltonian is invariant under rotatiofis, around thez axis,

protons and neutrons, which is defined[@s] i.e.,[H,R,]=0. Due to the axial symmetry of the problem,
it is advantageous to introduce cylindrical coordinates
(A= 1 trace(h 00) (@,r,2). It is possible to construct simultaneous eigenfunc-
a ara tions of the generalized Hamiltonid&i and thez component

of the angular momentunj,,
= _ N—qf d3r | d3r’ 2, hq(ra,r’a’)pq(r'a',ra),
-7 Hl!%,ﬂ,q(‘Paryz): En,Q,q‘//n,Q,q(‘Parvz)y (3.19
whereN, denotes the number of protons or neutrons. Insert-

ing the_ expression derived earlier for the mean pairing field, izlﬁn,n,q(¢,r,2)=ﬁ9 Un.a.q(@1.2), (3.1
we arrive at
V(q) with quantum number@=+3+3 +2 . corresponding to
<Aq>_ ———| g3 Pg(r)pg(r)F(r). (2.25 eachnth energy state. The simultaneous quasiparticle eigen-
Ng functions take the form

Note that the pairing gap is a positive quantity because 1)
V@ <o0. én,0.q(@.1,2)

lﬂn’Q'q((p,r,Z): ¢§12,21,q(¢,l’,2)

F. HFB equations in coordinate space

. o . Q-12)p (1

For certain types of effective interactiotie.g., Skyrme el 2 o(1.2.1)

mean field and pairingS interactiong the particle Hamil- 1 | el@F12ep) o(rz,0)
tonianh and the pairing Hamiltoniah are diagonal in iso- =—| - .

beal in ’ V2w | O Ig2) (r.2.1)

spin space and local in position space, .
((Q+1/2)¢ 4(2)
€ ¢n,Q,q(razyl)
h(roq,r'o’q')=dqq 8(r—r")h (r) (2.263

(3.2
and i i )
We introduce the following useful notation:
h(roq,r'o’'q')=38qq8(r—rHhI (r). (2.26b
U62(r,2)= o\ (r.z,1), (3.3a
Inserting these into the above HFB equations results in a 4
X 4 structure in spin space: ﬁ}fq)(r 2)= ¢ﬁl§?q(r,2,l)- (3.3
h9—X\ ha q a
(( i ) )(¢1,a) :Ea( ¢1,a) (2.277  From the vanishing commutaté<,j,], we can determine
hd —(h9=X\) ¢g,a ¢g,a the ¢ dependence of the HFB quasiparticle Hamiltonian and
arrive at the following structure for the Hamiltonian:
with
] ] - - hi,(r.z) e '*hi (r2)
h(e,r,z)= . 3.4
hq:(hn(r) h”(r))* ﬁq:(bn(r) Em(r)). (2 e hiy(r,z)  hi(r,2) 39
hE(r) () At (r) R, (1)
and the pairing Hamiltonian
Because of the structural similarity between the Dirac equa-
tion and the HFB equation in coordinate space, we encounter _ o
here similar computational challenges: for example, the ~ hi;(r,z) e '*h{(r,2)
spectrum of quasiparticle energi&s is unbounded from h(e.r,z)= N T e (3.9
aboveand below. The spectrum is discrete f&| < —\ and erhy(r, (s

continuous folE|>—\. For even-even nuclei it is custom-

ary to solve the HFB equations with a positive quasiparticleinserting Eqs(3.4) and(3.5) into the eigenvalue Eq2.27),
energy spectrumt E,, and consider all negative energy stateswe arrive at thereduced 2D problenin cylindrical coordi-
as occupied in the HFB ground state. nates:
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(hi;=M)  hy h 'y where
h (h[,=\) 1 h
~,H il/ ,H l,l v11=020=UgtUcdgin- (3.11
'y h'yy o —(hy=n) —hy
E’H F"u —hj; =(hj;—\) Expressions folJ, andU¢ are given in the Appendix. The
Hartree-Fock spin-orbit operator
u@ u®
n,Q,q nQ,q
Ln!)q Ln(lq —iB ~(VXO’)—>\7V (3.12
X U@ |~ Enagq U@ (3.6 q d
n,Q,q n,Q,q
L(2), ; L2, ] can similarly be written into the form
Here, quanNtitiesE’, h', U, andL are all functions of (,z) A Wi, Wipo
only. Also, hh' andh’ contain the implicit isospin depen- Wq= Wap Way)’ (3.13
denceq. This is the main mathematical structure that we
implement in computational calculations. For a given angu-
lar momentum projection quantum numider we solve the with [18]
eigenvalue problem to obtain energy eigenvalbgs,  and
eigenvectors/,  q for the corresponding HFB quasiparticle O—-1/2
states. W= By : (3.143
A. Representation of operators
S . . Q+1/2 d d
The Hartree-Fock Hamiltonian using the Skyrme effective W= Z -B, —|,  (3.14b
interaction can be writtefi29] (assuming time-reversal in- r ar gz
variance
42 [ 5 Q-1/2 d J (3,140
Wy = -1, .
hg= =V ——=V+Uq+Ucdqup—iBq (VX0), (3.7) 2 z Zor "oz
2my
i i inter- 0+1/2
whereU, is the nuclear central field)c the Coulomb inter Way= — B, , (3.14d

action, and the spin-orbit field part is given By- (VX o).
The explicit form of these expressions for the case of the

Skyrme interaction are included in the Appendix. Starting
from the kinetic energy we apply the cylindrical form of the
Laplacian operator to the standard form of the wave function

in Eq. (3.2), to find

R tu, O
t,= , 3.8
g (0 tzz) (38

whose elements are given by
t _f'32+1 J [(Q-1/2) 2+ az'+af 0, 03
Wiz tror \ v ] g2 arar gz oz
(3.93
_f'a2+1a Q+12\2 2| of 9 of 9
Ll ety T\ T ) T T aa Tz
(3.9b

f being the effective mass given in EGA9). The local po-

tential terms could also be cast into a matrix form,

-~ V1
Ug= 0

0
) o0
U22

where B, ,3, are defined in the Appendix for the Skyrme
force.

B. Densities

Making use of the definitions for the normal density and
pairing density, Eqs.2.14) and(2.15), we apply the bispinor
structure of the quasiparticle wave functions to find the cor-
responding expressions in axial symmetry:

pa(r2)=5— ( 2 xiax[luai%qu,z)lz
+|LEq(r.2)[2], (3.15
- 1 9'max Emax
pq(r,z>:—ﬂ(292>0 szo[uai%q<r,z>u<nB§<r,z>
+L{(r2)Ligh (r,2)]. (3.16

Similarly, starting from definition$2.16 and(2.17), we ob-
tain expressions for the kinetic energy density and the diver-
gence of the spin density,
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Qmax max
o= 23 | 31O [“rar [ aaiuiral LBy o
(Q+1/2)2| @ 2, ‘ U’ (?L(Z) | +HUR(r2P+ILEr2P1=1. (3.29
Qq
‘ ‘ IV. LATTICE REPRESENTATION OF SPINOR WAVE
n%))q‘Z (9|_( ‘ FUNCTIONS AND HAMILTONIAN
iz | * oz | |’ 3.17 For axially symmetric nuclei, we diagonalize the HFB
Hamiltonian (3.6) separately for fixed isospin projectian
1 [ @max ) Emax [5y@) 5 2 and angular momentum quantum numhb@r We solve
nQq an . . . . .
V-Jq(r)=—(22 [ the eigenvalue problem by direct diagonalization on a
2m\ 40 | E0 o 7z two- dimensional grid ,,zg), where a=1,... N, and
) 2 -~ B=1,. . In practice, we do not assume Ieft rlght sym-
_ ILning WVYndq + Q-1 metry, thus aIIowmg the possibility for octupole shapes. Con-
o 9z r sequently, the grid extends fromz to +z, and we haveé\,
U@ HL@ ~2N, (so when referring to the number of points in the
x U@ ( nflq_ _nflq mesh we only mention the value df;). The four compo-
nfal - or 9z - - !
nents of the spinor wave functiop(r,z) are represented on
Q+1/2 (9U(29) (9|—(28 the two-dimensional lattice by an expansion in basis-spline
- LB ——+—— (3.18  functionsB;(x) evaluated at the lattice support points. Fur-
r gz or ther details about the basis-spline technique are given in

Refs.[19,20. For the lattice representation of the Hamil-
tonian, we use a hybrid methdd8,21,23 in which deriva-
tive operators are constructed using the Galerkin method;
max \ Emax this amounts to a global error reduction. Local potentials are
N _J d®rpy(r) =<22 ) 2 Nnog  (3.19 represented by the basis-spline collocation mettiocal er-
En> ror reduction. The lattice representation transforms the dif-
ferential operator equation into a matrix form

The total number of protons or neutrons is obtained by inte;
grating their densities

with

N
°° = > HIWEA=ELNT (n=1,...N). (4.2)
Nuag= | rar [ 0d UG 27+ 27, e

(3.20 The HFB calculations are initialized using the density output
from a prior HFBCS run which results in fast convergence
which gives the contribution of the quasiparticle s{a®q)  of the HFB code. Because the HFB problem is self-
to the proton or neutron density. In the HBCS limit,  consistent we use an iterative method for the solution, and at
Nnoq—vanq- An analogous treatment of the pairing density every iteration the full HFB Hamiltonian is diagonalized.
yields Typically 15-20 iterations are sufficient for convergence at
Oy | Ema the Ievlel ofI onefpart in T0for thde total binding en?rg)l/. TZe
Fermi levels\, for protons and neutrons are calculated in
P _f d® rpq(r (2 2 ) nz Pnag (3.2 every iterationq by rﬁeans of a simple root search using the

equationg 7]
with the “pairing density spectral distribution(ivith respect _
to energy and angular momentym f(Ng) =Ng(Ag) =Ng=0,
0 e} max Emax
Pan:_JO rdrj dZ[U%)q(r,Z)UgBE(r,Z) ( E )EEO Nan()\q)a
e -
+L R, (r 2Lk (r,2)]. (3.22
- (\ ) (Enslq_ q)
In the HF+BCS limit, Ppoq— (Uv)naq - Finally, we state the Nnaglhq [(z;‘nﬂq Ng) 2+ A2 12

normalization condition for the four-spinor quasiparticle

wave functions as AanZZEan‘/Nan(l_Nan), (4.2)

3t B where E denotes the quasiparticle energy, afidis the
f d°r Ynag(r) ¥naq(r) =1, (3.23 equivalent single-particle energgs defined by the BCS for-
malism. The quantityN in the last line of the equation de-
which leads to notes the spectral norm of the density as defined in Eq.
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(3.20. The calculated value fox, is used in the next itera-

tion. This process is repeated until convergence is achievec -120 -0
-130 \\\ -

V. NUMERICAL PARAMETERS: 220 CALCULATIONS ,>\ i \\ 1

In this section, we present a series of studies of the nu % 1407 \ |
merical parameters in axially symmetric HFB calculations. ~ ‘\
In particular, we study the dependence of observables onth  uij -1501- \ N
equivalent single-particle energy cutoff, the lattice box size, m r \\ )
the number of mesh points, and the maximum angular mo -1601- 22 \ 7
mentum quantum numbél ... The numerical tests are car- - O &--06---0
ried out for 220. This neutron-rich isotope has &HZ ratio -170+ .
of 1.75 and is close to the experimentally confirmed drip line : : : : : :
nucleus2*0.

-163- Go Cutoff on E| .
A. Energy cutoff %‘ I &% Cutoff ong,

The numerical solution of the HFB equations on a 2D s
lattice results in a set of quasiparticle wave functions anc
energies. The quasiparticle energy spectrum contains bot W -1641- N
bound and(discretizedl continuum states. The number of a4
eigenstates is determined by the dimensionality of the dis: . i
crete HFB Hamiltonian, which idN=(4N,N,)?, for fixed
isospin projectiorg and angular momentum projectiéh In : : : : : :
our calculations, we typically obtain quasiparticle energies 165520 30 40 50 60
up to about 1 GeV. It is well known that zero-range pairing Energy Cutoff (MeV)

forces require a limited configuration space in gi@ chan-

nel because the interaction matrix elements decrease t0o FiG. 1. Binding energy of?0 vs energy cutoff. Top, cutoff in
slowly with excitation energy8]. One therefore introduces the quasiparticle spectrum, bottom, cutoff in the equivalent single
an energy cutoff, either in the quasiparticle energy,{,) or  particle spectruntabsolute value All calculations were performed

in the equivalent single-particle energ§.{,,). Hence, in the  with B-spline orderM =7, N, =18 lattice points, angular momen-
case of zero-range pairing forces the infinite summationgum projection),,,=5/2, and box siz&k=10 fm.

over quasiparticle energies in the expressions for the densi-

ties p, 7, andJ are terminated at a maximum quasiparticle B. Lattice box size

energy. . . Using cylindrical coordinates, the lattice box siRede-
The quantityEpy has to be chosen such that the maxi-go5 tha houndary in radidt) direction; the box size iz

mum quasiparticle energy exceeds the depth of the Mealki ection is R. The value ofR must be chosen large enough
field nuclear potential, and all of the bound states have to b?or the wave functions to vanish at the outer edges of the box

included in the sumg7]. We follow the prescription of Refs. : . :
[7.23 to set the cuEtgff enerav in terFr)ns of F;he o uivalentand needs to be adjusted for optimal accuracy and computing
siﬁgle particle energy spectr?}gﬂ For the Skyrmtg SLy4 time. Figure 2 shows the dependence of the binding energy
“ " : onRfor ?20. The mesh spacing was kept at a constant value
f0;5%WIt2tP§;e?heItcz?fri;’:urzlng,zlil)g t;’acl\:/lz:\\;v:,n§24]v\<ljifhduged 4 of Ar~1 fm. Figure 2 also presents some of the quasiparti-
Ii60 I?/IeV Wg utilize tr(l)e same . arameter's in all of 83? 2DCle energy level&yq with large occupation probability
lculati ' P these levels correspond to low-lying states in the equivalent
CaI(E:l\J/:nlctercs).u he s a fixed parameter in the HEB calcu- single-particle spectrum. Evidently, the quasiparticle ener-
9max P gies and the total binding energy converge in essentially the

Iagllonst, Ittf:S mttlerestlfntgr;] to analyze tth?f slené!tlwiy of olbstetrr:/'same way with increasing box size. Figure 2 shows that con-
avles 1o the value ot the energy cutotl. In Fg. 1 we plo evergence is reached &=10 fm. The behavior of the qua-
total nuclear binding energy for cutoff values 8f,.x be-

siparticle states with respect to the mesh boundaries has also
tween 10 and 60 MeV and the same ., from 200 60 di d in REB1. For heavi t the box si
MeV. We find that in both cases, the binding energy remain een discussed in R4B]. For heavier systems, the box size

iall ant f toff val £ 40 MeV and ab as to be increased. A safe initial guess Rois about three
essentially constant for cutolt values o eV anad abovey;nas the classical nuclear mass radius.

Clearly, a cutoff below 40 MeV results in significant changes
in the binding energy because quasiparticle levels with large
occupation probabilities are left out. In terms of the equiva-
lent single-particle energies this corresponds to levels near One of the major advantages of tBespline technique is

the bottom of the central potential being left out. This resultthat one can utilize a relatively coarse grid resulting in a
is in agreement with the 1D radial calculations of R@&i. lattice Hamiltonian matrix of low dimension. Figure 3 shows

C. Number of mesh points
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3 : : : < Eq12n : - 15
x> Eg 1, i
*% Eyaop 1.4+
—~ 2.5+ <4< Esp — i
% =z 13-
3 <0
o 2 . 12
o -
L
15 1.1+
—~_ 512 22 .,
1 -5.16|-
Z-520-
-163+ 22 - <
< @) -5.24}
3 | ,
2 5.28|-
W 14l _
o __-164.00-
- 1 % 164.50 —
¢ s S
: : : — -165.00}
165 8 10 1 14 L
R (fm) M -165.50
FIG. 2. Bottom: Total binding energy 6fO as a function of the -166.00 :
box sizeR. Top: Quasiparticle energies for neutron states with large 12 15 .18 21
occupation probability i) as a function ofR The spline order Number of Points (Nr)
used wasM =9, N,=19 grid points,Q nax= % and cutoff energy
Emax=60 MeV. FIG. 3. Total binding energy, Fermi level, and pairing gap for

. _neutrons in??0 vs number of mesh points in radial direction, for
several observables as a function of the number of radlafrixed box sizeR=10 fm. The quantities,,,, and &, are the
. X X

mesh points, for a fixed box sizZ&@=10 fm. The binding  game as in Fig. 2.

energy, neutron Fermi level, and pairing gap fé© reach

their asymptotic values at about 18 grid points in radial di-criterion to fix Q,,,; this numerical parameter needs to be
rection. For the fixedr(,z) boundary conditions utilized in determined from test calculations in various mass regions.
our work, theB-spline lattice points show &slightly) non-  We have performed calculations f8fO using(Q ., values
linear distribution, with more points in the vicinity of the from 5/2 to 13/2. Figure 4 displays the results for the total
boundaries. In the central region, the grid spacing for 1&inding energy, neutron Fermi energy, and neutron pairing
radial points is 0.75 fm. The choice of the spacing dependd@P- All three observables converge(at9/2.

on the desired accuracy and the computational cost. In or(ilqr The general procedure for determinififinay is to start

to achieve an accuracy in the total binding energy of a fe llling single-particle levels either in' the spherical or de-
tens of keV a mesh spacing of 0.50—0.75 fm seems to b ormed shell model. Because of fractional occupation of lev-

sufficient. Mesh spacings of 0.80—0.90 fm result in accuraSIS due to pairing, states above the Fermi level must be con-

cies of a few hundred keV, while mesh spacings over 1.0 f 'sid_e_red. n the case o?_f5OSn With 100 neutrons, without
are not accurate enough for detailed predictions. Thus, th airing thej = 11/2 level is the highest occupied angular mo-

N . - _mentum. In this case we have us8dq,,,=13/2 becausg
number of points is determined by two criteria: The box size_ 15/5> ~ontributes for particle numbe?é between &68?1.

is c.hosen to be approximate_ly three times the class_ical Mamilar considerations apply fo°2Zr except that we exam-
radius, while the mesh spacing depends on the desired acciye the levels in the deformed shell-model. We also note that

racy of the binding energy. for a fixed() the diagonalization of the HFB Hamiltonian on
o the lattice results in M,N, eigenstates. Many of these origi-
D. Projection of the angular momentum, nate from the substates of highevalues, for example, the

It has been mentioned in the formalism section that al}=13/2 substate of =21/2.
observables can be expressed by sums pesitive |, quan-
tum numberd)>0. The maximum valué€) ., increases, in
general, with the number of protons and neutradg\() and In this section we present converged numerical results of
also depends on the nuclear deformation. There is pgori our 2D-HFB code. Our main goal is to demonstrate the ac-

VI. RESULTS
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15 TABLE |. Calculations for 2?0 for HFB+SLy4. The axially
symmetric calculationg2D) of this work used a box sizéR
1.4 =10 fm with maximumQ = 3 and an energy cutoff of 60 MeV. The
spherical calculation of Ref24] was made withR=25 fm and a
=13 j=21/2. All calculations were made with a cutoff at 60 MeV.
<
1.2 1D[24] 2D (THO)[25] 2D (this work)
11 B.E. (MeV) —164.60 —164.52 —164.64
' : : : : : A\, (MeV) —5.26 —5.27 —5.27
5261 | 3 A <> X, (MeV) ~18.88 ~18.85 ~18.16
-5.281 A, (MeV) 1.42 1.41 1.40
5301 Ap (MeV) 0.00 0.00 0.00
= Rims (fm) 2.92 2.92 2.92
< 532 B> 0.00002 0.0008
-5.34}+ Epair(n) (MeV) —2.85 —2.78 —2.75
-5.36-
-164.55 220 interaction(strengthV,= — 218.5 MeV fn? for 220 andV,
— =—170.0 MeVfn? for 1%°Sn) in thep-p channel, corre-
% sponding to volume pairing. The table lists several observ-
s -164.60 — ables: the total binding energdyor comparison, the experi-
~ mental value is—162.03 MeV, the Fermi level for protons
L -164.65 < and neutrons, the neutron energy @& protons, the gap is
) ' exactly zero in all three calculationghe rms mass radius,
and the charge quadrupole deformatigote that both 2D
-164.70 f f f calculations predict essentially zero deformatio®verall,
5/ 7/ 9/ 11/ 13/ the results of the axially symmetric code of the present work
2 2 2 2 2 agree with the other two calculations in all the observables.
The binding energy predicted by our 2D-lattice code is very
Qmax close(within 40 keV) to the 1D lattice result, while the THO

method result differs by 80 keV. The difference in the Fermi
FIG. 4. Binding energy, neutron Fermi level, and average neulevel for protons is due to different conventions in choosing
tron pairing gap for?20 vs maximum angular momentum projec- this energy for magic numbers. We choose the Fermi energy
tion O ax. BOx sizeR=10 fm, N, =18, and an energy cutoff of 60 to be the midpoint of the energy of the last occupied level
MeV were used. and the first unoccupied level. We now present results for the
tin isotope *°°Sn, a heavy nucleus far away from the valley
curacy of our basis-spline expansion technique on a 2D coof g stability which is close to the two-neutron drip line.
ordinate lattice by comparison with the 1D coordinate spacqable Il gives a comparison of our 2D resultghich predict
results of Dobaczewslet al.[8,24] for spherical nuclei. For g very small charge quadrupole deformatjgs=0.01) with
this purpose we have chosen two very neutron-rich spherical
nuclei: a light nucleus?o withN/Z=1.75 and a heavy sys-  TaBLE II. Comparison of calculations for spherical nucleus
tem °%Sn with N/Z=2.0. Finally, we will also present re- 1505 ith HFB+ SLy4. The 1D calculations were made by Ref.
sults for a strongly deformed medium-heavy syst&¥Zr  [24] using a box siz&=30 fm and a linear spacing of points of
with N/Z=1.55. This system was chosen because it allow®.25 fm, with j,.,=21/2. Calculations by the axially symmetric
us to compare our lattice resulthich treat the continuum HFB 2D code were made using a box si®e=20 fm with N,
states accuratelyto the “transformed harmonic oscillator” =23, maximumQ =13/2. In both calculations the pairing strength
(THO) expansion technique recently developed by Stoitsow, was set to—170.0 MeV fn?, and the energy cutoff to 60 MeV.
et al.[23]. In this framework, a local-scaling point transfor-

mation of the spherical harmonic oscillator is used to expand 1D 2D
thzaerti?:reaagsretlglljic\/txgg\ég functions in a set of bound smgle—B.E(MeV) —1129.0 —1129.6
P : \, (MeV) ~0.96 —0.94
Ap (MeV —17.54 —17.69
A. Exotic spherical nuclei: 20 and '%%Sn Ap ((Mev)) 1.02 1.00
n ) :

In Table | we compare our 2D HFB results for the spheri-A, (MeV) 0.00 0.02
cal isotope??0 with the 1D radial HFB method of Reff7]. R, (fm) 5.12 5.13
Corresponding results in the 2D THO basis with 20 oscillatorg, 0.01
shells are also given. All calculations were performed WithEpair(n) (MeV) —10.452 ~10.057

the Skyrme SLy4 force in the-h channel and a puré
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TABLE IIl. Comparison of calculations HFBSLy4 for 102y
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energy value is-863.7 Me\). The pairing strength param-

with two different methods in the axial symmetry. The configuration eterV, used in each calculation also makes a difference. In

space calculationd’HO) were made by Ref25] with 20 oscillator
shells and pairing strength o£187.10 MeV fn¥. Calculations by
the coordinate space HFB 2-D code were made using a box si
R=12 fm with N,=19, maximum O=11/2, V,=-170.0
MeV fm® and the energy cutoff of 60 MeV.

2D (THO) 2D (this work)
B.E. (MeV) —859.40 —859.61
A, (MeV) —5.42 —5.46
\p (MeV) —-12.10 —-12.08
A, (MeV) 0.56 0.31
Ap (MeV) 0.62 0.34
Rems (fM) 4.58 4.58
B> 0.429 0.431

Dobaczewski’'s 1D radial HFB calculatiog4]. The box

size used in the axially symmetric calculations was 20 fm in

r direction and 40 fm in the axis, whereas the 1D code had

a 30-fm radial box. Also, the density of points has a differen

meaning in the radial code, since it uses a different grid th
the one used in thB-splines technique for our 2D code. For
these calculations the resulting mesh spacing in the 1D co

was 0.25 fm, whereas the maximum mesh spacing in the ZIP0
one was 1.1 fm. In the 2D calculations an approximately

3000x 3000 matrix was diagonalized for ea€hand isospin

value, and for each major HFB iteration. The full calculation
required about 30 HFB iterations. Like in the oxygen iso-

tope, the agreement is very good; a possible source of sm
discrepancies is the fact that our 2D code yiejs=0.01,
whereas the 1D codassumesan exactly spherical shape.

Table Il also contains another interesting piece of informa-

tion on *°%Sn: the neutron Fermi leval, is located less than
1 MeV below the continuum, which shows the proximity o
this nucleus to the two-neutron drip line.

f

B. Deformed neutron-rich nucleus: 1°%zr

Our main motivation for developing an axially symmetric
code is to perform highly accurate calculations for deforme

al

THO approach this parameter is adjusted to reproduce
the coordinate space 1D spherical results for a given number
Z5f oscillator shells. Other observabl¢Bermi levels, rms
mass radius, and charge deformatjgy) agree quite well,
also. However, we find differences in the energy gap values
(An, Ap); these may be attributed to the different density of
states used in the two methofisee Eq.(2.295] or to the
extrapolation of the oscillator parameter in the THO ap-
proach to deformed systems.

VII. CONCLUSIONS

In this paper, we have solved for the first time the HFB
continuum problem in coordinate space for deformed nuclei
in two spatial dimensions without any approximations. The
novel feature of our new HFB code is that it takes into ac-
count high-energy continuum states with an equivalent
single-particle energy of 60 MeV or more. In the past, this
has only been possible in 1D calculations for spherical nuclei

8]. Current 3D HFB codes in coordinate space, e.g., Ref.
:1227], utilize an expansion of the quasiparticle wave functions
in a truncated HF basis which is limited to continuum states

d&P to about 5 MeV of excitation energy.

The Vanderbilt HFB code has been specifically designed
study ground state properties of deformed axially symmet-
ric even-even nuclei near the neutron and proton drip lines.
The large pairing correlations near the drip lines and the
strong coupling to the continuum represent major challenges
a{f?r the numerical solution. We have solved the HFB problem
on a two-dimensional grid in cylindrical coordinates, %)
using a basis-spline representation of wave functions and op-
erators.B-splines are a generalization of the well-known fi-
nite element technique. By usirgtsplines of ordeM =9
(corresponding to polynomials of up to eight ordere are
able to represent derivative operators very accurately on a
relatively coarse grid with a lattice spacing of about 0.8 fm.
While our current 2D lattices are linear, a major advantage of
the B-spline technique is that it can be extended to nonlinear
lattices[ 18,21 which will be particularly useful for an accu-
drate and efficient calculation of neutron skins in heavy nu-

nuclei, including the continuum states. The zirconium iso-clei.

tope 1%2Zr is a heavy nucleus with strong prolate quadrupole

In this work, we have used the Skyrni8Ly4) effective

deformation in its ground state. Its neutron to proton ratio ofN-N interaction in thep-h channel, and a puréinteraction
N/Z=1.55 places it into the neutron-rich domain, although it(corresponding to volume pairipgn the p-p channel. We

is likely far away from the neutron drip lin¢éin the 1D
spherical HFB calculationf26], using the SkP interaction

present results for binding energies, charge deformations,
rms mass radii, pairing energies, Fermi levels, and pairing

[7], the last bound nucleus in the chain is predicted to beyaps.

13657r). We have chosen this isotope primarily because our We have investigated the numerical convergence of sev-
results can be compared to the stretched harmonic oscillat@ral observables as a function of lattice box size, grid spac-
expansion(THO) method mentioned above which does noting, angular momenturf) ,,,,, and we have studied the sen-

involve any continuum states.

In Table Il we present the results of our 2D HFB calcu-

sitivity of the observables to the continuum cutoff. These test
calculations were carried out for the neutron-rich isotéfi@

lations in coordinate space with the results obtained bywith N/Z=1.75 which is close to the drip line nucleGé0.
the THO method. A comparison of the total binding energy Our HFB-2D code predicts a spherical shape for the
of the system in both methods shows a difference of abouteutron-rich nucle??0 and *°%Sn. In this case, our calcula-

210 keV, which can be considered small in comparison t
the absolute value of the ener@ghe experimental binding

dions can be compared with the 1D radial HFB results of
Dobaczewsket al.[8], and indeed there is good agreement
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TABLE IV. Skyrme force parameters. Values for new parameteysbg, by, by, by, b;, bs, bs, b,, andby, used in Ref[17], have
been calculated using relatio&1) and (A2), which relate the old parametrizatigRefs.[29,30) to the new one. Numbers have been
rounded to three decimal places.

Force by by b, bj b, b, bs b; b, b,

SkM* [30] —2764.025 —-1560.55 68.75 68.125 170.625 68.437 3898.75 1949.375 65.0 65.0
Z, [34] —3145.945 —3316.251 64.495 58.315 148.877 61.405 5577.823 6707.621 61.845 61.845
SkT6[33] —2145.863 —1600.426 0.0 0.0 110.25 0.0 4005.312  3204.25 53.5 53.5
SLy4[31] —3526.790 —3320.210 32.484 —49.289  185.325 62.665 5776.007 6385.639 61.5 61.5

SkI1[32] 1000.310 869.809  32.354 —49.803 —432.059 —1136.719 580.693 —2810.714 62.13 62.13
SkI3[32] —2034.628 —1424.936 32.301 —127.914 100.074 —124.799 3336.309 3632.793  94.254 0.0
Skl4[32] —2231.708 —1679.676 32.271 —75.310 —121.462 —528.369 3814.977 3991.101 183.097180.351
SkP[7] —3359.948 —2322.346 44.642  89.284 190.343 140.223  5100.600 3185.341 50.0 50.0
SkO[17] —1882.032 —608.585 22.537 15.075 —72.754 —358.023 2660.027  237.585 176.578-198.749
SkO' [17] —2068.449 —987.770 19.156 8.312 41.250 —128.648 3132.384 1192.344  143.895-82.889

between the two. We also present results for a strongly de- A 1 .
formed system°?Zr, in which case we present a compari- (14 XaP )k’ 8(ri—ra)k+ ts(1+x3P,)
son with the stretched oscillator expansion method of

Stoitsovet al. [23,25. X p@S(Fy—T3) +iWo( 8+ d){K' X 8(r;—r,)kK},

We have implemented our code on an IBM-SP massively L
parallel supercomputer. Parallelization is possible for differ-P, being the exchange operator, akd’ relative momen-
ent angular momentum stat@sand isospinsg§/n). We will ~ tum operators. This form of the interaction with parameters
also study alternative numerical techniques; in particularXo,X1,X2,X3,t0,t1,t5,t3,t4 has been changed to an equiva-
damping methods that we have utilized for solving the Diradent one withb;,b;,b,,b5,bs,b3,b,,b, parameterq17].
equation on a 3D latticE20]. This is done through the transformation

In the near future, we plan to investigate several isotope

chains, with particular concentration on deformed nuclei. We t 413 8/3 —2/3 —4/3) /by

also plan to study a variety of Skyrme parametrizations for t1Xy —2/13 —4/3 4/3 8/3| | b

the mean field, and_ both volu_mg and surface pairing: As t, = 4 —8/3 2 —a|| ol |’
more data from existing RIB facilities become available, it is

likely that it will become necessary to develop new effective toXo -2 43 -4 83 \b,

N-N interactions to describe these exotic nuclei. Further- (AL)
more, our 2D HFB ground state wave functions can be used,

as input into coordinate-space based quasiparticle random-

phase approximatioQRPA) calculationd28] to investigate 4 ,

collective excited states of nuclei near the drip lines. t0:§b0_ §b0’
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The last equation only holds for certain forces, as shown in

Table IV. For forces like SKI and SK(y, andb, get dif-
The (density dependentwo-body effectiveN-N interac-  ferent values.

tion is given by

APPENDIX: SKYRME PARAMETRIZATION

1. Energy density

Calculation of the energy expectation value for an arbi-
trary interaction involves carrying out an integration over six
o dimensions in coordinate space. One of the primary advan-
X{8(ri—r)k?) +k'28(r;—ry)} tages of an interaction that containséafunction, like the

N 1 N
0§ =to(1+x0P,) (r1=15)+ Sti(1+X:P,)
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Skyrme one, is that the evaluation of such integral becomes 52
substantially simplified, and it is reduced to a three- hg=—V- ——V+Uy+Ucdq ,—iBy(VX0). (A8)
dimensional evaluation 2my
Several effective quantities appear in this equation. The ef-
— — 3
E_<®|H|®>_f d*rH(r). (A3) " fective mass is defined by
The Hamiltonian densit(r) is composed of several terms, 72 52
—+b bipg, A9
H=Ho+ HusH He. (A omy 2m ' PP Pars (A9

The kinetic energy and some of the density dependent ter

. i . ) ) he effecti i i
in the Skyrme interaction are included in "éhd the effective spin density

52 b b! Bq=D01Jq+bsVp+0,Vp,. (A10)
Ho=5=7+ 5 Opz—— 2 e R N
q The first term in Eq(A10) is often ignored 31].
b, The effective nuclear potential for the Skyrme force is
+b1(pr—j2)—b1§ (pqrq—jﬁ)— ?pvzp given by
b, 1 / bs a+l
+?2 D pqupq. (A5) Ug=bop—Dbgpgtbi7—Dby7q+ g(a+2)p
q
N S . b3
'I_'he current depsmgg {Iq) appearing in this t_er_m are |den-_ _ 33 apa—lE p§+2papq _bAV.J_bL’IV.Jq
tically zero for time independent states. The finite range spin- q
orbit terms have the form +b§V2pq—b2V2p, (A11)
His= —b4pV~J—bA§ pa(V-Jq). (A6)  and the Coulomb field is
The Coulomb term contains an integral over the proton den- e [ a3 ,Pp(r") ) o2 3 1/3[ (O3 (A12)
sity as well as the Slater exchange term, Ir—r' T Pp '
v B, and 5, fi Egs.(3.13 for th in-orbi
c=—| &3 py(r - <_) r) 143 , and B3, from Egs.(3. or the spin-orbit part represen-
f Po )| |pp( ) m Lep(r)] tation of the potential operator are given by
(AT)
B;=Bg-&=V,(bsp+bypg), (A13a)
2. Single particle Hamiltonian
The Hartree-Fock Hamiltonian using the Skyrme effective B,=Bgy-€,=V,(bsp+bypg), (A13b)
interaction can be written aassuming time-reversal invari-
ance b, andbj values are shown in Table IV for different forces.
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