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Axially symmetric Hartree-Fock-Bogoliubov calculations for nuclei near the drip lines
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Nuclei far from stability are studied by solving the Hartree-Fock-Bogoliubov~HFB! equations, which
describe the self-consistent mean field theory with pairing interaction. Calculations for even-even nuclei are
carried out on a two-dimensional axially symmetric lattice, in coordinate space. The quasiparticle continuum
wave functions are considered for energies up to 60 MeV. Nuclei near the drip lines have a strong coupling
between weakly bound states and the particle continuum. This method gives a proper description of the ground
state properties of such nuclei. High accuracy is achieved by representing the operators and wave functions
using the technique of basis splines. The detailed representation of the HFB equations in cylindrical coordi-
nates is discussed. Calculations of observables for nuclei near the neutron drip line are presented to demon-
strate the reliability of the method.
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I. INTRODUCTION

The latest experimental developments@1# as well as re-
cent advances in computational physics have sparked
newed interest in nuclear structure theory. In contrast to
well-understood behavior near the valley of stability, the
are many open questions as we move towards the proton
neutron drip lines and towards the limits in mass num
~superheavy region!. The neutron drip line represents most
‘‘terra incognita.’’ In these exotic regions of the nucle
chart, one expects to see several new phenomena@2,3#: near
the neutron drip line, the neutron-matter distribution will
very diffuse and of large size giving rise to ‘‘neutron halo
and ‘‘neutrons skins.’’ There are also expected collect
modes associated with this neutron skin, e.g., the ‘‘scisso
vibrational mode@4,5# or the ‘‘pygmy’’ resonance@6#. In
proton-rich nuclei, we have recently seen both spherical
deformed proton emitters; this ‘‘proton radioactivity’’ i
caused by the tunneling of weakly bound protons through
Coulomb barrier. With RIB facilities, nuclear theorists see
opportunity to study the effectiveN-N interaction at large
isospin, as well as large pairing correlations.

It is generally acknowledged that an accurate treatmen
the pairing interaction is essential for describing exotic n
clei @7,8#. This work is specifically aimed at calculatin
ground state observables such as the total binding ene
charge radii, proton and neutron densities, separation e
gies for neutrons and protons, and pairing gaps. There
several types of approaches in nuclear structure theory@3#:
for the lightest nuclei,ab initio calculations~Green’s func-
tion Monte Carlo, no-core shell model! based on the bare
N-N interaction are possible@9#. Medium-mass nuclei up to
A;60 may be treated in the large-scale shell model
proach@10#. For heavier nuclei one utilizes either nonrelati
istic @7,11,12# or relativistic@13–15# mean field theories. The
large pairing correlations near the drip lines can no longe
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described by a small residual interaction. It becomes ne
sary to treat the mean field and the pairing field in a sin
self-consistent theory. Furthermore, the outermost nucle
are weakly bound, which implies a large spatial extent, a
they are strongly coupled to the particle continuum. The
features represent major challenges for the mean field th
ries. We overcome these difficulties by solving the Hartre
Fock-Bogoliubov ~HFB! equations for deformed, axially
symmetric even-even nuclei on a two-dimensional~2D! lat-
tice, without any further approximations. So far, most
HFB calculations are based on spherical symmetry or up
limited energy in the quasiparticle spectrum continuum. T
importance of the axial symmetry lies in the ability to em
late a big range of nuclei that are not spherical in nature, e
nuclei that have a nontrivial intrinsic deformation. We ha
developed and tested a new mean-field nuclear structure
that specifically addresses the computational challenges
opportunities presented by nuclei near the drip lines.

The present work represents an introduction of the spli
method to the solution of the HFB approach in axial symm
try. For now, we will focus on the methodology of our a
proach. We outline here briefly the theoretical and compu
tional details. We also present results for a few nucl
systems to demonstrate the convergence of the results.

II. STANDARD HFB FORMALISM

The many-body Hamiltonian in occupation number rep
sentation has the form

Ĥ5(
i , j

^ i utu j & ĉi
†ĉ j1

1

4 (
i , j ,m,n

^ i j uv̄ (2)umn&ĉi
†ĉ j

†ĉnĉm ,

~2.1!

where^ i j uv̄ (2)umn& is the antisymmetrized matrix element o
the two-body effectiveN-N interaction~see Appendix!. The
general linear transformation from particle operatorsĉ,ĉ† to
quasiparticle operatorsb̂,b̂† takes the form@16#
©2003 The American Physical Society14-1
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S b̂

b̂†D 5S U† V†

VT UTD S ĉ

ĉ†D . ~2.2!

The HFB approximate ground state of the many-body sys
is defined as a vacuum with respect to quasiparticles

b̂kuF0&50.

The basic building blocks of the theory are the density m
trix

r i j 5^F0uĉ j
†ĉi uF0&5~V* VT! i j , ~2.3!

and the pairing tensor

k i j 5^F0uĉ j ĉi uF0&5~V* UT! i j . ~2.4!

which give form to the generalized density matrix

R5S r k

2k* 12r* D .

The equations of motion are derived from the variatio
principle,

d@E~R!2trL~R22R!#50, ~2.5!

where

E~R!5^F0uĤ2lN̂uF0&, ~2.6!

which corresponds to a variation under the constraint on
particle numberN and on the generalized density matrix
satisfy the relationR 25R. This results in the standard HF
formulation

@H,R#50, ~2.7!

with the generalized single-particle Hamiltonian

H5S ~h2l! D

2D* 2~h2l!* D , ~2.8!

whereh andD denote the mean-field Hamiltonian and pa
ing potential, respectively, and the Lagrange multiplierl is
the Fermi energy of the system.

A. Quasiparticle wave functions in coordinate space

In practice, it is convenient to transform the standard H
equations into a coordinate space representation and s
the resulting differential equations on a lattice. For this p
pose, we define two types of quasiparticle wave functio
f1 andf2, corresponding to each quasiparticle energy s
Ea :

f1* ~Ea ,rsq!5(
i

Uia~2s!f i~r2sq!, ~2.9a!

f2~Ea ,rsq!5(
i

Via* f i~rsq!. ~2.9b!
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The basis wave functionsf i depend on the coordinate vecto
r , the spin projections561

2, and the isospin projectionq
(q51 1

2 corresponds to protons andq52 1
2 to neutrons!.

The quasiparticle energy spectrum is discrete foruEu,2l
and continuous foruEu.2l @8#. For practical calculations
the continuum states are discretized, thus replacing inte
tion over continuum energies with a summation@8#. With
this approximation the particle density matrix for the HF
ground state assumes a very simple mathematical structu
terms off1 andf2 @8#:

r~rsq,r 8s8q8!5^F0uĉ†~r 8s8q8!ĉ~rsq!uF0&

5(
i , j

r i j f i~rsq!f j* ~r 8s8q8!

5 (
Ea.0

`

f2~Ea ,rsq!f2* ~Ea ,r 8s8q8!.

~2.10!

Instead of the standard antisymmetric pairing tensork de-
fined as

k~rsq,r 8s8q8!5^F0uĉ~r 8s8q8!ĉ~rsq!uF0&, ~2.11!

we introduce the pairing density matrixr̃ which is Hermitian
for a time-reversal invariant ground state and hence m
convenient to use@8#:

r̃~rsq,r 8s8q8!5~22s8!k~rsq,r 82s8q8!

5~22s8!(
i , j

k i j f i~rsq!f j~r 82s8q8!

52 (
Ea.0

`

f2~Ea ,rsq!f1* ~Ea ,r 8s8q8!.

~2.12!

In principle, the sums go over all the energy states, bu
practice a cutoff in the number of states is done up to
reasonable number~;60 MeV!.

Proceeding in analogy to the pairing density matrix, w
replace the antisymmetric pairing potentialD in Eq. ~2.8!
with the Hermitian pairing fieldh̃,

h̃~rsq,r 8s8q8!5~22s8!D~rsq,r 82s8q8!. ~2.13!

B. Normal density and pairing density

From expressions~2.10! and~2.12! for the density matri-
ces we obtain the following expressions for the normal d
sity rq(r ) and pairing densityr̃q(r ), which are defined as
the spin-averaged diagonal elements of their correspon
matrices:

rq~r !5(
s

r~rsq,rsq!5(
s

(
a

f2,a~rsq!f2,a* ~rsq!,

~2.14!
4-2
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r̃q~r !5(
s

r̃~rsq,rsq!52(
s

(
a

f2,a~rsq!f1,a* ~rsq!.

~2.15!

The quasiparticle energyEa is denoted by indexa for sim-
plicity. The physical interpretation ofr̃q has been discusse
in Ref. @8#: the quantity@ r̃q(r )DV/2#2 gives the probability
to find acorrelatedpair of nucleons with opposite spin pro
jection in the volume elementDV.

C. Kinetic and spin-orbit densities

The kinetic energy densitytq(r ) is defined as a functiona
of wave functionsf2,

tq~r !5¹•¹8rq~r ,r 8!ur5r8

5¹•¹8S (
s

r~rsq,r 8sq! D U
r5r8

5(
s

(
a

u¹f2,a~rsq!u2. ~2.16!

The spin-orbit density does not appear directly in the nuc
potential, but rather its divergence

¹•Jq~r !52 i(
a

~¹f2,a* r ,q!•~¹3s!f2,a~r ,q!.

~2.17!

D. Energy functional and mean fields

Standard HFB theory yields the following expression
the total binding energy of the nucleus in its ground sta
with contributions from the mean field and the pairing fie

EHFB5^FHFBuĤuFHFB&5Em f1Epair .

To simplify the notation, we drop the isospin indicesq,q8 in
this section and in the following section. In coordinate spa
the mean-field contribution is given by@8#

Em f5
1

2E d3r E d3r 8 (
s,s8

@ t~rs,r 8s8!

1h~rs,r 8s8!#r~r 8s8,rs!, ~2.18!

and pairing energy contribution has the form

Epair5
1

2E d3r E d3r 8 (
s,s8

h̃~rs,r 8s8!r̃~r 8s8,rs!.

~2.19!

The quantityh denotes the mean field, i.e., the particle-ho
(p-h) channel of the interaction
06431
r

r
,

:

,

h~rs,r 8s8!5t~rs,r 8s8!1E d3r 2E d3r 28

3 (
s2 ,s28

v̄ (2)~rs,r2s2 ;r 8s8,r28s28!

3r~r28s28 ,r2s2!. ~2.20!

The kinetic energy matrix elements are given by

t~rs,r 8s8!5d~r2r 8!ds,s8S 2
\2

2m
¹2D . ~2.21!

In a similar way, we find for the pairing mean fieldh̃, i.e., for
the p-h andh-h channels of the interaction

h̃~rs,r 8s8!5E d3r 18E d3r 28 (
s18 ,s28

2s8

3s28v̄pair
(2) ~rs,r 82s8;r 18s18 ,r 282s28!

3 r̃~r 18s18 ,r 28s28!. ~2.22!

E. Pairing interaction

In practice, we utilizedifferenteffectiveN-N interactions
for thep-h and for thep-p channels. If one assumes that th
effective interactionv̄pair

(2) is local

v̄pair
(2) ~rs,r 82s8;r 18s18 ,r 282s28!

5d~r 182r !ds
18 ,sd~r 282r 8!ds

28 ,s8Vp~rs,r 82s8!,

the pairing mean field Hamiltonian becomes

h̃~rs,r 8s8!5Vp~rs,r 82s8!r̃~rs,r 8s8!.

For the pairing interactionVp we utilize the form

Vp~rs,r 82s8!5V0d~r2r 8!ds,s8F~r !.

This parametrization describes two primary pairing forces
pured interaction (F51) that gives rise tovolume pairing,
and a density dependentd interaction~DDDI! that gives rise
to surface pairing. In the latter case, one uses the followin
phenomenological ansatz@17# for the factorF:

F~r !512S r~r !

r0
D g

, ~2.23!

wherer~r ! is the mass density.
The DDDI interaction generates the following pairin

mean field for the two isospin orientationsq56 1
2 :

h̃q~rs,r 8s8!5
1

2
V0

(q)r̃q~r !F~r !d~r2r 8!ds,s8 . ~2.24!

The pairing contribution to the nuclear binding energy
then
4-3
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Epair5Epair
(p) 1Epair

(n) 5E d3r FV0
(p)

4
r̃p

2~r !1
V0

(n)

4
r̃n

2~r !GF~r !.

An important related quantity is the average pairing gap
protons and neutrons, which is defined as@7,8#

^Dq&52
1

Nq
trace~ h̃qrq!

52
1

Nq
E d3r E d3r 8 (

s,s8
h̃q~rs,r 8s8!rq~r 8s8,rs!,

whereNq denotes the number of protons or neutrons. Ins
ing the expression derived earlier for the mean pairing fie
we arrive at

^Dq&52
1

2

V0
(q)

Nq
E d3r r̃q~r !rq~r !F~r !. ~2.25!

Note that the pairing gap is a positive quantity beca
V0

(q),0.

F. HFB equations in coordinate space

For certain types of effective interactions~e.g., Skyrme
mean field and pairingd interactions! the particle Hamil-
tonianh and the pairing Hamiltonianh̃ are diagonal in iso-
spin space and local in position space,

h~rsq,r 8s8q8!5dq,q8d~r2r 8!hs,s8
q

~r ! ~2.26a!

and

h̃~rsq,r 8s8q8!5dq,q8d~r2r 8!h̃s,s8
q

~r !. ~2.26b!

Inserting these into the above HFB equations results in
34 structure in spin space:

S ~hq2l! h̃q

h̃q 2~hq2l!
D S f1,a

q

f2,a
q D 5EaS f1,a

q

f2,a
q D ~2.27!

with

hq5S h↑↑
q ~r ! h↑↓

q ~r !

h↓↑
q ~r ! h↓↓

q ~r !
D , h̃q5S h̃↑↑

q ~r ! h̃↑↓
q ~r !

h̃↓↑
q ~r ! h̃↓↓

q ~r !
D .

Because of the structural similarity between the Dirac eq
tion and the HFB equation in coordinate space, we encou
here similar computational challenges: for example,
spectrum of quasiparticle energiesE is unbounded from
aboveandbelow. The spectrum is discrete foruEu,2l and
continuous foruEu.2l. For even-even nuclei it is custom
ary to solve the HFB equations with a positive quasiparti
energy spectrum1Ea and consider all negative energy stat
as occupied in the HFB ground state.
06431
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III. 2D REDUCTION FOR AXIALLY SYMMETRIC
SYSTEMS

For simplicity, we assume that the HFB quasipartic
Hamiltonian is invariant under rotationsR̂z around thez axis,
i.e., @H,R̂z#50. Due to the axial symmetry of the problem
it is advantageous to introduce cylindrical coordina
(w,r ,z). It is possible to construct simultaneous eigenfun
tions of the generalized HamiltonianH and thez component
of the angular momentum,ĵ z ,

Hcn,V,q~w,r ,z!5En,V,qcn,V,q~w,r ,z!, ~3.1a!

ĵ zcn,V,q~w,r ,z!5\Vcn,V,q~w,r ,z!, ~3.1b!

with quantum numbersV561
2,6

3
2,6

5
2, . . . corresponding to

eachnth energy state. The simultaneous quasiparticle eig
functions take the form

cn,V,q~w,r ,z!5S fn,V,q
(1) ~w,r ,z!

fn,V,q
(2) ~w,r ,z!D

5
1

A2p S ei (V21/2)wfn,V,q
(1) ~r ,z,↑ !

ei (V11/2)wfn,V,q
(1) ~r ,z,↓ !

ei (V21/2)wfn,V,q
(2) ~r ,z,↑ !

ei (V11/2)wfn,V,q
(2) ~r ,z,↓ !

D .

~3.2!

We introduce the following useful notation:

UnVq
(1,2)~r ,z!5fn,V,q

(1,2) ~r ,z,↑ !, ~3.3a!

LnVq
(1,2)~r ,z!5fn,V,q

(1,2) ~r ,z,↓ !. ~3.3b!

From the vanishing commutator@H, j z#, we can determine
thew dependence of the HFB quasiparticle Hamiltonian a
arrive at the following structure for the Hamiltonian:

h~w,r ,z!5S h↑↑8 ~r ,z! e2 iwh↑↓8 ~r ,z!

e1 iwh↓↑8 ~r ,z! h↓↓8 ~r ,z!
D ~3.4!

and the pairing Hamiltonian

h̃~w,r ,z!5S h̃↑↑8 ~r ,z! e2 iwh̃↑↓8 ~r ,z!

e1 iwh̃↓↑8 ~r ,z! h̃↓↓8 ~r ,z!
D . ~3.5!

Inserting Eqs.~3.4! and~3.5! into the eigenvalue Eq.~2.27!,
we arrive at thereduced 2D problemin cylindrical coordi-
nates:
4-4
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S ~h↑↑8 2l! h↑↓8 h̃8↑↑ h̃8↑↓
h↓↑8 ~h↓↓8 2l! h̃8↓↑ h̃8↓↓

h̃8↑↑ h̃8↑↓ 2~h↑↑8 2l! 2h↑↓8

h̃8↓↑ h̃8↓↓ 2h↓↑8 2~h↓↓8 2l!

D
3S Un,V,q

(1)

Ln,V,q
(1)

Un,V,q
(2)

Ln,V,q
(2)

D 5En,V,qS Un,V,q
(1)

Ln,V,q
(1)

Un,V,q
(2)

Ln,V,q
(2)

D . ~3.6!

Here, quantitiesh̃8, h8, U, andL are all functions of (r ,z)
only. Also, h̃h8 and h8 contain the implicit isospin depen
denceq. This is the main mathematical structure that w
implement in computational calculations. For a given an
lar momentum projection quantum numberV, we solve the
eigenvalue problem to obtain energy eigenvaluesEn,V,q and
eigenvectorscn,V,q for the corresponding HFB quasipartic
states.

A. Representation of operators

The Hartree-Fock Hamiltonian using the Skyrme effect
interaction can be written@29# ~assuming time-reversal in
variance!

hq52¹•

\2

2mq*
¹1Uq1UCdq1/22 iBq•~¹3s!, ~3.7!

whereUq is the nuclear central field,UC the Coulomb inter-
action, and the spin-orbit field part is given byBq•(¹3s).
The explicit form of these expressions for the case of
Skyrme interaction are included in the Appendix. Starti
from the kinetic energy we apply the cylindrical form of th
Laplacian operator to the standard form of the wave funct
in Eq. ~3.2!, to find

t̂ q5S t11 0

0 t22
D , ~3.8!

whose elements are given by

t115 f F ]2

]r 2
1

1

r

]

]r
2S ~V21/2!

r D 2

1
]2

]z2G1
] f

]r

]

]r
1

] f

]z

]

]z
,

~3.9a!

t225 f F ]2

]r 2
1

1

r

]

]r
2S ~V11/2!

r D 2

1
]2

]z2G1
] f

]r

]

]r
1

] f

]z

]

]z
,

~3.9b!

f being the effective mass given in Eq.~A9!. The local po-
tential terms could also be cast into a matrix form,

v̂q5S v11 0

0 v22
D , ~3.10!
06431
-

e

n

where

v115v225Uq1UCdq1/2. ~3.11!

Expressions forUq andUC are given in the Appendix. The
Hartree-Fock spin-orbit operator

2 iBq•~¹3s!→ŵq , ~3.12!

can similarly be written into the form

ŵq5S w11 w12

w21 w22
D , ~3.13!

with @18#

w115Br

V21/2

r
, ~3.14a!

w125F2Bz

V11/2

r
2Bz

]

]r
1Br

]

]zG , ~3.14b!

w215F2Bz

V21/2

r
1Bz

]

]r
2Br

]

]zG , ~3.14c!

w2252Br

V11/2

r
, ~3.14d!

where Br ,Bz are defined in the Appendix for the Skyrm
force.

B. Densities

Making use of the definitions for the normal density a
pairing density, Eqs.~2.14! and~2.15!, we apply the bispinor
structure of the quasiparticle wave functions to find the c
responding expressions in axial symmetry:

rq~r ,z!5
1

2p S 2 (
V.0

Vmax D 3 (
En.0

Emax

@ uUnVq
(2) ~r ,z!u2

1uLnVq
(2) ~r ,z!u2#, ~3.15!

r̃q~r ,z!52
1

2p S 2 (
V.0

Vmax D 3 (
En.0

Emax

@UnVq
(2) ~r ,z!UnVq

(1)* ~r ,z!

1LnVq
(2) ~r ,z!LnVq

(1)* ~r ,z!#. ~3.16!

Similarly, starting from definitions~2.16! and~2.17!, we ob-
tain expressions for the kinetic energy density and the div
gence of the spin density,
4-5
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tq~r ,z!5
1

2p S 2 (
V.0

Vmax D (
En.0

Emax F ~V21/2!2

r 2
uUnVq

(2) u2

1
~V11/2!2

r 2
uLnVq

(2) u21U]UnVq
(2)

]r
U2

1U]LnVq
(2)

]r
U2

1U]UnVq
(2)

]z
U2

1U]LnVq
(2)

]z
U2G , ~3.17!

¹•Jq~r !5
1

2p S 2 (
V.0

Vmax D (
En.0

Emax

2F]UnVq
(2)

]r

]LnVq
(2)

]z

2
]LnVq

(2)

]r

]UnVq
(2)

]z
1

V21/2

r

3UnVq
(2) S ]UnVq

(2)

]r
2

]LnVq
(2)

]z D
2

V11/2

r
LnVq

(2) S ]UnVq
(2)

]z
1

]LnVq
(2)

]r D G . ~3.18!

The total number of protons or neutrons is obtained by in
grating their densities

Nq5E d3rrq~r !5S 2 (
V.0

Vmax D (
En.0

Emax

NnVq ~3.19!

with

NnVq5E
0

`

rdr E
2`

`

dz@ uUnVq
(2) ~r ,z!u21uLnVq

(2) ~r ,z!u2#,

~3.20!

which gives the contribution of the quasiparticle stateunVq&
to the proton or neutron density. In the HF1BCS limit,
NnVq→vnVq

2 . An analogous treatment of the pairing dens
yields

Pq5E d3r r̃q~r !5S 2 (
V.0

Vmax D (
En.0

Emax

PnVq ~3.21!

with the ‘‘pairing density spectral distribution’’~with respect
to energy and angular momentum!

PnVq52E
0

`

rdr E
2`

`

dz@UnVq
(2) ~r ,z!UnVq

(1)* ~r ,z!

1LnVq
(2) ~r ,z!LnVq

(1)* ~r ,z!#. ~3.22!

In the HF1BCS limit, PnVq→(uv)nVq . Finally, we state the
normalization condition for the four-spinor quasipartic
wave functions as

E d3rcnVq
† ~r !cnVq~r !51, ~3.23!

which leads to
06431
-

E
0

`

rdr E
2`

`

dz@ uUnVq
(1) ~r ,z!u21uLnVq

(1) ~r ,z!u2

1uUnVq
(2) ~r ,z!u21uLnVq

(2) ~r ,z!u2#51. ~3.24!

IV. LATTICE REPRESENTATION OF SPINOR WAVE
FUNCTIONS AND HAMILTONIAN

For axially symmetric nuclei, we diagonalize the HF
Hamiltonian ~3.6! separately for fixed isospin projectionq
and angular momentum quantum numberV. We solve
the eigenvalue problem by direct diagonalization on
two-dimensional grid (r a ,zb), where a51, . . . ,Nr and
b51, . . . ,Nz . In practice, we do not assume left-right sym
metry, thus allowing the possibility for octupole shapes. Co
sequently, the grid extends from2z to 1z, and we haveNz
'2Nr ~so when referring to the number of points in th
mesh we only mention the value ofNr). The four compo-
nents of the spinor wave functionc(r ,z) are represented on
the two-dimensional lattice by an expansion in basis-sp
functionsBi(x) evaluated at the lattice support points. Fu
ther details about the basis-spline technique are given
Refs. @19,20#. For the lattice representation of the Ham
tonian, we use a hybrid method@18,21,22# in which deriva-
tive operators are constructed using the Galerkin meth
this amounts to a global error reduction. Local potentials
represented by the basis-spline collocation method~local er-
ror reduction!. The lattice representation transforms the d
ferential operator equation into a matrix form

(
n51

N

H n
ncn

V5En
Vcn

V ~n51, . . . ,N!. ~4.1!

The HFB calculations are initialized using the density outp
from a prior HF1BCS run which results in fast convergenc
of the HFB code. Because the HFB problem is se
consistent we use an iterative method for the solution, an
every iteration the full HFB Hamiltonian is diagonalize
Typically 15–20 iterations are sufficient for convergence
the level of one part in 105 for the total binding energy. The
Fermi levelslq for protons and neutrons are calculated
every iteration by means of a simple root search using
equations@7#

f ~lq!5N̄q~lq!2Nq50,

N̄q~lq!5S 2 (
V.0

Vmax D (
En.0

Emax

N̄nVq~lq!,

N̄nVq~lq!5
1

2 F12
~EnVq2lq!

@~EnVq2lq!21DnVq
2 #1/2G ,

DnVq52EnVqANnVq~12NnVq!, ~4.2!

where E denotes the quasiparticle energy, andE is the
equivalent single-particle energy~as defined by the BCS for
malism!. The quantityN in the last line of the equation de
notes the spectral norm of the density as defined in
4-6
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~3.20!. The calculated value forlq is used in the next itera
tion. This process is repeated until convergence is achie

V. NUMERICAL PARAMETERS: 22O CALCULATIONS

In this section, we present a series of studies of the
merical parameters in axially symmetric HFB calculation
In particular, we study the dependence of observables on
equivalent single-particle energy cutoff, the lattice box si
the number of mesh points, and the maximum angular m
mentum quantum numberVmax. The numerical tests are ca
ried out for 22O. This neutron-rich isotope has anN/Z ratio
of 1.75 and is close to the experimentally confirmed drip l
nucleus24O.

A. Energy cutoff

The numerical solution of the HFB equations on a 2
lattice results in a set of quasiparticle wave functions a
energies. The quasiparticle energy spectrum contains
bound and~discretized! continuum states. The number o
eigenstates is determined by the dimensionality of the
crete HFB Hamiltonian, which isN5(4NrNz)

2, for fixed
isospin projectionq and angular momentum projectionV. In
our calculations, we typically obtain quasiparticle energ
up to about 1 GeV. It is well known that zero-range pairi
forces require a limited configuration space in thep-p chan-
nel because the interaction matrix elements decrease
slowly with excitation energy@8#. One therefore introduce
an energy cutoff, either in the quasiparticle energy (Emax) or
in the equivalent single-particle energy (Emax). Hence, in the
case of zero-range pairing forces the infinite summati
over quasiparticle energies in the expressions for the de
ties r, t, and J are terminated at a maximum quasipartic
energy.

The quantityEmax has to be chosen such that the ma
mum quasiparticle energy exceeds the depth of the m
field nuclear potential, and all of the bound states have to
included in the sums@7#. We follow the prescription of Refs
@7,23# to set the cutoff energy in terms of the equivale
single-particle energy spectrumEn . For the Skyrme SLy4
force with puredelta pairing, Dobaczewski@24# deduced a
pairing strength of V052218.5 MeV fm3, with Emax
560 MeV. We utilize the same parameters in all of our 2
calculations.

Even thoughEmax is a fixed parameter in the HFB calcu
lations, it is interesting to analyze the sensitivity of obse
ables to the value of the energy cutoff. In Fig. 1 we plot t
total nuclear binding energy for cutoff values ofEmax be-
tween 10 and 60 MeV and the same forEmax from 20 to 60
MeV. We find that in both cases, the binding energy rema
essentially constant for cutoff values of 40 MeV and abo
Clearly, a cutoff below 40 MeV results in significant chang
in the binding energy because quasiparticle levels with la
occupation probabilities are left out. In terms of the equiv
lent single-particle energies this corresponds to levels n
the bottom of the central potential being left out. This res
is in agreement with the 1D radial calculations of Ref.@8#.
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B. Lattice box size

Using cylindrical coordinates, the lattice box sizeR de-
fines the boundary in radial~r! direction; the box size inz
direction is 2R. The value ofR must be chosen large enoug
for the wave functions to vanish at the outer edges of the
and needs to be adjusted for optimal accuracy and compu
time. Figure 2 shows the dependence of the binding ene
on R for 22O. The mesh spacing was kept at a constant va
of Dr'1 fm. Figure 2 also presents some of the quasipa
cle energy levelsEnVq with large occupation probabilityNn ;
these levels correspond to low-lying states in the equiva
single-particle spectrum. Evidently, the quasiparticle en
gies and the total binding energy converge in essentially
same way with increasing box size. Figure 2 shows that c
vergence is reached atR510 fm. The behavior of the qua
siparticle states with respect to the mesh boundaries has
been discussed in Ref.@8#. For heavier systems, the box siz
has to be increased. A safe initial guess forR is about three
times the classical nuclear mass radius.

C. Number of mesh points

One of the major advantages of theB-spline technique is
that one can utilize a relatively coarse grid resulting in
lattice Hamiltonian matrix of low dimension. Figure 3 show

-170
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-150

-140

-130

-120

B
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.  
(M

eV
)

Cutoff on E
n

10 20 30 40 50 60
Energy Cutoff (MeV)

-165

-164
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B
. E

.  
(M

eV
)

Cutoff on ε
n

22
O

FIG. 1. Binding energy of22O vs energy cutoff. Top, cutoff in
the quasiparticle spectrum, bottom, cutoff in the equivalent sin
particle spectrum~absolute value!. All calculations were performed
with B-spline orderM57, Nr518 lattice points, angular momen
tum projectionVmax55/2, and box sizeR510 fm.
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several observables as a function of the number of ra
mesh points, for a fixed box sizeR510 fm. The binding
energy, neutron Fermi level, and pairing gap for22O reach
their asymptotic values at about 18 grid points in radial
rection. For the fixed (r ,z) boundary conditions utilized in
our work, theB-spline lattice points show a~slightly! non-
linear distribution, with more points in the vicinity of th
boundaries. In the central region, the grid spacing for
radial points is 0.75 fm. The choice of the spacing depe
on the desired accuracy and the computational cost. In o
to achieve an accuracy in the total binding energy of a f
tens of keV a mesh spacing of 0.50–0.75 fm seems to
sufficient. Mesh spacings of 0.80–0.90 fm result in accu
cies of a few hundred keV, while mesh spacings over 1.0
are not accurate enough for detailed predictions. Thus,
number of points is determined by two criteria: The box s
is chosen to be approximately three times the classical m
radius, while the mesh spacing depends on the desired a
racy of the binding energy.

D. Projection of the angular momentum,V

It has been mentioned in the formalism section that
observables can be expressed by sums overpositive jz quan-
tum numbersV.0. The maximum valueVmax increases, in
general, with the number of protons and neutrons (Z,N) and
also depends on the nuclear deformation. There is noa priori

1

1.5

2

2.5

3
E

nΩ
 (

M
eV

)
E

4 1/2 n
E

5 1/2 n
E

2 3/2 n
E

1 5/2 

6 8 10 12 14
R (fm)

-165

-164

-163

B
. E

. (
M

eV
) O

22

FIG. 2. Bottom: Total binding energy of22O as a function of the
box sizeR. Top: Quasiparticle energies for neutron states with la
occupation probability (Nn) as a function ofR. The spline order
used wasM59, Nr519 grid points,Vmax5

9
2 , and cutoff energy

Emax560 MeV.
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criterion to fix Vmax; this numerical parameter needs to
determined from test calculations in various mass regio
We have performed calculations for22O usingVmax values
from 5/2 to 13/2. Figure 4 displays the results for the to
binding energy, neutron Fermi energy, and neutron pair
gap. All three observables converge atV59/2.

The general procedure for determiningVmax is to start
filling single-particle levels either in the spherical or d
formed shell model. Because of fractional occupation of le
els due to pairing, states above the Fermi level must be c
sidered. In the case of150Sn with 100 neutrons, withou
pairing thej 511/2 level is the highest occupied angular m
mentum. In this case we have usedVmax513/2 becausej
515/2 contributes for particle numbers between 1682184.
Similar considerations apply for102Zr except that we exam
ine the levels in the deformed shell-model. We also note t
for a fixedV the diagonalization of the HFB Hamiltonian o
the lattice results in 4NrNz eigenstates. Many of these orig
nate from the substates of higherj values, for example, the
V513/2 substate ofj 521/2.

VI. RESULTS

In this section we present converged numerical results
our 2D-HFB code. Our main goal is to demonstrate the

e
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1.3
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-5.24

-5.20
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-5.12

λ N
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Number of Points (N

r
)

-166.00

-165.50

-165.00

-164.50

-164.00

B
. E

. (
M

eV
)

22
O

FIG. 3. Total binding energy, Fermi level, and pairing gap f
neutrons in22O vs number of mesh points in radial direction, fo
fixed box sizeR510 fm. The quantitiesVmax and Emax are the
same as in Fig. 2.
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curacy of our basis-spline expansion technique on a 2D
ordinate lattice by comparison with the 1D coordinate sp
results of Dobaczewskiet al. @8,24# for spherical nuclei. For
this purpose we have chosen two very neutron-rich sphe
nuclei: a light nucleus22O with N/Z51.75 and a heavy sys
tem 150Sn with N/Z52.0. Finally, we will also present re
sults for a strongly deformed medium-heavy system102Zr
with N/Z51.55. This system was chosen because it allo
us to compare our lattice results~which treat the continuum
states accurately! to the ‘‘transformed harmonic oscillator
~THO! expansion technique recently developed by Stoit
et al. @23#. In this framework, a local-scaling point transfo
mation of the spherical harmonic oscillator is used to exp
the quasiparticle wave functions in a set of bound sing
particle wave functions.

A. Exotic spherical nuclei: 22O and 150Sn

In Table I we compare our 2D HFB results for the sphe
cal isotope22O with the 1D radial HFB method of Ref.@7#.
Corresponding results in the 2D THO basis with 20 oscilla
shells are also given. All calculations were performed w
the Skyrme SLy4 force in thep-h channel and a pured

1.1

1.2

1.3

1.4

1.5

∆ N

-5.36

-5.34

-5.32

-5.30

-5.28

-5.26

λ N

5
/
2

7
/
2

9
/
2

11
/
2

13
/
2

Ω
max

-164.70

-164.65

-164.60

-164.55

B
. E

. (
M

eV
)

22
O

FIG. 4. Binding energy, neutron Fermi level, and average n
tron pairing gap for22O vs maximum angular momentum proje
tion Vmax. Box sizeR510 fm, Nr518, and an energy cutoff of 60
MeV were used.
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interaction~strengthV052218.5 MeV fm3 for 22O andV0
52170.0 MeV fm3 for 150Sn) in thep-p channel, corre-
sponding to volume pairing. The table lists several obse
ables: the total binding energy~for comparison, the experi
mental value is2162.03 MeV!, the Fermi level for protons
and neutrons, the neutron energy gap~for protons, the gap is
exactly zero in all three calculations!, the rms mass radius
and the charge quadrupole deformation~note that both 2D
calculations predict essentially zero deformation!. Overall,
the results of the axially symmetric code of the present w
agree with the other two calculations in all the observab
The binding energy predicted by our 2D-lattice code is ve
close~within 40 keV! to the 1D lattice result, while the THO
method result differs by 80 keV. The difference in the Fer
level for protons is due to different conventions in choosi
this energy for magic numbers. We choose the Fermi ene
to be the midpoint of the energy of the last occupied le
and the first unoccupied level. We now present results for
tin isotope 150Sn, a heavy nucleus far away from the valle
of b stability which is close to the two-neutron drip line
Table II gives a comparison of our 2D results~which predict
a very small charge quadrupole deformationb250.01) with

-

TABLE I. Calculations for 22O for HFB1SLy4. The axially
symmetric calculations~2D! of this work used a box sizeR
510 fm with maximumV5

9
2 and an energy cutoff of 60 MeV. The

spherical calculation of Ref.@24# was made withR525 fm and a
j 521/2. All calculations were made with a cutoff at 60 MeV.

1D @24# 2D ~THO! @25# 2D ~this work!

B.E. ~MeV! 2164.60 2164.52 2164.64
ln ~MeV! 25.26 25.27 25.27
lp ~MeV! 218.88 218.85 218.16
Dn ~MeV! 1.42 1.41 1.40
Dp ~MeV! 0.00 0.00 0.00
Rrms ~fm! 2.92 2.92 2.92
b2 0.00002 0.0008
Epair(n) ~MeV! 22.85 22.78 22.75

TABLE II. Comparison of calculations for spherical nucleu
150Sn with HFB1SLy4. The 1D calculations were made by Re
@24#, using a box sizeR530 fm and a linear spacing of points o
0.25 fm, with j max521/2. Calculations by the axially symmetri
HFB 2D code were made using a box sizeR520 fm with Nr

523, maximumV513/2. In both calculations the pairing streng
V0 was set to2170.0 MeV fm3, and the energy cutoff to 60 MeV

1D 2D

B.E ~MeV! 21129.0 21129.6
ln ~MeV! 20.96 20.94
lp ~MeV! 217.54 217.69
Dn ~MeV! 1.02 1.00
Dp ~MeV! 0.00 0.02
Rrms ~fm! 5.12 5.13
b2 0.01
Epair(n) ~MeV! 210.452 210.057
4-9
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Dobaczewski’s 1D radial HFB calculations@24#. The box
size used in the axially symmetric calculations was 20 fm
r direction and 40 fm in thez axis, whereas the 1D code ha
a 30-fm radial box. Also, the density of points has a differe
meaning in the radial code, since it uses a different grid t
the one used in theB-splines technique for our 2D code. Fo
these calculations the resulting mesh spacing in the 1D c
was 0.25 fm, whereas the maximum mesh spacing in the
one was 1.1 fm. In the 2D calculations an approximat
300033000 matrix was diagonalized for eachV and isospin
value, and for each major HFB iteration. The full calculati
required about 30 HFB iterations. Like in the oxygen is
tope, the agreement is very good; a possible source of s
discrepancies is the fact that our 2D code yieldsb250.01,
whereas the 1D codeassumesan exactly spherical shape
Table II also contains another interesting piece of inform
tion on 150Sn: the neutron Fermi levelln is located less than
1 MeV below the continuum, which shows the proximity
this nucleus to the two-neutron drip line.

B. Deformed neutron-rich nucleus: 102Zr

Our main motivation for developing an axially symmetr
code is to perform highly accurate calculations for deform
nuclei, including the continuum states. The zirconium is
tope 102Zr is a heavy nucleus with strong prolate quadrup
deformation in its ground state. Its neutron to proton ratio
N/Z51.55 places it into the neutron-rich domain, although
is likely far away from the neutron drip line~in the 1D
spherical HFB calculations@26#, using the SkP interaction
@7#, the last bound nucleus in the chain is predicted to
136Zr). We have chosen this isotope primarily because
results can be compared to the stretched harmonic oscil
expansion~THO! method mentioned above which does n
involve any continuum states.

In Table III we present the results of our 2D HFB calc
lations in coordinate space with the results obtained
the THO method. A comparison of the total binding ener
of the system in both methods shows a difference of ab
210 keV, which can be considered small in comparison
the absolute value of the energy~the experimental binding

TABLE III. Comparison of calculations HFB1SLy4 for 102Zr
with two different methods in the axial symmetry. The configurati
space calculations~THO! were made by Ref.@25# with 20 oscillator
shells and pairing strength of2187.10 MeV fm3. Calculations by
the coordinate space HFB 2-D code were made using a box
R512 fm with Nr519, maximum V511/2, V052170.0
MeV fm3 and the energy cutoff of 60 MeV.

2D ~THO! 2D ~this work!

B.E. ~MeV! 2859.40 2859.61
ln ~MeV! 25.42 25.46
lp ~MeV! 212.10 212.08
Dn ~MeV! 0.56 0.31
Dp ~MeV! 0.62 0.34
Rrms ~fm! 4.58 4.58
b2 0.429 0.431
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energy value is2863.7 MeV!. The pairing strength param
eterV0 used in each calculation also makes a difference
THO approach this parameter is adjusted to reprod
the coordinate space 1D spherical results for a given num
of oscillator shells. Other observables~Fermi levels, rms
mass radius, and charge deformationb2) agree quite well,
also. However, we find differences in the energy gap val
(Dn , Dp); these may be attributed to the different density
states used in the two methods@see Eq.~2.25!# or to the
extrapolation of the oscillator parameter in the THO a
proach to deformed systems.

VII. CONCLUSIONS

In this paper, we have solved for the first time the HF
continuum problem in coordinate space for deformed nu
in two spatial dimensions without any approximations. T
novel feature of our new HFB code is that it takes into a
count high-energy continuum states with an equival
single-particle energy of 60 MeV or more. In the past, th
has only been possible in 1D calculations for spherical nu
@8#. Current 3D HFB codes in coordinate space, e.g., R
@27#, utilize an expansion of the quasiparticle wave functio
in a truncated HF basis which is limited to continuum sta
up to about 5 MeV of excitation energy.

The Vanderbilt HFB code has been specifically design
to study ground state properties of deformed axially symm
ric even-even nuclei near the neutron and proton drip lin
The large pairing correlations near the drip lines and
strong coupling to the continuum represent major challen
for the numerical solution. We have solved the HFB proble
on a two-dimensional grid in cylindrical coordinates (r ,z)
using a basis-spline representation of wave functions and
erators.B-splines are a generalization of the well-known
nite element technique. By usingB-splines of orderM59
~corresponding to polynomials of up to eight order! we are
able to represent derivative operators very accurately o
relatively coarse grid with a lattice spacing of about 0.8 f
While our current 2D lattices are linear, a major advantage
theB-spline technique is that it can be extended to nonlin
lattices@18,21# which will be particularly useful for an accu
rate and efficient calculation of neutron skins in heavy n
clei.

In this work, we have used the Skyrme~SLy4! effective
N-N interaction in thep-h channel, and a pured interaction
~corresponding to volume pairing! in the p-p channel. We
present results for binding energies, charge deformatio
rms mass radii, pairing energies, Fermi levels, and pair
gaps.

We have investigated the numerical convergence of s
eral observables as a function of lattice box size, grid sp
ing, angular momentumVmax, and we have studied the sen
sitivity of the observables to the continuum cutoff. These t
calculations were carried out for the neutron-rich isotope22O
with N/Z51.75 which is close to the drip line nucleus24O.

Our HFB-2D code predicts a spherical shape for
neutron-rich nuclei22O and 150Sn. In this case, our calcula
tions can be compared with the 1D radial HFB results
Dobaczewskiet al. @8#, and indeed there is good agreeme

ze
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TABLE IV. Skyrme force parameters. Values for new parameters,b0 , b08 , b1 , b18 , b2 , b28 , b3 , b38 , b4, andb48 , used in Ref.@17#, have
been calculated using relations~A1! and ~A2!, which relate the old parametrization~Refs. @29,30#! to the new one. Numbers have bee
rounded to three decimal places.

Force b0 b08 b1 b18 b2 b28 b3 b38 b4 b48

SkM* @30# 22764.025 21560.55 68.75 68.125 170.625 68.437 3898.75 1949.375 65.0 65.
Zs @34# 23145.945 23316.251 64.495 58.315 148.877 61.405 5577.823 6707.621 61.845 61.8
SkT6 @33# 22145.863 21600.426 0.0 0.0 110.25 0.0 4005.312 3204.25 53.5 53.5
SLy4 @31# 23526.790 23320.210 32.484 249.289 185.325 62.665 5776.007 6385.639 61.5 61.5
SkI1 @32# 1000.310 869.809 32.354 249.803 2432.059 21136.719 580.693 22810.714 62.13 62.13
SkI3 @32# 22034.628 21424.936 32.301 2127.914 100.074 2124.799 3336.309 3632.793 94.254 0.0
SkI4 @32# 22231.708 21679.676 32.271 275.310 2121.462 2528.369 3814.977 3991.101 183.0972180.351
SkP@7# 23359.948 22322.346 44.642 89.284 190.343 140.223 5100.600 3185.341 50.0 50
SkO @17# 21882.032 2608.585 22.537 15.075 272.754 2358.023 2660.027 237.585 176.5782198.749
SkO8 @17# 22068.449 2987.770 19.156 8.312 41.250 2128.648 3132.384 1192.344 143.895282.889
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between the two. We also present results for a strongly
formed system,102Zr, in which case we present a compa
son with the stretched oscillator expansion method
Stoitsovet al. @23,25#.

We have implemented our code on an IBM-SP massiv
parallel supercomputer. Parallelization is possible for diff
ent angular momentum statesV and isospins (p/n). We will
also study alternative numerical techniques; in particu
damping methods that we have utilized for solving the Di
equation on a 3D lattice@20#.

In the near future, we plan to investigate several isoto
chains, with particular concentration on deformed nuclei.
also plan to study a variety of Skyrme parametrizations
the mean field, and both volume and surface pairing.
more data from existing RIB facilities become available, it
likely that it will become necessary to develop new effect
N-N interactions to describe these exotic nuclei. Furth
more, our 2D HFB ground state wave functions can be u
as input into coordinate-space based quasiparticle rand
phase approximation~QRPA! calculations@28# to investigate
collective excited states of nuclei near the drip lines.
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APPENDIX: SKYRME PARAMETRIZATION

The ~density dependent! two-body effectiveN-N interac-
tion is given by

v12
(2)5t0~11x0P̂s!d~r12r2!1

1

2
t1~11x1P̂s!

3$d~r12r2!k̂2!1 k̂82d~r12r2!%
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f
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-

r,
c

e
e
r
s

r-
d

m-

-
t
d
l

-

1t2~11x2P̂s!k̂8•d~r12r2!k̂1
1

6
t3~11x3P̂s!

3rad~r12r2!1 iW0~ ŝ11ŝ2!$k̂83d~r12r2!k̂%,

P̂s being the exchange operator, andk̂,k̂8 relative momen-
tum operators. This form of the interaction with paramet
x0 ,x1 ,x2 ,x3 ,t0 ,t1 ,t2 ,t3 ,t4 has been changed to an equiv
lent one with b1 ,b18 ,b2 ,b28 ,b3 ,b38 ,b4 ,b48 parameters@17#.
This is done through the transformation

S t1

t1x1

t2

t2x2

D 5S 4/3 8/3 22/3 24/3

22/3 24/3 4/3 8/3

4 28/3 2 24/3

22 4/3 24 8/3

D S b1

b2

b18

b28

D ,

~A1!

and

t05
4

3
b02

2

3
b08 ,

t0x052
2

3
b01

4

3
b08 ,

t35
16

3
b32

8

3
b38 ,

t3x352
8

3
b31

16

3
b38 ,

t452b452b48 . ~A2!

The last equation only holds for certain forces, as shown
Table IV. For forces like SKI and SKO,b4 andb48 get dif-
ferent values.

1. Energy density

Calculation of the energy expectation value for an ar
trary interaction involves carrying out an integration over s
dimensions in coordinate space. One of the primary adv
tages of an interaction that contains ad function, like the
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E. TERÁN, V. E. OBERACKER, AND A. S. UMAR PHYSICAL REVIEW C67, 064314 ~2003!
Skyrme one, is that the evaluation of such integral becom
substantially simplified, and it is reduced to a thre
dimensional evaluation

E5^FuHuF&5E d3rH~r !. ~A3!

The Hamiltonian densityH(r ) is composed of several term

H5H01HLS1HC . ~A4!

The kinetic energy and some of the density dependent te
in the Skyrme interaction are included in

H05
\2

2m
t1

b0

2
r22

b08

2 (
q

rq
21

b3

3
ra122

b38

3
ra(

q
rq

2

1b1~rt2 j 2!2b18(
q

~rqtq2 j q
2!2

b2

2
r¹2r

1
b28

2 (
q

rq¹2rq . ~A5!

The current densities (j , jq) appearing in this term are iden
tically zero for time independent states. The finite range sp
orbit terms have the form

HLS52b4r¹•J2b48(
q

rq~¹•Jq!. ~A6!

The Coulomb term contains an integral over the proton d
sity as well as the Slater exchange term,

HC5
e2

2 E d3r 8rp~r !
1

ur2r 8u
rp~r 8!2

3

4
e2S 3

p D 1/3

@rp~r !#4/3.

~A7!

2. Single particle Hamiltonian

The Hartree-Fock Hamiltonian using the Skyrme effect
interaction can be written as~assuming time-reversal invar
ance!
th
it

y,

h-
te

h

06431
es
-

s

-

-

hq52¹•

\2

2mq*
¹1Uq1UCdq,p2 iBq~¹3s!. ~A8!

Several effective quantities appear in this equation. The
fective mass is defined by

\2

2mq*
5

\2

2m
1b1r2b18rq , ~A9!

and the effective spin density

Bq5b18Jq1b4¹r1b48¹rq . ~A10!

The first term in Eq.~A10! is often ignored@31#.
The effective nuclear potential for the Skyrme force

given by

Uq5b0r2b08rq1b1t2b18tq1
b3

3
~a12!ra11

2
b38

3 Fara21(
q

rq
212rarqG2b4¹•J2b48¹•Jq

1b28¹
2rq2b2¹2r, ~A11!

and the Coulomb field is

UC5e2E d3r 8
rp~r 8!

ur2r 8u
2e2S 3

p D 1/3

@rp~r !#1/3. ~A12!

Br andBz from Eqs.~3.13! for the spin-orbit part represen
tation of the potential operator are given by

Br[Bq•er5¹r~b4r1b48rq!, ~A13a!

Bz[Bq•ez5¹z~b4r1b48rq!, ~A13b!

b4 andb48 values are shown in Table IV for different force
.R.
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