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Renormalization group approach to two-body scattering in the presence of long-range forces
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We apply renormalization-group methods to two-body scattering by combination of known long-range and
unknown short-range potentials. We impose a cutoff in the basis of distorted waves of the long-range potential
and identify possible fixed points of the short-range potential as this cutoff is lowered to zero. The expansions
around these fixed points define the power countings for the corresponding effective field theories. Expansions
around nontrivial fixed points are shown to correspond to distorted-wave versions of the effective-range
expansion. These methods applied to scattering the presence of Coulomb, Yukawa, and repulsive inverse-
square potentials.
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[. INTRODUCTION EFT. So long as there is a clear separation of scales, the
cutoff A can be chosen to be above all of the low-energy
Effective field theorie$EFT's) offer the promise of a sys- scales of interest, but well below the scales of the underlying
tematic and model-independent treatment of nuclear anghysics. Beyond this, the cutoff is arbitrary, and physical
hadronic physics at low energies. In the form of chiral per-observables should be independent of it. This means that
turbation theory(ChPT), they have been used with some physics on momentum scales above the cutoff must be in-
success in both the mesonic and single-nucleon se@ftmrs cluded implicitly in the couplings of the EFT. As a result, all
reviews, see Ref$1,2]). Currently, there is much interest in the coupling constants must depend dn Finally, we
extending these applications to few-nucleon systems, as reescale the theory, expressing all dimensioned quantities in
viewed in Refs[3-6]. units of A. The flow of the resulting rescaled coupling con-
These theories rely on the existence of a separation dftants withA is described by a first-order differential equa-
scales between those of the low-energy physics, such as mtien: the RG equation.
menta, energies, or the pion mass, and those of the underly- For a system with a clear separation of scales, the rescaled
ing short-distance physics, such themeson mass, the coupling constants become independenicdis A—0. This
nucleon mass, or #f,.. This makes it possible to expand is because, foA <A, the only scale left is\, and so the
any observable systematically in powers of the r&io\ o, rescaled theory becomes independentAof The theory is
whereQ denotes a low-energy scale ang a scale of the said to flow towards a fixed point. Small deviations from
underlying physics. The effective Lagrangian or Hamiltoniansuch a point scale as powers of the cutoff, and this can be
used to calculate these observables can also be organizaded to define the power counting for the EFT, a term that
according to a “power counting” ifQ/ A y. Although an EFT  behaves likeA” being assigned an orddr=v—1.
contains an infinite number of these terms, only a finite num- Perturbations around a fixed point are classified as “irrel-
ber of these are needed to calculate observables up a givenant” if v>0, “marginal” if »=0, and “relevant” if v
order. If the separation of scales is wide enough, this expan>0. If all these perturbations are irrelevant, then the fixed
sion will converge rapidly enough to be useful. point is stable: the couplings of any theory close to that point
For weakly interacting systems the expansion can be omwill flow towards it asA —0. On the other hand, if there are
ganized according to naive dimensional analysis, a term praene or more relevant perturbations, then the fixed point is
portional to Q/A,)Y being counted as of order[7,8]. This  unstable. If a marginal perturbation is present, we should
“Weinberg” power counting is the one familiar from ChPT expect to find logarithmic flow with\.
in the zero- and one-nucleon sectors. In contrast, for strongly In Ref.[13] these ideas were applied to two-bosiwave
interacting systems there can be new low-energy scalescattering by short-range forces and two fixed points were
which are generated by nonperturbative dynamics. Importarfound. One is a trivial fixed point with no scattering. The
examples for nuclear physics are the very lssgeave scat- expansion around it can be organized according to Weinberg
tering lengths in nucleon-nucleon scattering. In such casesower counting. The second is a nontrivial point describing
we need to resum certain terms in the theory to all orderssystems with a bound state at zero energy. The appropriate
and this leads to a new power count{i®3-13], often referred  power counting for expanding around it is the KSW count-
to as Kaplan, Savage, and Wig€SW) power counting. The ing, which corresponds to the effective-range expansion.
resulting expansion of the scattering amplitude is, in fact, the In the present work, we extend this approach to study
effective-range expansioicRE) [14—17. two-body scattering by a combination of known long-range
A crucial tool for determining the power counting is the and unknown short-range forces. One important example of
renormalization groupRG), which is used to study the scal- this is proton-proton scattering, where the Coulomb interac-
ing behavior of systems in a wide range of areas of physicgion is the long-range force. Another is nucleon-nucleon scat-
In our work we use a Wilsonian version of the H®8], tering at higher energies, where the nucleon momenta are
imposing a momentum cutoffk| <A on the low-energy comparable to the pion mass. Here one needs to treat explic-
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itly pion-exchange forces, which can be calculated usingvg(k’ k,p,«)=Coo &)+ Cog( ) (KZ+K'?)+ Cox k) P2+ - - -.
ChPT[20]. 2)

To do this, we apply a cutoff to the basis of distorted
waves (DW'’s) [17] for the known long-range interaction.

; : . ) . Here k stands for any of the low-energy scales associated
Applying the RG as outlined above, we identify the p055|bleWith V|, such as the pion mass in theN potential or the

fixed points of the short-range interaction and establish th verse Bohr radius for a Coulomb potential. Such scales
corresponding pawer-counting rules for perturbations arounaﬂontrol the long-range form of the potential and can give rise
these. In cases where a nontrivial fixed point exists, the ter nonanalytic energy dependence of the scattering ampli-
n the resulting EF-I; can .be ”dlrectly. related to those N 3ude. This must be separated out if the effective short-range
distorted-wave or *modified” effective-range expansion potential is to be expanded in this form. For an EFT to be
(DWERB) [15,16,2] (see also Refg22-24). truly effective, we need to organize the terms in this expan-

The outline of this paper is as follows. In Sec. Il we _. . ; . ;
. . LU sion systematically, according to some power counting. This
extend the ideas of Ref13] to describe scattering in pres- should include expanding the coefficients in E2).in pow-

ence of a long-range potential. The resulting RG equatio ;
has a form similar to that in Ref13], but which contains an %gsingft;ri]; scalesc. The RG provides the framework for

extra term for ea_ch low-energy scale associated with the It is convenient to work in terms of the DW's of the
lon?hriesmrgitﬁgfjeglzlﬁ)plied in Sec. 11l to several examples OIJ\(/)ng-rangg potential. Th& matrix describing scattering by
. o _ alone is
long-range forces. To illustrate the method we apply it first,
in Sec. lll A, to scattering in the presence of a Coulomb
potential. TL=V +VIGo Ty, ()
In Sec. llIB, we examinelS, nucleon-nucleon NN)
scattering in the presence of a one-pion-exchange Yukawgng the corresponding Green’s function is
potential. This has the same singularityratO as the Cou-
lomb potential, and so the RG behavior is very similar. There
has been some debate in the literaure as to how one-pion
exchange should be handled in an EFT. One scheme, pro-
posed by KSW11,25, treats this force perturbatively. The By using the “two-potential trick” to resum the effects vf
other, suggested by Weinbef§] and further developed by to all orderg17], the full T matrix can be written in the form
van Kolck[20,26,3, iterates it to all orders. The RG treat-
ment shows how these two schemes correspond to different
choices of low-energy scale. Lastly, in Sec. Il C, we con-
sider scattering by an inverse-square potential.

G =Gy +Gg T, Gy . (4)

T=T +(1+T,GH)T(1+GTy), (5)

whereTg satisfies the LS equation

II. RG WITH LONG-RANGE FORCES

. . o . Ts=Vst+VsG[ Ts.
The starting point for a derivation of the RG for scattering Ts=VstVsGi Ts ©

of two heavy patrticles is the fully off-shell scattering ampli-
tudeT(k’,k,p). Here, as throughout this paper, we ksend ~ Since
k’ to denote relative momenta, and the energy dependence is
expressed in terms qf= VME, the on-shell momentum cor- Q=1+G{T, 7
responding to the enerdy. For simplicity, we consider only
s-wave scattering. In this case, the amplitude is related to the _
potentialV(k’,k,p) by the Lippmann-SchwingdtS) equa- 1S the Moller wave operator WEICh converts a plane wave
tion [17] into a DW of V| , we can see thals describes the scattering

between the DW’s as a result of the short-range potential.

, The effects of the short-range potential can be expressed
T(K' k,p) =V(K' K,p)+ lj qquV(k ,q,p)T(q,k,p). in terms ofds= 6— &, , the difference between the full phase
Y T 242 p2—q+ie shift, 8, and that due to/, alone, s . The on-shell matrix
(1) elements off 5 can then be written in the form

We are interested here in systems where the potential can ~ A7
be written in the formV=V, +Vsg, whereV, is a known <<//[(p)|Ts(p)|l/fL+(p)>:_Vez'mp)
long-range potential anifg is a short-range potential con-
structed from contact interactions only. In coordinate space
these effective interactions can be expressed fisctions ~ where " (p,r) is the outgoing DW ofv, with energyE
and their derivatives. In momentum space, they have the=p?/M and ¢ is the corresponding incoming wave. This
form can be used as the starting point for the DWHRE, 16,21,

ezigs(p) -1

2ip » (8)
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By letting Vg vary with A in this way, we are eliminating
+ M, (p) high-energy modes from the theory and parametrizing their
effects in the effective potential. If we did not apply the
N ) ~ _ cutoff to the DW basis but instead applied it in the basis of
=[¢ (p,0)[*plcotds(p) —i]+ M (p) free statesVs would have to change witth not only to
incorporate the physics that has been integrated out but also
- _i+ }Fep2+ . (99  to correct for the modification o¥, by the cutoff. The re-
2 sulting equation would then have had a much more compli-
cated form.
The function M, (p) can be written as the logarithmic de-  To simplify the analysis, we assume here thgtdepends
rivative at the origin of the Jost solution to the Saﬂimger only on energy, not on momenta. As shown in F{QB]' the
equation with the potential [21]. In Eq. (9) all rapid, and  momentum-dependent solutions to the RG equation are not
possibly nonanalytic, dependence on the energy is removegkeded to describe on-shell scattering. We need to be careful
in M (p) ande® )|y "(p,0)|%. This leaves an amplitude in defining the short-range interaction since a simpfeinc-
which can be expanded as a power series in the energy, wition cannot be used in combination with most of the long-
coefficients whose scale is set by the underlying shortrange potentials of interest. These potentials are sufficiently
distance physics. This expansion has long been used to exingular that their DW's either vanish or divergeras 0. As

tract low-energy properties of the strong interaction betweem result, the right-hand side of E€L3) is either zero or ill
two protons[16,19,21,22 and more recently to remove the defined for a contact interaction.

[ (p,0)|2
(Y | Ts(p)|9")

2 5L.(P)

effects of one-pion exchange froNN scattering 23,24. Instead of a contact interaction, we choose a spherically
symmetric potential with a short but nonzero range. By tak-
A. RG equation ing the rangeR to be much smaller than A/ we ensure that

In order to derive the RG equation for the short-rangeany additional energy or momentum dependence associated

potential, it is more convenient to work with a reactancewith it is no larger than that of the physics which has been

L~ hi isf ion that i imil integrated out, and hence the power counting is not altered
matrix Kg. This satisfies a LS equation that is very similar to by it. This scaleR separates the region of low-momentum

that for Ts, Eq. (6), except that the Green's functic®  physics, which we wish describe with an EFT, from a region
obeys standing-wave boundary conditions. This means thaf high momentum physics, which is nonperturbative as a
Ks is Hermitian below all thresholds for particle production. result of the singular behavior of the long-range potential.
On shell,Ks matrix is related to the additional phase sf@gg  The precise value of this scale is arbitrary, and so observ-
by ables should not depend on it.

A simple and convenient choice for the form of this regu-

_ A7 1 lator is the “6-shell” potential,
K = 10
(P(P)|Kd ¥(p)) MP cotds (10 S-R)
. . Vs(p, &, A1) =Vg(p, K, A)————, (14
The effective potentiaV/ has zero range, and so the loop 47R?

integrals in the LS equation are divergent. To regulate this ) _ )
equation, and as a first step in deriving a Wilsonian RG equavherex denotes a generic low-energy scale associated with

tion, we apply a cutoff ta5, in the DW basis: V_ . With this choice, Eq(13) for Vg becomes
M A [(a)){p(a)l Ns_ M , A
szﬁpfo dq qZT(eround states A 2—7_r2|¢|_(A,R)| pZ—AZVS(p’K’A)’ (15
(12)

where the DWy, (k,R) satisfies the Schringer equation,
where P denotes the principal value of the integral, corre-
sponding to the standing-wave boundary conditions. ( d?

~ R T _ 2 —
~ P (16
Ks=Vs(A)+Vs(A)GL(A)Ks. (12
5 and is normalized so that
As in Ref.[13] we demand that the off-shell amplituble, be
independent of the cutofh. The potentialg must depend oo T
on A to compensate for the dependence in the loop integrals. 0 driroy (kg (k',r) = 2 (k=K'). (A7)
Differentiating the LS equation with respect Aoand elimi-
natingK s we obtain the differential equation The final step in obtaining a Wilsonian RG equation is to
rescale all dimensioned quantities, expressing them in terms
&VS__V aGLV 13 of the cutoff A. Dimensionless variables corresponding to
aN — TS9N TS the momenta and other low-energy scales are defined by
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=p/A, etc., alqng yvith a rescaled potential. Unlike the §im— 1 o1 o1 1 |N(7<)|2
pler case studied in Ref13], the rescaling of the potential A—A ==z | thk=|z | —0s =
depends on the behavior of the wave functions in the limit IA\ Vs ap\Vs dr\ Vs Vs 1-p
R<1/p. We assume that these have the separable form (22)
| (p,R)|2=| M «/p)|?f(p)F(R), (18 Wwhere we have taken advantage of the fact that, for

momentum-independent potentials, the RG equation can be
which is general enough to cover all the examples studiedivided by V2 to obtain a more practical linear equation for
here and also the attractive inverse-square potential. Hergy
M(kl/p) is a normalization factor which depends on the low-
energy scalesk. This factor communicates information
about the long-distance physics to the short-distance physics.

The appropriate rescaled potential is As already noted, a trivial fixed point,s=0, always ex-

ists for Eq.(22). It describes a system with no scattering
between the distorted waves of the long-range potential. Per-
turbations about this point can be used to describe systems
where the short-range interactions provide small corrections

which satisfies the distorted-wave renormalization-groug© the scattering by, . They correspond to an expansion of

B. Trivial fixed point

N aa MA A~ A
Vs(p,K,A)z2—772F(R)f(A)VS(Ap,AK,A), (19

(DWRG) equation, the DWK matrix K of Eq. (12) in powers of energy and.
A . . . We can find perturbations which scale with definite powers
Ns Vs Vs f/(A) -~ IMK)%., of A by linearizing the RG equatiof22) about the fixed
A pg + KE +|1 T(A) Vs 1——|62 s- point and looking for solutions of the form
20 oo NPT
(20 Vs(poe,A)=CA" (P ), @3

The boundary conditions on solutions to E80) follow . . . .
from the fact that the effective potential should describe scatVhere the functiong) satisfy the eigenvalue equation
tering at energies below all thresholds for production of other
particles. If all the nonanalytic energy dependence generated ~dp . dP _
by long-range physics has been factored out into the DW's, p&f) + K x top=ve. (24)
then the effective potentiddg should be an analytic function
qf the energy. Similarly,\/s should_ be a well-behaved func- Solving, we find that
tion of x, a scale associated wittf, , as k—0. In most
cases we need to demand only thatis analytic inx. An B(D, i) = kTP2N 25)
example is the inverse Bohr radius which forms a low- P. P
energy scale for the Coulomb potential, and which is propor- . . _ .
tional to«. An important exception is the pion mass which is Viv(')t:s %Sme;gsntnige;a?;ezr:wj)—n(iﬁJg?[ivzornqgagsc?gd; 4-
proportional to the square root of the strength of the chirafjition if « is a scale like the pion n?as mustgbe éven
symmetry breakingthe current quark magsand so, as in K P o '

ChPT, the effective potential should be analytianifj. Un- Hence, near the fixed point, we may write
der these requirements, we see tkigtshould have an ex- o e e A

~ ~ — n+m-+o,.m n
pansion in non-negative, integer powerspdfand eitherx Vs(p,K,A)—nEm Crn/A k"ph. (26)
or k2.
' We are mtergsted in the fixed points of the r'enormal|za-|-he stability of the fixed point depends upon the valuerpf
tion group, that is, solutions of the DWRG equati@®) that  \hich describes the power-law behavior of the DW's near
are independent of . These solutions are important becausethe origin. For positiver the fixed point is stable, while for
studying the scaling behavior of the RG flow around themnegatives there is one or more unstable perturbation, with
leads to power-counting schemes. It is clear that there igy+ 2n+o<0. If ¢=0, then the perturbation witm=n
always a trivial fixed-point solutionys=0. However non- =0 is marginal. A marginal eigenfunction may also exist
trivial fixed points can only exist if the right-hand side is when ¢ is a negative integer, im+2n=—¢ is allowed.
independent of\. This occurs if the distorted waves have a These marginal eigenfunctions have no power-law evolution

power-law form close to the origin, with A. Instead, we expect to find a logarithmic dependence
) ) . which will allow us to classify such perturbations as margin-
[ (p,R)“=|M«/p)[*(pPR" ", (21)  ally stable or unstable.

where o is a real number. This is the case for all the ex-
amples considered here, but not for the attractive inverse-
square potential. Takin§(A)=A’"1, the DWRG equation A nontrivial fixed point of Eq.(22), if one exists, satisfies
can be written as the equation

C. Nontrivial fixed point
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1

Vo

1

Vo

~li2 ~
=o-i+ [M(x)] 27 (P(p)|IKdly(p))
_ VS(va!A)|l//L(p!R)|2

Vo 1-p?
L VPR A [ (a.R)?
2 q 2 2
2 0 p°—q

~d
pab

~d
+ Kk—
K

It is useful to note that this equation is satisfied by the loop
integral
(31

A A 1. M xla)|? Note that the integral in the denominator is just
Jo(p,K)=7’j Q7 o —, (28) oo 17~ gt e :
0 p—q AR772Jo(p, k), whereJ, is defined in Eq(28).
This equation can be rewritten in terms of the cotangent
L of the additional phase shift as
However, we cannot directly identify \tj=J, as a fixed-
point solution of the RG equation since it is not in general T o
ic as. & 3 - |IMklp)|? ——cotds=A| Jo(p, &) —
analytic agp,x— 0. Nonetheless, we can udgas a starting p 2 s ol P,
point for finding such solutions. The method will be de-
scribed in more detail in the examples below, but the basic

idea_ is to subtract frond, a sqlution to the. homoggneous This result is independent &, as anticipated. Despite initial
version of Eq.(27) to cancel all its nonanalytic behavior. We appearances it is also independent\of The difference be-

can then write ~ A .
tween 1¥, and J, is just the homogeneous function

M(p, k) introduced in Eq(29). The corresponding piece of
1 . .. N~ the right-hand side is a homogeneous function of ordén
R =Jo(p, k) = M(p,k), (29 the physical variablep and. Including perturbations of the
0 form given in Eq.(30), we can therefore rewrite E¢32) as

Vs<b,k>> '
(32

o

whefe/\?l(f),:}) is a homogenous function of order in p |N(K/p)|27T2p COtBs= — M(p,x)+ S Coook™p2",
and . n,m

Perturbations around a nontrivial fixed-point solution to (33
Eq. (27) can be found as above, so that near the fixed point
the potential takes the form where M(p, k)= A M(p, ).

This resulting equatiori33) has exactly the form of the
DWERE, Eq.(9). The only difference is that, for sufficiently
singular potentials, the wave functions must be evaluated
close to, but not exactly at, the origin. However, provided the
wave functions have a power-law form in this region, Re
dependence cancels, leaving E8p). All nonanalytic effects
wheren andm satisfy the conditions described above in theof the long-range force have been factored or subtracted out
case of the trivial fixed point. It is positive then the fixed in the functionsV and M. The remainder can be written as
point is unstable, the eigenfunctions with- 2n— <0 cor-  a power-series expansion jnand «, which corresponds di-
responding to the unstable directions.oifis negative, then rectly to the expansion of the short-range effective potential.
this fixed point is stable. Marginal eigenvectors may exist for
integero if m+2n=¢ is allowed. In particular, fowr=0,
the fixed point is marginal with then=n=0 perturbation
having zero eigenvalue. A. Coulomb potential

1 1 S
—= \"/__gn CmnAeran(erpzn, (30)
S 0 ’

1. EXAMPLES

Scattering from a combination of Coulomb and short-
range potentials has already been studied from an EFT view-
point by Kong and Ravndd4R2]. Here we examine it using

Having obtained a solution to the full RG equation nearthe RG and show how a power counting can be established,
the nontrivial fixed point, we can use it in the DW which matches exactly with the DWERE.

D. DW effective-range expansion

Lippmann-Schwinger equation fd?ts (12) in order to con- Since the fine structure constamtis small, the inverse of
nect the potential to scattering observables. We find a diredhe Bohr radiusx=aM/2, provides a low-energy scale as-
connection to a DW effective-range expansion, &. sociated with the Coulomb potential. The Coulomb wave

The LS equation can be solved by expanding the Green'function tends to a finite, nonzero value at the origin, and so
functions in terms of a complete set of DW’s and iterating toit has the form assumed in the preceding section, (Ed),
get a geometric series. This series can then be summed, giwith =1 and the square of the wave function given by the
ing well-known Sommerfeld factor
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27kl p fixed point. Such a pertubation cannot be separated unam-
|IM klp)|?= lim |y (p,R)|?=C(kIp)= e o biguously from a fixed-point potential. By letting its coeffi-
R—0 e P—1 cient C,o(x) depend logarithmically on the arbitrary scale
(34 u, we can ensure the full potential, and hence all observables
are independent qgk.
Substituting the effective potential into E(B2), we get
e DWERE for the Coulomb potentifl5,16,23,

A trivial fixed point always exists and the power counting
for the expansion around it can be found using the gener%l1
analysis in Sec. Il B. Of more interest are possible nontrivial
solutions to the RG and the expansions around them. We take
the basic loop integral of E28) as our starting point for the
construction of these solutions. This satisfies Et), the
fixed-point version of the DWRG equatid@2), but it con- (39
tains nonanalytic terms which should not be present. To iden-
tify these, we follow Kong and Ravndg22] and identify the  Apart from the logarithmic term, the nonanalytic effects of
following terms inJy; the long-range Coulomb potential are contained in the func-

tions C(«/p) andH(«/p).
)] There is a direct correspondence between the expansion

~ . 1 1.
C(K/p)p(COt55—|)+aMH(K/p)=—:—1—Erepz-f- -
a

of the potential in powers of the energy and the terms in the
ERE. The full effective potential gives a further expansion of
+terms analytic irf),;}, (35) this in powers ofk, or equivalentlya'.'We get thg following

expressions for the Coulomb-modified scattering length and

wherey is Euler’s constant and the functi¢his given by  effective range,

o x>

Jo(p.k)=—1—mk(In k+ y)—m}Re{ H(

o 1 : 1 M) 2 O VAR
H(x)—¢//(|x)+m—ln(|x), (36) ~;:aM ln(%)_; z Cm0<a—) , (40)

in terms of the logarithmic derivative of tHeé function, de-
noted by. ~ 4
T

A potential which is analytic ap? x—0 can be built
from f]o by cancelling the terms proportional foln x and

«kRe{H(x/p)}. The latter of these does not present a prob-The scattering length defined in this way still contains a
lem, however, the first cannot be removed within the conlogarithmic dependence am, and so it is not a pure short-

- aM\™
2 Cm1<7) : (41

fines of aA-independent solution. The potential, range effect. However, any attempt to define a strong-
interaction scattering length by subtracting off the logarith-
1 o R K KA mic term will introduce an arbitrary scalef. Ref. [19]
== =Jdo(p,k) + K| RE H| = | [+In—r/, where a particular choice is made faj.
VO(lelA) p I p pD

B. Yukawa potential
which depends logarithmically oA and some arbitrary
scaleu, satisfies the analyticity boundary conditions and is ay,
solution of the DWRG equation. Although this potential doesdi
evolve slowly withA, we can still expand around it and use
the DWRG equatiori22) to determine the forms of the per-

The renormalization of scattering in the presence of a
kawa potential is similar to the Coulomb case since the
storted waves have the same short-distance behavior. We
consider in particular OPE between nucleons in &

turbations around it. These are given above in B§), and channel,
so the full short-range potential is given by oM
Vin=-a, , (42)
1 1 ” o r
— = 2 CmnAeranlepZn' (38)
Vs VY, nmzo where the strength of the potentialds, =gim?/16xf2, in

Thi ides th ting f ¢ hort terms of the pion mass,,=140 MeV, the pion decay con-
IS provides Ihe power counting for a strong short-rang tantf =93 MeV, and the axial coupling of the nucleon,
potential in the presence of the Coulomb potential. Note tha A=1.26

for the «-independent terms this is just KSW counting, ~ There has been some debate in the literature as to how
which corresponds to the ERE. If we invert £§8), we see  OPE should be handled in an EFT. One scheme, proposed by
that the potential we have obtained resums the leading logasw [11,25), treats this force perturbatively. The other, sug-
rithms (x In A) to all orders. gested by Weinberfg] and further developed by van Kolck

The presence of a marginal perturbation{1,n=0) in  [20,26,3, iterates it to all orders. The RG treatment shows
the expansion abot, leads to the logarithmic dependence how these two schemes correspond to different choices of
on A noted above, and so explains our inability to find a truelow-energy scales.

064006-6



RENORMALIZATION GROUP APPROACH TO TWO-BODY ... PHYSICAL REVIEW 67, 064006 (2003

In the KSW schemgl11,25, only the pion mass is treated . ~ o~ mes
as a low-energy scale and the rescaled OPE potential in mo- Vs:|2 CimnA "M k7p", (48
mentum space is ma

5 s where the eigenvalues ame=2l+m+2n+1=135...,
ULk R A)=— Mga M (43  asin the Coulomb case.
e 8m2f2 |k’ —k|?+m2 The more interesting expansion around a nontrivial fixed
point takes the form

This is proportional to the cutoff, and so its effect on the
RG flow vanishes ad — 0. This means that the fixed points 1 1 21~ ma2n
will be the same as in the pure short-range dds@. The Vo \»/__I%:n CimaA "Mz kp ", (49
DW Green’s functionG, can be expanded in powers of the s o
long-ranged potential and pion exchange treated as perturbwnere p=2l+m+2n—1=—-10+1, ... This includes a

tiviﬁﬁgggﬂc’tﬂz tlgst(]/\(la ;’Crgg‘n‘:gjlii's ChPT 1o be extended@@in@l perturbation which is linear in the inverse Bohr

to the two-nucleon sector, the resulting expansion turns Othdlus, and leads to Iogan_thmlg evolution of the potenﬂ@l_

to be, at best, slowly convergef#3,27,24,28 The problem with A. We can resum this using the RG method described
’ ’ larma @bove in Sec. Il A.

is that the pion-nucleon coupling is large, or equivalently tha . .
the scale which sets the strength of the potential, The expansion of the potential corresponds to a DWERE

of the form
1672
)\NN: M 2 :300 Mev! (44) Cﬂ_ ﬁ,ﬁ) CO%S—K HW(E,E + K |n_
A p P i P P i
is small. There is thus no good separation of scales, and so it 2 D o mo2n
is unsurprising that the corresponding EFT shows poor con- +; S CimaMz k7P, (30

vergence.

In the alternative scheme of Weinberg and van Kolckyhere the dependence on the arbitrary scale cancels between
(WVK), the effective potential is expanded using Weinbergine first term andCo;(x). All nonanalytic behavior is con-
power counting, and its leading terms are then resummed t@ined in  the functions C.(k,/p,m./p) and

all orders! This approach treatsyy or equivalently the in- H_(x,/p,m,/p). For the Yukawa potential, these must be

verse “pionic Bohr radius,” calculated using numerical methods. This DWERE has been
applied to nucleon-nucleon scattering in R¢f3,24).

P :“WM (45) The expansion corresponds to an EFT in which OPE and

T2 the leading short-range force are iterated to all orders. This

N WvK scheme has been developed and applied by van Kolck
as an additional low-energy scale. The rescaled OPE poteRmd other$20,26,3,29, with some success. The RG analysis
tial is then independent ok and so has been promoted to shows that the expansion around the logarithmically evolv-

form part of any fixed point. _ ~ing potential defines the power counting for this scheme, a
The effects of the distortion show up in the normalizationterm m2' x™p2" peing of orderd= 2l + m+2n—2. Because

w

of the DW's near the origin. Although it is not possible t0 of the appearance of.. as an extra low-energy scale in this
write this normalization in analytic form, from dimensional expansion, terms of the same ordemiry occur at different

analysis, it must be of the form orders here. Hence in contrast to the the KSW scheme, the
direct link to ChPT has been l0E30,31.
I (P.R-O)P=Cyli,pmyIp).  (46) 031
If we rescale bothe, andm_,, as just discussed, the normal- C. Repulsive inverse-square potential
ization of the DW withp=A is independent of\. The re- As a final example we consider the inverse-square poten-
sulting RG equation is tial V (r)=B8M"1r2, which is of interest because of its
R R R R o relevance to the three-body problem. Efim82] has shown
Nsg ~Ns . Vs . Vs g ColKm M)y that this potential can describe the scattering of three par-
&_A_pg K”TKﬁ+m”afnw+ st 1-p? S ticles in the limit where the two-body potential has zero

(47) range and infinite scattering length. The renormalization of
the short-ranged three-body forces which appear in EFT
The expansion around the trivial fixed point is treatments of such systems is currently the object of keen
study[33,34.
In the repulsive casgd>— 5, the DWs are given by

INote that we distinguish here between Weinberg power counting
for the terms in the potential and the scheme based on it for treating _ 7T

N =\/z=J.(pr),

lpL(p ) 2pr V(p )

1
pion exchange. (52)
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wherev=+/8+(1/4), and which go to

1 ~ o~ 1. -
o =Jo(p) = 5P*"H(PA/p,v). (57)
L (p,R)|2 1 pR)Z”l 52 Vo(p)
(P R)|=rr—— | 5 5
I(1+v)?\ 2 Once again the full solution to the RG equation is obtained

) . . . ) by adding perturbations around this fixed point,
in the limit of smallR. This is of the form in Eq(21) with

o=2v and N?=1[2%""T'(1+ v)?]. For scattering in a 1 1
partial wave with|>0, the centrifugal barrier provides a — == C, A 22, (58)
1/r? potential with@=1(1+1), and hence=1+ 1. Vs Vo n=0

SinceN? is simply a constant in this case, it is convenient

to absorb it into the rescaling of the potential. The resulting’Nis fixed point is unstable, with the number of negative
RG equation is thefrefer Eq.(20)] eigenvalues being governed by If v lies between the inte-

gersN—1 andN, the firstN perturbations are unstable. If

Ns ~dVs ) 1., v=N, then there is also a marginal eigenveqidl, which
EN pa—A+2VVs+ ﬁvs- (53 is the origin of the logarithmic behavior. The corresponding
P P coefficientC,y\(u) depends on the arbitrary scake so that
4he full potential isu. independent.
The power counting around the nontrivial fixed point is
d=2n—2p—1 for a term proportional tp?". This is quite
V= Cpn A2M+27p20, (54) different from the counting found for scattering in the pres-
ence of the Coulomb potential. Since the inverse-square po-
Sincer>0, all of the eigenvalues are positive and the fixedt€ntial is scale-free, its strength does not provide an expan-
point is stable as\—0. The term proportional tp?" is of ~ SION parameter in the Io_vv—e_nergy EFT. Ins_tead, it appears in
orderd=2n+2v—1 in the corresponding power counting. the energy power counting |Fself, determm.lng the numbe_r of
For nucleon-nucleon scattering in partial waves with0, relevant (uns_table perturblatlons. In the I|_m|t where this
there are no bound states or resonances close to threshSifiength vanishes, and— 3, we have precisely the power
and so this fixed point is the appropriate one. The po\Nepountlng estab_llshed eqrher for a pure short—range potential.
counting for this case is given ly=2(n+1). The scattering amplitude for this potential can be calcu-
Also of interest is the nontrivial fixed point, which corre- ateéd as in Sec. IID. The result can then be expanded the
sponds to a DWERE. To construct it, we start from the basi¢om of a DWERE as
loop integral of Eq(28). The cases of integer and noninteger
v behave differently and need to be considered separately.
The loop integral can be evaluated to give

From the general analysis in Sec. Il, we see that perturb
tions around the trivial fixed are of the form

- 1 2 =
p?| cotds— —H(p/p,v) | == 2 Cpp®™. (59
ar T n=0

Lesi1 1 This is an expansion in powers of the energy, which is the
Jo(p)=7’fo Q7" do——; only scale in this system. In general, the coefficients have
q unusual, noninteger dimensions, as a result of the noninteger
12, p™ . . power of the energy on the left-hand side. For example, the
=_ Z ' + =p?’H(p,v), (55) leading coefficient, which is the analog of a modified scat-
2q=0 n—v 2 tering length, has a dimension o#2
In the case of scattering of a particle with angular momen-
where tum| by a short-range potential, we have:|1+ 3, and there
cotrv, véN is no nonanalytic energy dependence in &gtcot(s
H([),y):[ . (56)  +lw/2). The ERE becomes
2Inp, vel
The prime on the sum here indicates that the term wwith pz'*lco[( S5+ I_Tr = E E Conp?". (60)
=y term must be omitted when is an integer. 2 T n=0

To obtain a well-behaved short-range potential, we apply o N
the boundary condition of analyticity by cancelling the final, For =0, this is the familiais-wave ERE. Fol=1, we get
nonanalytic term fronﬁo. Whenv is noninteger we can do the p-wave expansion, whose leading term is a scattering

this using the fact thgy?” satisfies the homogeneous version volume rather than a length.
of RG equation53). In the case of integer, the logarithm

of p can be cancelled in a manner similar to the logarithm of
x, which appears for the Coulomb potential. This leads to a The techniques described here extend the RG ideas which
potential with a logarithmic dependence An in which the  underline EFT's for low-energy scattering of two heavy par-

leading logarithms are resummed to all orders. The result iticles to systems where the particles interact by a combina-
either case can be expressed in the form tion of known long-range and unknown short-range forces.

IV. DISCUSSION
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They provide a framework for constructing EFT’s for such point of a pure short-range potential. This is the basis for the
systems. KSW scheme for treating pion-exchange forces.

A crucial feature of our approach is that we regulate the The alternative WvK scheme treaks, as an additional
loop integrals by cutting them off in the basis of DW's for low-energy scale and resums the effects of the OPE poten-
the long-range potential. This ensures that the long-rangtal. The resulting EFT is equivalent to a DWERE. However,
potential is not modified by the cutoff. As a result, the RG although this scheme results in a consistent EFT, the treat-
equation has a simple form. In constructing this, it is impor-ment of k. as a quantity of first order in low-energy scales
tant to identify all low-energy scales associated with theMeans that the connection with the chiral expansion has been
long-range potential. The method can be applied when th st.

resulting rescaled potential is independent of the cutoff, ang OUr final example is the repulsive inverse-square poten-
so can be treated as part of a fixed point, its effects bein@al' which is reIe_vant to three-body systems such as neutron-
resummed to all orders in the DW's ' euteron scattering with=3, and also to two-body scatter-

) i . ing in higher partial waves. This potential is scale-free, and
As in the case of a pure short-range potential, we alwayéo its strength shows up in the power counting through the

find a trivial fixed point. The expansion arounql .th's point cang eigenvalues. Although it is possible to find a DWERE
be used to describe systems where the additional scatterifg e noint, the number of unstable perturbations increases
by the short-range potential is small. The terms in this poyih increasing strength of the potential. This implies that
tential correspond to an expansion of the D¥Mmatrix in gelicate fine tuning would be needed for a bound state at
powers of the energy and any other low-energy scales.  threshold. In general, one would expect scattering in such
In some cases we also find an energy-dependent potentig)stems to be weak, and to be described by EFT’s based on
which forms a nontrivial fixed point of the RG. In other the trivial fixed point.
cases, such a fixed point would have a marginal perturbation, We are currently extending this approach to describe scat-
and instead, the potential evolves logarithmically with thetering in the presence of an attractive inverse-square poten-
cutoff. These potentials describe systems with bound states #al, which is more complicated because of the rapid oscilla-
threshold, and the expansions around them correspond tmns of the DW’s near the origin. The resulting EFT’s will
DW versions of the effective-range expansion. be relevant to three-body systems such as neutron-deuteron
We have applied this method to several examples. In thecattering withJ=3. It will also be interesting to explore
case of the Coulomb potential our method reproduces theore singular potentials, such as OPE in #1%-°D, chan-
well-known Coulomb DWERE. The terms in the effective nel. Finally, the real power of the EFT’s is their ability to
potential correspond to a double expansion in powers of thérm direct connection between observables for different
energy and the inverse Bohr radius. processes. Doing this will require enlarging the present treat-
The RG analysis in the presence of a Yukawa potential ignent to include couplings to external electromagnetic and
similar to that for the Coulomb case. In the specific exampleveak currents.
of the OPE potential in‘S, nucleon-nucleon scattering, we
have to choose whether to treat the “inverse Bohr radius” ACKNOWLEDGMENTS
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