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Renormalization group approach to two-body scattering in the presence of long-range forces
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We apply renormalization-group methods to two-body scattering by combination of known long-range and
unknown short-range potentials. We impose a cutoff in the basis of distorted waves of the long-range potential
and identify possible fixed points of the short-range potential as this cutoff is lowered to zero. The expansions
around these fixed points define the power countings for the corresponding effective field theories. Expansions
around nontrivial fixed points are shown to correspond to distorted-wave versions of the effective-range
expansion. These methods applied to scattering the presence of Coulomb, Yukawa, and repulsive inverse-
square potentials.
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I. INTRODUCTION

Effective field theories~EFT’s! offer the promise of a sys
tematic and model-independent treatment of nuclear
hadronic physics at low energies. In the form of chiral p
turbation theory~ChPT!, they have been used with som
success in both the mesonic and single-nucleon sectors~for
reviews, see Refs.@1,2#!. Currently, there is much interest i
extending these applications to few-nucleon systems, as
viewed in Refs.@3–6#.

These theories rely on the existence of a separation
scales between those of the low-energy physics, such as
menta, energies, or the pion mass, and those of the und
ing short-distance physics, such ther-meson mass, the
nucleon mass, or 4p f p . This makes it possible to expan
any observable systematically in powers of the ratioQ/L0,
whereQ denotes a low-energy scale andL0 a scale of the
underlying physics. The effective Lagrangian or Hamiltoni
used to calculate these observables can also be orga
according to a ‘‘power counting’’ inQ/L0. Although an EFT
contains an infinite number of these terms, only a finite nu
ber of these are needed to calculate observables up a g
order. If the separation of scales is wide enough, this exp
sion will converge rapidly enough to be useful.

For weakly interacting systems the expansion can be
ganized according to naive dimensional analysis, a term
portional to (Q/L0)d being counted as of orderd @7,8#. This
‘‘Weinberg’’ power counting is the one familiar from ChP
in the zero- and one-nucleon sectors. In contrast, for stron
interacting systems there can be new low-energy sc
which are generated by nonperturbative dynamics. Impor
examples for nuclear physics are the very larges-wave scat-
tering lengths in nucleon-nucleon scattering. In such ca
we need to resum certain terms in the theory to all ord
and this leads to a new power counting@9–13#, often referred
to as Kaplan, Savage, and Wise~KSW! power counting. The
resulting expansion of the scattering amplitude is, in fact,
effective-range expansion~ERE! @14–17#.

A crucial tool for determining the power counting is th
renormalization group~RG!, which is used to study the sca
ing behavior of systems in a wide range of areas of phys
In our work we use a Wilsonian version of the RG@18#,
imposing a momentum cutoffuku,L on the low-energy
0556-2813/2003/67~6!/064006~10!/$20.00 67 0640
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EFT. So long as there is a clear separation of scales,
cutoff L can be chosen to be above all of the low-ener
scales of interest, but well below the scales of the underly
physics. Beyond this, the cutoff is arbitrary, and physic
observables should be independent of it. This means
physics on momentum scales above the cutoff must be
cluded implicitly in the couplings of the EFT. As a result, a
the coupling constants must depend onL. Finally, we
rescale the theory, expressing all dimensioned quantitie
units of L. The flow of the resulting rescaled coupling co
stants withL is described by a first-order differential equ
tion: the RG equation.

For a system with a clear separation of scales, the resc
coupling constants become independent ofL asL→0. This
is because, forL!L0, the only scale left isL, and so the
rescaled theory becomes independent ofL. The theory is
said to flow towards a fixed point. Small deviations fro
such a point scale as powers of the cutoff, and this can
used to define the power counting for the EFT, a term t
behaves likeLn being assigned an orderd5n21.

Perturbations around a fixed point are classified as ‘‘irr
evant’’ if n.0, ‘‘marginal’’ if n50, and ‘‘relevant’’ if n
.0. If all these perturbations are irrelevant, then the fix
point is stable: the couplings of any theory close to that po
will flow towards it asL→0. On the other hand, if there ar
one or more relevant perturbations, then the fixed poin
unstable. If a marginal perturbation is present, we sho
expect to find logarithmic flow withL.

In Ref. @13# these ideas were applied to two-bodys-wave
scattering by short-range forces and two fixed points w
found. One is a trivial fixed point with no scattering. Th
expansion around it can be organized according to Weinb
power counting. The second is a nontrivial point describ
systems with a bound state at zero energy. The approp
power counting for expanding around it is the KSW cou
ing, which corresponds to the effective-range expansion.

In the present work, we extend this approach to stu
two-body scattering by a combination of known long-ran
and unknown short-range forces. One important example
this is proton-proton scattering, where the Coulomb inter
tion is the long-range force. Another is nucleon-nucleon sc
tering at higher energies, where the nucleon momenta
comparable to the pion mass. Here one needs to treat ex
©2003 The American Physical Society06-1
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itly pion-exchange forces, which can be calculated us
ChPT@20#.

To do this, we apply a cutoff to the basis of distort
waves ~DW’s! @17# for the known long-range interaction
Applying the RG as outlined above, we identify the possi
fixed points of the short-range interaction and establish
corresponding power-counting rules for perturbations aro
these. In cases where a nontrivial fixed point exists, the te
in the resulting EFT can be directly related to those in
distorted-wave or ‘‘modified’’ effective-range expansio
~DWERE! @15,16,21# ~see also Refs.@22–24#!.

The outline of this paper is as follows. In Sec. II w
extend the ideas of Ref.@13# to describe scattering in pres
ence of a long-range potential. The resulting RG equa
has a form similar to that in Ref.@13#, but which contains an
extra term for each low-energy scale associated with
long-range potential.

This method is applied in Sec. III to several examples
long-range forces. To illustrate the method we apply it fir
in Sec. III A, to scattering in the presence of a Coulom
potential.

In Sec. III B, we examine1S0 nucleon-nucleon (NN)
scattering in the presence of a one-pion-exchange Yuk
potential. This has the same singularity atr 50 as the Cou-
lomb potential, and so the RG behavior is very similar. Th
has been some debate in the literaure as to how one-
exchange should be handled in an EFT. One scheme,
posed by KSW@11,25#, treats this force perturbatively. Th
other, suggested by Weinberg@8# and further developed by
van Kolck @20,26,3#, iterates it to all orders. The RG trea
ment shows how these two schemes correspond to diffe
choices of low-energy scale. Lastly, in Sec. III C, we co
sider scattering by an inverse-square potential.

II. RG WITH LONG-RANGE FORCES

The starting point for a derivation of the RG for scatteri
of two heavy particles is the fully off-shell scattering amp
tudeT(k8,k,p). Here, as throughout this paper, we usek and
k8 to denote relative momenta, and the energy dependen
expressed in terms ofp5AME, the on-shell momentum cor
responding to the energyE. For simplicity, we consider only
s-wave scattering. In this case, the amplitude is related to
potentialV(k8,k,p) by the Lippmann-Schwinger~LS! equa-
tion @17#

T~k8,k,p!5V~k8,k,p!1
M

2p2E q2dq
V~k8,q,p!T~q,k,p!

p22q21 i e
.

~1!

We are interested here in systems where the potential
be written in the formV5VL1VS , whereVL is a known
long-range potential andVS is a short-range potential con
structed from contact interactions only. In coordinate sp
these effective interactions can be expressed asd functions
and their derivatives. In momentum space, they have
form
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VS~k8,k,p,k!5c00~k!1c20~k!~k21k82!1c02~k!p21•••.
~2!

Here k stands for any of the low-energy scales associa
with VL , such as the pion mass in theNN potential or the
inverse Bohr radius for a Coulomb potential. Such sca
control the long-range form of the potential and can give r
to nonanalytic energy dependence of the scattering am
tude. This must be separated out if the effective short-ra
potential is to be expanded in this form. For an EFT to
truly effective, we need to organize the terms in this exp
sion systematically, according to some power counting. T
should include expanding the coefficients in Eq.~2! in pow-
ers of the scalesk. The RG provides the framework fo
doing this.

It is convenient to work in terms of the DW’s of th
long-range potential. TheT matrix describing scattering by
VL alone is

TL5VL1VLG0
1TL , ~3!

and the corresponding Green’s function is

GL
15G0

11G0
1TLG0

1 . ~4!

By using the ‘‘two-potential trick’’ to resum the effects ofVL
to all orders@17#, the full T matrix can be written in the form

T5TL1~11TLG0
1!T̃S~11G0

1TL!, ~5!

whereT̃S satisfies the LS equation

T̃S5VS1VSGL
1T̃S . ~6!

Since

V511G0
1TL ~7!

is the Moller wave operator which converts a plane wa
into a DW ofVL , we can see thatT̃S describes the scatterin
between the DW’s as a result of the short-range potentia

The effects of the short-range potential can be expres
in terms ofd̃S5d2dL , the difference between the full phas
shift, d, and that due toVL alone,dL . The on-shell matrix
elements ofT̃S can then be written in the form

^cL
2~p!uT̃S~p!ucL

1~p!&52
4p

M
e2idL(p)

e2i d̃S(p)21

2ip
, ~8!

where cL
1(p,r ) is the outgoing DW ofVL with energyE

5p2/M and cL
2 is the corresponding incoming wave. Th

can be used as the starting point for the DWERE@15,16,21#,
6-2
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e2idL(p)S ucL
1~p,0!u2

^cL
2uT̃S~p!ucL

1&
D 1ML~p!

5ucL
1~p,0!u2p@cotd̃S~p!2 i #1ML~p!

52
1

ã
1

1

2
r̃ ep

21•••. ~9!

The functionML(p) can be written as the logarithmic de
rivative at the origin of the Jost solution to the Schro¨dinger
equation with the potentialVL @21#. In Eq. ~9! all rapid, and
possibly nonanalytic, dependence on the energy is remo
in ML(p) ande2idL(p)ucL

1(p,0)u2. This leaves an amplitude
which can be expanded as a power series in the energy,
coefficients whose scale is set by the underlying sh
distance physics. This expansion has long been used to
tract low-energy properties of the strong interaction betw
two protons@16,19,21,22# and more recently to remove th
effects of one-pion exchange fromNN scattering@23,24#.

A. RG equation

In order to derive the RG equation for the short-ran
potential, it is more convenient to work with a reactan
matrix K̃S . This satisfies a LS equation that is very similar
that for T̃S , Eq. ~6!, except that the Green’s functionGL

P

obeys standing-wave boundary conditions. This means
K̃S is Hermitian below all thresholds for particle productio
On shell,K̃S matrix is related to the additional phase shiftd̃S
by

^cL~p!uK̃SucL~p!&52
4p

Mp

1

cotd̃S

. ~10!

The effective potentialVS has zero range, and so the loo
integrals in the LS equation are divergent. To regulate
equation, and as a first step in deriving a Wilsonian RG eq
tion, we apply a cutoff toGL in the DW basis:

GL
P5

M

2p2
PE

0

L

dq q2
ucL~q!&^cL~q!u

p22q2
~1bound states!,

~11!

whereP denotes the principal value of the integral, corr
sponding to the standing-wave boundary conditions.

The LS equation forK̃S is

K̃S5VS~L!1VS~L!GL
P~L!K̃S . ~12!

As in Ref.@13# we demand that the off-shell amplitudeK̃S be
independent of the cutoffL. The potentialVS must depend
on L to compensate for the dependence in the loop integr
Differentiating the LS equation with respect toL and elimi-
nating K̃S we obtain the differential equation

]VS

]L
52VS

]GL

]L
VS . ~13!
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By letting VS vary with L in this way, we are eliminating
high-energy modes from the theory and parametrizing th
effects in the effective potential. If we did not apply th
cutoff to the DW basis but instead applied it in the basis
free states,VS would have to change withL not only to
incorporate the physics that has been integrated out but
to correct for the modification ofVL by the cutoff. The re-
sulting equation would then have had a much more com
cated form.

To simplify the analysis, we assume here thatVS depends
only on energy, not on momenta. As shown in Ref.@13#, the
momentum-dependent solutions to the RG equation are
needed to describe on-shell scattering. We need to be ca
in defining the short-range interaction since a simpled func-
tion cannot be used in combination with most of the lon
range potentials of interest. These potentials are sufficie
singular that their DW’s either vanish or diverge asr→0. As
a result, the right-hand side of Eq.~13! is either zero or ill
defined for a contact interaction.

Instead of a contact interaction, we choose a spheric
symmetric potential with a short but nonzero range. By ta
ing the rangeR to be much smaller than 1/L, we ensure that
any additional energy or momentum dependence assoc
with it is no larger than that of the physics which has be
integrated out, and hence the power counting is not alte
by it. This scaleR separates the region of low-momentu
physics, which we wish describe with an EFT, from a regi
of high momentum physics, which is nonperturbative as
result of the singular behavior of the long-range potent
The precise value of this scale is arbitrary, and so obse
ables should not depend on it.

A simple and convenient choice for the form of this reg
lator is the ‘‘d-shell’’ potential,

VS~p,k,L;r !5VS~p,k,L!
d~r 2R!

4pR2
, ~14!

wherek denotes a generic low-energy scale associated w
VL . With this choice, Eq.~13! for VS becomes

]VS

]L
52

M

2p2
ucL~L,R!u2

L2

p22L2
VS

2~p,k,L!, ~15!

where the DWcL(k,R) satisfies the Schro¨dinger equation,

S d2

dr2
1

2

r

d

dr D cL~k,r !2MVL~r ,k!cL~k,r !1k2cL~k,r !50,

~16!

and is normalized so that

E
0

`

drk2r 2cL~k,r !cL~k8,r !5
p

2
d~k2k8!. ~17!

The final step in obtaining a Wilsonian RG equation is
rescale all dimensioned quantities, expressing them in te
of the cutoff L. Dimensionless variables corresponding
the momenta and other low-energy scales are defined bp̂
6-3
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5p/L, etc., along with a rescaled potential. Unlike the si
pler case studied in Ref.@13#, the rescaling of the potentia
depends on the behavior of the wave functions in the li
R!1/p. We assume that these have the separable form

ucL~p,R!u25uN~k/p!u2f ~p!F~R!, ~18!

which is general enough to cover all the examples stud
here and also the attractive inverse-square potential. H
N(k/p) is a normalization factor which depends on the lo
energy scalesk. This factor communicates informatio
about the long-distance physics to the short-distance phy
The appropriate rescaled potential is

V̂S~ p̂,k̂,L!5
ML

2p2
F~R! f ~L!VS~L p̂,Lk̂,L!, ~19!

which satisfies the distorted-wave renormalization-gro
~DWRG! equation,

L
]V̂S

]L
5 p̂

]V̂S

] p̂
1k̂

]V̂S

]k̂
1S 11L

f 8~L!

f ~L! D V̂S1
uN~ k̂ !u2

12 p̂2
V̂S

2 .

~20!

The boundary conditions on solutions to Eq.~20! follow
from the fact that the effective potential should describe s
tering at energies below all thresholds for production of ot
particles. If all the nonanalytic energy dependence gener
by long-range physics has been factored out into the DW
then the effective potentialVS should be an analytic function
of the energy. Similarly,VS should be a well-behaved func
tion of k, a scale associated withVL , as k→0. In most
cases we need to demand only thatVS is analytic ink. An
example is the inverse Bohr radius which forms a lo
energy scale for the Coulomb potential, and which is prop
tional toa. An important exception is the pion mass which
proportional to the square root of the strength of the ch
symmetry breaking~the current quark mass!, and so, as in
ChPT, the effective potential should be analytic inmp

2 . Un-

der these requirements, we see thatV̂S should have an ex
pansion in non-negative, integer powers ofp̂2 and eitherk̂
or k̂2.

We are interested in the fixed points of the renormali
tion group, that is, solutions of the DWRG equation~20! that
are independent ofL. These solutions are important becau
studying the scaling behavior of the RG flow around th
leads to power-counting schemes. It is clear that there
always a trivial fixed-point solution,V̂S50. However non-
trivial fixed points can only exist if the right-hand side
independent ofL. This occurs if the distorted waves have
power-law form close to the origin,

ucL~p,R!u25uN~k/p!u2~pR!s21, ~21!

where s is a real number. This is the case for all the e
amples considered here, but not for the attractive inve
square potential. Takingf (L)5Ls21, the DWRG equation
can be written as
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L
]

]L S 1

V̂S
D 5 p̂

]

] p̂
S 1

V̂S
D 1k̂

]

]k̂
S 1

V̂S
D 2s

1

V̂S

2
uN~ k̂ !u2

12 p̂2
,

~22!

where we have taken advantage of the fact that,
momentum-independent potentials, the RG equation can
divided by V̂S

2 to obtain a more practical linear equation f

1/V̂S .

B. Trivial fixed point

As already noted, a trivial fixed point,V̂S50, always ex-
ists for Eq. ~22!. It describes a system with no scatterin
between the distorted waves of the long-range potential.
turbations about this point can be used to describe syst
where the short-range interactions provide small correcti
to the scattering byVL . They correspond to an expansion
the DWK matrix K̃S of Eq. ~12! in powers of energy andk.
We can find perturbations which scale with definite pow
of L by linearizing the RG equation~22! about the fixed
point and looking for solutions of the form

V̂S~ p̂,k̂,L!5CLnf~ p̂,k̂ !, ~23!

where the functionsf satisfy the eigenvalue equation

p̂
]f

] p̂
1k̂

]f

]k̂
1sf5nf. ~24!

Solving, we find that

f~ p̂,k̂ !5k̂mp̂2n, ~25!

with RG eigenvaluesn5m12n1s. The boundary condi-
tions demand thatm andn are non-negative integers. In ad
dition, if k is a scale like the pion mass,m must be even.
Hence, near the fixed point, we may write

V̂S~ p̂,k̂,L!5(
n,m

CmnL
2n1m1sk̂mp̂2n. ~26!

The stability of the fixed point depends upon the value ofs,
which describes the power-law behavior of the DW’s ne
the origin. For positives the fixed point is stable, while for
negatives there is one or more unstable perturbation, w
m12n1s,0. If s50, then the perturbation withm5n
50 is marginal. A marginal eigenfunction may also ex
when s is a negative integer, ifm12n52s is allowed.
These marginal eigenfunctions have no power-law evolut
with L. Instead, we expect to find a logarithmic dependen
which will allow us to classify such perturbations as marg
ally stable or unstable.

C. Nontrivial fixed point

A nontrivial fixed point of Eq.~22!, if one exists, satisfies
the equation
6-4
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p̂
]

] p̂
S 1

V̂0
D 1k̂

]

]k̂
S 1

V̂0
D 5s

1

V̂0

1
uN~ k̂ !u2

12 p̂2
. ~27!

It is useful to note that this equation is satisfied by the lo
integral

Ĵ0~ p̂,k̂ !5PE
0

1

q̂s11dq̂
uN~ k̂/q̂!u2

p̂22q̂2
. ~28!

However, we cannot directly identify 1/V̂05 Ĵ0 as a fixed-
point solution of the RG equation since it is not in gene
analytic asp̂,k̂→0. Nonetheless, we can useĴ0 as a starting
point for finding such solutions. The method will be d
scribed in more detail in the examples below, but the ba
idea is to subtract fromĴ0 a solution to the homogeneou
version of Eq.~27! to cancel all its nonanalytic behavior. W
can then write

1

V̂0

5 Ĵ0~ p̂,k̂ !2M̂~ p̂,k̂ !, ~29!

whereM̂( p̂,k̂) is a homogenous function of orders in p̂

and k̂.
Perturbations around a nontrivial fixed-point solution

Eq. ~27! can be found as above, so that near the fixed p
the potential takes the form

1

V̂S

5
1

V̂0

2(
n,m

CmnL
m12n2sk̂mp̂2n, ~30!

wheren andm satisfy the conditions described above in t
case of the trivial fixed point. Ifs is positive then the fixed
point is unstable, the eigenfunctions withm12n2s,0 cor-
responding to the unstable directions. Ifs is negative, then
this fixed point is stable. Marginal eigenvectors may exist
integers if m12n5s is allowed. In particular, fors50,
the fixed point is marginal with them5n50 perturbation
having zero eigenvalue.

D. DW effective-range expansion

Having obtained a solution to the full RG equation ne
the nontrivial fixed point, we can use it in the DW
Lippmann-Schwinger equation forK̂S ~12! in order to con-
nect the potential to scattering observables. We find a di
connection to a DW effective-range expansion, Eq.~9!.

The LS equation can be solved by expanding the Gre
functions in terms of a complete set of DW’s and iterating
get a geometric series. This series can then be summed,
ing
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^cL~p!uK̂SucL~p!&

5
VS~p,k,L!ucL~p,R!u2

12
VS~p,k,L!M

2p2
PE

0

L

q2dq
ucL~q,R!u2

p22q2

.

~31!

Note that the integral in the denominator is ju
LsRs21Ĵ0( p̂,k̂), whereĴ0 is defined in Eq.~28!.

This equation can be rewritten in terms of the cotang
of the additional phase shift as

uN~k/p!u2
pps

2
cotd̃S5LsS Ĵ0~ p̂,k̂ !2

1

V̂S~ p̂,k̂ !
D .

~32!

This result is independent ofR, as anticipated. Despite initia
appearances it is also independent ofL. The difference be-
tween 1/V̂0 and Ĵ0 is just the homogeneous functio
M̂( p̂,k̂) introduced in Eq.~29!. The corresponding piece o
the right-hand side is a homogeneous function of orders in
the physical variablesp andk. Including perturbations of the
form given in Eq.~30!, we can therefore rewrite Eq.~32! as

uN~k/p!u2
pps

2
cotd̃S52M~p,k!1(

n,m
Cmnk

mp2n,

~33!

whereM(p,k)5LsM̂( p̂,k̂).
This resulting equation~33! has exactly the form of the

DWERE, Eq.~9!. The only difference is that, for sufficiently
singular potentials, the wave functions must be evalua
close to, but not exactly at, the origin. However, provided
wave functions have a power-law form in this region, theR
dependence cancels, leaving Eq.~33!. All nonanalytic effects
of the long-range force have been factored or subtracted
in the functionsN andM. The remainder can be written a
a power-series expansion inp andk, which corresponds di-
rectly to the expansion of the short-range effective potent

III. EXAMPLES

A. Coulomb potential

Scattering from a combination of Coulomb and sho
range potentials has already been studied from an EFT v
point by Kong and Ravndal@22#. Here we examine it using
the RG and show how a power counting can be establish
which matches exactly with the DWERE.

Since the fine structure constanta is small, the inverse of
the Bohr radius,k5aM /2, provides a low-energy scale a
sociated with the Coulomb potential. The Coulomb wa
function tends to a finite, nonzero value at the origin, and
it has the form assumed in the preceding section, Eq.~21!,
with s51 and the square of the wave function given by t
well-known Sommerfeld factor
6-5
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uN~k/p!u25 lim
R→0

ucL~p,R!u25C~k/p!5
2pk/p

e2pk/p21
.

~34!

A trivial fixed point always exists and the power countin
for the expansion around it can be found using the gen
analysis in Sec. II B. Of more interest are possible nontriv
solutions to the RG and the expansions around them. We
the basic loop integral of Eq.~28! as our starting point for the
construction of these solutions. This satisfies Eq.~27!, the
fixed-point version of the DWRG equation~22!, but it con-
tains nonanalytic terms which should not be present. To id
tify these, we follow Kong and Ravndal@22# and identify the
following terms inĴ0:

Ĵ0~ p̂,k̂ !5212pk̂~ ln k̂1g!2pk̂ReH HS k̂

p̂
D J

1terms analytic inp̂,k̂, ~35!

whereg is Euler’s constant and the functionH is given by

H~x!5c~ ix !1
1

2ix
2 ln~ ix !, ~36!

in terms of the logarithmic derivative of theG function, de-
noted byc.

A potential which is analytic asp̂2,k̂→0 can be built
from Ĵ0 by cancelling the terms proportional tok̂ ln k̂ and
k̂Re$H(k̂/ p̂)%. The latter of these does not present a pro
lem, however, the first cannot be removed within the c
fines of aL-independent solution. The potential,

1

V̂0~ p̂,k̂,L!
5 Ĵ0~ p̂,k̂ !1pk̂H ReFHS k̂

p̂
D G1 ln

k̂L

m J ,

~37!

which depends logarithmically onL and some arbitrary
scalem, satisfies the analyticity boundary conditions and i
solution of the DWRG equation. Although this potential do
evolve slowly withL, we can still expand around it and us
the DWRG equation~22! to determine the forms of the pe
turbations around it. These are given above in Eq.~30!, and
so the full short-range potential is given by

1

V̂S

5
1

V̂0

2 (
n,m50

`

CmnL
m12n21k̂mp̂2n. ~38!

This provides the power counting for a strong short-ran
potential in the presence of the Coulomb potential. Note t
for the k̂-independent terms this is just KSW countin
which corresponds to the ERE. If we invert Eq.~38!, we see
that the potential we have obtained resums the leading lo
rithms (k ln L) to all orders.

The presence of a marginal perturbation (m51, n50) in
the expansion aboutV̂0 leads to the logarithmic dependen
on L noted above, and so explains our inability to find a tr
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fixed point. Such a pertubation cannot be separated un
biguously from a fixed-point potential. By letting its coeffi
cient C10(m) depend logarithmically on the arbitrary sca
m, we can ensure the full potential, and hence all observa
are independent ofm.

Substituting the effective potential into Eq.~32!, we get
the DWERE for the Coulomb potential@15,16,22#,

C~k/p!p~cotd̃S2 i !1aMH~k/p!52
1

ã
1

1

2
r̃ ep

21•••.

~39!

Apart from the logarithmic term, the nonanalytic effects
the long-range Coulomb potential are contained in the fu
tions C(k/p) andH(k/p).

There is a direct correspondence between the expan
of the potential in powers of the energy and the terms in
ERE. The full effective potential gives a further expansion
this in powers ofk, or equivalentlya. We get the following
expressions for the Coulomb-modified scattering length
effective range,

1

ã
5aM lnS aM

2m D2
2

p (
m50

`

Cm0S aM

2 D m

, ~40!

r̃ e5
4

p (
m50

`

Cm1S aM

2 D m

. ~41!

The scattering length defined in this way still contains
logarithmic dependence ona, and so it is not a pure short
range effect. However, any attempt to define a stro
interaction scattering length by subtracting off the logari
mic term will introduce an arbitrary scale~cf. Ref. @19#
where a particular choice is made form).

B. Yukawa potential

The renormalization of scattering in the presence o
Yukawa potential is similar to the Coulomb case since
distorted waves have the same short-distance behavior
consider in particular OPE between nucleons in the1S0
channel,

VL~r !52ap

e2mpr

r
, ~42!

where the strength of the potential isap5gA
2mp

2 /16p f p
2 , in

terms of the pion massmp5140 MeV, the pion decay con
stant f p593 MeV, and the axial coupling of the nucleo
gA51.26.

There has been some debate in the literature as to
OPE should be handled in an EFT. One scheme, propose
KSW @11,25#, treats this force perturbatively. The other, su
gested by Weinberg@8# and further developed by van Kolc
@20,26,3#, iterates it to all orders. The RG treatment sho
how these two schemes correspond to different choice
low-energy scales.
6-6
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In the KSW scheme@11,25#, only the pion mass is treate
as a low-energy scale and the rescaled OPE potential in
mentum space is

V̂L~ k̂8,k̂,m̂p ,L!52L
MgA

2

8p2f p
2

m̂p
2

uk̂82ku21m̂p
2

. ~43!

This is proportional to the cutoffL, and so its effect on the
RG flow vanishes asL→0. This means that the fixed poin
will be the same as in the pure short-range case@13#. The
DW Green’s functionGL can be expanded in powers of th
long-ranged potential and pion exchange treated as pertu
tive corrections to the ordinary ERE.

Although the KSW scheme allows ChPT to be extend
to the two-nucleon sector, the resulting expansion turns
to be, at best, slowly convergent@23,27,24,28#. The problem
is that the pion-nucleon coupling is large, or equivalently t
the scale which sets the strength of the potential,

lNN5
16p f p

2

MgA
2

.300 MeV, ~44!

is small. There is thus no good separation of scales, and
is unsurprising that the corresponding EFT shows poor c
vergence.

In the alternative scheme of Weinberg and van Ko
~WvK!, the effective potential is expanded using Weinbe
power counting, and its leading terms are then resumme
all orders.1 This approach treatslNN or equivalently the in-
verse ‘‘pionic Bohr radius,’’

kp5
apM

2
, ~45!

as an additional low-energy scale. The rescaled OPE po
tial is then independent ofL and so has been promoted
form part of any fixed point.

The effects of the distortion show up in the normalizati
of the DW’s near the origin. Although it is not possible
write this normalization in analytic form, from dimension
analysis, it must be of the form

ucL~p,R→0!u25Cp~kp /p,mp /p!. ~46!

If we rescale bothkp andmp , as just discussed, the norma
ization of the DW withp5L is independent ofL. The re-
sulting RG equation is

L
]V̂S

]L
5 p̂

]V̂S

] p̂
1k̂p

]V̂S

]k̂p

1m̂p

]V̂S

]m̂p

1V̂S1
Cp~k̂p ,m̂p!

12 p̂2
V̂S

2 .

~47!

The expansion around the trivial fixed point is

1Note that we distinguish here between Weinberg power coun
for the terms in the potential and the scheme based on it for trea
pion exchange.
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V̂S5 (
l ,m,n

ClmnL
nm̂p

2l k̂p
mp̂2n, ~48!

where the eigenvalues aren52l 1m12n1151,3,5, . . . ,
as in the Coulomb case.

The more interesting expansion around a nontrivial fix
point takes the form

1

V̂S

5
1

V̂0

2 (
l ,m,n

ClmnL
nm̂p

2l k̂p
mp̂2n, ~49!

where n52l 1m12n21521,0,11, . . . . This includes a
marginal perturbation which is linear in the inverse Bo
radius, and leads to logarithmic evolution of the potentialV̂0
with L. We can resum this using the RG method describ
above in Sec. III A.

The expansion of the potential corresponds to a DWE
of the form

CpS kp

p
,
mp

p D cotd̃S5kpHpS kp

p
,
mp

p D1kpln
kp

m

1
2

p (
l ,m,n

Clmnmp
2lkp

mp2n, ~50!

where the dependence on the arbitrary scale cancels bet
the first term andC010(m). All nonanalytic behavior is con-
tained in the functions Cp(kp /p,mp /p) and
Hp(kp /p,mp /p). For the Yukawa potential, these must b
calculated using numerical methods. This DWERE has b
applied to nucleon-nucleon scattering in Refs.@23,24#.

The expansion corresponds to an EFT in which OPE
the leading short-range force are iterated to all orders. T
WvK scheme has been developed and applied by van Ko
and others@20,26,3,29#, with some success. The RG analys
shows that the expansion around the logarithmically evo
ing potential defines the power counting for this scheme
term mp

2lkp
mp2n being of orderd52l 1m12n22. Because

of the appearance ofkp as an extra low-energy scale in th
expansion, terms of the same order inmp occur at different
orders here. Hence in contrast to the the KSW scheme,
direct link to ChPT has been lost@30,31#.

C. Repulsive inverse-square potential

As a final example we consider the inverse-square po
tial VL(r )5bM 21r 22, which is of interest because of it
relevance to the three-body problem. Efimov@32# has shown
that this potential can describe the scattering of three p
ticles in the limit where the two-body potential has ze
range and infinite scattering length. The renormalization
the short-ranged three-body forces which appear in E
treatments of such systems is currently the object of k
study @33,34#.

In the repulsive case,b.2 1
4 , the DWs are given by

cL~p,r !5A p

2pr
Jn~pr !, ~51!

g
ng
6-7
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wheren5Ab1(1/4), and which go to

ucL~p,R!u25
1

G~11n!2 S pR

2 D 2n21

~52!

in the limit of smallR. This is of the form in Eq.~21! with
s52n and N 251/@22n21G(11n)2#. For scattering in a
partial wave with l .0, the centrifugal barrier provides
1/r 2 potential withb5 l ( l 11), and hencen5 l 1 1

2 .
SinceN 2 is simply a constant in this case, it is convenie

to absorb it into the rescaling of the potential. The result
RG equation is then@refer Eq.~20!#

L
]V̂S

]L
5 p̂

]V̂S

] p̂
12nV̂S1

1

12 p̂2
V̂S

2 . ~53!

From the general analysis in Sec. II, we see that pertu
tions around the trivial fixed are of the form

V̂S5C2nL2n12np2n. ~54!

Sincen.0, all of the eigenvalues are positive and the fix
point is stable asL→0. The term proportional top2n is of
order d52n12n21 in the corresponding power countin
For nucleon-nucleon scattering in partial waves withl .0,
there are no bound states or resonances close to thre
and so this fixed point is the appropriate one. The pow
counting for this case is given byd52(n1 l ).

Also of interest is the nontrivial fixed point, which corre
sponds to a DWERE. To construct it, we start from the ba
loop integral of Eq.~28!. The cases of integer and noninteg
n behave differently and need to be considered separa
The loop integral can be evaluated to give

Ĵ0~ p̂!5PE
0

1

q̂2n11dq̂
1

p̂22q̂2

5
1

2 (
n50

`

8
p̂2n

n2n
1

p

2
p̂2nH~ p̂,n!, ~55!

where

H~ p̂,n!5H cotpn, nP” N

2 ln p̂, nPN.
~56!

The prime on the sum here indicates that the term withn
5n term must be omitted whenn is an integer.

To obtain a well-behaved short-range potential, we ap
the boundary condition of analyticity by cancelling the fin
nonanalytic term fromĴ0. Whenn is noninteger we can do
this using the fact thatp2n satisfies the homogeneous versi
of RG equation~53!. In the case of integern, the logarithm
of p̂ can be cancelled in a manner similar to the logarithm
k̂, which appears for the Coulomb potential. This leads t
potential with a logarithmic dependence onL, in which the
leading logarithms are resummed to all orders. The resu
either case can be expressed in the form
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1

V̂0~ p̂!
5 Ĵ0~ p̂!2

1

2
p̂2nH~ p̂L/m,n!. ~57!

Once again the full solution to the RG equation is obtain
by adding perturbations around this fixed point,

1

V̂S

5
1

V̂0

2 (
n50

`

C2nL2n22np̂2n. ~58!

This fixed point is unstable, with the number of negati
eigenvalues being governed byn. If n lies between the inte-
gersN21 andN, the first N perturbations are unstable.
n5N, then there is also a marginal eigenvectorp̂2N, which
is the origin of the logarithmic behavior. The correspondi
coefficientC2N(m) depends on the arbitrary scalem, so that
the full potential ism independent.

The power counting around the nontrivial fixed point
d52n22n21 for a term proportional top2n. This is quite
different from the counting found for scattering in the pre
ence of the Coulomb potential. Since the inverse-square
tential is scale-free, its strength does not provide an exp
sion parameter in the low-energy EFT. Instead, it appear
the energy power counting itself, determining the number
relevant ~unstable! perturbations. In the limit where this
strength vanishes, andn→ 1

2 , we have precisely the powe
counting established earlier for a pure short-range poten

The scattering amplitude for this potential can be cal
lated as in Sec. II D. The result can then be expanded
form of a DWERE as

p2nS cotd̃S2
1

p
H~p/m,n! D5

2

p (
n50

`

C2np2n. ~59!

This is an expansion in powers of the energy, which is
only scale in this system. In general, the coefficients h
unusual, noninteger dimensions, as a result of the nonint
power of the energy on the left-hand side. For example,
leading coefficient, which is the analog of a modified sc
tering length, has a dimension of 2n.

In the case of scattering of a particle with angular mom
tum l by a short-range potential, we haven5 l 1 1

2 , and there
is no nonanalytic energy dependence in cotd̃S5cot(d
1lp/2). The ERE becomes

p2l 11cotS d1
lp

2 D5
2

p (
n50

`

C2np2n. ~60!

For l 50, this is the familiars-wave ERE. Forl 51, we get
the p-wave expansion, whose leading term is a scatter
volume rather than a length.

IV. DISCUSSION

The techniques described here extend the RG ideas w
underline EFT’s for low-energy scattering of two heavy pa
ticles to systems where the particles interact by a comb
tion of known long-range and unknown short-range forc
6-8
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They provide a framework for constructing EFT’s for su
systems.

A crucial feature of our approach is that we regulate
loop integrals by cutting them off in the basis of DW’s fo
the long-range potential. This ensures that the long-ra
potential is not modified by the cutoff. As a result, the R
equation has a simple form. In constructing this, it is imp
tant to identify all low-energy scales associated with
long-range potential. The method can be applied when
resulting rescaled potential is independent of the cutoff,
so can be treated as part of a fixed point, its effects be
resummed to all orders in the DW’s.

As in the case of a pure short-range potential, we alw
find a trivial fixed point. The expansion around this point c
be used to describe systems where the additional scatte
by the short-range potential is small. The terms in this
tential correspond to an expansion of the DWK matrix in
powers of the energy and any other low-energy scales.

In some cases we also find an energy-dependent pote
which forms a nontrivial fixed point of the RG. In othe
cases, such a fixed point would have a marginal perturba
and instead, the potential evolves logarithmically with t
cutoff. These potentials describe systems with bound stat
threshold, and the expansions around them correspon
DW versions of the effective-range expansion.

We have applied this method to several examples. In
case of the Coulomb potential our method reproduces
well-known Coulomb DWERE. The terms in the effectiv
potential correspond to a double expansion in powers of
energy and the inverse Bohr radius.

The RG analysis in the presence of a Yukawa potentia
similar to that for the Coulomb case. In the specific exam
of the OPE potential in1S0 nucleon-nucleon scattering, w
have to choose whether to treat the ‘‘inverse Bohr radius

kp5
gA

2Mmp
2

32p f p
2

~61!

as an additional low-energy scale. In strict chiral counti
the pion mass provides the only low-energy scale andkp is
of second order inmp . Treated in this way, the rescaled OP
potential forms a perturbation in an EFT based on a fix
ys
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an
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point of a pure short-range potential. This is the basis for
KSW scheme for treating pion-exchange forces.

The alternative WvK scheme treatskp as an additional
low-energy scale and resums the effects of the OPE po
tial. The resulting EFT is equivalent to a DWERE. Howev
although this scheme results in a consistent EFT, the tr
ment ofkp as a quantity of first order in low-energy scal
means that the connection with the chiral expansion has b
lost.

Our final example is the repulsive inverse-square pot
tial, which is relevant to three-body systems such as neut
deuteron scattering withJ5 3

2 , and also to two-body scatter
ing in higher partial waves. This potential is scale-free, a
so its strength shows up in the power counting through
RG eigenvalues. Although it is possible to find a DWER
fixed point, the number of unstable perturbations increa
with increasing strength of the potential. This implies th
delicate fine tuning would be needed for a bound state
threshold. In general, one would expect scattering in s
systems to be weak, and to be described by EFT’s base
the trivial fixed point.

We are currently extending this approach to describe s
tering in the presence of an attractive inverse-square po
tial, which is more complicated because of the rapid osci
tions of the DW’s near the origin. The resulting EFT’s w
be relevant to three-body systems such as neutron-deut
scattering withJ5 1

2 . It will also be interesting to explore
more singular potentials, such as OPE in the3S1-sD1 chan-
nel. Finally, the real power of the EFT’s is their ability t
form direct connection between observables for differ
processes. Doing this will require enlarging the present tre
ment to include couplings to external electromagnetic a
weak currents.
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