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Nonlocality in the nucleon-nucleon interaction and three-nucleon bound states
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We address the problem of a possible nonlocality in the nucleon-nucleon interaction and its consequences for
the description of the three-nucleon bound statlsand *He. A nucleon-nucleon potential model is con-
structed, which respects the local behavior of traditional nucleon-nucleon interactions at longer ranges but
exhibits a nonlocality at shorter distances. It provides for an accurate fit of all existing nucleon-nucleon data
and takes into account breaking of charge independence and charge symmetry. With this interaction model the
3H and *He binding energies can be described simultaneously in perfect agreement with experimental data. No
three-nucleon force is needed as in the case of purely local nucleon-nucleon potentials.
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[. INTRODUCTION the degree of accuracy of moderN 8alculations(including
Coulomb forces

At present the problem of nonlocality of the nucleon- For the purpose of our studies we first construdiid
nucleon (NN) interaction must still be considered an openinteraction model that has the expected local behavior
one. It is clear that anN interaction model derived from (Yukawa tai) at long ranges but comes with a nonlocality at
some dynamical principle will contain some nonlocal fea-shorter distances. The region of transition between the local
tures; as an example, one can mention meson-exchange dgAd nonlocal parts is 1-3 fm, with the bulk of the nonlocal-
namics. On the other hand, one has also learned that one ciiy occurring at distances shorter than 1.5 fm. Similar poten-
get along with purely localN interaction models in describ- tial models were considered befd3], but their nonlocali-
ing the whole phenomenology of tiéN system. Recent pa- ties were extended to larger rande$about 2—4 fm). In the
rametrization of suciNN forces, e.g., the Argonne or Reid- presentNN potential model we could keep the Yukawa tail

like Nijmegen models, provide a perfect fit of &IN data. In down to shorter distances and still fit thdN data. Probably

addition, they are more easily tractable in various applica!t is thus more congruent with the dynamics really prevailing

tions. However, when these loclN potentials are used in in the NN system[4]. :
few-nucleon systems, additional three-nuclg@i) forces In practice we step out from the Yukawa tail of the local
are needed to reach a reasonable description. Here one ébhr_gonnevlg potential and add an inner phenomenological

: aonlocal form. We smoothly cut off the Yukawa tail in the
counters another problem, namely, the question for type an

magnitude of 8l forces. Recently it has become a commonreglon of 1-3fm and fit the nonlocal potential to thiN

. . I~ L data, imposing as an additional constraint thée binding
practlc_:e to adjust theNB forces by fitting the databinding energy. The model breaks charge independence and charge
energie$ of the 3N systems.

) ) ) symmetry since it is required to reproduce the experimental
~ Unfortunately, the question of nonlocality 8N interac- a5 of all low-energy parametefis particular the different
tion and of the presence ofN3forces are |nt|matgly related. np,pp, and nn scattering lengthsto high accuracy. The
This has already been discussed by Polyzou andkB¢1].  coulomb interaction in thep system is treated exactly both
As a result, one does not yet definitely know how much andp 2N and 3\ systems. Thereby, we simultaneously arrive at
which type of nonlocality can occur in theIN interaction  correct description of the triton binding energy. In all steps,
and which role is left for Bl forces. both for theNN and 3\ systems, we provide a detailed com-
Here we want to investigate which nonlocality can beparison of our partly nonlocal potential model with the local
allowed in theNN interaction so that it still reproduces all Argonne potentiab g and the(nonloca) charge-dependent
NN data with high precision, and at the same time leads to 8onn (CD-Bonn potential.
correct description of the three-nucleon bound sdtésand In the following section we define thdN input into our
3He, without the addition of an explicit\8force. In fact, we 3N calculations and describe in particular the construction of
shall demonstrate that this is possible in a way compatibléhe partly nonlocaNN potential model. In Sec. Il we outline
with the present insight into the propertiesMif forces and  the treatment of thebound state problem with exact treat-
ment of the Coulomb interaction. The results for thid 3
bound stateSH and 3He are presented in Sec. IV. The sum-
*Email address: doles@rmbki.kfki.hu mary and discussion are contained in Sec. V.
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IIl. THE NN INPUT \7V||1(X,X’)=5”rV|{e_[a'(x_x')]z_[a',(xy_X'I)]Z
Our N calculations are performed with two different in- , 5 i
puts for theNN interaction. At first, we calculate theN3 +e [l O 4 (1- 1)
bound states essentially with the Argon(RG) potential S i i
v1g [5]; for its slight modification from the original version, X > Viem a1 -la, (< —x )12
see the section below. Second, we replace in g and i=12
3SD; (this is a shorter notation fofS;->D,) partial-wave e _ , .
states the Argonne potentialg by a potential whose inner +> V:I/e*[b:l,(X+x’722:|,)]2,[c:|,(X*x’)]2
part is a phenomenological nonlocal potential. In either case i=1
all NN partial waves up to total angular momentym9 are @)
considered, however, for the nonlocal interactions jtieb
case produces already the required 1-keV accuracy. and x=yr%/\1+ %r2. For symmetry reasonsy, =a;,
o . Ri=Rip, Vi =V, by, =by,, ¢, =cj,, andz;, =z,
A. Modified Argonne potential v g Note that the earlier forn{3] is modified, since the

For the purpose of the present study it is sufficient to treascreening terme (21" F¥1)<~x)1? js omitted. It can be in-

the NN interaction in a simplified manner. Except the non-terpreted as am,.=0 choice. The aim of this modification

relativistic Coulomb interaction for the distributed chargeis to avoid sharp changes in the-0r’~2 fm region caused

[6], all of the other electromagnetic interactions are ne-by this term. In any case, the present new parameter values

glected. Also, we use equal masses for the neutron and preaake this term obsolete.

ton. In order to reproduce, under these simplifying assump- Nonlocal potentials of similar kind, the so-called INOY

tions, the singlet scattering lengths and the deuteron bindingnside nonlocal, outside Yukawaotentials were already

energy in complete agreement with the original ARG potenconsidered in previous work®,3]. Their nonlocalities ex-

tial (although, for thenp singlet scattering length we chose tended to ranges af~4 fm. The present nonloc&IN inter-

the slightly different experimental valyethe nuclear part of actions confine the nonlocality to shorter ranges rof

the potential has to be slightly modified. For definiteness we<3 fm. We denote them as I8nside nonlocal, outside

call this interaction as modified Argonne potentigs abbre-  Yukawa short rangepotentials.

viated as ARGm. Notice that in the above formulas of the nonlocal interac-

tion, Egs.(3) and (4), the diagonal terms contain both the

B. Nonlocal NN potential central and tensor component of tN&l interaction. The pa-

rametersy;;,, R;;» and 8, may depend on angular momenta,

In case of the nonlocal potential the fiNIN interaction ! .
P however, they were fixed to the values independent of

consists of two parts. At longer rangasx3 fm) it is essen-
tially local of Yukawa type, while at shorter rang@s<1 fm)

it is purely nonlocal. There is a smooth cutoff in the inter- TABLE I. Parameters of the I8n/pp andnp interactions.

mediate region of 1-3 fm. The full notation of the partial- 1 1 3 3
wave decomposedIN potential is(r(Is)j|V|r'(I's)j). For So (PPN S0 (P) S D
simplicity the indicess andj are omitted and a shortened V, —408.0 —391.7 —2559 0.0
form V,;. is used. Of course, the parameters of g po- (MeV fm~2)
tential vV, depend also on the andj values, and it is re- a(fm™?) 2.6 2.519 2.463
flected in the tables for the different partial-wave compo-a/(fm~1) 1.650 2.0 2.0
nents of theNN interaction. The fullNN interactionV,;, is  x,(fm) 0.0 0.0 0.0
defined as X[ (fm) 1.0 1.0 1.0

Vi, 1.839<10* 1.217x10% 6.672x10° 3.811x10°

Vi () =800 =1") - Fo(0)-ViL (D Wi ('), (D) (vev im=9)
—237.966 —127.209 —198.714 —646.7

whereF,,, is the cutoff function 1205 —07298 —04695  0.4105
2
()= "R, oLy (r=Ry 112 Vi (nn) —244.755
Fir(n=0(-Ry){1-e | 2 (MeV fm?)
The first term in Eq(1) constitutes the the local part with b (fm™?) 1.950 1.737 1.592 0.7955
V), (r) being the same Yukawa tail as in the Argonne poten- 18 1210 1.151 1.392
; Al i 0.55 0.5 0.5 1.225
tial v4g. The nonlocal potential is expressed explicitly as
c) (fm™1 1.6 1.7 1.761 0.3
Bir I By’ I’ 1.4 1.0 1.4 1.725
W”,(r,r’): - .\7\/”,()(')(’). - , . 0.55 0.5 0.6 1.5
V1+per? \/1+3|2,r 12 z), (fm) 0.0 0.0 0.0 0.0
3) 0.42 0.45 0.45 0.7
1.0 1.0 1.0 1.4

with
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TABLE Il. Parameters of the varied interactions.

ISv ISa ISb
'S, (nn) ’s; °D, ’s; °D,
Vv, (MeV fm™3) —415.0 —-182.3 0.0 -132.9 0.0
a (fm™1) 2.6 4.285 3.5
a/ (fm™1) 1.650 1.253 1.143
X, (fm) 0.0 0.1 0.1
X/ (fm) 1.0 0.9 0.9
Vi, (MeVfm~3) 1.630x<10* 1.664x 10* 5.714x 10° 1.3x10% 4.334x10°
—244.189 —105.797 —598.7 —140.116 —450.4
-12 —0.3130 1.495 —0.2772 0.09734
bj, (fm~1) 1.9 1.934 0.8227 1.843 0.8167
2.0 2.601 1.240 2.425 1.243
0.55 0.4548 1.429 0.4441 1.451
¢ (fm™%) 1.8 2.034 0.1906 2.286 0.2037
1.4 1.371 0.465 1.055 0.6655
0.55 0.8 15 0.8 15
zl, (fm) 0.0 0.0 0.0 0.0 0.0
0.42 0.7 0.7 0.7 0.7
1.0 11 1.4 1.1 1.4

the angular momentaw,,=1fm™!, R,,=1fm, and The quality of the fit can be estimated from the comparison
=2fm 1. The y=2fm~* value was also fixed and thme, of all 1S, and 3SD, phase-shift parameters in Tables VI-XI,
=3 value proved to be sufficiently large. The other param-Where a comparison is provided with the ARG, the ARGm,
eters in the potential functiow were determined by fitting and the CD-Bonn potentials. In th&SD; states the phase
the NN phase shifts, the effective-range parameters, the deu-

teron properties, and théHe binding energy. The deuteron TABLE Ill. Parameters of the tensor part of the nonlocal inter-

D-state probability was assumed to Bg=3.6%, like in  actions.

Ref.[3].

For the 1S, partial wave the potentials were fitted sepa- IS ISa ISb
rately fornp andpp stateq 7]. The difference of than a}nd V! (MeVim™3) — 4555 —161.7 —191.8
pp 1S, potentials stem only from one paramedé§,, which al (fm™ 1) 25 2829 1.858
is chosen to fit thein scattering length. In addition, we pro- a1 (fm-1 12 1.396 1.432
vide a variant of thenn potential, denoted by ISy, in order to 1 0.0 0.2 0.2

. o Xg (fm) . . .
study the dependence of the triton binding on other proper)-(% (fm) 0.9 0.7 0.7
- l . . . . .. . . .
tles_of thenn S, mterac_ﬂon. In a similar sp|r|_t we also V2 (MeV fm~3) 2386 17.12 2357
designed two further variants of the IS potential 38D, 2 e 1
. aZ (fm™9) 1.158 1.221 1.383
state; one, called ISa, which reproduces exactly the deuteror ;. _;

: . a, (fm™1) 2.0 0.733 1.988
properties of the Argonne potentialg and one, called ISb, % ; 0.9 0.7 0.7
which reproduces exactly the deuteron properties of the CD)fg (fm) O'O 0'2 0'2
Bonn potential[8]. Both of these versions exhibit a shorter X2i (fm) s : 7 : & ) o
range nonlocal part and theideuterop Sstate wave func- Yoz (MeVIm™=) — —5.227<10°  —7.062¢10° —1.048<1
tions are enhanced at short distances. —12.53 —101.9 —62.49

The parameters of all IS potentials are given in Tables L —0.08051 —0.7633 —0.4598
I-1Il. In Table IV we quote the'S, effective range param- boz (fm™7) 1.843 1.285 1.590
eters for all potentials considered subsequently with regard 0.6554 0.7976 0.8268
to 3N bound states. The triplet effective range parameters 0.3204 0.7907 0.6218
together with the deuteron properties are shown in Table Vcy, (fm™?) 1.0 0.7083 0.3536
The scattering lengths and the effective rangespéndpp 0.3944 1.380 1.218
IS potentials are very similar to those of ARG and ARGm 0.6 0.6112 0.6834
potentials. Only for thenn state the effective range is 2z, (fm) 0.0 0.0 0.0
slightly different in order to reproduce the triton binding en- 0.6 0.7 0.7
ergy. 1.2 1.4 1.4

The IS potentials were fit to the Nijmegen phase shifts
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TABLE IV. 1S, scattering lengths and effective ranges.

ARG CD-Bonn ARGmM IS ISv
app (fm) —7.8064 —7.8154 —7.8064 —7.8064
Iop (fM) 2.788 2.773 2.784 2.769
an, (fm) —18.487 —18.968 —18.487 —18.601 —18.375
I'nn (FM) 2.840 2.819 2.839 2.824 2.829
anp (fm) —23.732 —23.738 —23.748 —23.748
Fop (fM) 2.697 2.671 2.696 2.678
shifts of ISa and ISb potentials are practically the same as for ue= Ung v‘;_ ug , (10)

the Argonnev ;g and CD-Bonn potentials, respectively.
we can rewrite Eq(6) as

Ill. TREATMENT OF THE THREE-BODY COULOMB ~c 3 .
PROBLEM | ,)=G4(E) UV ) +v ([P +|[¥ N]. (1D

For the solution of théHe bound state we adhered to the Herein theu$ is the potential
approach in Ref[9] which allows to treat the three-body c
Coulomb problem to any desired accuracy. Stepping out Ue=Z(Zgt+Z)]Ya, (12

from the 3N Hamiltonian . . .
where Z, is the charge of particler, andy, the Jacobi

3 coordinate between particle and the two-body subsystem
H=H%+ > (v3+v%) (5)  of particlesg and y.
a=1 The Faddeev integral equations are solved by applying the
, ) i Coulomb-Sturmian separable expansion techn[@leFor a
with separated short—ra_mge and Coulomb interactionsNn 2fu|l-fledged calculation of*He (and similarly of 3H), the
subsystemsr of the pairs {3, y), the Faddeev components (oqjting matrix equation has a very large dimension, and
W, of the N wave function¥ obey the integral equations  thjs js what makes it difficultif not impossible to find its
solution to any desired accuracy. Therefore, we followed an
W)= GS(E)UZ(WB>+ |qu>) ®) alternative way to solve for the zeros of the Fredholm deter-
minant. It makes use of the Fredholm alternative theorem,
which states that if the homogeneous equation has a solution,
the inhomogeneous equation with the same kernel has no
solution, except if the inhomogeneity is orthogonal to all
solutions of the adjoint homogeneous equafibdl. First we
turn the homogeneous integral equatidd) artificially into
an inhomogeneous one,

with «,B,y a cyclic permutation and the channel Coulomb
Green'’s operator is defined by

Go(E)=(E-H’-v}—vi-vg—v$) ™ (7

By use of the resolvent equation

C _C ~C ar~C ~
Ca(B)=Ca(B)+Ca(B)U"CL(B) ® W) =[® )+ BSENUW )+ o3| )+ W )],
. (13
with
by adding an arbitrary stategb,), which has to fulfill the
=Cimy 0 c_,Cy-1 e e ;
G (E)=(E-H-0v5—v —uy) 9 only condition that itis not orthogonal o). E_quaﬂon(lS)
may be solved by iteration, with the summation done by the
and Pademethod[11]. Stable solution is usually reached after
TABLE V. Deuteron properties, triplet scattering lengths, and effective ranges given by different interactions.
ARG CD-Bonn ARGmM IS 1Sa ISb
ep (MeV) —2.224575 —2.224575 —2.224575 —2.224582 —2.224579 —2.224584
Pp (%) 5.76 4.85 5.764 3.600 5.767 4.849
Qp (fm?) 0.270 0.270 0.2699 0.2751 0.2707 0.2717
Ag (fm~1?) 0.8846 0.8850 0.8851 0.8850 0.8850 0.8850
Ap/Ag 0.0250 0.0256 0.02509 0.02697 0.02507 0.02563
Frms (fM) 1.967 1.966 1.96735 1.96514 1.96557 1.96518
a; (fm) 5.419 5.4196 5.4192 5.4190 5.4192 5.4191
r; (fm) 1.753 1.751 1.7532 1.7531 1.7537 1.7534
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TABLE IX. The 3S; phase shifts.

Tiap (MeV) Nijmegen ARG CD-Bonn ARGmM IS Tiap (MeV) Nijmegen ARG CD-Bonn ARGmM IS

1 32.684 32.68 32.79 32.745 32.768 1 147.747 14775 147.75 147.740 147.741
5 54.832 54.74 54.85 54.746 54.826 5 118.178 118.18 118.18 118.168 118.168
10 55.219 55.09 55.20 55.069 55.159 10 102.611 102.62 102.62 102.607 102.604
25 48.672 48.51 48.63 48.465  48.509 25 80.63 80.68 80.63 80.662 80.641
50 38.899 38.78 38.85 38.736  38.688 50 62.77 62.89 62.73 62.878 62.839
100 24.97 25.01 24.91 24929  24.860 100 43.23 43.51 43.06 43.502 43.398
150 14.75 15.00 14.73 14.891 14.907 150 30.72 31.19 30.47 31.188 30.871
200 6.55 6.99 6.58 6.854 6.920 200 21.22 21.94 20.95 21.937 21.253
250 -0.31 0.23 -0.29 0.078 0.108 250 13.39 14.45 13.21 14.448 13.293
300 -6.15 -564 —6.26 —5.816 -—5.911 300 6.60 8.13 6.65 8.124 6.446
350 —11.13 -1086 —11.56 —11.054 —11.335 350 0.502 2.65 0.92 2.637 0.424

TABLE VII. The nn 'S, phase shifts. TABLE X. The g, mixing parameter.

Tiap (MeV) ARG CD-Bonn ARGmM IS ISv Tiab (MeV)  Nijmegen ARG CD-Bonn ARGmM IS

1 57.07 57.63 57.069 57.225 56.972 1 0.105 0.11 0.11 0.103 0.114
5 60.64 61.00 60.643 60.774 60.633 5 0.672 0.66 0.68 0.659 0.734
10 57.48 57.79 57.489 57.608 57.499 10 1.159 1.14 1.17 1.135 1.270
25 48.80 49.05 48.815  48.869  48.788 25 1.793 1.77 1.81 1.758 1.924
50 38.47 38.61 38.485 38.446  38.375 50 2.109 211 2.13 2.097 2.126
100 24.45 24.38 24.469 24.411 24.347 100 2.42 2.52 2.45 2.499 2.337
150 14.38 14.14 14.401 14.426 14.371 150 2.75 2.96 2.79 2.929 2.761
200 6.34 5.96 6.367 6.434 6.396 200 3.13 3.43 3.18 3.397 3.241
250 -042 —-092 -0.398 -0.377 -0.390 250 3.56 3.92 3.60 3.888  3.697
300 -6.31 —-6.90 -6.280 -6.391 -6.370 300 4.03 4.43 4.00 4396  4.120
350 —-1153 -12.21 -11.505 —11.808 —11.746 350 4.57 4.95 4.38 4920 4518

TABLE VIII. The np 1S, phase shifts. TABLE XI. The D, phase shifts.

Tiap (MeV) Nijmegen ARG CD-Bonn ARGmM IS Tiap (MeV) Nijmegen ARG CD-Bonn ARGmM IS

1 62.068 62.02 62.09 62.032 62.078 1 —0.005 —-0.00 -0.01 -—-0.005 -0.005

5 63.63 63.50 63.67 63.509 63.620 5 —-0.183 -0.17 -0.18 -0.181 -0.192

10 59.96 59.78 60.01 59.782 59.939 10 —-0.677 —-0.65 —-0.68 —0.667 —0.708

25 50.90 50.61 50.93 50.611 50.870 25 —2799 -272 -280 —2.752 -—-2922

50 40.54 40.09 40.45 40.088  40.522 50 —-6.433 —-6.28 —-6.44 —6.322 —6.672

100 26.78 26.02 26.38 26.021 26.811 100 —12.23 —12.04 —-12.25 —12.096 —12.473

150 16.94 15.98 16.32 15.984 16.941 150 —-16.48 —16.39 —16.50 —16.457 —16.537

200 8.94 8.00 8.31 7.996 8.859 200 —19.71 —-19.82 —19.68 —19.891 —19.574
250 1.96 1.28 1.59 1.283 1.832 250 —22.21 —2259 —-2212 -22.661 —22.011
300 —4.46 —454 —425 —4546 —4.459 300 —24.14 —24.83 —24.03 —24.908 —24.078
350 —-1059 —-9.71 —-944 —9.717 -10.176 350 —25.57 —26.65 —25.53 —26.723 —25.887
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TABLE XII. The ®He binding energies as function of the angu-  TABLE XlIIl. The 3H, 3He binding energiesj&5), and the
lar momentg of the NN interaction taken into account. AE energy shiftshowever, for the Argonne potentials the6 is
used.

j<4 i<5b j<6 <7 j<8 j=<9

Interactions  E(H) (MeV) E(®He) (MeV) AE (MeV)
ARGmM 6.90620 6.91562 6.91670 6.91787 6.91796 6.91815.

IS 7.71739 7.71805 7.71782 7.71825 7.71852 7.71855ARG [22] 7.628 6.917 0.711
ARGmM 7.6268 6.9167 0.7101
IS 8.4818 7.7181 0.7637
20-40 iterations even if the long-range Coulomb interactionsa 7.6972 6.9797 0.7175
is present in a subsystem. We then vary the energy angp 8.0071 7.2711 0.7360
search specifically for the energi&, where the solution Experiment 8.48182 7.71806 0.76376

diverges. According to the Fredholm alternative theorem the
homogeneous equatidfl) has its solutions exactly at these

energies. Conversely, whenever the inhomogeneous equatighy,ified Argonne and IS interactions. The resgisown in
has a finite solution, the ener@is not a bound-state energy. T5pje XIl) indicate that the random changes above the

In principle, the d.ivergence of the wave function NOM <7 ¢ases represent a numerical noise. We also checked that
should be calculated; however, a properly chosen single €lgne inclusion of the Coulomb interaction for high partial
ment suits as well. It changes sign while going through th&,aes where no nuclear interaction was taken into account

binding energy, and therefore a zero of its inverse can b, = 5) has no influence on the first four digits of tRele
found with a shorter search time. If the complete wave f“ncbinding energy.

tion is needed, the solution has to be found for all elements The energy shift between the triton adéle was calcu-

of the matrix equation at an energy which is as near to the,.. 4 2150 with the 1Sa and ISb tensor for¢te 1S, inter-

binding energy as possible and where a stable solution caljons are those of the set)ISThe different deuteron

still be achieved. Of course, this is an approximate solutionp, giate probabilities of these tensor forces produce different
nevertheless, in our experience its accuracy exceeds the

N bindi ies. All of th Iti indi i
curacy of the other approximations applied. 3N binding energies. All of the resulting\Bbinding energies

Finally, we remark that the formalism outlined above as-and energy shifts are shown in Table Xl
sumes point charges. Thpgp potentials, however, were con-
structed for distributed proton charges, as required in a real- V. SUMMARY AND CONCLUSIONS
istic calculation. In order to account for this difference in the
three-body calculation, one has to add the difference between The classical concept is that a potential must be a local
the distributed and point-charge Coulomb potentials to théne. Nonlocal potentials, however, cannot be excluded, espe-
short-range nuclear interaction in tpg subsystem. cially if one considers that the basic source of Ni inter-
action is the exchange of mesons. Even the one-boson ex-
IV. CALCULATIONS OF THE 3H AND 3He BOUND STATES  change mechanism gives rise to some nonlocgliy. The
composite structure of the nucleons also leads to nonlocality,
In this paper we present results for two types of calculathe range of it is expected to be below 1.5 [f4). The theo-
tions, namely, where thidN interaction in all partial waves is retically sound Bonn potentia[45,14,9 are defined in mo-
furnished by the modified Argonne potentialg and where  mentum space, they are nonlocal and their nonlocality is of
in the 1S, as well as®SD, partial waves the IS potential is long range in coordinate spa¢é6]. That we returned to
used while in all other partial waves the modified Argonnecoordinate space gives a possibility to explicitly control the
potentialv ;g remains. range of nonlocality, but our constructed potentials are
The necessary number of the included partial waves of theurely phenomenological ones in the inside region. It is to be
NN interaction was studied in Rdf3], and it was found that noted that this phenomenology is present for all oth&r
interactions up to th& waves ought to be included in order potentials too.
to get the Bl binding energy up to a four-digit accuracy = Nowadays, for a potential model the minimal requirement
(although, the tensor part of ti¥H, and *Gl; interactions  to meet is the reproduction both tidN data and the I8
were neglected However, in Ref[3] the solution was based binding energies. The local interactior nonlocal in case of
on the separable approximation of tN&l interactions, while  the Bonn potentiajsplus I force model separates these
in the present work the full form of the interactions are usedrequirements since thBIN force reproduces only th&lN
Therefore we follow here the usual cutoff of tN& interac-  data, while the strength of anyN3force can be chosen to
tions by the total angular momentujn(see, for example, reproduce at least one of thé&ldinding energie$17]. This
Refs.[12,13). ambiguity would be resolved if thBIN and 3N interactions
The numerical accuracy for thes5 andj<6 cases was were deduced from a unique theory and the fitted parameters
checked on the number of Laguerre polynomial basis funcwould belong to both interactions. The presented nonlocal
tions [9] and their range parameter, and on the number ointeraction model, although it is phenomenological, does not
mesh points for the intermediate integrations. The same nuequire a correctional force in order to reproduce theN3
merical setup was used for highevalues, which therefore binding energies. The nonlocality gives some freedom to
may be less accurate. The convergence was checked for tishange the details of the interaction, which influence te 3
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earlier result§3] about the dependence of the triton binding
energy and the asymptotic normalization constantAg on

the deuteronD-state probability is valid for the present
shorter-range 1S interactions too. As an example, in Fig. 1
the dependence of théHe binding energy on the deuteron
D-state probability is shown.

The fine tuning of the interactions was performed by
changing theSstate wave functions in the small distance
region. The 3He binding energy was chosen to be repro-
duced, because the triton depends at least on one more free
parameter: on than scattering length, which is not too well
known. If for the IS interaction th@n scattering length is
chosen to be the same as that provided by the Argonne po-
tential vqg, the resulting triton is underbound by about 5
keV. In order to reproduce the triton binding energy, tire
scattering length was chosen to bel8.601 fm(see Table
V).

However, if the CSB effect is represented by changes of
other parameters of thep 1S, interaction(for the nn 1S,
interaction of the IS set, only one strength parameter is
changegl the correct triton binding energy can be repro-
duced with a differenhn scattering length. To illustrate it, a
shorter-range nonlocghp 1S, interaction with larger en-
hancement of the short distance wave function was fit to the
pp data, and this parametrization was used for the n8v
15, interaction. This ISv interaction was substituted for the
nn 1S, interaction of the set IS. In order to reproduce the
triton binding energy of 8.4818 MeV via the change of the
strength parametevgo, the scattering length of the ISv in-

binding energy while the quality of the description of kil teraction has to be tuned t618.375 fm value.

data remains the same.

The allowed range of possible nonlocality of th& in-
teraction is questionable. In an earlier wdi¥ the INOY
potentials had a smaller contribution of the Yukawa tail since
it was cut off at a larger distance, and consequently the range
of the nonlocality was larger. In the present paper we reporg
on a successful attempt to construct an INOY |nteract|onv
with a shorter range of nonlocality, which conforms to the o
requirements of Ref4]. 5

The original and the modified Argonne potentials producew
nearly the same® binding energiegTable XIIl). The low- L
energy scattering data and the deuteron binding energy ar@
sensitive to the electromagnetic interactipfkand to then- 8
p mass difference, therefore in the process of modificationw
small corrections were applied to the nuclear part of the Ar-w
gonne potentiab 5 to restore its original values calculated I
with the inclusion of the electromagnetic interactions and =
n-p mass difference. The near identity of th&l ®inding
energies strongly indicate that the position of #f& virtual
and the 3SD, bound state(the 'S, nn and np scattering
lengths are practically determined by the virtual bound-state
position have an essential effect on thN Binding energies,
while other differences are not so important.

The deuterorD-state probability for the present IS poten-
tials were chosen to be 3.6%. It has to be emphasized again
that the choice of low deuterdn-state probability is essen-
tial for reproducing the B binding energies. The local po-

tentials cannot produce both the correct phase shifts and a FIG. 2. The®H-3He binding energy difference as a function of
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We note that the effect of the nonlocality range on the 3 far from that line. Also it has to be mentioned that thH¢ 3
binding energies was also checked. A set of INOY interachinding energies with the ISb tensor force is very near to
tions with the charge symmetry and charge independenciose of CD-Bonn potentid22,21], which is an indication
breaking was constructed with a longer range used earlighat these nonlocal potentials are similar.

[3]. The results for both théH and *He binding energies are The fact that the IS force reproduces thg Binding en-
exactly the same as those of the IS interacfib®. ergies proves that with nonloc&IN interactions this could

Contrary to the presented IS interaction, the ArgonNe-3 be done without al8 force. Since these nonlocal interactions
force model produces around 48 keV deficit for the triton.are purely phenomenological ones, it could not be said that
The CD-Bonn-8l force model seems to be better, becausdhey are the reaNN interactions, especially that different
the triton is underbound only with 20 ke\L7], however, the variations could be constructe@lthough they are rather
CD-Bonn potential has already a largen scattering length  similar if they reproduce theN8binding energies The fine
(—18.968 fm). In order to produce a correct triton binding effects (relativistic, electromagnetic, and-p mass differ-
energy for a 8l force adjusted to théHe binding energy, the ence were intentionally neglected, since they are small or
nn scattering length has to be chosen to-b£9.33 fm[21],  comparable relative to the effects of the uncertainty of
which seems to be too larg&0]. nuclear interactiorisee, for example, the effect of the differ-

A triton calculation was performed also with the set IS, entnn scattering lengths
but thenn 1S, interaction was changed to the pure nuclear The presented nonrelativistic nonlocal interaction IS is ca-
part of thepp interaction. The triton binding energy turned pable to reproduce both thé2lata below 350 MeV and the
out to be 95.3 keV less, which is understandable, since th@N binding energies with high accuracy. Besides, the shorter
scattering length of the pure nuclepp 1S, interaction of  range IS interactions satisfy a more rigorous expectation for
the set IS is—16.809 fm. If this CSB effect on the triton the range of the nonlocality. These interactions should be
binding is removed, the Coulomb energy shift is aroundtested in nonrelativistic calculations of nuclear systems with
0.6666 MeV/(it has to be noted that the CSB effect of the higher number of nucleor(g.g., in calculating théHe bind-
higher partial-wave components of the Argonng interac-  ing energy.
tion was not removed

The results with the IS, ISa, and ISb interactions strongly ACKNOWLEDGMENTS
indicate that for INOY interactions the difference of the tri-
ton and®He binding energies linearly depend on thée (or The work was supported by the OTKA under Contract

triton) binding energy(see Fig. 2 Even the result with the Nos. T034334 and T029003, and by the Stiftung Aktion
modified Argonne and the CD-Bonn potentif?d] is nottoo  Osterreich-Ungrarn under Grant No. 46®.
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