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Nonlocality in the nucleon-nucleon interaction and three-nucleon bound states
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We address the problem of a possible nonlocality in the nucleon-nucleon interaction and its consequences for
the description of the three-nucleon bound states3H and 3He. A nucleon-nucleon potential model is con-
structed, which respects the local behavior of traditional nucleon-nucleon interactions at longer ranges but
exhibits a nonlocality at shorter distances. It provides for an accurate fit of all existing nucleon-nucleon data
and takes into account breaking of charge independence and charge symmetry. With this interaction model the
3H and 3He binding energies can be described simultaneously in perfect agreement with experimental data. No
three-nucleon force is needed as in the case of purely local nucleon-nucleon potentials.
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I. INTRODUCTION

At present the problem of nonlocality of the nucleo
nucleon ~NN! interaction must still be considered an op
one. It is clear that anyNN interaction model derived from
some dynamical principle will contain some nonlocal fe
tures; as an example, one can mention meson-exchang
namics. On the other hand, one has also learned that one
get along with purely localNN interaction models in describ
ing the whole phenomenology of theNN system. Recent pa
rametrization of suchNN forces, e.g., the Argonne or Reid
like Nijmegen models, provide a perfect fit of allNN data. In
addition, they are more easily tractable in various appli
tions. However, when these localNN potentials are used in
few-nucleon systems, additional three-nucleon~3N! forces
are needed to reach a reasonable description. Here on
counters another problem, namely, the question for type
magnitude of 3N forces. Recently it has become a comm
practice to adjust the 3N forces by fitting the data~binding
energies! of the 3N systems.

Unfortunately, the question of nonlocality ofNN interac-
tion and of the presence of 3N forces are intimately related
This has already been discussed by Polyzou and Glo¨ckle @1#.
As a result, one does not yet definitely know how much a
which type of nonlocality can occur in theNN interaction
and which role is left for 3N forces.

Here we want to investigate which nonlocality can
allowed in theNN interaction so that it still reproduces a
NN data with high precision, and at the same time leads
correct description of the three-nucleon bound sates3H and
3He, without the addition of an explicit 3N force. In fact, we
shall demonstrate that this is possible in a way compat
with the present insight into the properties ofNN forces and
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the degree of accuracy of modern 3N calculations~including
Coulomb forces!.

For the purpose of our studies we first construct aNN
interaction model that has the expected local behav
~Yukawa tail! at long ranges but comes with a nonlocality
shorter distances. The region of transition between the lo
and nonlocal parts is 1 –3 fm, with the bulk of the nonloc
ity occurring at distances shorter than 1.5 fm. Similar pot
tial models were considered before@2,3#, but their nonlocali-
ties were extended to larger ranges~of about 2 –4 fm). In the
presentNN potential model we could keep the Yukawa ta
down to shorter distances and still fit theNN data. Probably
it is thus more congruent with the dynamics really prevaili
in the NN system@4#.

In practice we step out from the Yukawa tail of the loc
Argonne v18 potential and add an inner phenomenologic
nonlocal form. We smoothly cut off the Yukawa tail in th
region of 1 –3 fm and fit the nonlocal potential to theNN
data, imposing as an additional constraint the3He binding
energy. The model breaks charge independence and ch
symmetry since it is required to reproduce the experime
data of all low-energy parameters~in particular the different
np,pp, and nn scattering lengths! to high accuracy. The
Coulomb interaction in thepp system is treated exactly bot
in 2N and 3N systems. Thereby, we simultaneously arrive
correct description of the triton binding energy. In all step
both for theNN and 3N systems, we provide a detailed com
parison of our partly nonlocal potential model with the loc
Argonne potentialv18 and the~nonlocal! charge-dependen
Bonn ~CD-Bonn! potential.

In the following section we define theNN input into our
3N calculations and describe in particular the construction
the partly nonlocalNN potential model. In Sec. III we outline
the treatment of the 3N bound state problem with exact trea
ment of the Coulomb interaction. The results for the 3N
bound states3H and 3He are presented in Sec. IV. The sum
mary and discussion are contained in Sec. V.
©2003 The American Physical Society05-1
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II. THE NN INPUT

Our 3N calculations are performed with two different in
puts for theNN interaction. At first, we calculate the 3N
bound states essentially with the Argonne~ARG! potential
v18 @5#; for its slight modification from the original version
see the section below. Second, we replace in the1S0 and
3SD1 ~this is a shorter notation for3S1-3D1) partial-wave
states the Argonne potentialv18 by a potential whose inne
part is a phenomenological nonlocal potential. In either c
all NN partial waves up to total angular momentumj 59 are
considered, however, for the nonlocal interactions thej <5
case produces already the required 1-keV accuracy.

A. Modified Argonne potential v18

For the purpose of the present study it is sufficient to tr
the NN interaction in a simplified manner. Except the no
relativistic Coulomb interaction for the distributed char
@6#, all of the other electromagnetic interactions are n
glected. Also, we use equal masses for the neutron and
ton. In order to reproduce, under these simplifying assum
tions, the singlet scattering lengths and the deuteron bind
energy in complete agreement with the original ARG pot
tial ~although, for thenp singlet scattering length we chos
the slightly different experimental value!, the nuclear part of
the potential has to be slightly modified. For definiteness
call this interaction as modified Argonne potentialv18 abbre-
viated as ARGm.

B. Nonlocal NN potential

In case of the nonlocal potential the fullNN interaction
consists of two parts. At longer ranges (r>3 fm) it is essen-
tially local of Yukawa type, while at shorter ranges~r <1 fm!
it is purely nonlocal. There is a smooth cutoff in the inte
mediate region of 1 –3 fm. The full notation of the partia
wave decomposedNN potential is^r ( ls) j uVur 8( l 8s) j &. For
simplicity the indicess and j are omitted and a shortene
form Vll 8 is used. Of course, the parameters of theNN po-
tential Vll 8 depend also on thes and j values, and it is re-
flected in the tables for the different partial-wave comp
nents of theNN interaction. The fullNN interactionVll 8 is
defined as

Vll 8~r ,r 8!5d~r 2r 8!•Fll 8~r !•Vll 8
Y

~r !1Wll 8~r ,r 8!, ~1!

whereFll 8 is the cutoff function

Fll 8~r !5Q~r 2Rll 8!$12e2@a l l 8~r 2Rll ,8!#2
%. ~2!

The first term in Eq.~1! constitutes the the local part wit
Vll 8

Y (r ) being the same Yukawa tail as in the Argonne pot
tial v18. The nonlocal potential is expressed explicitly as

Wll 8~r ,r 8!5S b l r

A11b l
2r 2D l

•W̃ll 8~x,x8!•S b l 8r 8

A11b l 8
2 r 82D l 8

,

~3!

with
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W̃ll 8~x,x8!5d l l 8Vl$e
2[al (x2xl )]

22[al8(x82xl8)] 2

1e2[al (x82xl )]
22[al8(x2xl8)] 2

%1~12d l l 8!

3 (
i 51,2

Vt
ie2[al

i (x2xl
i )] 22[a

l 8
i

(x82x
l 8
i

)] 2

1(
i 51

nll 8

Vll 8
i e2[b

ll 8
i

(x1x822z
ll 8
i

)] 22[c
ll 8
i

(x2x8)] 2

~4!

and x5gr 2/A11g2r 2. For symmetry reasons,a l l 85a l 8 l ,
Rll 85Rl 8 l , Vll 8

i
5Vl 8 l

i , bll 8
i

5bl 8 l
i , cll 8

i
5cl 8 l

i , andzll 8
i

5zl 8 l
i .

Note that the earlier form@3# is modified, since the
screening terme2[all 8F(y,yll 8)(x2x8)] 2

is omitted. It can be in-
terpreted as anall 8[0 choice. The aim of this modification
is to avoid sharp changes in ther'0,r 8'2 fm region caused
by this term. In any case, the present new parameter va
make this term obsolete.

Nonlocal potentials of similar kind, the so-called INO
~inside nonlocal, outside Yukawa! potentials were already
considered in previous works@2,3#. Their nonlocalities ex-
tended to ranges ofr'4 fm. The present nonlocalNN inter-
actions confine the nonlocality to shorter ranges ofr
<3 fm. We denote them as IS~inside nonlocal, outside
Yukawa short range! potentials.

Notice that in the above formulas of the nonlocal intera
tion, Eqs.~3! and ~4!, the diagonal terms contain both th
central and tensor component of theNN interaction. The pa-
rametersa l l 8 , Rll 8 andb l may depend on angular moment
however, they were fixed to the values independent

TABLE I. Parameters of the ISnn/pp andnp interactions.

1S0 (pp/nn) 1S0 (np) 3S1
3D1

Vl

(MeV fm23)
2408.0 2391.7 2255.9 0.0

al(fm
21) 2.6 2.519 2.463

al8(fm
21) 1.650 2.0 2.0

xl(fm) 0.0 0.0 0.0
xl8(fm) 1.0 1.0 1.0
Vll

i

(MeV fm23)
1.8393104 1.2173104 6.6723103 3.8113103

2237.966 2127.209 2198.714 2646.7
21.205 20.7298 20.4695 0.4105

Vll
2 (nn)
(MeV fm23)

2244.755

bll
i (fm21) 1.950 1.737 1.592 0.7955

1.8 1.210 1.151 1.392
0.55 0.5 0.5 1.225

cll
i (fm21) 1.6 1.7 1.761 0.3

1.4 1.0 1.4 1.725
0.55 0.5 0.6 1.5

zll
i (fm) 0.0 0.0 0.0 0.0

0.42 0.45 0.45 0.7
1.0 1.0 1.0 1.4
5-2
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TABLE II. Parameters of the varied interactions.

ISv ISa ISb
1S0 (nn) 3S1

3D1
3S1

3D1

Vl (MeV fm23) 2415.0 2182.3 0.0 2132.9 0.0
al (fm21) 2.6 4.285 3.5
al8 (fm21) 1.650 1.253 1.143
xl (fm) 0.0 0.1 0.1
xl8 (fm) 1.0 0.9 0.9
Vll

i (MeV fm23) 1.6303104 1.6643104 5.7143103 1.33104 4.3343103

2244.189 2105.797 2598.7 2140.116 2450.4
21.2 20.3130 1.495 20.2772 0.09734

bll
i (fm21) 1.9 1.934 0.8227 1.843 0.8167

2.0 2.601 1.240 2.425 1.243
0.55 0.4548 1.429 0.4441 1.451

cll
i (fm21) 1.8 2.034 0.1906 2.286 0.2037

1.4 1.371 0.465 1.055 0.6655
0.55 0.8 1.5 0.8 1.5

zll
i (fm) 0.0 0.0 0.0 0.0 0.0

0.42 0.7 0.7 0.7 0.7
1.0 1.1 1.4 1.1 1.4
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the angular momenta:a l l 851 fm21, Rll 851 fm, and b l
52 fm21. The g52fm21 value was also fixed and thenll 8
53 value proved to be sufficiently large. The other para
eters in the potential functionW were determined by fitting
the NN phase shifts, the effective-range parameters, the d
teron properties, and the3He binding energy. The deutero
D-state probability was assumed to bePD53.6%, like in
Ref. @3#.

For the 1S0 partial wave the potentials were fitted sep
rately fornp andpp states@7#. The difference of thenn and
pp 1S0 potentials stem only from one parameter,V00

2 , which
is chosen to fit thenn scattering length. In addition, we pro
vide a variant of thenn potential, denoted by ISv, in order t
study the dependence of the triton binding on other prop
ties of thenn 1S0 interaction. In a similar spirit we also
designed two further variants of the IS potential in3SD1
state; one, called ISa, which reproduces exactly the deut
properties of the Argonne potentialv18 and one, called ISb
which reproduces exactly the deuteron properties of the C
Bonn potential@8#. Both of these versions exhibit a short
range nonlocal part and their~deuteron! S-state wave func-
tions are enhanced at short distances.

The parameters of all IS potentials are given in Tab
I–III. In Table IV we quote the1S0 effective range param
eters for all potentials considered subsequently with reg
to 3N bound states. The triplet effective range parame
together with the deuteron properties are shown in Table
The scattering lengths and the effective ranges ofnp andpp
IS potentials are very similar to those of ARG and ARG
potentials. Only for thenn state the effective range i
slightly different in order to reproduce the triton binding e
ergy.

The IS potentials were fit to the Nijmegen phase shi
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The quality of the fit can be estimated from the comparis
of all 1S0 and 3SD1 phase-shift parameters in Tables VI–X
where a comparison is provided with the ARG, the ARG
and the CD-Bonn potentials. In the3SD1 states the phase

TABLE III. Parameters of the tensor part of the nonlocal inte
actions.

IS ISa ISb

Vt
1 (MeV fm23) 2455.5 2161.7 2191.8

a0
1 (fm21) 2.5 2.829 1.858

a2
1 (fm21) 1.2 1.396 1.432

x0
1 (fm) 0.0 0.2 0.2

x2
1 (fm) 0.9 0.7 0.7

Vt
2 (MeV fm23) 23.86 17.12 23.57

a0
2 (fm21) 1.158 1.221 1.383

a2
2 (fm21) 2.0 0.733 1.988

x0
2 (fm) 0.9 0.7 0.7

x2
2 (fm) 0.0 0.2 0.2

V02
i (MeV fm23) 25.2273103 27.0623103 21.0483104

212.53 2101.9 262.49
20.08051 20.7633 20.4598

b02
i (fm21) 1.843 1.285 1.590

0.6554 0.7976 0.8268
0.3204 0.7907 0.6218

c02
i (fm21) 1.0 0.7083 0.3536

0.3944 1.380 1.218
0.6 0.6112 0.6834

z02
i (fm) 0.0 0.0 0.0

0.6 0.7 0.7
1.2 1.4 1.4
5-3
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TABLE IV. 1S0 scattering lengths and effective ranges.

ARG CD-Bonn ARGm IS ISv

app (fm) 27.8064 27.8154 27.8064 27.8064
r pp (fm) 2.788 2.773 2.784 2.769
ann (fm) 218.487 218.968 218.487 218.601 218.375
r nn (fm) 2.840 2.819 2.839 2.824 2.829
anp (fm) 223.732 223.738 223.748 223.748
r np (fm) 2.697 2.671 2.696 2.678
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shifts of ISa and ISb potentials are practically the same as
the Argonnev18 and CD-Bonn potentials, respectively.

III. TREATMENT OF THE THREE-BODY COULOMB
PROBLEM

For the solution of the3He bound state we adhered to th
approach in Ref.@9# which allows to treat the three-bod
Coulomb problem to any desired accuracy. Stepping
from the 3N Hamiltonian

H5H01 (
a51

3

~va
s 1va

C! ~5!

with separated short-range and Coulomb interactions inN
subsystemsa of the pairs (b,g), the Faddeev componen
Ca of the 3N wave functionC obey the integral equations

uCa&5Ga
C~E!va

s ~ uCb&1uCg&) ~6!

with a,b,g a cyclic permutation and the channel Coulom
Green’s operator is defined by

Ga
C~E!5~E2H02va

s 2va
C2vb

C2vg
C!21. ~7!

By use of the resolvent equation

Ga
C~E!5G̃a

C~E!1G̃a
C~E!UaGa

C~E! ~8!

with

G̃a
C~E!5~E2H02va

s 2va
C2ua

C!21 ~9!

and
06400
or

ut

Ua5vb
C1vg

C2ua
C , ~10!

we can rewrite Eq.~6! as

uCa&5G̃a
C~E!@UauCa&1va

s ~ uCb&1uCg&)]. ~11!

Herein theua
C is the potential

ua
C5Za~Zb1Zg!/ya , ~12!

where Za is the charge of particlea, and ya the Jacobi
coordinate between particlea and the two-body subsystem
of particlesb andg.

The Faddeev integral equations are solved by applying
Coulomb-Sturmian separable expansion technique@9#. For a
full-fledged calculation of3He ~and similarly of 3H), the
resulting matrix equation has a very large dimension, a
this is what makes it difficult~if not impossible! to find its
solution to any desired accuracy. Therefore, we followed
alternative way to solve for the zeros of the Fredholm de
minant. It makes use of the Fredholm alternative theore
which states that if the homogeneous equation has a solu
the inhomogeneous equation with the same kernel has
solution, except if the inhomogeneity is orthogonal to
solutions of the adjoint homogeneous equation@10#. First we
turn the homogeneous integral equation~11! artificially into
an inhomogeneous one,

uCa&5uFa&1G̃a
C~E!@UauCa&1va

s ~ uCb&1uCg&)],
~13!

by adding an arbitrary stateuFa&, which has to fulfill the
only condition that it is not orthogonal touC&. Equation~13!
may be solved by iteration, with the summation done by
Padémethod @11#. Stable solution is usually reached aft
TABLE V. Deuteron properties, triplet scattering lengths, and effective ranges given by different interactions.

ARG CD-Bonn ARGm IS ISa ISb

«D (MeV) 22.224575 22.224575 22.224575 22.224582 22.224579 22.224584
PD (%) 5.76 4.85 5.764 3.600 5.767 4.849
QD (fm2) 0.270 0.270 0.2699 0.2751 0.2707 0.2717
AS (fm21/2) 0.8846 0.8850 0.8851 0.8850 0.8850 0.8850
AD /AS 0.0250 0.0256 0.02509 0.02697 0.02507 0.02563
r rms (fm) 1.967 1.966 1.96735 1.96514 1.96557 1.96518
at (fm) 5.419 5.4196 5.4192 5.4190 5.4192 5.4191
r t (fm) 1.753 1.751 1.7532 1.7531 1.7537 1.7534
5-4
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TABLE VI. The pp 1S0 phase shifts.

Tlab (MeV) Nijmegen ARG CD-Bonn ARGm IS

1 32.684 32.68 32.79 32.745 32.768
5 54.832 54.74 54.85 54.746 54.826
10 55.219 55.09 55.20 55.069 55.159
25 48.672 48.51 48.63 48.465 48.509
50 38.899 38.78 38.85 38.736 38.688
100 24.97 25.01 24.91 24.929 24.860
150 14.75 15.00 14.73 14.891 14.907
200 6.55 6.99 6.58 6.854 6.920
250 20.31 0.23 20.29 0.078 0.108
300 26.15 25.64 26.26 25.816 25.911
350 211.13 210.86 211.56 211.054 211.335

TABLE VII. The nn 1S0 phase shifts.

Tlab (MeV) ARG CD-Bonn ARGm IS ISv

1 57.07 57.63 57.069 57.225 56.972
5 60.64 61.00 60.643 60.774 60.633
10 57.48 57.79 57.489 57.608 57.499
25 48.80 49.05 48.815 48.869 48.788
50 38.47 38.61 38.485 38.446 38.375
100 24.45 24.38 24.469 24.411 24.34
150 14.38 14.14 14.401 14.426 14.37
200 6.34 5.96 6.367 6.434 6.396
250 20.42 20.92 20.398 20.377 20.390
300 26.31 26.90 26.280 26.391 26.370
350 211.53 212.21 211.505 211.808 211.746

TABLE VIII. The np 1S0 phase shifts.

Tlab (MeV) Nijmegen ARG CD-Bonn ARGm IS

1 62.068 62.02 62.09 62.032 62.078
5 63.63 63.50 63.67 63.509 63.620
10 59.96 59.78 60.01 59.782 59.939
25 50.90 50.61 50.93 50.611 50.870
50 40.54 40.09 40.45 40.088 40.522
100 26.78 26.02 26.38 26.021 26.811
150 16.94 15.98 16.32 15.984 16.941
200 8.94 8.00 8.31 7.996 8.859
250 1.96 1.28 1.59 1.283 1.832
300 24.46 24.54 24.25 24.546 24.459
350 210.59 29.71 29.44 29.717 210.176
06400
TABLE IX. The 3S1 phase shifts.

Tlab (MeV) Nijmegen ARG CD-Bonn ARGm IS

1 147.747 147.75 147.75 147.740 147.7
5 118.178 118.18 118.18 118.168 118.1
10 102.611 102.62 102.62 102.607 102.6
25 80.63 80.68 80.63 80.662 80.64
50 62.77 62.89 62.73 62.878 62.83
100 43.23 43.51 43.06 43.502 43.39
150 30.72 31.19 30.47 31.188 30.87
200 21.22 21.94 20.95 21.937 21.25
250 13.39 14.45 13.21 14.448 13.29
300 6.60 8.13 6.65 8.124 6.446
350 0.502 2.65 0.92 2.637 0.424

TABLE X. The «1 mixing parameter.

Tlab (MeV) Nijmegen ARG CD-Bonn ARGm IS

1 0.105 0.11 0.11 0.103 0.11
5 0.672 0.66 0.68 0.659 0.73
10 1.159 1.14 1.17 1.135 1.27
25 1.793 1.77 1.81 1.758 1.92
50 2.109 2.11 2.13 2.097 2.12
100 2.42 2.52 2.45 2.499 2.33
150 2.75 2.96 2.79 2.929 2.76
200 3.13 3.43 3.18 3.397 3.24
250 3.56 3.92 3.60 3.888 3.69
300 4.03 4.43 4.00 4.396 4.12
350 4.57 4.95 4.38 4.920 4.51

TABLE XI. The 3D1 phase shifts.

Tlab (MeV) Nijmegen ARG CD-Bonn ARGm IS

1 20.005 20.00 20.01 20.005 20.005
5 20.183 20.17 20.18 20.181 20.192
10 20.677 20.65 20.68 20.667 20.708
25 22.799 22.72 22.80 22.752 22.922
50 26.433 26.28 26.44 26.322 26.672
100 212.23 212.04 212.25 212.096 212.473
150 216.48 216.39 216.50 216.457 216.537
200 219.71 219.82 219.68 219.891 219.574
250 222.21 222.59 222.12 222.661 222.011
300 224.14 224.83 224.03 224.908 224.078
350 225.57 226.65 225.53 226.723 225.887
5-5
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20–40 iterations even if the long-range Coulomb interact
is present in a subsystem. We then vary the energy
search specifically for the energiesEi , where the solution
diverges. According to the Fredholm alternative theorem
homogeneous equation~11! has its solutions exactly at thes
energies. Conversely, whenever the inhomogeneous equ
has a finite solution, the energyE is not a bound-state energ

In principle, the divergence of the wave function nor
should be calculated; however, a properly chosen single
ment suits as well. It changes sign while going through
binding energy, and therefore a zero of its inverse can
found with a shorter search time. If the complete wave fu
tion is needed, the solution has to be found for all eleme
of the matrix equation at an energy which is as near to
binding energy as possible and where a stable solution
still be achieved. Of course, this is an approximate soluti
nevertheless, in our experience its accuracy exceeds th
curacy of the other approximations applied.

Finally, we remark that the formalism outlined above a
sumes point charges. Thepp potentials, however, were con
structed for distributed proton charges, as required in a r
istic calculation. In order to account for this difference in t
three-body calculation, one has to add the difference betw
the distributed and point-charge Coulomb potentials to
short-range nuclear interaction in thepp subsystem.

IV. CALCULATIONS OF THE 3H AND 3He BOUND STATES

In this paper we present results for two types of calcu
tions, namely, where theNN interaction in all partial waves is
furnished by the modified Argonne potentialv18 and where
in the 1S0 as well as3SD1 partial waves the IS potential i
used while in all other partial waves the modified Argon
potentialv18 remains.

The necessary number of the included partial waves of
NN interaction was studied in Ref.@3#, and it was found that
interactions up to theG waves ought to be included in orde
to get the 3N binding energy up to a four-digit accurac
~although, the tensor part of the3FH4 and 3GI5 interactions
were neglected!. However, in Ref.@3# the solution was base
on the separable approximation of theNN interactions, while
in the present work the full form of the interactions are us
Therefore we follow here the usual cutoff of theNN interac-
tions by the total angular momentumj ~see, for example
Refs.@12,13#!.

The numerical accuracy for thej <5 and j <6 cases was
checked on the number of Laguerre polynomial basis fu
tions @9# and their range parameter, and on the numbe
mesh points for the intermediate integrations. The same
merical setup was used for higherj values, which therefore
may be less accurate. The convergence was checked fo

TABLE XII. The 3He binding energies as function of the ang
lar momentaj of the NN interaction taken into account.

j <4 j <5 j <6 j <7 j <8 j <9

ARGm 6.90620 6.91562 6.91670 6.91787 6.91796 6.91
IS 7.71739 7.71805 7.71782 7.71825 7.71852 7.718
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modified Argonne and IS interactions. The results~shown in
Table XII! indicate that the random changes above thej
<7 cases represent a numerical noise. We also checked
the inclusion of the Coulomb interaction for high parti
waves where no nuclear interaction was taken into acco
~for j .5) has no influence on the first four digits of the3He
binding energy.

The energy shift between the triton and3He was calcu-
lated also with the ISa and ISb tensor forces~the 1S0 inter-
actions are those of the set IS!. The different deuteron
D-state probabilities of these tensor forces produce differ
3N binding energies. All of the resulting 3N binding energies
and energy shifts are shown in Table XIII.

V. SUMMARY AND CONCLUSIONS

The classical concept is that a potential must be a lo
one. Nonlocal potentials, however, cannot be excluded, e
cially if one considers that the basic source of theNN inter-
action is the exchange of mesons. Even the one-boson
change mechanism gives rise to some nonlocality@14#. The
composite structure of the nucleons also leads to nonloca
the range of it is expected to be below 1.5 fm@4#. The theo-
retically sound Bonn potentials@15,14,8# are defined in mo-
mentum space, they are nonlocal and their nonlocality is
long range in coordinate space@16#. That we returned to
coordinate space gives a possibility to explicitly control t
range of nonlocality, but our constructed potentials a
purely phenomenological ones in the inside region. It is to
noted that this phenomenology is present for all otherNN
potentials too.

Nowadays, for a potential model the minimal requireme
to meet is the reproduction both theNN data and the 3N
binding energies. The local interaction~or nonlocal in case of
the Bonn potentials! plus 3N force model separates thes
requirements since theNN force reproduces only theNN
data, while the strength of any 3N force can be chosen to
reproduce at least one of the 3N binding energies@17#. This
ambiguity would be resolved if theNN and 3N interactions
were deduced from a unique theory and the fitted parame
would belong to both interactions. The presented nonlo
interaction model, although it is phenomenological, does
require a correctional 3N force in order to reproduce the 3N
binding energies. The nonlocality gives some freedom
change the details of the interaction, which influence theN

5
5

TABLE XIII. The 3H, 3He binding energies (j <5), and the
DE energy shifts~however, for the Argonne potentials thej <6 is
used!.

Interactions E(3H) (MeV) E(3He) (MeV) DE (MeV)

ARG @22# 7.628 6.917 0.711
ARGm 7.6268 6.9167 0.7101
IS 8.4818 7.7181 0.7637
ISa 7.6972 6.9797 0.7175
ISb 8.0071 7.2711 0.7360
Experiment 8.48182 7.71806 0.76376
5-6



c
n
o

io
he

c

a

io
A
d
n

ta

n-
ga
-
-
d

g

t
. 1
n

by
ce
o-
free

ll

po-
5

of

is
o-

the

he
he
he
-

on

of

NONLOCALITY IN THE NUCLEON-NUCLEON . . . PHYSICAL REVIEW C67, 064005 ~2003!
binding energy while the quality of the description of theNN
data remains the same.

The allowed range of possible nonlocality of theNN in-
teraction is questionable. In an earlier work@3# the INOY
potentials had a smaller contribution of the Yukawa tail sin
it was cut off at a larger distance, and consequently the ra
of the nonlocality was larger. In the present paper we rep
on a successful attempt to construct an INOY interact
with a shorter range of nonlocality, which conforms to t
requirements of Ref.@4#.

The original and the modified Argonne potentials produ
nearly the same 3N binding energies~Table XIII!. The low-
energy scattering data and the deuteron binding energy
sensitive to the electromagnetic interactions@5# and to then-
p mass difference, therefore in the process of modificat
small corrections were applied to the nuclear part of the
gonne potentialv18 to restore its original values calculate
with the inclusion of the electromagnetic interactions a
n-p mass difference. The near identity of the 3N binding
energies strongly indicate that the position of the1S0 virtual
and the 3SD1 bound state~the 1S0 nn and np scattering
lengths are practically determined by the virtual bound-s
position! have an essential effect on the 3N binding energies,
while other differences are not so important.

The deuteronD-state probability for the present IS pote
tials were chosen to be 3.6%. It has to be emphasized a
that the choice of low deuteronD-state probability is essen
tial for reproducing the 3N binding energies. The local po
tentials cannot produce both the correct phase shifts an
low ~below 5%! deuteronD-state probability@16,18#. The
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FIG. 1. The 3He binding energy as a function of the deuter
D-state probability.
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earlier results@3# about the dependence of the triton bindin
energy and the asymptotic normalization constantAD /AS on
the deuteronD-state probability is valid for the presen
shorter-range IS interactions too. As an example, in Fig
the dependence of the3He binding energy on the deutero
D-state probability is shown.

The fine tuning of the interactions was performed
changing theS-state wave functions in the small distan
region. The 3He binding energy was chosen to be repr
duced, because the triton depends at least on one more
parameter: on thenn scattering length, which is not too we
known. If for the IS interaction thenn scattering length is
chosen to be the same as that provided by the Argonne
tential v18, the resulting triton is underbound by about
keV. In order to reproduce the triton binding energy, thenn
scattering length was chosen to be218.601 fm~see Table
IV !.

However, if the CSB effect is represented by changes
other parameters of thepp 1S0 interaction~for the nn 1S0
interaction of the IS set, only one strength parameter
changed!, the correct triton binding energy can be repr
duced with a differentnn scattering length. To illustrate it, a
shorter-range nonlocalpp 1S0 interaction with larger en-
hancement of the short distance wave function was fit to
pp data, and this parametrization was used for the ISvnn
1S0 interaction. This ISv interaction was substituted for t
nn 1S0 interaction of the set IS. In order to reproduce t
triton binding energy of 8.4818 MeV via the change of t
strength parameterV00

2 , the scattering length of the ISv in
teraction has to be tuned to218.375 fm value.
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FIG. 2. The3H-3He binding energy difference as a function
the 3He binding energy.
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We note that the effect of the nonlocality range on theN
binding energies was also checked. A set of INOY inter
tions with the charge symmetry and charge independe
breaking was constructed with a longer range used ea
@3#. The results for both the3H and 3He binding energies are
exactly the same as those of the IS interaction@19#.

Contrary to the presented IS interaction, the Argonne-N
force model produces around 48 keV deficit for the trito
The CD-Bonn–3N force model seems to be better, becau
the triton is underbound only with 20 keV@17#, however, the
CD-Bonn potential has already a largernn scattering length
(218.968 fm). In order to produce a correct triton bindi
energy for a 3N force adjusted to the3He binding energy, the
nn scattering length has to be chosen to be219.33 fm@21#,
which seems to be too large@20#.

A triton calculation was performed also with the set I
but thenn 1S0 interaction was changed to the pure nucle
part of thepp interaction. The triton binding energy turne
out to be 95.3 keV less, which is understandable, since
scattering length of the pure nuclearpp 1S0 interaction of
the set IS is216.809 fm. If this CSB effect on the triton
binding is removed, the Coulomb energy shift is arou
0.6666 MeV~it has to be noted that the CSB effect of th
higher partial-wave components of the Argonnev18 interac-
tion was not removed!.

The results with the IS, ISa, and ISb interactions stron
indicate that for INOY interactions the difference of the t
ton and3He binding energies linearly depend on the3He ~or
triton! binding energy~see Fig. 2!. Even the result with the
modified Argonne and the CD-Bonn potentials@21# is not too
.
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far from that line. Also it has to be mentioned that the 3N
binding energies with the ISb tensor force is very near
those of CD-Bonn potential@22,21#, which is an indication
that these nonlocal potentials are similar.

The fact that the IS force reproduces the 3N binding en-
ergies proves that with nonlocalNN interactions this could
be done without a 3N force. Since these nonlocal interaction
are purely phenomenological ones, it could not be said
they are the realNN interactions, especially that differen
variations could be constructed~although they are rathe
similar if they reproduce the 3N binding energies!. The fine
effects ~relativistic, electromagnetic, andn-p mass differ-
ence! were intentionally neglected, since they are small
comparable relative to the effects of the uncertainty
nuclear interaction~see, for example, the effect of the diffe
ent nn scattering lengths!.

The presented nonrelativistic nonlocal interaction IS is
pable to reproduce both the 2N data below 350 MeV and the
3N binding energies with high accuracy. Besides, the sho
range IS interactions satisfy a more rigorous expectation
the range of the nonlocality. These interactions should
tested in nonrelativistic calculations of nuclear systems w
higher number of nucleons~e.g., in calculating the4He bind-
ing energy!.
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