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Vector mesons in a relativistic point-form approach
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We apply the point form of relativistic quantum mechanics to develop a Poincare´ invariant coupled-channel
formalism for two-particle systems interacting via one-particle exchange. This approach takes the exchange
particle explicitly into account and leads to a generalized eigenvalue equation for the Bakamjian-Thomas type
mass operator of the system. The coupling of the exchange particle is derived from quantum field theory. As an
illustrative example we consider vector mesons within the chiral constituent quark model in which the hyper-
fine interaction between the confined quark-antiquark pair is generated by Goldstone-boson exchange. We
study the effect of retardation in the Goldstone-boson exchange by comparing with the commonly used
instantaneous approximation. As a nice physical feature we find that the problem of a too larger-v splitting
can nearly be avoided by taking the dynamics of the exchange meson explicitly into account.
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I. INTRODUCTION

In 1949 Dirac formulated a way of incorporating relativi
into quantum theory that differed from quantum field theo
@1#. Although Dirac’s paper was written in the context
classical mechanics, his methodology—the use of repre
tations of the symmetry group of the theory of special re
tivity, the Poincare´ group—was also applicable to quantu
theory and to quantum field theory~for a review, see Ref
@2#!. In Dirac’s original presentation he made evident how
add interactions to a theory of free particles in agreem
with the Poincare´ algebra, ending up with conditions for th
interaction terms that are, in general, nonlinear. In 19
Bakamjian and Thomas gave a prescription for an exp
construction involving only linear constraints@3#.

Of the various forms that Dirac introduced the insta
form is the most widely used@4–7#, although almost exclu-
sively in the context of quantum field theory. The front for
of Hamiltonian dynamics became popular as a natural fra
work for treating parton phenomena. For a topical revie
see Ref.@8#. The point form of relativistic dynamics has als
been considered in quantum field theory@9–11#, but because
of its complicated quantization surface it was not develop
further. Only recently has the point form been rediscover
this time in the context of the quantum mechanics for fin
degree-of-freedom systems. Lev has analyzed electrom
netic current operators in the point form and then tra
formed them to the other two forms@12#. Klink has sug-
gested a basis of states, called velocity states@13#, which are
suitable for few-body point-form quantum theory. The
states have also been introduced by Karmanov in a diffe
context @14,15#. Klink made use of velocity states whe
treating nuclear physics problems@16–18#. Recently, also
the Graz group employed the point form of relativistic d
namics to describe the electroweak structure of bary
within a chiral constituent quark model@19–21#.

This paper uses the point form to elaborate on a coup
channel formalism which is applicable to a wide range
problems. As a first and simple application we have chose
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two-particle system of one~constituent! quark and one~con-
stituent! antiquark which form vector mesons. The hyperfi
interaction in this simple system comes from the chiral co
stituent quark model with pseudoscalar meson exchan
Such an interaction has been used in a semirelativistic f
with great success for the calculation of baryon spec
@22,23#. For vector mesons@24# the results within this semi-
relativistic approach are not as good. In the present pap
fully relativistic calculation with the exchange-meson cha
nel explicitly included is presented and compared to
semirelativistic approach in which the meson exchange
treated in an instantaneous approximation.

The necessary formalism is introduced in detail in Se
II–V. In Sec. II we summarize relevant features of the Po
carégroup. Velocity states are introduced as a suitable b
for the quantum-mechanical treatment of few-particle s
tems in point form. These states are subsequently use
construct the elementary meson-~anti!quark vertex, which
enters the invariant-mass operator. The mass operato
treated in Sec. III; in our example its interacting part aris
from a pseudoscalar Hamiltonian density. Our mass oper
is of Bakamjian-Thomas type and acts on a Hilbert sp
that is the direct sum of two-particle and two-plus-one p
ticle Hilbert spaces. Such an ansatz deals with effective
grees of freedom in contrast to a quantum field theory
leads to the coupled two-channel problem outlined in S
IV. The validity of Poincare´ invariance for systems with a
finite ~but not necessarily conserved! number of particles is
guaranteed by the Bakamjian-Thomas construction as
scribed in Sec. IV. The fact that quarks and antiquarks
always confined is accounted for by adding harmonic os
lator confinement terms to the square of the kinetic terms
the coupled-channel mass operator. As a first step to s
the eigenvalue problem for the mass operator the tw
channel problem is reduced to a one-channel problem w
an optical potential that depends on the mass eigenvalu
be determined. The harmonic-oscillator eigenfunctions of
pure confinement problem are then used as a basis for
panding the quark-antiquark wave functions of the full pro
©2003 The American Physical Society03-1
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lem including the hyperfine interaction. As a result, one c
discretize the dynamical two-particle equation and obtai
set of coupled algebraic equations that can be solved.
eigenvalues of the mass operator are determined by a r
nance condition, which takes into account the nonlinear
pearance of eigenvalues in the eigenvalue equation.
structure of the equation and the implementation of confi
ment are discussed in Sec. V.

Section VI contains some remarks on the numerics
the specific solution method employed in the calculati
Comments on the instantaneous approximation and
choice of the model parameters are given in Secs. VII
VIII, respectively. The results of the calculations are vect
meson masses and some branching ratios of their hadr
decay widths. The numbers are presented in Sec. IX; they
compared with experimental numbers as well as with
instantaneous approximation to elucidate retardation eff
coming from the hyperfine interaction. Concluding rema
can be found in Sec. X. Our conventions, normalizatio
and matrix elements required for the calculations are s
marized in the Appendix.

II. POINCARÉ GROUP

The starting point for dealing with few-body systems
relativistic quantum mechanics is the set of commutation
lations of the Poincare´ generators:

@Pm ,Pn#50, ~1!

@Jmn ,Pk#5 i ~gnkPm2gmkPn!, ~2!

@Jmn ,Jkl#52 i ~gmkJnl2gnkJml1gnlJmk2gmlJnk!.
~3!

One can write these relations in a global way by defin
UL as the unitary operator representing the Lorentz trans
mationL on the Hilbert space. In the point form all intera
tions are contained in the four-momentum operator, so
significant commutation relation is

@Pm,Pn#50, ~4!

which states that the components of the four-momen
commute among each other. The other commutation rela
involving Pm is written as

ULPmUL
215~L21!m

nPn, ~5!

which means that the four-momentum operator has to tra
form as a four-vector under Lorentz transformations. T
commutation relations of the Lorentz generators amo
themselves are unaffected by interactions in the point fo
We will refer to Eqs.~4! and ~5! later, when we construc
mass operators.

Let us start with single-particle statesup,s&, e.g., for
spin-12 particles, which transfer irreducibly under the Poi
carégroup. Defining the action of the four-momentum o
eratorPm on such single-particle states by

Pmup,s&5up,s&pm ~6!
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one can easily show that Eqs.~4! and ~5! are satisfied for a
single-particle representation. In the following we need a
the Poincare´ transformation properties of such states:

Ubup,s&5e2 ibpup,s& and ~7!

ULup,s&5 (
s8561/2

uLp,s8&Ds8s
1/2

@RW~p,L!#. ~8!

Ub denotes a space-time translation by a constant four-ve
b and the Wigner rotationRW(p,L) is given by

RW~p,L!5B21S L
p

mDLBS p

mD , ~9!

where B(v) denotes a Lorentz boost with velocityv. The
Ds8s

1/2 are the matrix elements of the standard WignerD func-
tions @25#.

Concentrating on the single-particle representation of
four-momentum operator we see that Eq.~4! follows imme-
diately from Eq.~6!. Applying the left-hand side of Eq.~5! to
up,s& and using Eqs.~6! and ~8!, we obtain

ULPmUL
21up,s&5ULPmUL21up,s&

5ULPm(
s8

uL21p,s8&Ds8s
1/2

@RW~p,L21!#

5UL(
s8

uL21p,s8&~L21!m
npn

3Ds8s
1/2

@RW~p,L21!#

5ULUL21up,s&~L21!m
npn

5ULL21up,s&~L21!m
npn

5~L21!m
nPnup,s&, ~10!

which proves relation~5! for the single-particle representa
tion. In this derivation we have extensively used the rep
sentation properties ofUL andUL

21 , e.g., that

ULUL215ULL215U151. ~11!

In the generalization of single-particle states to multip
ticle states, it is useful to introduce velocity states, wh
have simple transformation properties under Lorentz tra
formations. We start with usual multiparticle momentu
states that are tensor products of irreducible representa
of the Poincare´ group. We observe that under a Lorent
transformation@see Eq.~7!#

ULup1 ,s1 ,p2 ,s2 , . . . ,pn ,sn&

5 (
s18 ,s28 , . . . ,sn8561/2

uLp1 ,s18 ,Lp2 ,s28 , . . . ,Lpn ,sn8&

3)
i 51

n

Ds
i8s i

1/2
@RW~pi ,L!#, ~12!
3-2
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where each of theD functions depends on adifferentWigner
rotationRW(pi ,L). This implies that one cannot couple a
gular momenta in the standard way. So it is desirable to h
more uniform transformation properties ofn-particle states
under a Lorentz transformation. This is the case for veloc
states. For such states all spin projections and also the
vidual particle momenta are subject to thesameWigner ro-
tation and the effect of the Lorentz transformation go
mainly into the overall velocityv. We now show the con-
struction of velocity states in detail and make their Lore
transformation properties evident.

We consider ann-particle system with particle moment
pi and spin projectionss i , i 51, . . . ,n, and start by defining
internal momentaki via

ki5Bc
21~v !pi , ~13!

where Bc(v) is a canonical spin boost, i.e., a rotationle
Lorentz transformation, which transforms our system fro
its rest frame to total velocity vW . The momenta
kW1 ,kW2 , . . . ,kWn satisfy

(
i 51

n

kW i50 ~14!

and thus onlyn21 of them are linearly independent. Th
remaining independent variable is the overall four velocityv
of the system.

The construction of a velocity state can be viewed
starting from a multiparticle momentum state in its re
frame. This state is then boosted to overall velocityv by
means of the canonical spin boost whose inverse is use
Eq. ~13! to yield the velocity state

uv,kW1 ,m1 ,kW2 ,m2 , . . . ,kWn ,mn&

ªUBc(v)uk1 ,m1 ,k2 ,m2 , . . . ,kn ,mn& ~15!
fo
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5 (
s1 ,s2 , . . . ,sn561/2

up1 ,s1 ,p2 ,s2 , . . . ,pn ,sn&

3)
i 51

n

Ds im i

1/2 @RW„ki ,Bc~v !…#. ~16!

This equation makes evident that a velocity state is a lin
combination of multiparticle momentum states. We also n
that velocity states transform irreducibly under transform
tions of the Poincare´ group. Concerning notation we, in gen
eral, write s i to denote spin projection variables, but fo
velocity states and when using internal variables of a sys
we will instead writem i for spin projections to make a clea
distinction between general and internal variables. In t
sense thes i should always appear together with thepi ,
whereas them i appear together with thekW i .

Next we study the Lorentz-transformation properties o
velocity state. We again apply the general boost operatorUL

to the velocity state~15! and combine its action with that o
UBc(v) . Using Eq.~9! one obtains

ULuv,kW1 ,m1 ,kW2 ,m2 , . . . ,kWn ,mn&

5ULUBc(v)uk1 ,m1 ,k2 ,m2 , . . . ,kn ,mn&

5ULBc(v)uk1 ,m1 ,k2 ,m2 , . . . ,kn ,mn&

5UBc(Lv)RW
uk1 ,m1 ,k2 ,m2 , . . . ,kn ,mn&

5UBc(Lv)URW
uk1 ,m1 ,k2 ,m2 , . . . ,kn ,mn& ~17!

with the Wigner rotation

RW5Bc
21~Lv !LBc~v !. ~18!

Evaluating the action ofURW
on the velocity state, we get
ULuv,kW1 ,m1 ,kW2 ,m2 , . . . ,kWn ,mn&5UBc(Lv)URW
uk1 ,m1 ,k2 ,m2 , . . . ,kn ,mn&

5UBc(Lv) (
m18 ,m28 , . . . ,mn8561/2

uRWk1 ,m18 ,RWk2 ,m28 , . . . ,RWkn ,mn8&)
i 51

n

Dm
i8m i

1/2
@RW#

5 (
m18 ,m28 , . . . ,mn8561/2

uLv,RWkW1 ,m18 ,RWkW2 ,m28 , . . . ,RWkWn ,mn8&)
i 51

n

Dm
i8m i

1/2
@RW#. ~19!
the

ator
In this derivation use has been made of the fact that
canonical spin boosts the Wigner rotationRW corresponding
to a rotationR is the rotation itself. It is helpful to notice her
that a rotation is also a Lorentz transformation. One can n
clearly see that the rotation appearing in theD functions and

in the state is the same for allm i and all kW i . So one can
r

w

couple spins and also orbital angular momenta using
standard addition rules, which was the desired goal.

III. MASS OPERATOR

In this section we discuss properties of the mass oper
and its role in our approach.
3-3
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A. KRASSNIGG, W. SCHWEIGER, AND W. H. KLINK PHYSICAL REVIEW C67, 064003 ~2003!
In Refs.@2,3# one can find a general procedure for addi
interactions to a system of free relativistic particles so t
Poincare´ invariance is preserved. Such a procedure, ca
the Bakamjian-Thomas construction, adds an interaction
the free mass operator. The Bakamjian-Thomas construc
in the point form involves the~free! four-velocity operator
V0

m which is introduced by expressing the free fou
momentum operator as

P0
m5M0V0

m . ~20!

Interactions are added by perturbing the free mass op
tor, M0→M5M01MI , in such a way that Eqs.~4! and~5!
are satisfied~i.e., the components of the four-momentu
must commute with each other and they have to transform
the components of a four-vector under Lorentz transform
tions!. We emphasize once more that this formulation refle
the fact that interactions do not enter the Lorentz generat
but solely the components of the four-momentum. The lin
constraints on the interacting part of the mass operator
that it should be a Lorentz scalar and commute with the f
four-velocity. The interacting four-momentum operator
then reconstructed by

Pm5MV0
m , ~21!

whereM contains the interactions andV0
m is still kinematical.

Before starting to construct explicitly an interacting ma
operator, we will discuss the free four-momentum and m
operators. Let us first examine the effects of the free fo
momentum operatorP0

m , m50,1,2,3, on the velocity state
defined in Sec. II. We consider a system ofn free particles
with massesmi , internal momentakW i , overall four-velocity
v, and spin projectionsm i . Then we define

Mnª(
i 51

n

Ami
21kW i

2, ~22!

which is the free relativistic mass of the system. Recall
the action of the free four-momentum operatorP0

m on usual
n-particle momentum states, using Eqs.~15!, ~5!, and ~22!,
and evaluating the boost explicitly we get

P0
muv,k1 ,m1 ,k2 ,m2 , . . . ,kn ,mn&

5S MnA11vW 2

MnvW
D uv,kW1 ,m1 ,kW2 ,m2 , . . . ,kWn ,mn&

5M nvmuv,kW1 ,m1 ,kW2 ,m2 , . . . ,kWn ,mn&. ~23!

Hence a velocity stateuv,kW1 ,m1 ,kW2 ,m2 , . . . ,kWn ,mn& is an
eigenstate ofP0

m with the eigenvalueM nvm. Thus we can
split P0

m according to Eq. ~20! and a velocity state

uv,kW1 ,m1 ,kW2 ,m2 , . . . ,kWn ,mn& becomes also an eigenstate
M0 andV0

m with the eigenvaluesMn andvm, respectively:

M0uv,kW1 ,m1 , . . . ,kWn ,mn&5MnuvkW1 ,m1 , . . . ,kWn ,mn&,
~24!
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muv,kW1 ,m1 , . . . ,kWn ,mn&5vmuvkW1 ,m1 , . . . ,kWn ,mn&.

The decomposition of Eq.~20! is the starting point of the
Bakamjian-Thomas construction in point form. This res
is also consistent with the common definition of the ma
operator

M0
25P0

mP0m , ~25!

since the square of the four-velocity is always the identit

IV. BAKAMJIAN-THOMAS TYPE
VERTEX INTERACTION

In this section we will show how an interacting mass o
erator that couplesi and (i 11) particle channels can b
derived from a field theoretical vertex interaction such tha
fits into the Bakamjian-Thomas framework. Our presentat
takes up the procedure suggested in Ref.@26# to which we
also refer for further details. We will set up a model with
finite number of effective degrees of freedom and consi
the dynamical equation that describes this system of inter
ing particles.

On a direct-sum Hilbert space fori and i 11 particles the
~full interacting! mass operatorM becomes a matrix operato

M5M01MI5S D i
0 0

0 Di 11
0 D 1S 0 K†

K 0 D . ~26!

The two subspaces are coupled by the vertex operatorK and
D i

0 denotes a free~indicated by the superscript 0! i-particle
operator, which corresponds to the relativistici-particle mass
~22!. In order to obtain an expression for the vertex opera
K we consider a field theoretical Hamiltonian densityHI(x),
which describes a vertex interaction and is a polynomia
free fields, meaning that

ULHI~x!UL
215HI~Lx!. ~27!

ThenHI(0) is a Lorentz scalar, since

ULHI~0!UL
215HI~0!. ~28!

These properties ofHI(0) can be used to defineK. Taking
the velocity-state representation and keeping in mind t
the whole velocity dependence of a Bakamjian-Thom
type mass operator in point form is merely a fact
}v0d3(vW 82vW ) ~see Appendix! we are led to introduceK
via the relation
3-4
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^v,kW1 ,m1 ,kW2 ,m2 , . . . ,kW i 11 ,m i 11uKuv8,kW18 ,m18 ,kW28 ,m28 , . . . ,kW i8 ,m i8&

}v0d3~vW 2vW 8! f ~Dm!^v50, kW1 ,m1 ,kW2 ,m2 , . . . ,kW i 11 ,m i 11uHI~0!uv50, kW18 ,m18 , kW28 ,m28 , . . . ,kW i8 ,m i8&. ~29!
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The matrix element on the right-hand side of Eq.~29! has to
be understood such that two particles on the ‘‘left’’ and o
on the ‘‘right’’ are coupled byHI(0) in all possible ways.
The remaining particles yield spectator conditions. T
means thatMI is constructed from matrix elements ofHI(0)
between velocity states with thesame overall velocitywhich
furthermore can be taken to be zero sinceHI(0) is a Lorentz
scalar. What we have neglected in this kind of construct
as compared to the full interacting field theory with vert
interactionHI are off-diagonal terms in the overall velocit
which should not occur in a Bakamjian-Thomas-type m
operator. Part of such terms can be simulated with an ap
priate choice of the vertex form factorf @Dm# which guaran-
tees also that the mass operator is a well defined operato
the Hilbert space. For velocity state matrix elements (v8
5v) this form factor can be expressed as

f @~p82p!2#5 f @~Mi 118 v82Miv !2#5 f @~Dm!2#,
~30!

sincev251.
For our subsequent application to vector mesons, ma

element~29! should describe the coupling of a pseudosca
meson to a quark. It has the particular form

^v,kW1 ,m1 ,kW2 ,m2 ,kW3uKuv8,kW18 ,m18 ,kW28 ,m28&

5v0d3~vW 2vW 8! f @Dm#
~2p!3

A~v11v21v3!3~v181v28!3

3^k1 ,m1 ,k2 ,m2 ,k3uHI~0!uk18 ,m18 ,k28 ,m28& ~31!

with v i5Ami
21kW i

2 denoting the particle energies andDm
5v181v282v12v22v3 . HI(0) is the pseudoscalar inte
action Hamiltonian density

2 igPSc̄~0!g5lW Fc~0!•fW ~0!, ~32!

evaluated at the space-time pointx50. c andf are the fer-
mion and boson fields,lW F the Gell-Mann flavor matrices
andgPS is the pseudoscalar quark-meson coupling const
The kinematical factor in front of the matrix eleme
^k1 ,m1 ,k2 ,m2 ,k3uHI(0)uk18 ,m18 ,k28 ,m28& has been chose
such that ^k1 ,m1 ,k2 ,m2 ,k3u and uk18 ,m18 ,k28 ,m28& can be

taken as usual momentum states~with kW11kW21kW350 and
kW181kW2850).

We now turn to dynamical equations. The bound-st
problem of nonrelativistic quantum mechanics is usually
duced to the stationary Schro¨dinger equation

HuC&5uC&E. ~33!
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In nonrelativistic quantum mechanics the HamiltonianH is
the only generator of the Galilei group that contains inter
tions, the remaining nine generators are kinematical, i.e.,
of interactions. In relativistic quantum mechanics one de
with the Poincare´ group instead and due to the different u
derlying Lie algebra at least three generators contain inte
tion terms. In the point form, as already mentioned abo
interactions are contained in all components of the fo
momentum whereas the Lorentz generators are kinemat
This means that one has to solve the system of dynam
equations

PmuC&5pmuC& ~34!

instead of Eq.~33! to obtain the simultaneous eigenstates
the components of the four-momentum operatorPm. Within
the Bakamjian-Thomas framework the interaction dep
dence of the four-momentum operator becomes particul
simple @cf. Eq. ~21!# and Eq.~34! reduces to

M uC&5muC&. ~35!

We note that thev dependence of the total wave function
the systemC(v,kW1 ,m1 , . . . )5^v,kW1 ,m1 , . . . uC& factors
out after projection of Eq.~35! onto velocity states.

Starting from the coupled-channel mass operator of
~26! and eliminating thei 11 particle channel one arrives a
an equation for onlyi particles, with one-particle exchang
between any two of them. We write the eigenvalue equat
for the mass operator of the two-channel problem:

S D i
0 K†

K Di 11
0 D S uC i&

uC i 11&
D 5mS uC i&

uC i 11&
D , ~36!

where uC i& and uC i 11& are states living on thei- and
i 11-particle subspaces, respectively.D i

0 and Di 11
0 denote

the freei- andi 11-particle masses,m is the mass eigenvalu
of the system, andK is the vertex operator coupling the tw
channels. From these two coupled equations foruC i& and
uC i 11& the latter can be eliminated to yield

K†~m2Di 11
0 !21KuC i&5~m2D i

0!uC i&. ~37!

Using velocity states, one can now turn this equation i
an integral equation, which is a generalized eigenva
equation, becausem also appears in the propagator (m
2Di 11

0 )21. The operatorK†(m2Di 11
0 )21K acts as an opti-

cal ~one-particle exchange! potential. This optical potentia
contains, in principle, also loop contributions in which th
exchange particle is reabsorbed by the emitting particle.
since we are interested in studying relativistic few-bo
systems that describe the dynamics of effective degree
3-5
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freedom we neglect such contributions and assume that
can be absorbed in the~renormalized! mass of the emitting
particle.

V. THE DYNAMICAL EQUATION

So far we have not been very specific about the system
want to investigate. Equation~36! is a general mass eigen
value equation for any coupled two-channel problem. Up
this point one could use this equation for various differe
systems as described at the end of this paper. In this se
we apply it to a confined system of a constituent quark an
constituent antiquark interacting via pseudoscalar meson
change, in order to give a description of vector mesons.
make use of the velocity-state representation, so that
Bakamjian-Thomas properties of the interacting mass op
tor can be fully exploited. Taking only the one-meson e
change dynamics into account, we could immediately s
with Eq. ~37! with K defined according to Eqs.~31! and~32!.

Quarks, however, have not been observed as free part
in nature and are therefore subject to a confining force. F
system of a constituent quark and a constituent antiqu
interacting via pseudoscalar meson exchange,i in Eq. ~37! is
equal to 2 and one has

~D 2
02m!uC2&5K†~D 3

02m!21KuC2&. ~38!

The right-hand side now corresponds to an eigenva
dependent pseudoscalar meson-exchange potential. In
to introduce confinement in this equation in as simple a m
ner as possible we modify the relativistic kinetic ener
terms D 2

0 and D 3
0 to include harmonic oscillator confine

ment. As a next step the two-particle wave function is e
panded in terms of harmonic oscillator eigenfunctions, wh
will lead to a discretization of the problem and allow us
apply straightforward techniques for the numerical solut
of the equation after a standard partial wave analysis
been carried out.

Confinement is included in Eq.~38! in the diagonal terms
in such a way that the two quarks are confined in the tw
particle channel as well as in the three-particle chan
whereas the third particle, the exchange boson, is free. As
will argue in the following, this still provides the correc
Lorentz-transformation properties. In the two-particle cha
nel one can introduce confinement ‘‘by hand’’ by substituti
the free two-particle mass operator by a confinement one,
D 2

c . Such a confinement terma priori does not need to be o
harmonic oscillator type. The constraint that guarantees L
entz invariance is that the confinement operator must
depend on the overall velocity and must be a rotational s
lar. In the three-particle channel only the two-quark su
system is confined, which is not at rest and therefore ha
be transformed to the correct frame. Using velocity state
a basis, all internal momenta@and also the angular momen
via the correspondingD functions, see Eq.~19!# are rotated
by the same rotation as an effect of a Lorentz transformat
Since only scalar products of internal momenta appear in
diagonal terms, nothing changes by an overall rotation
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also the three-particle confinement mass operator has the
rect Lorentz-transformation properties.

To introduce confinement in the outlined manner, one
to make the following replacements in Eq.~38!:

D 2
0→D 2

c and ~39!

D 3
0→D 3

c . ~40!

The operatorsD 2
c andD 3

c are explained in more detail in th
Appendix. They are essentially square roots of the us
Schrödinger operator for the three-dimensional isotropic h
monic oscillator. The Appendix contains also the veloci
state representation of these operators as well as our a
notation for the eigenvalues.

VI. SOLUTION METHOD AND NUMERICS

In the preceding section we encountered an equation
has the structure of an eigenvalue equation, but the eig
value also appears in the optical potential. Therefore
cannot directly employ standard techniques for eigenva
problems. We use the following approach.

One sets the eigenvalue in the optical potential to so
preset valuempre and treatsmpre as a parameter. In this wa
the equation becomes a linear eigenvalue equation and
be solved using standard techniques to obtain eigenva
l j (mpre), j 51,2, . . . , ~which, of course, depend on th
value ofmpre).

For different preset valuesmpre the resulting spectra will
be different.

Interpolating the spectra for differentmpre leads to con-
tinuous functionsl j (mpre) of the preset eigenvaluempre.
The graphs of these functions exhibit thempre dependence of
the spectrum caused by thempre dependence of the optica
potential.

To find the positions of the generalized eigenvaluesM j ,
j 51,2, . . . , one has tosolve the equations

m5Re„l j~m!…. ~41!

We will call Eq. ~41! the ‘‘resonance condition.’’
We take the real part ofl j (m), since the eigenvalues are

in general~at least above the thresholds for the production
the various exchanged mesons!, complex numbers. This is
justified, because the shifts and widths resulting from
hyperfine interaction are actually perturbations to the p
oscillator spectra. The imaginary part ofl j (M j ) corresponds
to the width of the~resonant! state with massM j , i.e.,

G~M j !52uIm„l j~M j !…u. ~42!

A procedure of this kind has, e.g., also been adopted
Refs.@27,28#.

Our generalized eigenvalue equation for a two-parti
system interacting via one-particle exchange without c
finement is basically an integral equation. After introduci
the confinement terms in the diagonal parts of the coup
channel mass operator of Eq.~26!, it is natural to use a
harmonic-oscillator basis for the quark-antiquark wave fu
3-6
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tion. By expressing theq-q̄ eigenstateuC2& in terms of the
eigenstatesuv,n,l ,s, j ,mj& of D 2

c and taking only a finite
number of basis states the eigenvalue equation~38! reduces
to a system of coupled algebraic equations from which
mass eigenvaluesm and the expansion coefficientsAn,l ,s, j ,mj

@see Eq.~A7!# have to be determined. The matrix elements
the optical potential between the harmonic oscillator eig
states appear in this set of coupled equations. These are
dimensional integrals and involve sums over various qu
tum numbers. The integrations are done using stand
Monte Carlo techniques. Thereby the statistical errors h
always been kept smaller than 1 MeV, i.e., smaller than ab
one per mille. In the course of the numerical calculation
Wigner rotations for the three-particle intermediate-st
wave functions@see Eq.~A16!# have been neglected. Th
approximation seems to be justified by two observations.
the one hand, the pair of three-particle wave functions wh
shows up in the completeness relation for the three-par
intermediate state must have similar arguments to contrib
substantially to the nine-dimensional integral. But this a
means that the corresponding Wigner rotations appr
mately compensate each other. On the other hand, it has
observed in the investigation of baryon form factors with
point-form dynamics@19# that Wigner-rotation effects are o
minor importance. The numerical effort, by the way, wou
substantially increase if Wigner rotations were included
our calculations.

VII. INSTANTANEOUS APPROXIMATION

In order to study the effects of the exchange particle
flight as compared to the standard instantaneous treatme
particle exchange, we perform a nonrelativistic reduction
the optical potential in the point-form mass operator. This
done via standard techniques and goes along with an
stantaneous approximation’’ of the propagator in the opt
potential. ‘‘Instantaneous approximation’’ means that t
propagator denominator (D 3

c2m) is replaced by the energ
of the exchanged mesonAqW 21mMes

2 . In the nonrelativistic
limit the argument of the form factor reduces to the square
the three-momentum of the exchanged meson. Suppres
the flavor part of the hyperfine interaction, one arrives at
well known form for pseudoscalar meson-exchange poten
~see, e.g., Ref.@29#!

VNR~kW8,kW !5
gps

2

4p

f 2@qW 2#

4m1m2

~sW 1•qW !~sW 2•qW !

qW 21mMes
2

, ~43!

whereqW is given by

qW 5kW82kW ~44!

with kW and kW8 representing center-of-mass momenta of
incoming and outgoing quarks, respectively.

VIII. MODEL PARAMETERS

We adopt the parametrization of the chiral constitu
quark model of Ref.@22# for our actual calculation of the
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vector-meson spectrum. In the following the properties a
parameters of this model are briefly reviewed. In
constituent-quark model one deals with constituent qua
instead of current quarks; the constituent mass is gener
dynamically and is larger than the corresponding curr
quark mass:

mu5md5340 MeV and ms5500 MeV

turn out to be appropriate mass values for light and stra
~constituent! quarks. These numbers can already be obtai
approximately from simple quark-model arguments; rec
lattice calculations@30,31# also hint at these values. The co
stituent quarks~and antiquarks! are confined and interact, in
addition, via the exchange of the lightest pseudoscalar
sons which are the Goldstone bosons associated with c
symmetry breaking. The vertex describing this interaction
constructed from the well-known pseudoscalar interact
Hamiltonian density given in Eq.~32!. The interaction vertex
involves the pseudoscalar coupling constantgPS between
constituent quark and exchange meson and one cutoff pa
eterL i , i 5p,K,h,h8, for each meson. The parametersL i
occur in the meson–~anti!quark-vertex form factorsf i(Dm)
@see Eqs.~29! and ~30!# that we are using. Following Ref
@22# we have taken

f i~Dm!5A L i
22mi

2

L i
22mi

21Dm2
~45!

for the functional form of these vertex form factors. Th
cutoff parametersL i are related by

L i5L01kmi , ~46!

with L05566.33 MeV,k50.81, andmi being the mass of
the pseudoscalar meson of typei. These vertex form factors
go to one whenDm reaches zero1 and they go to zero like
1/Dm for Dm→`, leading to an additional 1/Dm2 decay of
the exchange potential. In Ref.@22# such a kind of form
factor serves to smear out the contact term that occurs w
Eq. ~43! is transformed to configuration space. The coupli
constantg85gPS for the pseudoscalar octet can be deriv
from theN-p coupling constant via the Goldberger-Treima
relation. The value quoted by Glozmanet al. @22# is
gPS

2 /4p50.67. Furthermore, two different coupling constan
are used for the pseudoscalar meson octet and singlet
spectively. The ratio of the singlet to octet couplings taken
Ref. @22# is (g0 /g8)251.34. For our calculations the charg
of the exchange particles is irrelevant; therefore the~small!
mass differences between differently charged particles of
same sort, e.g., thep6 and thep0, are neglected. The value

1For Dm50 we have four-momentum conservation at the ver
with all three particles being on-mass-shell. Fort-channel exchange
of massive particles this can, of course, only happen for unphys
momenta, but it is just the kinematical situation~also in instant
form! where the influence of the vertex form factor is supposed
vanish and the coupling is supposed to become pointlike.
3-7
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TABLE I. Parameters for the point form description of vector mesons within the chiral constituent q
model. Apart froma andV0 , parameters are taken from Ref.@22#.

Quark masses~MeV! Meson masses~MeV!

mu , md ms mp mK mh mh8

340 500 139 494 547 958
Meson-quark coupling Confinement

g8
2/4p (g0 /g8)2 L0 (MeV) k a (MeV) V0 (GeV2)

0.67 1.34 566.33 0.81 312 21.041 15
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used for the pseudoscalar meson masses are basicall
physical masses. As in Ref.@22#, we take

mp5140 MeV, mK5498 MeV, mh5547 MeV,

and mh85958 MeV.

Two more parameters come from the harmonic-oscilla
treatment of the quark-antiquark confinement. We denote
eigenvalues ofD 2

c , i.e., the square root of the harmoni
oscillator eigenvalues, by

Mnl5A8a2S 2n1 l 1
3

2D1V014m̄2, ~47!

where a is the oscillator parameter, 4m̄2 contains the res
masses of the quark and antiquark, andV0 leads to an overal
shift of the spectrum~for details, see Appendix!. Since con-
finement is introduced in Ref.@22# in a different and not
easily comparable way,a and V0 are free parameters.a is
fixed in such a way thatM00 andM10 agree with the masse
of the ground state and the first excited state of the% spec-
trum. Doing this we get

a'312 MeV.

This is a reasonable procedure, because the differenceM10
2M00) is nearly independent of the additional hyperfine
teraction. This value for the oscillator parametera is kept
fixed throughout all calculations. From the spectrum of
full calculations including the hyperfine interaction,V0 is
fixed to yield the% ground state at 770 MeV. A suitabl
value forV0 is V0521.041 15 GeV2. All parameters of the
model are summarized in Table I.

We have also done calculations without vertex fo
factors. For this purpose all parameters are kept the sa
only V0 had to be adjusted to yield the% ground state at
770 MeV. One gets a slightly different value, namely,V0
521.043 85 GeV2. The calculations within the instanta
neous approximation were performed with the same se
parameters as the corresponding full calculations. Finally
note that thev and f flavor wave functions used in ou
calculations are the ones that correspond to ideal mixing
the singlet and octet states of SU(3)F .
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IX. RESULTS AND DISCUSSION

At the beginning of this section we want to emphas
that our primary goal is not an optimal description of t
meson spectrum, but rather to demonstrate with a sim
model how the multichannel formalism developed works a
how it differs from the standard instantaneous treatmen
particle exchange. In our calculations we have concentra
on the lowest-lying negative-parity light and strange vec
mesons, i.e., mesons withJP512 (J being the total angular
momentum andP the parity of the system!. This implies that
only l 50 and l 52 states of the harmonic-oscillator bas
can contribute to theq-q̄ wave function. Whereasl is a good
quantum number when taking only the confining interact
into account,l 50 andl 52 contributions start to mix if the
hyperfine interaction is turned on. The numerical analy
however, reveals that thel 52 contributions have practically
no effect on the absolute masses~less than or at most 1 MeV
which is also the upper limit for our numerical accuracy!.
Even if compared to the level shift caused by the hyperfi
interaction, thel 52 contributions are negligible with the ex
ception of the two excited states of thev. For these states th
l 52 contributions amount to 11%~first! and 18%~second
excited state! of the total level shift. In all other cases th
contributions lack significance since they are smaller th
the required numerical accuracy. As already explained
Sec. VI, the solution of the full coupled channel proble
involves an expansion of the vector-meson wave function
terms of harmonic oscillator eigenfunctions. It turns out th
already three basis states are enough to obtain conver
results on the per mille level for the ground and the first t
excited states. For the instantaneous approximation of
meson exchange the convergence properties are worse.
needs about two times as many basis states as in the c
lation with the full optical potential to achieve the require
accuracy. It should also be mentioned that at those pla
where the harmonic oscillator eigenfunctions appear in co
pleteness relations for intermediate states@cf. Eqs.~A4! and
~A8!# the upper limits for the main quantum numbern and
the orbital angular momentum quantum numberl have been
taken to be the same as in the expansion of theq-q̄ wave
function.

The spectrum of the lowest-lying vector mesons is plot
in Fig. 1. The comparison of the full calculation and the pu
confinement result shows that the hyperfine interaction
to ~dynamical! Goldstone-boson exchange can be conside
as a perturbation. Therefore the qualitative features of
3-8
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FIG. 1. The spectra for the lowest-lying light and strange vector mesons. The boxes in the columns labeled by ‘‘EXP’’ repre
experimental values with their uncertainties@32#. The other columns give our numerical results for the pure confinement intera
~‘‘OSC’’ !, the full calculation with dynamical meson exchange~‘‘PF’’ !, and the instantaneous approximation to the meson exchange~‘‘IA’’ !.
Corresponding results with the meson-quark vertex form factor set to 1 are labeled by ‘‘NPF’’ and ‘‘NIA,’’ respectively.
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vector-meson spectrum are, in our model, essentially de
mined by the confinement potential. It is thus not too surp
ing that only the masses of the ground states and the
excited states are comparable to experiment, whereas
predictions for the second excited states lie already much
high. To obtain also quantitative agreement with experime
it would certainly be necessary to take a confinement po
tial which is more sophisticated than our simple harmon
oscillator confinement. A refined confinement potent
which is applicable in momentum-space calculations h
e.g., been suggested in Ref.@33#. But as we said already a
the beginning of this section, we rather want to study part
exchange within a relativistic framework and the conclusio
about the particle exchange should not depend too muc
the specific choice of the additional confinement potentia

The biggest level shifts caused by the hyperfine inter
tion are detected for thev spectrum. This observation ca
already be anticipated from the fact that the flavor factor
thep-quark vertex, the pion being also the lightest exchan
particle, has its maximum value for thev meson. Thev
spectrum is thus also the best place to study the feature
our treatment of particle exchange. The differences betw
the full calculation and the instantaneous approximation
indeed seen to be most prominent in this case. Whereas
usage of a static meson-exchange potential for the hype
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interaction leads to an unphysically large splitting of ther
andv ground states, their approximate degeneracy is ne
preserved by our dynamical treatment of the Goldsto
boson exchange. Thev spectrum is obviously also most se
sitive to the choice of the meson-quark vertex form fact
Comparing the results for the standard parametrization of
vertex-form factors~see Sec. VIII! with the outcome for
pointlike coupling, i.e., the form factors set to 1, a strikin
observation can be made: whereas the instantaneous app
mation depends very strongly on the form factor, only a m
dependence is seen for the full calculation. The reason
this discrepancy is the difference in the propagators t
make up the hyperfine interaction. In the instantaneous
proximation it is the~nonrelativistic! meson propagator, in
the full optical potential it is rather the propagator of th
intermediateq-q̄-meson state. Theq-q̄ system in the inter-
mediate state is, in addition, subject to confinement that
as a natural cutoff and damps the dependence on the ve
form factors.

Our approach does not only cover recoil effects in parti
exchange, it provides, in principle, also nonperturbative p
dictions for vector-meson decay widths. As soon as the m
of a vector meson excitation becomes larger than the gro
state energy of the confinement potential plus the mass o
exchange meson, the corresponding channel opens an
3-9
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A. KRASSNIGG, W. SCHWEIGER, AND W. H. KLINK PHYSICAL REVIEW C67, 064003 ~2003!
pseudoscalar meson can also be emitted leaving a lowe
ing vector meson. Above such a decay threshold the op
potential and thus the eigenvalues acquire an imaginary
and the width for the decay of the vector-meson resona
into the open two-particle channels can be calculated via
~42!. Within our simple two-channel model the decay mod
are restricted tor-p, v-p, andr-h. Among the resonances i
Fig. 1 there is only one prominent, thev~1420!, which de-
cays intor-p with a measured width of 174640 MeV. The
experimental information on the other resonance widths
the strong decay into one of the above mentioned tw
particle channels is rather poor. Only upper bounds, wh
are of the order of MeV, are given. Our theoretical results
all below 1 MeV, i.e., below our calculational accuracy.
the outlook we will discuss possible improvements of o
model which may also lead to larger decay widths. It see
however, unlikely that the huge decay width of thev~1420!
can be explained within a simple two-channel approach.
rather expect that mechanisms other than those include
far, e.g., a strong final-state interaction, have to be taken
account.

X. SUMMARY AND OUTLOOK

We have presented a Poincare´ invariant and Lorentz co-
variant point-form approach to the dynamical treatment
particle exchange. We have worked within the Bakamjia
Thomas framework, which means that the invariant m
operator takes over the role of the Hamiltonian in nonre
tivistic quantum mechanics. Operators and wave functi
have been defined with respect to a velocity-state basis.
locity states are very natural and advantageous for trea
relativistic few-body systems within point-form dynamic
The starting point of our approach to particle exchange
two-channel problem in which thei and (i 11) particle chan-
nels are coupled via a vertex interaction that was deri
from a field theoretical Hamiltonian density such that t
resulting mass operator is of Bakamjian-Thomas type.
reducing the problem to a one-channel problem for
i-particle channel we have ended up with an optical poten
that describes the dynamics of the particle exchange.
corresponding eigenvalue problem, however, is nonlin
and has to be solved by appropriate means. Since this fra
work accounts for particle production it is able to provi
nonperturbative predictions for~partial! decay widths of
resonances.

As a first application of the developed formalism we ha
investigated vector mesons within the chiral constitue
quark model in which the hyperfine interaction between
confined quark-antiquark pair is mediated by Goldsto
boson exchange, i.e., by the exchange of the lightest pse
scalar mesons. With a simple harmonic-oscillator confi
ment and a parametrization of the chiral constituent-qu
model that has already been successfully applied for the
scription of baryon spectra we have found that the hyper
interaction due to Goldstone-boson exchange causes
small level shifts. Thus it can be considered as a perturba
of the confinement interaction and the confinement poten
essentially determines the properties of the mass spect
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The comparison of the results for the full optical potent
and the standard instantaneous meson-exchange potenti
vealed sizable differences, in particular for thev spectrum.
These differences are also reflected in the sensitivity to
parametrization of the meson-quark vertex form facto
Whereas the full calculation depends only mildly on t
choice of the vertex form factors, the instantaneous appr
mation is extremely sensitive to changes in the form facto
Since the meson-quark couplings and the exchange-m
masses are subject to physical constraints, any reason
parametrization of the Goldstone-boson exchange can
be expected to provide similar results in the full calculatio
Our predictions for vector-meson decay widths lie below
demanded numerical accuracy and thus lack significance

Our conclusions from the investigation of vector meso
are that a proper relativistic treatment of particle exchan
has to go beyond the standard instantaneous approxima
and must account for the dynamical behavior of the
change particle. The predictions for the vector meson sp
trum could be improved with a refined confinement intera
tion. For a reasonable description of resonance widths it m
be necessary to extend the optical potential by loop con
butions, i.e., contributions in which the emitted meson
again absorbed by the emitting particle. For the present
culation we have assumed that such contributions go as
energy contributions into the constituent-quark masses.
this is at most an approximation since the~anti!quark in a
loop is not free, but confined. Loop contributions have, e
also been seen to be important in the semirelativistic tre
ment of the nucleon-nucleon system if one reaches the p
production threshold@34#. It will be worthwhile and neces-
sary to investigate their role in our coupled-chann
formalism. This formalism should also be useful in treati
other relativistic few-body systems that interact via parti
exchange. The positronium and hydrogen systems are p
ently under investigation. They are well studied with
instant- and front-form dynamics and would allow for a com
parison of the different approaches and forms of relativis
dynamics.
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APPENDIX: NORMALIZATIONS AND MATRIX
ELEMENTS

In this appendix we collect the most important definitio
and formulas used in the calculation. We start with so
definitions concerning velocity states. Consider a syst
with overall four-velocityv consisting ofn ~spin 1/2! fermi-
ons with massesmi . Their spins and momenta are unique
specified by their spin projectionsm i and momentakW i , i
51, . . . ,n in the overall rest frame of the system. We al
definev iª(mi

21kW i
2)1/2. Then the completeness relation fo

the n-particle velocity states reads
3-10
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1

~2p!3n (
m1 ,m2 , . . . ,mn

E d3v
v0

S )
i 51

n21

d3ki D S (
i 51

n

v i D 3

)
i 51

n

2v i

3uv,kW1 ,m1 ,kW2 ,m2 , . . . ,kWn ,mn&

3^v,kW1 ,m1 ,kW2 ,m2 , . . . ,kWn ,mnu51; ~A1!

the corresponding orthogonality relation is

^v,kW1 ,m1 ,kW2 ,m2 , . . . ,kWn ,mnuv8,kW18 ,m18 , . . . ,kWn8 ,mn8&

5~2p!3n

)
i 51

n

2v i

S (
i 51

n

v i D 3 v0d3~vW 2vW 8!

3 )
i 51

n21

d3~kW i2kW i8!)
i 51

n

dm im i8
. ~A2!

The representation of then-particle free mass operator in th
basis ofn-particle velocity states is

^v,kW1 ,m1 , . . . ,kWn ,mnuD n
0uv8,kW18 ,m18 , . . . ,kWn8 ,mn8&

5~2p!3n

)
i 51

n

2v i

S (
i 51

n

v i D 3 v0d3~vW 2vW 8!

3 )
i 51

n21

d3~kW i2kW i8!)
i 51

n

dm im i8 (
j 51

n

Amj
21kW j

2.

~A3!

A state representing the confined quark-antiquark pair is
beled by the overall velocityv of the pair and the interna
~oscillator! quantum numbersn andl, the total spins, as well
as the total angular momentumj and its projectionmj . The
completeness relation for such states is

1

~2p!3 (
l 50

`

(
n5 l

`

(
s50

1

(
j 5u l 2su

l 1s

(
mj 52 j

j E d3v
v0

3
Mnl

2

2
uvnls jmj&^vnls jmj u51, ~A4!

whereMnl
2 are just the harmonic oscillator eigenvalues@see

Eq. ~A14!# with main quantum numbern and orbital angular
momentum quantum numberl. The corresponding orthogo
nality relation is
06400
-

^v8n8l 8s8 j 8mj8uvnls jmj&

5~2p!3
2

Mnl
2 v0d3~vW 2vW 8!dn8nd l 8 lds8sd j 8 jdm

j8mj
.

~A5!

The mass operatorD 2
c for the confined pair in the abov

basis is

^v8n8l 8s8 j 8mj8uD 2
cuvnls jmj&

5~2p!3
2

Mnl
2 v0d3~vW 2vW 8!dn8nd l 8 lds8sd j 8 jdm

j8mj
Mnl .

~A6!

Expansion coefficientsAnls jmj
of theq-q̄ wave function with

respect to the harmonic-oscillator basis are defined by

^vnls jmj uC&5^vnls jmj uV,C int&

5~2p!3/2
A2

Mnl
v0d3~vW 2VW !Anls jmj

. ~A7!

For our problem of~negative parity! vector mesonsj 51 and
mj521,0,1 are fixed. Furthermore, parity restricts spin a
orbital angular momentum tos51 and l 50,2, so that the
coefficientsAnls jmj

depend de facto only onn and l. A state
describing a system of a quark-antiquark cluster and a
pseudoscalar meson is labeled by the quantum number
the cluster, the overall velocityv and the relative momentum
between the cluster, and the third particlek. The complete-
ness and orthogonality relations for such states are

1

~2p!6 (
l 50

`

(
n5 l

`

(
s50

1

(
j 5u l 2su

l 1s

(
mj 52 j

j E d3v
v0

3d3k
~vcl1v3!3

2vcl2v3
uvknls jmj&^vknls jmj u51

~A8!

and

^v8k8n8l 8s8 j 8mj8uvknls jmj&

5~2p!6
2vcl2v3

~vcl1v3!3
v0d3~vW 2vW 8!d3~kW 2kW 8!

3dn8nd l 8 lds8sd j 8 jdm
j8mj

, ~A9!

respectively. The factors in the Jacobian are defined byvcl

5AMnl
2 1k2 andv35Am3

21k2. The mass operatorD 3
c for

the confined pair and the free third particle in this basis ta
the form
3-11
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^v8k8n8l 8s8 j 8mj8uD 3
cuvknls jmj&

5~2p!6
2vcl2v3

~vcl1v3!3
v0d3~vW 2vW 8!d3~kW 2kW 8!

3dn8nd l 8 lds8sd j 8 jdm
j8mj

~vcl1v3!. ~A10!

The states defined above can be combined to yield
wave function for the confined quark-antiquark pair. One h

^ṽ,kW1 ,kW2 ,m1 ,m2uvnls jmj&

5~2p!9/2v0d3~ ṽW 2vW !
A2

Mnl
A 2v12v2

~v11v2!3

3 (
ml52 l

l

(
ms52s

s

Clmlsms

jmj C(1/2)m1(1/2)m2

sms

3unl~ ukW1u!Ylml
~ k̂1!. ~A11!

The functionsunl(k) are the well-known eigenfunctions o
the three-dimensional isotropic harmonic oscillator. Their
plicit form is

unl~k!5
1

A4 pa3/2
A 2n1 l 12n!

~2n12l 11!!!
Ln

l 11/2 S k2

a2D S k

aD l

3e2k2/2a2
, ~A12!
-

06400
e
s

-

whereLn
l 11/2 is a generalized Laguerre polynomial. The co

responding normalization integral is

E
0

`

@unl~k!#2k2dk51. ~A13!

TheYlml
are the usual spherical harmonic functions. For f

ther details see, e.g., Ref.@35# or @36#. The eigenvaluesMnl

of D2
c are the square root of harmonic-oscillator eigenvalu

i.e.,

Mnl5A8a2~2n1 l 13/2!1V014m̄2. ~A14!

The well-known oscillator eigenvalues have been modifi
by adding an overall spectral shift constantV0 and an aver-
aged rest-mass termm̄2 to account for the different masses
the light and strange constituent quarks. The value ofm̄ in
this expression is easily determined for%, f, andv, since the
masses of quark and antiquark are equal in these cases
the K* we adopt an averaged mass squared of the form

m̄25
mq

21mq̄
2

2
. ~A15!

For the system of the confined quark-antiquark pair a
the third free particle one can write
^ṽ,kW1 ,m1 ,kW2 ,m2 ,kW3uvknls jmj&

5~2p!15/2v0d3~ ṽW 2vW !d3~kW 2kW3!A 2vcl2v3

~vcl1v3!3
A 2ṽ12ṽ2

2~ṽ11ṽ2!
A 2v122v3

~2v1212v3!3

3 (
ml52 l

l

(
ms52s

s

(
m̃1m̃2561/2

Clmlsms

jmj C(1/2)m̃1(1/2)m̃2

sms unl~ uk̃W u!Ylml
~ k̂̃!

3Dm1m̃1

1/2 @Bc
21~k1 /m1!Bc~v12!Bc~ k̃1 /m1!#Dm2m̃2

1/2 @Bc
21~k2 /m2!Bc~v12!Bc~ k̃2 /m2!#, ~A16!

wherek̃5Bc
21(v12)k1 ,

v125SA11
k2

m12
2

2
kW

m12

D ,

v125Am12
2 1k2, m125ṽ11ṽ2 , vcl5Amcl

2 1k2, D
••

• are WignerD functions, andṽ i5Ak̃i
21mi
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