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We apply the point form of relativistic quantum mechanics to develop a Pdiiaagant coupled-channel
formalism for two-particle systems interacting via one-particle exchange. This approach takes the exchange
particle explicitly into account and leads to a generalized eigenvalue equation for the Bakamjian-Thomas type
mass operator of the system. The coupling of the exchange particle is derived from quantum field theory. As an
illustrative example we consider vector mesons within the chiral constituent quark model in which the hyper-
fine interaction between the confined quark-antiquark pair is generated by Goldstone-boson exchange. We
study the effect of retardation in the Goldstone-boson exchange by comparing with the commonly used
instantaneous approximation. As a nice physical feature we find that the problem of a top-targ@itting
can nearly be avoided by taking the dynamics of the exchange meson explicitly into account.

DOI: 10.1103/PhysRevC.67.064003 PACS nuniderl2.39.Ki, 21.45+v

[. INTRODUCTION two-particle system of onéonstituenkt quark and onécon-
stituen} antiquark which form vector mesons. The hyperfine

In 1949 Dirac formulated a way of incorporating relativity interaction in this simple system comes from the chiral con-
into quantum theory that differed from quantum field theorystituent quark model with pseudoscalar meson exchange.
[1]. Although Dirac’s paper was written in the context of Such an interaction has been used in a semirelativistic form
classical mechanics, his methodology—the use of represemvith great success for the calculation of baryon spectra
tations of the symmetry group of the theory of special rela{22,23. For vector mesong24] the results within this semi-
tivity, the Poincaregroup—was also applicable to quantum relativistic approach are not as good. In the present paper a
theory and to quantum field theoryfor a review, see Ref. fully relativistic calculation with the exchange-meson chan-
[2]). In Dirac’s original presentation he made evident how tonel explicitly included is presented and compared to the
add interactions to a theory of free particles in agreemensemirelativistic approach in which the meson exchange is
with the Poincarelgebra, ending up with conditions for the treated in an instantaneous approximation.
interaction terms that are, in general, nonlinear. In 1953, The necessary formalism is introduced in detail in Secs.
Bakamjian and Thomas gave a prescription for an explicitl-V. In Sec. Il we summarize relevant features of the Poin-
construction involving only linear constraints]. caregroup. Velocity states are introduced as a suitable basis

Of the various forms that Dirac introduced the instantfor the quantum-mechanical treatment of few-particle sys-
form is the most widely usef—7], although almost exclu- tems in point form. These states are subsequently used to
sively in the context of quantum field theory. The front form construct the elementary mes@mt)quark vertex, which
of Hamiltonian dynamics became popular as a natural frameenters the invariant-mass operator. The mass operator is
work for treating parton phenomena. For a topical reviewtreated in Sec. Ill; in our example its interacting part arises
see Ref[8]. The point form of relativistic dynamics has also from a pseudoscalar Hamiltonian density. Our mass operator
been considered in quantum field the@®y-11], but because is of Bakamjian-Thomas type and acts on a Hilbert space
of its complicated quantization surface it was not developedhat is the direct sum of two-particle and two-plus-one par-
further. Only recently has the point form been rediscoverediicle Hilbert spaces. Such an ansatz deals with effective de-
this time in the context of the quantum mechanics for finitegrees of freedom in contrast to a quantum field theory. It
degree-of-freedom systems. Lev has analyzed electromatgads to the coupled two-channel problem outlined in Sec.
netic current operators in the point form and then transdV. The validity of Poincareinvariance for systems with a
formed them to the other two form{d2]. Klink has sug- finite (but not necessarily conseryedumber of particles is
gested a basis of states, called velocity stft8§ which are  guaranteed by the Bakamjian-Thomas construction as de-
suitable for few-body point-form quantum theory. Thesescribed in Sec. IV. The fact that quarks and antiquarks are
states have also been introduced by Karmanov in a differerdglways confined is accounted for by adding harmonic oscil-
context [14,15. Klink made use of velocity states when lator confinement terms to the square of the kinetic terms of
treating nuclear physics problenj$6—18. Recently, also the coupled-channel mass operator. As a first step to solve
the Graz group employed the point form of relativistic dy- the eigenvalue problem for the mass operator the two-
namics to describe the electroweak structure of baryonshannel problem is reduced to a one-channel problem with
within a chiral constituent quark modgl9—-21]. an optical potential that depends on the mass eigenvalue to

This paper uses the point form to elaborate on a coupledse determined. The harmonic-oscillator eigenfunctions of the
channel formalism which is applicable to a wide range ofpure confinement problem are then used as a basis for ex-
problems. As a first and simple application we have chosen panding the quark-antiquark wave functions of the full prob-
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lem including the hyperfine interaction. As a result, one carone can easily show that Eq¥) and (5) are satisfied for a
discretize the dynamical two-particle equation and obtain aingle-particle representation. In the following we need also
set of coupled algebraic equations that can be solved. Thiae Poincardransformation properties of such states:
eigenvalues of the mass operator are determined by a reso- _
nance condition, which takes into account the nonlinear ap- Uplp,o)=e""P|p,s) and (7)
pearance of eigenvalues in the eigenvalue equation. The
structure of the equation and the implementation of confine- _ I\ 12
ment are discussed in Sec. V. UA|p’U>_U,:E+1/2 [Ap.o")D,/ [Ru(p. AL (8)
Section VI contains some remarks on the numerics and N

the specific solution method employed in the calculation.U, denotes a space-time translation by a constant four-vector
Comments on the instantaneous approximation and the and the Wigner rotatioR(p,A) is given by
choice of the model parameters are given in Secs. VII and
VIII, respectively. The results of the calculations are vector- 4. P p
meson masses and some branching ratios of their hadronic Rw(p,A)=B Aﬁ AB m/’ ©
decay widths. The numbers are presented in Sec. IX; they are
compared with experimental numbers as well as with theyhere B(v) denotes a Lorentz boost with velocity The
instantaneous approximation to elucidate retardation effectg¥2 gre the matrix elements of the standard WigRetnc-
coming from the hyperfine interaction. Concluding r(=:marks.ti0"nS [25].
can be found in Sec. X. Our conventions, normalizations, - concentrating on the single-particle representation of the
and matrix elements required for the calculations are sumg, - momentum operator we see that E4). follows imme-
marized in the Appendix. diately from Eq.(6). Applying the left-hand side of Eg5) to
, |p,o) and using Eqs(6) and(8), we obtain

Il. POINCARE GROUP

-1
The starting point for dealing with few-body systems in JAP“Ua P.o)=U,\P*U,-afp,0)

relativistic quantum mechanics is the set of commutation re-
lations of the Poincargenerators: =UAP“2 |A*1p,o’>D(1,/,2(,[ Rw(p,A™H]

[P..P,]=0, ()
, =Up2 [A o’y (A ,p?
[‘J}LV7PK]=|(gVKP/.L_g}LKPV)1 (2) o'

. 1/2 1
[‘],LLV!‘]K}\]:_I(g/.LKJV}\_gVK‘]M)\_I—gV}\‘],U,K_g,u,)\‘]VK)-(3 XDU,(T[RW(p’A )]

=U U 1|p, o) (A7 Y4, p"

One can write these relations in a global way by defining —Upr-1lp, o) (A1)~ p?

U, as the unitary operator representing the Lorentz transfor- AN ’ v

mation A on the Hilbert space. In the point form all interac- =(A"YH*,P"|p,0), (10

tions are contained in the four-momentum operator, so the

significant commutation relation is which proves relation(5) for the single-particle representa-
tion. In this derivation we have extensively used the repre-

[P#,P"]=0, (4 sentation properties df , andU !, e.g., that

which states that the components of the four—r_nomentqm UpUp-1=Uj,-1=U;=1. (12)

commute among each other. The other commutation relation

involving P# is written as In the generalization of single-particle states to multipar-

ticle states, it is useful to introduce velocity states, which
have simple transformation properties under Lorentz trans-

which means that the four-momentum operator has to tran formations. We start with usual multiparticle momentum

form as a four-vector under Lorentz transformations. The tates that are tensor products of irreducible representations

. ; of the Poincaregroup. We observe that under a Lorentz-
commutation relations of the Lorentz generators amonQransformatior[see Eq(7)]

themselves are unaffected by interactions in the point form.
We will refer to Egs.(4) and (5) later, when we construct

U P*U = (AY~,PY,

mass operators. UalP1,01,P2,02, - Pn0n)

Let us start with single-particle statép,o), e.g., for , , ,
spin+4 particles, which transfer irreducibly under the Poin- -, z ) [Ap1,01,AP2,0, ... AP, o)
caregroup. Defining the action of the four-momentum op- T10g0 =212
eratorP# on such single-particle states by n "

P¥p,a)=|p,o)p” (6) Xiﬂl Dof ol RulPi )] 12
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where each of th® functions depends ondifferentWigner
rotationRy(p; ,A). This implies that one cannot couple an-
gular momenta in the standard way. So it is desirable to have
more uniform transformation properties ofparticle states n
under a Lorentz transformation. This is the case for velocity X H D},’i_[RW(ki ,Be(v))]. (16)
states. For such states all spin projections and also the indi- =1

vidual particle momenta are subject to tsemeWigner ro- _ ) . . . :
tation and the effect of the Lorentz transformation goesTh|s equation makes evident that a velocity state is a linear
mainly into the overall velocity. We now show the con- combination of multiparticle momentum states. We also note

struction of velocity states in detail and make their Lorentzthat velocity states transform irreducibly under transforma-

|P1,01,P2,02, - - - Pn,0n)
01,00, ..., on==%1/2

transformation properties evident. tions of Fhe Poincargroup. C.oncer_ning notatipn we, in gen-
We consider am-particle system with particle momenta €@l Write o; to denote spin projection variables, but for
p; and spin projections, , i=1, ... n, and start by defining veloc_lty_ states ant_:i when using mte_rnql variables of a system
internal moment; via we will instead writeu; for spin projections to make a clear
distinction between general and internal variables. In this
ki:Bc_l(v)piy (13 sense theo; should always appear together with tpe,

] . ) ) ] whereas theu; appear together with tHé .
where B¢(v) is a canonical spin boost, i.e., a rotationless  Next we study the Lorentz-transformation properties of a
Lorentz transformation, which transforms our system fromvelocity state. We again apply the general boost opetator
its rest frame to ftotal velocitys. The momenta g the velocity statél5) and combine its action with that of
kqi,Ko, ... K, satisfy Us () - Using EQ.(9) one obtains

n
> k=0 (14 Ualo Ke,ma, Koz, o Kn )
=1

:UAUBC(U)|k1’IU’1'k2’IU“2’ cae aknu“n>
and thus onlyn—1 of them are linearly independent. The

remaining independent variable is the overall four velogity =Upgw)|Ki i1, Ko 2, - o Kn )
of the system.
The construction of a velocity state can be viewed as =UBC(Av)RW| Kima Ko, ttz, oo Koo o)
starting from a multiparticle momentum state in its rest Yy Ue Ik K K 1
frame. This state is then boosted to overall velogitypy =Ue o) UrylKiima Kooz, knon)  (17)
means of the canonical spin boost whose inverse is used in _ _
Eg. (13 to yield the velocity state with the Wigner rotation
lo, K1 Koo oo Ko i) Rw=B:(Av)AB(v). (18)
‘:UBc(v)|k1w“1’k2”“2' co Koy (19 Evaluating the action o , on the velocity state, we get
Unlo Koo pta Kootz - Knottn) =Us (a)Ury Ka o Kotz - o Ko o)
n
’ ’ ’ 1/2
=Ug_(Av) > |Rwk1, 11, Rwka iz, - - Rykn u“n)H D, [Rw]
;Li ,u,é ..... Mr{,*illz i=1 e
n
" ’ " ’ " ’ /]
= 2 |Av,Ruky i1, Rwka, mz, - - !RWknaMn>.]-_-[ D;luzﬂ.[Rw]- (19
:“:’l ,ué ..... /,Lr’]:+l/2 i=1 i i

In this derivation use has been made of the fact that focouple spins and also orbital angular momenta using the
canonical spin boosts the Wigner rotatiBg, corresponding standard addition rules, which was the desired goal.

to a rotationR is the rotation itself. It is helpful to notice here

that a rotation is also a Lorentz transformation. One can now Ill. MASS OPERATOR

clearly see that the rotation appearing in théunctions and In this section we discuss properties of the mass operator
in the state is the same for gll; and allk;. So one can and its role in our approach.
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In Refs.[2,3] one can find a general procedure for adding  \/x
interactions to a system of free relativistic particles so that 0
Poincareinvariance is preserved. Such a procedure, called

the Bakamjian-Thomas construction, adds an interaction t§he decomposition of Eq20) is the starting point of the
the free mass operator. The Bakamjian-Thomas constructiogakamijian-Thomas construction in point form. This result

in the point form involves thefree) four-velocity operator g a1s0 consistent with the common definition of the mass
Vg which is introduced by expressing the free four- gperator

momentum operator as

0K, - Knosnd=0# oKy g e Kot

P6=MoVg. (20) M3=P4Po,, (25)

Interactions are added by perturbing the free mass opera-
tor, Mo—M=M,+ M, in such a way that Eqs4) and(5)  since the square of the four-velocity is always the identity.
are satisfied(i.e., the components of the four-momentum
must commute with each other and they have to transform as
the components of a four-vector under Lorentz transforma- IV. BAKAMJIAN-THOMAS TYPE
tions). We emphasize once more that this formulation reflects VERTEX INTERACTION
the fact that interactions do not enter the Lorentz generators,
but solely the components of the four-momentum. The linear In this section we will show how an interacting mass op-
constraints on the interacting part of the mass operator ar@rator that couples and (+1) particle channels can be
that it should be a Lorentz scalar and commute with the freglerived from a field theoretical vertex interaction such that it
four-velocity. The interacting four-momentum operator is fits into the Bakamjian-Thomas framework. Our presentation
then reconstructed by takes up the procedure suggested in R26] to which we

also refer for further details. We will set up a model with a
P*=MV}, (21)  finite number of effective degrees of freedom and consider
the dynamical equation that describes this system of interact-
whereM contains the interactions any is still kinematical.  ing particles.

Before starting to construct explicitly an interacting mass On a direct-sum Hilbert space foandi + 1 particles the
operator, we will discuss the free four-momentum and maséfull interacting mass operatav becomes a matrix operator
operators. Let us first examine the effects of the free four-
momentum operatoP¥, ©=0,1,2,3, on the velocity states

defined in Sec. Il. We consider a systemrofree particles DY 0 0 K'

. . = . M=M O+ M 1= 0 + . (26)
with massesn;, internal moment&;, overall four-velocity 0 D4 K 0

v, and spin projectiong; . Then we define
n
= The two subspaces are coupled by the vertex opekatnd
= A m2 4+ k2 . . .
Mn"; mi -+ k7, (22 Dio denotes a freéindicated by the superscriph @-particle

operator, which corresponds to the relativistgarticle mass
which is the free relativistic mass of the system. Recalling(22). In order to obtain an expression for the vertex operator

the action of the free four-momentum operaRjf on usual K we consider a field theoretical Hamiltonian dengity(x),
n-particle momentum states, using E¢s5), (5), and (22), which describes a vertex interaction and is a polynomial in

and evaluating the boost explicitly we get free fields, meaning that
PE v Ky i1 Kootz - - - K B
0| 1 M1,K2, M2 nsMn) UAH|(X)UA1=H|(AX). 27)
M\ 1+52 . . .
= M G |U,k1,/.L1,k2,,LL2, ...,kn,,LLn>
n Then’,(0) is a Lorentz scalar, since
:MnU'U“|U,k1,/.L1,k2,,u,2, ---vknvﬂn>- (23)
- . . -1_

Hence a velocity statév,ky,u1,Ko, a0, - . . Kn,un) is an UaHi(OUA"=H,(0). (28)

eigenstate o} with the eigenvalueM ,v*. Thus we can

split Pg according to Eq.(20) and a velocity state thage properties of,(0) can be used to definé. Taking
lv, Ky, p1,Kp 102, - - - Ky, i) becomes also an eigenstate of the velocity-state representation and keeping in mind that
M, andVjy with the eigenvalues\,, andv#, respectively:  the whole velocity dependence of a Bakamjian-Thomas-
type mass operator in point form is merely a factor
Mo|v,Ky, 1, - o Knopn)=Mp|vKe, a1, -« - Knoon), %830’ —0) (see Appendix we are led to introduck
(24)  via the relation
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<U,k1:M1,k2,M2' cee ,ki+1,,ui+1|K|v',k1,//-i.ké.,ué, cee ’ki, :M()

N

oc1)053(17_l7l)f(Am)<U:Ov Izlv:ul!EZUMZa cee aEi+1a/Li+l|Hl(O)|U:01 Ei,ui, Eév#é7 oK) (29

The matrix element on the right-hand side of E2P) has to  In nonrelativistic quantum mechanics the Hamiltontdris

be understood such that two particles on the “left” and onethe only generator of the Galilei group that contains interac-
on the “right” are coupled byH,(0) in all possible ways. tions, the remaining nine generators are kinematical, i.e., free
The remaining particles yield spectator conditions. Thisof interactions. In relativistic quantum mechanics one deals
means thaM, is constructed from matrix elements &#(0)  with the Poincaregroup instead and due to the different un-
between velocity states with tlmme overall velocitywhich  derlying Lie algebra at least three generators contain interac-
furthermore can be taken to be zero siftt€0) is a Lorentz  tion terms. In the point form, as already mentioned above,
scalar. What we have neglected in this kind of constructiorinteractions are contained in all components of the four-
as compared to the full interacting field theory with vertexmomentum whereas the Lorentz generators are kinematical.
interaction, are off-diagonal terms in the overall velocity, This means that one has to solve the system of dynamical
which should not occur in a Bakamjian-Thomas-type mas£quations

operator. Part of such terms can be simulated with an appro-

priate choice of the vertex form factéf Am] which guaran- PH|W)=p*|¥) (34)

tees also that the mass operator is a well defined operator on ) ) .

the Hilbert space. For velocity state matrix elements$ ( instead of Eq(33) to obtain the simultaneous eigenstates of

=v) this form factor can be expressed as the components of the four-momentum operd6r Within
the Bakamjian-Thomas framework the interaction depen-
fl(p'—p)2]=f[(M], 0" — Miv)2]=f[(Am)?], dence of the four-momentum operator becomes particularly

(30) simple[cf. Eq.(21)] and Eq.(34) reduces to

sincev?=1. M|W)=m| V). (35

For our subsequent application to vector mesons, matrix .
element(29) should describe the coupling of a pseudoscalaMVeé Note that the dependence of the total wave function of

meson to a quark. It has the particular form the system\lf(v,lzl,,ul, Ca )=<v,|21,,ul, ...|¥) factors
out after projection of Eq(35) onto velocity states.
(0, Ky 1 Koo Kal Ko’ K Ky, b Starting from the coupled-channel mass operator of Eq.
(26) and eliminating the + 1 particle channel one arrives at
(2m)° an equation for only particles, with one-particle exchange

=000 —0")f[Am]

ot o) o +ol)d between any two of them. We write the eigenvalue equation
Viwrt ozt wg) (w3 +0)) for the mass operator of the two-channel problem:

X<k]_11u‘11k21M21k3|H|(0)|k,!Miakéal‘l’é> (31)

Dy K! ( W) )_ ( W) ) 36
with »;=+m?+k? denoting the particle energies ardn K D2, W) -m Wi, )" (36
=w;twy—w;—w,— ws. H(0) is the pseudoscalar inter-
action Hamiltonian density where |¥;) and |¥;,,) are states living on the- and
i +1-particle subspaces, respectively? and D°,, denote
~igps(0) yshe4(0) - (0), (32  the freei- andi + 1-particle massesnis the mass eigenvalue

of the system, ani is the vertex operator coupling the two
evaluated at the space-time point 0. ¢ and ¢ are the fer-  channels. From these two coupled equations|foy) and
mion and boson fields\¢ the Gell-Mann flavor matrices, [Wi+1) the latter can be eliminated to yield

andgpsis the pseudoscalar quark-meson coupling constant.
The kinematical factor in front of the matrix element

! ! ! !
<k1"“1’k2”“2'k3|H'(O)|k1’“1’k2‘“2,> has ‘been chosen \;qing velocity states, one can now turn this equation into
such  that(ky,p1,kz,u2,ks and |k1"‘f1’k§’“{> can be 5, integral equation, which is a generalized eigenvalue
taken as usual momentum stat@gth k;+k,+ks=0 and  equation, becausen also appears in the propagatom (
ki +k,=0). —DP, )% The operatoK(m—DY, ;) 'K acts as an opti-
We now turn to dynamical equations. The bound-statecal (one-particle exchangepotential. This optical potential
problem of nonrelativistic quantum mechanics is usually re<ontains, in principle, also loop contributions in which the

KT(m=1D, ) K[ W;)=(m—DP)|W;). (37

duced to the stationary Sclinger equation exchange particle is reabsorbed by the emitting particle. But
since we are interested in studying relativistic few-body
H|¥)=|V)E. (33  systems that describe the dynamics of effective degrees of
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freedom we neglect such contributions and assume that theaiso the three-particle confinement mass operator has the cor-

can be absorbed in thgenormalized mass of the emitting rect Lorentz-transformation properties.

particle. To introduce confinement in the outlined manner, one has
to make the following replacements in E8):

V. THE DYNAMICAL EQUATION Dg—ﬂ)g and (39

So far we have not been very specific about the system we
want to investigate. Equatio{86) is a general mass eigen-

value equation for any coupled two-channel problem. Up ta h ¢ and DS lained i detail in th
this point one could use this equation for various different! N€ OPeratord; andD; are explained in more detail in the

systems as described at the end of this paper. In this sectidtPPendix. They are essentially square roots of the usual
we apply it to a confined system of a constituent quark and ;chr_cdmge.r operator for the th.ree—d|m(_en3|onal isotropic har—
constituent antiquark interacting via pseudoscalar meson extionic oscillator. The Appendix contains also the velocity-
change, in order to give a description of vector mesons. watate representation of these operators as well as our actual
make use of the velocity-state representation, so that thgetation for the eigenvalues.

Bakamjian-Thomas properties of the interacting mass opera-

tor can be fully exploited. Taking only the one-meson ex- V1. SOLUTION METHOD AND NUMERICS

change dynamics into account, we could immediately start
with Eq. (37) with K defined according to Eq§31) and(32).

DI—-DS. (40)

In the preceding section we encountered an equation that

. has the structure of an eigenvalue equation, but the eigen-

§Rlue also appears in the optical potential. Therefore one
Eannot directly employ standard techniques for eigenvalue
roblems. We use the following approach.

One sets the eigenvalue in the optical potential to some
preset valuem,. and treatam,. as a parameter. In this way
the equation becomes a linear eigenvalue equation and can
(DS—m)|W,) =K' (DI—m) K| P,). (38 be solved using standard techniques to obtain eigenvalues

Nj(myd, j=1,2,..., (which, of course, depend on the

The right-hand side now corresponds to an eigenvalue\-’alue Of.mpre)- _ .
dependent pseudoscalar meson-exchange potential. In order " different preset valuesy,. the resulting spectra will
to introduce confinement in this equation in as simple a man= € d|fferent._ .

ner as possible we modify the relativistic kinetic energy Mt€rpolating the spectra for differemty leads to con-

terms D8 and DY to include harmonic oscillator confine- 1NUOUS functionsk;(mp) of the preset eigenvalugye.

ment. As a next step the two-particle wave function is ex-The graphs of these functions exhibit g, dependence of

panded in terms of harmonic oscillator eigenfunctions, whichthe spgctrum caused by tima,,. dependence of the optical
will lead to a discretization of the problem and allow us to poten'u_al. - . .
apply straightforward techniques for the numerical solution. To find the positions of the genera!|zed eigenvalties
of the equation after a standard partial wave analysis hals:l’z' - -, One has teolve the equations
been carried out.

Confinement is included in E¢38) in the diagonal terms m=Re(\;(m). (4D
in such a way that the two quarks are confined in the twoyye will call Eq. (41) the “resonance condition.”

particle channgl as \(vell as in the three—partiple channel, \we take the real part of;(m), since the eigenvalues are,
whereas the third particle, the exchange boson, is free. As W@ generalat least above the thresholds for the production of
will argue in the fo_IIowmg, th|_s still provides the_ correct the various exchanged mesgnsomplex numbers. This is
Lorentz-transformation properties. In the two-particle chanyystified, because the shifts and widths resulting from the
nel one can introduce confinement by hand” by substitutingpynerfine interaction are actually perturbations to the pure
the free two-particle mass operator by a confinement one, sgysciliator spectra. The imaginary partiof(M;) corresponds

D3. Such a confinement terenpriori does not need to be of g the width of the(resonant state with mas#, , i.e.,
harmonic oscillator type. The constraint that guarantees Lor-

entz invariance is that the confinement operator must not I‘(Mj)=2|lm()\j(Mj))|. (42
depend on the overall velocity and must be a rotational sca-

lar. In the three-particle channel only the two-quark sub- A procedure of this kind has, e.g., also been adopted in
system is confined, which is not at rest and therefore has tRefs.[27,28|.

be transformed to the correct frame. Using velocity states as Our generalized eigenvalue equation for a two-particle
a basis, all internal momentand also the angular momenta system interacting via one-particle exchange without con-
via the correspondin® functions, see Eq19)] are rotated finement is basically an integral equation. After introducing
by the same rotation as an effect of a Lorentz transformatiorthe confinement terms in the diagonal parts of the coupled-
Since only scalar products of internal momenta appear in thehannel mass operator of E6), it is natural to use a
diagonal terms, nothing changes by an overall rotation antiarmonic-oscillator basis for the quark-antiquark wave func-

in nature and are therefore subject to a confining force. For
system of a constituent quark and a constituent antiquar,
interacting via pseudoscalar meson exchangeEq. (37) is
equal to 2 and one has
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tion. By expressing thg-q eigenstaté¥,) in terms of the  vector-meson spectrum. In the following the properties and
eigenstategv,n,l,s,j,m;) of D3 and taking only a finite parameters of this model are briefly reviewed. In a
number of basis states the eigenvalue equaid® reduces constituent-quark model one deals with constituent quarks
to a system of coupled algebraic equations from which thénstead of current quarks; the constituent mass is generated
mass eigenvalues and the expansion coefficiems, | s m dynamically and is larger than the corresponding current

J .
[see Eq(A7)] have to be determined. The matrix elements ofduark mass:
the optical potential between the harmonic oscillator eigen- o _
states appear in this set of coupled equations. These are nine- m,=my=340 MeV andm,=500 MeV

?L:nr:]er:]i;nbagrlsme%:eeusin&;gdrg][?/oori\sl,e ;Lémgo?]\éeru\éﬁlou;;nfg;f rn out to be appropriate mass values for light and strange
Monte Carlo téchni ues gThereb the statistical egrrors hav onstituent quarks. These numbers can already be obtained
ques. y pproximately from simple quark-model arguments; recent

always been kept smaller than 1 MeV, i.e., smaller than aboq ttice calculation$30,31] also hint at these values. The con-

\(;\?ienpeerr :gltlii-olr?sthf?)rcilrjl:asetr?r ];g'_e :rl,:ircnlgr'?ﬁ;ﬁﬂgg:::ﬁg&gstituent guarkgand antiquarKsare confined and interact, in
9 P addition, via the exchange of the lightest pseudoscalar me-

sons which are the Goldstone bosons associated with chiral

;pepx(elmgtrﬂn tizen;?rtgftt)ﬁrjeu;t'fggc?gm%g?jﬁéggggn;hg Igymmetry breaking. The vertex describing this interaction is
! P P h&onstructed from the well-known pseudoscalar interaction

shows up in the completeness relation for the three'partid'laﬂamiltonian density given in E432). The interaction vertex

plermedite Sl TS hae STt OUEnt 0 CoNBUfones he pseudoscalar couplng constas beeen

y - ; gral. -constituent quark and exchange meson and one cutoff param-
means that the corresponding Wigner rotations approxXic, A i_ ok ' for each meson. The parameter
mately compensate each other. On the other hand, it has beén’ "’ RO : P P

observed in the investigation of baryon form factors within 2ocHf In the mesortantjquark-vertex form factors; (Am)

point-form dynamicg19] that Wigner-rotation effects are of E;Tvxllzeqigzvge) ,gllir(]so)] that we are using. Following Ref.

minor importance. The numerical effort, by the way, would

substantially increase if Wigner rotations were included in

our calculations. f.(Am)=
I

AZ—m?+Am? “9
VII. INSTANTANEOUS APPROXIMATION
.. for the functional form of these vertex form factors. The
_ In order to study the effects of _the exchange particle 'nc¥toﬁ parameters\; are related by
flight as compared to the standard instantaneous treatment o
particle exchange, we perform a nonrelativistic reduction of A=A+ xkm;, (46)

the optical potential in the point-form mass operator. This is

done via standard techniques and goes along with an “ingip Ao="566.33 MeV, k=0.81, andm; being the mass of
stantaneous approximation” of the propagator in the opticajye pseudoscalar meson of typéhese vertex form factors
potential. “Instantaneous approximation” means that thego to one whem\m reaches zefoand they go to zero like
propagator denominatoX5—m) is replaced by the energy 1/Am for Am—, leading to an additional Mm? decay of

of the exchanged mesoig?+ mZMeS In the nonrelativistic  the exchange potential. In Ref22] such a kind of form
limit the argument of the form factor reduces to the square ofactor serves to smear out the contact term that occurs when
the three-momentum of the exchanged meson. Suppressimy. (43) is transformed to configuration space. The coupling
the flavor part of the hyperfine interaction, one arrives at theonstantgg=gps for the pseudoscalar octet can be derived
well known form for pseudoscalar meson-exchange potentigtom theN- 7 coupling constant via the Goldberger-Treiman

(see, e.g., Ref29)) relation. The value quoted by Glozmaet al. [22] is
g§5147r=0.67. Furthermore, two different coupling constants
Ops FLG%] (51-G)(G2-4) i
Vyr(K' )= 2ps 1 2 (43) are used for the pseudoscalar meson octet and singlet, re-

47 Amm, G2+ mﬁles spectively. The ratio of the singlet to octet couplings taken in

Ref.[22] is (go/g9g)%=1.34. For our calculations the charge

whereq is given by of the exchange particles is irrelevant; therefore ($mall
mass differences between differently charged particles of the

G=k' -k (44  same sort, e.g., the™ and ther®, are neglected. The values

with k andk’ representing center-of-mass momenta of the

incoming and outgoing quarks, respectively. IFor Am=0 we have four-momentum conservation at the vertex
with all three particles being on-mass-shell. Eghannel exchange
VIIl. MODEL PARAMETERS of massive particles this can, of course, only happen for unphysical

momenta, but it is just the kinematical situati¢also in instant
We adopt the parametrization of the chiral constituentiorm) where the influence of the vertex form factor is supposed to
quark model of Ref[22] for our actual calculation of the vanish and the coupling is supposed to become pointlike.
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TABLE I. Parameters for the point form description of vector mesons within the chiral constituent quark
model. Apart froma andV,, parameters are taken from RE22].

Quark masseéMeV)

Meson massefMeV)

my, Mgy ms m, My m, m,,
340 500 139 494 547 958
Meson-quark coupling Confinement
galam (do/9s)? Ag (MeV) K a (MeV) Vo (GeV?)
0.67 1.34 566.33 0.81 312 —1.04115

used for the pseudoscalar meson masses are basically the

physical masses. As in RdR2], we take
m_.= 140 MeV, my=498 MeV, m, =547 MeV,

and m,, =958 MeV.

IX. RESULTS AND DISCUSSION

At the beginning of this section we want to emphasize
that our primary goal is not an optimal description of the
meson spectrum, but rather to demonstrate with a simple
model how the multichannel formalism developed works and
how it differs from the standard instantaneous treatment of
particle exchange. In our calculations we have concentrated

Two more parameters come from the harmonic-oscillato! the lowest-lying negative-parity light and strange vector
treatment of the quark-antiquark confinement. We denote thB'€SOns, I.e., mesons W!ﬁz 1" (J being the total angular
eigenvalues ofD$, i.e., the square root of the harmonic- momentum andP the parity of the systejnThis implies that

oscillator eigenvalues, by

Mn|=\/8a2

where a is the oscillator parameter,i# contains the rest
masses of the quark and antiquark, &pdeads to an overall
shift of the spectruntfor details, see AppendixSince con-
finement is introduced in Ref22] in a different and not
easily comparable way andV, are free parameters is
fixed in such a way thatl,, andM ;o agree with the masses
of the ground state and the first excited state ofghgpec-
trum. Doing this we get

3
2n+1+ =

> +Vo+4m?,

(47)

a~312 MeV.

This is a reasonable procedure, because the differavigg (

only =0 and|=2 states of the harmonic-oscillator basis
can contribute to thg-q wave function. Whereadsis a good
guantum number when taking only the confining interaction
into account] =0 andl=2 contributions start to mix if the
hyperfine interaction is turned on. The numerical analysis,
however, reveals that tHe=2 contributions have practically
no effect on the absolute masgkss than or at most 1 MeV,
which is also the upper limit for our numerical accuracy
Even if compared to the level shift caused by the hyperfine
interaction, thd =2 contributions are negligible with the ex-
ception of the two excited states of the For these states the

| =2 contributions amount to 11%irst) and 18%(second
excited statg of the total level shift. In all other cases the
contributions lack significance since they are smaller than
the required numerical accuracy. As already explained in
Sec. VI, the solution of the full coupled channel problem
involves an expansion of the vector-meson wave functions in
terms of harmonic oscillator eigenfunctions. It turns out that
already three basis states are enough to obtain convergent

—Myo) is nearly independent of the additional hyperfine in-results on the per mille level for the ground and the first two

teraction. This value for the oscillator parameteis kept

excited states. For the instantaneous approximation of the

fixed throughout all calculations. From the spectrum of themeson exchange the convergence properties are worse. One

full calculations including the hyperfine interactiox, is
fixed to yield theg ground state at 770 MeV. A suitable
value forVy is Vo= —1.041 15 GeV. All parameters of the
model are summarized in Table I.

needs about two times as many basis states as in the calcu-
lation with the full optical potential to achieve the required
accuracy. It should also be mentioned that at those places
where the harmonic oscillator eigenfunctions appear in com-

We have also done calculations without vertex formpleteness relations for intermediate stdiefs Eqgs.(A4) and
factors. For this purpose all parameters are kept the sam@a8)] the upper limits for the main quantum numbeand

only Vo had to be adjusted to yield the ground state at
770 MeV. One gets a slightly different value, namel
=—1.04385 GeVY. The calculations within the instanta-

the orbital angular momentum quantum numbgave been
taken to be the same as in the expansion ofghg wave
function.

neous approximation were performed with the same set of The spectrum of the lowest-lying vector mesons is plotted
parameters as the corresponding full calculations. Finally wén Fig. 1. The comparison of the full calculation and the pure

note that thew and ¢ flavor wave functions used in our

confinement result shows that the hyperfine interaction due

calculations are the ones that correspond to ideal mixing ofo (dynamica)l Goldstone-boson exchange can be considered

the singlet and octet states of SUE3)

as a perturbation. Therefore the qualitative features of the
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m [MeV]

2000— -

1000— ———

EXP OSC PF 1A NFF NIA EXP OSC PF IA NFF NIA EXP OSC PF IA NFF NIA EXP OSC PF 1A NFF NIA

p w ¢ K*

FIG. 1. The spectra for the lowest-lying light and strange vector mesons. The boxes in the columns labeled by “EXP” represent the
experimental values with their uncertaintig®2]. The other columns give our numerical results for the pure confinement interaction
(“OSC"), the full calculation with dynamical meson exchar{tyeF" ), and the instantaneous approximation to the meson exchéidge).
Corresponding results with the meson-quark vertex form factor set to 1 are labeled by “NPF” and “NIA,” respectively.

vector-meson spectrum are, in our model, essentially detemteraction leads to an unphysically large splitting of fhe
mined by the confinement potential. It is thus not too surpris-and w ground states, their approximate degeneracy is nearly
ing that only the masses of the ground states and the firgireserved by our dynamical treatment of the Goldstone-
excited states are comparable to experiment, whereas tlimson exchange. The spectrum is obviously also most sen-
predictions for the second excited states lie already much tositive to the choice of the meson-quark vertex form factor.
high. To obtain also quantitative agreement with experimentComparing the results for the standard parametrization of the
it would certainly be necessary to take a confinement potenvertex-form factors(see Sec. VIl with the outcome for
tial which is more sophisticated than our simple harmonic-pointlike coupling, i.e., the form factors set to 1, a striking
oscillator confinement. A refined confinement potentialobservation can be made: whereas the instantaneous approxi-
which is applicable in momentum-space calculations hasmation depends very strongly on the form factor, only a mild
e.g., been suggested in REB3]. But as we said already at dependence is seen for the full calculation. The reason for
the beginning of this section, we rather want to study particlehis discrepancy is the difference in the propagators that
exchange within a relativistic framework and the conclusionsnake up the hyperfine interaction. In the instantaneous ap-
about the particle exchange should not depend too much goroximation it is the(nonrelativisti¢ meson propagator, in
the specific choice of the additional confinement potential. the full optical potential it is rather the propagator of the
The biggest level shifts caused by the hyperfine interacintermediateg-g-meson state. Thg-q system in the inter-
tion are detected for the spectrum. This observation can mediate state is, in addition, subject to confinement that acts
already be anticipated from the fact that the flavor factor aks a natural cutoff and damps the dependence on the vertex
the m-quark vertex, the pion being also the lightest exchangdorm factors.
particle, has its maximum value for the meson. Thew Our approach does not only cover recoil effects in particle
spectrum is thus also the best place to study the features ekchange, it provides, in principle, also nonperturbative pre-
our treatment of particle exchange. The differences betweedictions for vector-meson decay widths. As soon as the mass
the full calculation and the instantaneous approximation aref a vector meson excitation becomes larger than the ground
indeed seen to be most prominent in this case. Whereas tisate energy of the confinement potential plus the mass of an
usage of a static meson-exchange potential for the hyperfinexchange meson, the corresponding channel opens and the
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pseudoscalar meson can also be emitted leaving a lower Iyfhe comparison of the results for the full optical potential
ing vector meson. Above such a decay threshold the opticalnd the standard instantaneous meson-exchange potential re-
potential and thus the eigenvalues acquire an imaginary paviealed sizable differences, in particular for thespectrum.
and the width for the decay of the vector-meson resonanc&hese differences are also reflected in the sensitivity to the
into the open two-particle channels can be calculated via Eqparametrization of the meson-quark vertex form factors.
(42). Within our simple two-channel model the decay modesWhereas the full calculation depends only mildly on the
are restricted t@-, w-m, andp-n. Among the resonances in choice of the vertex form factors, the instantaneous approxi-
Fig. 1 there is only one prominent, th&1420, which de- mation is extremely sensitive to changes in the form factors.
cays intop-7 with a measured width of 17440 MeV. The  Since the meson-quark couplings and the exchange-meson
experimental information on the other resonance widths fomasses are subject to physical constraints, any reasonable
the strong decay into one of the above mentioned twoparametrization of the Goldstone-boson exchange can thus
particle channels is rather poor. Only upper bounds, whictbe expected to provide similar results in the full calculation.
are of the order of MeV, are given. Our theoretical results ar@ur predictions for vector-meson decay widths lie below the
all below 1 MeV, i.e., below our calculational accuracy. In demanded numerical accuracy and thus lack significance.
the outlook we will discuss possible improvements of our Our conclusions from the investigation of vector mesons
model which may also lead to larger decay widths. It seemsare that a proper relativistic treatment of particle exchange
however, unlikely that the huge decay width of #1420 has to go beyond the standard instantaneous approximation
can be explained within a simple two-channel approach. Wand must account for the dynamical behavior of the ex-
rather expect that mechanisms other than those included sthange particle. The predictions for the vector meson spec-
far, e.g., a strong final-state interaction, have to be taken intoum could be improved with a refined confinement interac-
account. tion. For a reasonable description of resonance widths it may
be necessary to extend the optical potential by loop contri-
butions, i.e., contributions in which the emitted meson is
X. SUMMARY AND OUTLOOK again absorbed by the emitting particle. For the present cal-
We have presented a Poincangariant and Lorentz co- culation we have assumed that such contributions go as self-

variant point-form approach to the dynamical treatment of€N€rgy contributions into the constituent-quark masses. But
particle exchange. We have worked within the Bakamjian{hiS iS at most an approximation since tt@ntijquark in a
Thomas framework, which means that the invariant masi0OP i not free, but confined. Loop contributions have, e.g.,
operator takes over the role of the Hamiltonian in nonrela-2ISo been seen to be important in the semirelativistic treat-
tivistic quantum mechanics. Operators and wave function§1€nt of the nucleon-nucleon system if one reaches the pion-
have been defined with respect to a velocity-state basis. vroduction threshol@34]. It will be worthwhile and neces-
locity states are very natural and advantageous for treatin§®’y 10 investigate their role in our coupled-channel
relativistic few-body systems within point-form dynamics. formalism. This formalism should also be useful in treating
The starting point of our approach to particle exchange is Qther relativistic few-body systems that interact via particle
two-channel problem in which thieand ( + 1) particle chan- €xchange. The positronium and hydrogen systems are pres-
nels are coupled via a vertex interaction that was derive@ntly under investigation. They are well studied within
from a field theoretical Hamiltonian density such that theNStant-and front-form dynamics and would allow for a com-
resulting mass operator is of Bakamjian-Thomas type. ByParison of the different approaches and forms of relativistic

reducing the problem to a one-channel problem for thelynamics.

i-particle channel we have ended up with an optical potential

that describes the dynamics of the particle exchange. The ACKNOWLEDGMENTS
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resonances.

As a first application of the developed formalism we have
investigated vector mesons within the chiral constituent- APPENDIX: NORMALIZATIONS AND MATRIX
guark model in which the hyperfine interaction between the ELEMENTS

confined quark-antiquark pair is mediated by Goldstone- . : . -
boson exchange, i.e., by the exchange of the lightest pseudo- In this appendix we collect the most important definitions

. : : . - ~and formulas used in the calculation. We start with some
scalar mesons. With a simple harmonic-oscillator confine-

ment and a parametrization of the chiral constituent-quarlg?fInItlonS concerning velocny_ states. Co_nS|der a system
model that has already been successfully applied for the dé'\-”th oyerall four-velocnyp consisting ofn (spin 1/2 ferr_nl-
scription of baryon spectra we have found that the hyperfin@"'S With massesy; . Their spins and momenta are uniquely
interaction due to Goldstone-boson exchange causes onfiPecified by their spin projectiona; and momente;, i
small level shifts. Thus it can be considered as a perturbatiorr 1. - - - n in the overall rest frame of the system. We also
of the confinement interaction and the confinement potentiadiefinewi::(mi2+lzi2)1’2. Then the completeness relation for

essentially determines the properties of the mass spectrurthe n-particle velocity states reads
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3 (o'n’'l’s’j'm{[vnlsjmy)

>

(2m)3" wypg. ..,

1 d% (Z i
“n (il ') =(2m) _Uob\q'( 17')5n/n5|'|5s's5j'j5mj'mj

~n
H 2w; M2

(AS5)
X|U,kl,Ml,k2,M2, "'1kn1/~'Ln> . o
. . . The mass operatoP$ for the confined pair in the above
X<v,kl,/.Ll,k2,/.L2, '--!kn!/-lfnlzl; (Al) baSIS |S
the corresponding orthogonality relation is (v'n'l's'j ’mj’|D§|vnIsjmj>
" " " 'L ’ M ’ 3 2 > >y
<U,k1,M1,k2,M2, P ,kn,,(Ln|U ,kl,,ul, P ,kn,,(Ln> :(2’77) M_20053(U_U )5n’n5I’Ias’s‘sj’j‘smj’ijnl .
nl
n
— 3n =1
=(2m) T 3ved(0-0) Expansion coefficientAn,sjrnj of theg-q wave function with
21 i respect to the harmonic-oscillator basis are defined by
n—-1 n
R nisjm|¥Y={vnlsjm |V, ¥,
X 53 k H (AZ) <U J J| > <U ] ]| |nt>

Il
=

V2
_(277)3/2 53(1) ) nisjm;- (A7)
The representation of theparticle free mass operator in the M

basis ofn-particle velocity states is . . .
P y For our problem ofnegative parity vector mesong=1 and

=—1,0,1 are fixed. Furthermore, parity restricts spin and

(0,Ky 1y - Knonl D0 Ky aeh s - Kl orbital angular momentum te=1 and|=0,2, so that the
N coefﬁcients;Amimj depend de facto only on andl. A state
H describing a system of a quark-antiquark cluster and a free
3 -1 pseudoscalar meson is labeled by the quantum numbers of
=(2m)™" 75 30053(0 —v') the cluster, the overall velocity and the relative momentum
(Z wi) between the cluster, and the third partieleThe complete-
=1 ness and orthogonality relations for such states are
n—-1 n n
<1 *ki—kDIT 6, 2 VmP+KE. 1 4L S d
i=1 i=1 " =1 > > > 2 > o
(A3) (27)® =0 n=1 s=0 j=T—s| m=-] Vo
(o 3)3
. . . . x d3 nlsjm nisjim|=1
A state representing the confined quark-antiquark pair is la- 2w 2ws [vknlsmy) v knlsjm|

beled by the overall velocity of the pair and the internal
(oscillaton quantum numbers andl, the total spirs, as well
as the total angular momentunand its projectiorm; . The

(A8)

completeness relation for such states is and
1 = I+s ] &0 (v'k'n'l’s"j'm{vknlsjm;)
3222:27 Z; v 202w . o
(27)° =0 n=1s5=0j s| mj=—]j Vo :(271_)6 cl 33005\’3(5—6/)53(K—K/)
|V|2| (wg+w3)
n . .
><7|vnISij><vnISij|:1, (A4) X Sy 1151 5m,m, (A9)

whereM?, are just the harmonic oscillator eigenvaliese  respectively. The factors in the Jacobian are definedgy
Eqg. (A14)] with main quantum number and orbital angular = \/M2n|+K2 and wz= \/m32+ «2. The mass operatdp$§ for
momentum quantum numbér The corresponding orthogo- the confined pair and the free third particle in this basis takes
nality relation is the form
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(v'&'n'l’s'j'm/|D3lv knlsjmy)

F—0")0(R—K")

X 8081185611 Oy

m (@at w3). (A10)

The states defined above can be combined to yield thgheY'"u

PHYSICAL REVIEW (57, 064003 (2003

WhereLL+ 12js a generalized Laguerre polynomial. The cor-

responding normalization integral is
f [un (k) ]?k?dk=1. (A13)
0

are the usual spherical harmonic functions. For fur-

wave function for the confined quark-antiquark pair. One hagher details see, e.g., R¢B5] or [36]. The eigenvalueM

<5’|21'|221M1#2|Un|31'mj>

V2

2(1)12(1)2

=(2m)%% %@

(01+y)°

CJm Sms
Im|smS (U2)pq(12) g

XEE

==l mg=-s

X Uni([Ki]) Yim, (k). (A11)

The functionsu, (k) are the well-known eigenfunctions of the K*
the three-dimensional isotropic harmonic oscillator. Their ex-

plicit form is
1 [ 2"+ 2 K2\ [k\!
Uni(K) = 7= 2 Lyt a2
\/;a ( n+20+1)! a a
x e kA’ (A12)

<5aE1:M11E2aM2,|23|UKn|Sjmj>

of D$ are the square root of harmonic-oscillator eigenvalues,
ie.,

M= V8a2(2n+1+3/2)+Vo+4m?.  (Ald)
The well-known oscillator eigenvalues have been modified
by adding an overall spectral shift constafyf and an aver-
aged rest-mass term? to account for the different masses of
the light and strange constituent quarks. The valuenah

this expression is easily determined for¢, andw, since the
masses of quark and antiquark are equal in these cases. For
we adopt an averaged mass squared of the form

(A15)

For the system of the confined quark-antiquark pair and
the third free particle one can write

2wq2ws

=(2m)% 63T )83 (k—Ks) \/

>

12
X Dl'Ll’lZL [

s=—S o=+ 1/2

wherek=B_(v1)ky,

V12—

w15= M2+ K2, Myy=d1+ @y, wg=\M3+«?%, D" are WignerD functions, and; =

(wg+ w3)

(kl/ml)Bc(Ulz)Bc(kllml)]Dllz [B

\/ 25,2, \/ 201,205
PN 2(01+wy) Y (2wipt2w;)®

S
jm; smy ~ <
E Z Clm:sngc(llz)ﬁl(l/z)pzunl(|k|)Ylml(k)

(ko /My)Be(v12)Be(ky/my)], (A16)
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