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For a description of elastic and inelasticp scattering excitingN* resonances optical potentials and
transition potentials were derived by folding nucleon and nucleus mass densities with a variable range effective
interaction. For elastie-p scattering in forward direction, a reasonable description of essentially all data has
been obtained from low energies up to the GeV region. Alsscattering from*He and*?C is quite well
described with potentials, which indicate that the used folding method is a valid approach for the systems in
guestion. The strong energy dependence of the deduced potentials can be accounted for by a sum of scalar and
vector meson-exchange potentials and a soft Pomeron-exchange contribution. The scalar meson-exchange
potential falls off rapidly with energy and has a large radius in agreement with theoretical predictions. Con-
sistent with the flavor S(8) quark model, the vector-meson coupling is rather weak in the central potential, but
is strong in the spin-orbit potential, for which a soft Pomeron contribution is negligible. The differences
between the deduced p and nucleon-nucleonNN) potentials are understood; further, an excellent descrip-
tion of the energy dependence of teevave NN amplitudes is obtained in the folding model framework.
Distorted wave Born approximation calculations for inelastip scattering show d-dependence of the
L=0 cross section consistent with empirical form factors. Absolute yields for excitation of the resonances
P,4(1440), D,5(1520) andrF,5(1680) were calculated, using resonance shapes frelh scattering. A quan-
titative description of the data & ,=4.2 GeV is obtained using fluid-dynamical transition densities and
strengths exhausting large fractions of scalar energy weighted sum rules. The rather puréneoasgin-
isospin-flip character of these excitations and the observed cross sections are in severe conflict with the
constituent quark model. Finally, a prediction is made for scattering at an incident energy &,
=2.2 GeV, which yields strongly increased cross sectiond\forexcitations.
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. INTRODUCTION [2,3], elasticp-A scattering has been studied in great detail
using multiple-scattering optical potentials in a nonrelativis-
The investigation of the structure of baryons and particutic approach with relativistic kinematiosee, e.g., the full-
larly their excitations has received renewed attention due tgolding model discussed in Rg#]), but also in a relativistic
improved experimental possibilities at new electron and hadapproach solving the Dirac equatif. In both approaches
ron accelerators. Concerning baryon resonances, an interegiy equally good description of the experimental data has
ing aspect for studies with hadronic probes is the selectivitjheen achieved1]. Most of these studies have been per-
in particular reactions, e.g., in charge-exchange reactlons formed forp scattering from heavier nucleA& 12). Elastic
resonances are seen exclusively, whereas-jm scattering  p-a scattering has been studied in the nonrelativistic ap-
“scalar” N* resonances can be investigated. Such scalgsroach, using the conventional optical potenf] and the
(isoscalar non-spin-flipN* excitations deserve special atten- Glauber mode[3,7], and more systematically in the energy
tion, because their structure is not connected in a simple wagegion 0.5-2 GeV in the relativistic approaf@] using Lor-
to the underlying quark structure of baryons. However, therentz invariant optical potentials.
is a direct but not well-understood connection to the scalar Concerning inelastic scattering, theoretical studies at
part of the strong interaction, which represents the strongesfigher energies are rather scarce and are limited to a discus-
part of the nucleon-nucleorN(N) force at low energiesde-  sjon of low lying states of the target nucleus, see, e.g., Ref.
scribed byo or 27 and w exchanggbut also at high ener-  [9], or NN-NA coupling[10]. Experimental and theoretical
gies (multi-gluon-exchange Therefore, it is of significant studies ofN* excitation ina-p scattering are discussed in
interest to investigate elastic and inelastigp scattering at Refs.[11-13.
energies up to several Gel3—10 GeV, paying particular For our study of elastic and inelastic scattering we used
attention to the excitation dfi* resonances. the double folding method in the nonrelativistic approach
The study of elastic proton scattering from spin zero tar{applied successfully to nucleus-nucleus scattefiirg15).
get nuclei at intermediate energies has received considerahitowever, different from the conventional approdzhwhich
attention over the past 30 years, both experimentally anthe interaction between point nucleons is considgred-
theoretically (see, e.g., the review by Ray, Hoffmann, andtended nucleon densities are used. This allows to derive in-
Coker[1]). Theoretically, in addition to the Glauber model elastic transition densities by dynamically changing the
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nucleon densityby deformation or shell transition in a quark where the sum ovew includes all occupied single-particle
mode). In this approach the “effective” interaction acts be- |evelsu,(p), andt(E) represents the two-bodymatrices.
tween the constituents of the projectile and target nucleonsrecall the definition of thé matrix,
By adjusting the strength and range of the effective inter-
action, forward anglex-p scattering is well described and t=v+uvgt, 3
allows us to study the properties of the optical potential in a
large energy region. At low energies the interaction is dewherev is the bare nucleon-nucleon interaction ancefers
scribed by meson exchange, for scalar interaction hy 2 to the two-nucleon propagator.
exchange o exchangedsee, e.g., Ref.16]). At higher en- Given the numerical complexity, the following approxi-
ergies, the interaction is of short range. In a meson-exchang®ations have been usddee Ref.[1]): (i) neglect of the
picture, vector-meson exchange @nd p exchanggis as- dependence of the matrix element on the center-of-mass
sumed. Differently, quark model calculatiofsee, e.g., Ref. momentumP, (ii) use of on-shell matrix elements only.
[17]) predict strong core repulsion due to gluon exchange. Afhen, expressiori2) simplifies to a product in momentum
high energies multigluon exchange is very strong in the scaspace,
lar channel and is considered as source of the phenomeno- oo L .
logical Pomeron exchangsee Refs[18,19). Although this U(E,k",k)=pa(a)(alt(E)|a), 4
process dominates total nucleon-nucleon scattering only at o o R .
energies well above 10 GeV, soft Pomeron exchange mawith ﬁzk—k’ andpA(q)=(277)’32afd3PuL(p’)ua(p).
already contribute to the scalar potential in the energy region Love and Franey20] have expressed thematrix ele-
in question. ments in momentum space by an expansion in Yukawa terms
The purpose of this work is to find a reliable descriptionwith different range parametefs;. For the central part of
of elastic and inelastic scattering including their interactiongshe optical potential they obtain
over a wide energy region, which allows us to extract spec-

troscopic information on the structure Wf resonances. De- R R ; |3
tails of the optical potentials and the results for elastic scat- (qlte(E)|q)y =473, m
tering are given in Secs. Il and lll. In Sec. IV an aR

interpretation of the energy dependence of the potentials iﬂ1
terms of different exchange contributions is given. Finally,
distorted wave Born approximatididWBA) results for in-
elastic a-proton scattering are presented in Sec. V, wher
form factors and scalar excitation of tH¢* resonances

coordinate space this corresponds tt.(E,r)
=307Y(r/R;) with Y(x)=e */x, giving rise to a coordi-
enate space representation of the optical potential,

P,1(1440), D14(1520), andF,5(1680) are discussed. U(E,r)= f pa(TE(E,r—r,)dry. (5)
Il. OPTICAL MODEL DESCRIPTION OF FORWARD By introducing an extended nucleon density, the optical po-
ELASTIC SCATTERING tential for a-p scattering corresponds to a double-folding
expression,

The nuclear optical potential is the standard tool to ana-
lyze nucleon-nucleus scattering in a phenomenological way. - - T N
The Hamiltonian of the combined proton-nucleus system is Y(E:)= p1(r)pa(r)t'(E,r +11=r5)drdry,
replaced by an effective one-body Hamiltonian, (6)

h(E)=K+U(E), 1) wherep,(r,) andp,(r,) represent ground statia diansiEies of
target and projectile. Thematrix element’(E,r+r;—r5,)

whereK denotes the kinetic energy term of the projectile and> called gﬁect|ve interaction(r), ‘.Nh'Ch acts now hetween
U(E) the optical potential. the constituents of target and projectile this case between

Theoretical derivations of the optical potential are base(}he baryon constituentsFor the description of the real and

on approximation schemes to the multiple-scattering serigdnaginarya-p _scatten_ng potent|a| a phenomenological com-
[1]. In the energy region 100—800 MeV., the so-called full- plex effec.t|ve |nteract~|on is usgd for njzo/sg of t.he calculations
folding model[1,4] is the most successfull method, where Of Gaussian shapfu(r) = (vo+iwe)e™ "' ] with vo, W, -
the nucleon-nucleus scattering amplitude is expressed by tr@nd rangey fitted to the experimental data. The volume in-
free nucleon-nucleon scattering amplitug&). The optical ~ tegral of the absolute potentidl,y = \/voanwozfe*r 7dr,
potential for elastic scattering can be expressed by can then be compared with the nucleon-nucleoratrix, see
Secs. llI B and IV.
A &’ e The theoretical investigation of proton-nucleus scattering
UEK k)= P P ul(p’) has confirmed the early expectatifl] that a folding ap-
B a=1 (2m)%J) (2m)® “ proach should be adequate for incident energies above 100
. . _ MeV. Here it should also be mentioned, that a geometrical
X(k'p'|t(E)|kp)u,(p), (20  picture with extended hadron densities as given by the fold-
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ing potential (6) appears to be appropriate to describe A. Calculations for elastic a-proton and a-nucleus scattering

hadron-nucleon scattering up to high energies well above 20 p-a scattering Data on differential cross sections and

GeV (see Refs[19,22). The aim of the present work is to analyzing powers op-« scattering exist at different beam

investigate the features of the effective interaction from low . . .
energies up to the GeV region. As will be shown, the foldingenerg|es(Refs.[6,7,23—33), which allow a systematic study

integral (6) yields results fora-p scattering in good agree- of the energy dependence. In most of our calculatites

ment withNN scatteringt matrices andNN phase shift am- al_so Sec. 11B we used a prqton dens!ty of expor;eitlal form
olitudes. with a mean square radius consistent with;)=0.67

: e +0.02 fn? deduced at high enerd22] and Gaussian densi-
The complete optical potential is given by ties for thea particle and*?C with (r2)=1.97 fn? [12] and
1d o (ri,0)=5.4 fn? [34]. The range of the effective interactign
Uopd Er) =Ucoul(E,1) FU(E,N)+ - - Uis(E,N)l-s. was varied between 1.7 fm at low energy and very small
@ values needed at high energies.
Using for the spin-orbit potential U(r)=Vs(r)
The Coulomb potential is used with hard sphere at radjys T 1Wis(r) volume Woods-Saxon forms, forward angle scat-
for the spin-orbit potential the normal Thomas form was!€ng Is reasonably well describesee Ref[12]). However,
used, where the radial part is of Woods-Saxon fésee Sec. the overa_ll descrlptlo_n_ of the angu!ar dlstrlbutlons is not So
IIA). For this quite weak potential the uncertainties are tod?0d as in the relativistic descriptid@]. This can be im-
large for a reliable folding description. proved by using a more compl_ex sp_m—orblt potential using
The folding integral (6) gives rise to two relations, Volume and surface potentials in the fornviy(r)
one which connects the mean square radius of the opticat (d/dr)Viy(r) and Wiy(r)+(d/dr)Wiy(r). To avoid pa-
potential, (r3)=(/r?U(r)d7)/fU(r)dr, with the sum rameter ambiguities, a smooth en'ergy.variatio'n of thg param-
of the mean square radii of the densitig§r2) eters has been secured. Resulting fits of differential cross
. 2 L . 2 sections and analyzing powers together with the data of Refs.
_(1/Ai)fri§i(ri)d7i] and the effective interactiofi(r;,) [25,27-29,31 are given in Fig. 1, the parameters are given
= (1.51,) ¥°1, in Table I. For the spin-orbit potential Woods-Saxon param-
2 2 2 2 etersr,=0.64 fm anda=0.18-0.25 fm were used. A com-
(rgy=(rp)+(ry ) +{ry- ®  parison with the simple fits shows, that the extracted
strengths of the central potential are not much different, if a
This expression is exact for Gaussian forms but is also valigimple volume or a more complicated volume-plus-surface
for other shapes of the interaction and the densities. It is alsform of the spin-orbit potential was used. The resulting fits
reasonably well fulfilled if one of the densities is of expo- are comparable to the Glauber model calculati$3] and
nential form. The fit to experimental data is only sensitivethe relativistic descriptiofh8].
(apart from the interaction strengtto the mean square ra- At low energies, the differential cross sections are domi-
dius of the whole potentialr) but not to the radius of the nated by Coulomb-nuclear interference in the small-angle
densities or the interaction. The other relation connects theegion, the quality of the fits is about the same as that of
volume integral of the optical potential (= fUd7) to the  3He-p scattering(Ref. [35]). At larger angles, where ex-
volume integral of the effective interaction and the target andchange contributions are important, our approach is not able
projectile masses, to describe the data. With increasing energies these exchange
contributions are pushed to larger momentum transfers, and
lu=A1Asl,. (9) above 250 MeV both differential cross sections and analyz-
ing powers are reasonably well described in a rather large
These two relations will be used to test the validity of therange oft values.

double folding method by comparing the extracted r&8li a-A scattering The scattering ofx particles from spin-
and the volume integrals of the potentia® for different  zero target nuclei can be used to study the central potential
mass systems. without spin-orbit effects. Unfortunately, for such systems

Finally, it should be noted that the structure of our folding much less experimental data are available. frax scatter-
potential(e.g., forNN scattering is more complex than that ing, there are data &,=1.98, 2.57, and 4.2 GeVRefs.
of meson-exchange potentials that assume an interaction bg32,36)). The forward angle data are well described in the
tween point nucleongtogether with form factoys Relation ~ present approacksee Fig. 2 from which a mean square
(9) indicates that the volume integral of our effective inter- radius(r2),., of 3.93+0.10 fn? was extracted12]. These
action (between baryon constituehtshould be the same as fits are also comparable with calculations using the Glauber
that of point NN potentials, e.g., that of meson-exchangemodel[37]. Further, there are data &f,=650 and 850 MeV
potentials. However, in our approach finite range effect§38], however, they do not cover the forward angle region
(which are important for the exchange of more than ondmportant for our description. In low-energy-« scattering,
pion), e.g., 2r exchange, are included naturally. Even morethe interference between projectile and target reaopar-
important, deformations of the nucleon ground st@jes)  ticles is large, and a detailed study is found in R88] with
density forN— N* transitions can be taken into account cor- results consistent with our systematics. Further, the forward
rectly (see Sec. Y angle data in the energy ranfe,= 100-160 MeV[40] are
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sitive to the choice of the radial dependence. In particular,
*He(p,p)*He I *He(p,p)*He the need fpr smaller range parameters at higher energies is
" do/dt 2 |- polarization well established.
(x10") - £.=1730 [ll. RESULTS FOR THE CENTRAL POTENTIAL
10 oINS e s Tl vt The strengths of the real and imaginary potentials and the
r mean square radius are quite well determined by our analy-
- i 1240 M sis. Beyond this, the behavior of the differential cross sec-
Q . s | seeguf T ./fr tions at small momentum transfers is not very sensitive to the
3 +8) detailed form of the potentials.
(© c
E I 1050 M L
£, . i{y{.o\«\.\ AR § A. Mean square radius of the folding potential
> e 2 In the low-energy region a large range of the effective
f i soomev | & force is needed in agreement with previous folding model
= ., . P, 7‘@%\; . studies(see, e.g., Ref§15,39,43). We observe a strong de-
> S*‘W@ ) crease of the range parameteup to an incident energy of
o L about 500 MeV. The resulting energy dependence of the
5 [ %L 350 Mev mean square radius of thep potential(r\z,) is given in Fig.
2 smomev | 2 [ — 3, in which the value extracted at 1.728 GeV is given by the
i \/ ‘A solid line. Using relatior{8) equivalent radii can be deduced
?ni\ from a-A scattering, which are given in Fig. 3 by the stars
0 o iseMev | 0 B g A7Mey and open circles. An excellent agreement witkp is ob-
- ‘ P Lo o tained when the radii are plotted as a function of the incident
= ~ - v energy per nucleon. The error bars represent the estimated
e i e R uncertainties in the radius determination for different range
—t (GeV/c)? ~t (GeV/c)? parametersy. At small energies the ambiguities between the

depth and radius of the potential are eliminated to a large
FIG. 1. Calculated differential cross sections and polarizationextent by the inclusion of polarization data.
(or analyzing powerfor elasticp-a scattering in comparison with
the data of Refs[25,27-29,3] The cross sections are multiplied B. Depth of the folding potential
by the factors given in brackets; to the polarization the numbers in

brackets are added. The potentials in Tables | and Il show a strong energy

dependence. To compare the strengths of the different sys-
temsp-a and a-A with NN potentials, our results are given
consistent with those op-a scattering. Finally, there are as a function of the equivalent nucleon incident endzgy.
more recent datp41] at E,=280 and 620 MeV, which are This takes into account the fact that jra scattering the
included in our analysis. In this energy region the cross secrecoil energy of the scattered nucleon bound indhgarticle
tions fall off by two to three orders of magnitude due to ais reduced due to the higher mass of thearticle, giving
rapid decrease of the effective interaction. This falloff is sat-rise to a higher center-of-maés.m) energy.
isfactorily reproduced by our calculations. Part of this excess enerdy’ increases the effective en-
For a-1%C scattering, data exist fdf,=1.37 GeV(Ref.  ergy of the nucleon-nucleon collision and should be added to
[42]) and 4.2 GeMRef.[34]), which are compared in Fig. 2 the beam energy to obtain an equivalent nucleon incident
with our fits, using a mean square radius of 8®3 fnf and ~ energyEx®. In the c.m. frame the equivalent energ§}, is
7.4+0.2 fn? for the lower and higher energy, respectively. given by
Together with the lower-energy data, two different folding

. ) eq _ =NN +
model calculations have been preseri#4®]; our fits are of Ecm=EcmtuEcm. (10
similar quality. The parameters are given in Table Il, which
also includes the results far-d scattering 34]. where E/ =[EP% —ENN] for p-a and E},=[EP®
_ +EPA—ENNT for « scattering from complex nuclei. A quite
B. Test of the consistency of our method reasonable description is obtained usjng 0.2—0.3.

It is important to check whether the potential moments are  This effect can be calculate@vithout free parametgrin
reliably extracted or still show artifacts due to the choice ofthe single-particle model, where the nuclear attraction gives
the used geometry. For such a check we have used differefise to an effective increase of the incident energy, related
nucleon densities of Gaussian and exponential form, as weflirectly to the strength of the complex optical potential
as a Gaussian and Yukawa interaction. It was found that the:V+iW. For p-« scattering the equivalent energy |, can
forward angle cross sections depend only on the strength arizk obtained by replacing the nucleon momentum sqpére
radius on the potentidhs discussed aboyand are not sen- by an equivalent value
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TABLE I. Summary of the results fqu-« scatteringl (real) andl,,(imag) represent volume integrals of
the real and imaginary potentials, the uncertainties were estimated to be adéuMeV f. For the
volume spin-orbit strengths the errors are of the order of 1.5—-2 MeV, those for the surface part are signifi-
cantly larger. The results with asterisk indicate fits of differential cross sections using a volume spin-orbit
potential only, for which the parameters are not well determined.

E Y I, (real) L(imag) Vis Wis Vis Wis

p

(GeV) (fm) (MeV fm®) (MeV fm®) (MeV) (MeV) (MeV) (MeV)
0.031 1.70 —410 60 *
0.055 1.70 —344 70 *
0.085 1.68 —215 80 *

—246 66 -7.0 5.0 -2.0 3.0
0.156 1.60 —147 90 *

—143 80 -2.7 5.5 -6.0 5.0
0.200 1.45 —-96 100 *

-97 90 -0.3 6.0 -8.0 6.0
0.350 0.62 68 160 *

41 132 5.5 7.5 —10. 5.0

0.500 0.35 144 216 *

104 224 6.8 8.0 -6.0 5.0
0.648 0.29 190 310 *
0.800 0.28 196 324 75 75 -4.0 4.0
1.050 0.26 239 392 *

243 384 6.4 7.0 -1.0 3.0
1.066 0.26 217 451 *
1.240 0.25 287 410 6.0 5.9 1.0 3.0
1.728 0.25 345 562 *

325 493 4.5 4.8 2.2 15

(PRDZ=pi+2myU,,. (11) 5 5

B ‘He(a,a)*He 2C(a,0)'*C
The potential strengtbJ , is obtained from the volume inte-
gral of the totalp-« potential (,= \/IU2+IW2) in Table | and

the mean square radius of the correspondilig potential.

For a-A scatteringU , should be replaced byJ(,+U,). In

Fig. 4 the potential strengths from Tables | and Il are shown
as a function of the equivalent nucleon energy using Eq.
(12). The error bars indicate the uncertainties of the poten-
tials given in Tables | and Il.

For the real potential, a good agreement between the re
sults from different systems is found, indicating that relation
(9) is also well fulfilled in the whole energy region. The total
potential is larger for-A systems than fop-a. As breakup
processes contribute significantly to the imaginary potential, &
the total potential may be obtained by adding to the imagi- §
nary potentialV,_, another absorptive paw, , from p-A
scattering, which gives

IS
T T T ‘ T T T

(x10%) (x10%)

E,=2.57 GeVv E.=4.20 GeV

.

/c)t

/(GeV

t Hlog,e [rhb

1.37 GeV

O/\H‘w‘H‘\HH\HH\HH

U=V+i(Wp o+ Wpa). (12
. . . . . L1l ‘ (] ‘ (] ‘ I ‘ 1 7\ AN ‘ I — ‘ VI — ‘ Il
Using in first approximation W, o~nW,_, (n=1.5-1.6) 2 0 02 o4 o6 o8 02 04 06
yields already a reasonable account of the observed effect. —t (GeV/c) —t (GeV/c)?
This is shown by the dashed and dot-dashed lines in the
lower part of Fig. 4. FIG. 2. Calculated differential cross sections for elastid

In previous work(see, e.g., Ref8]) it was found that the  scattering in comparison with the data of Ref34,36,43. The
strength of the real potential is proportional toHR). This  cross sections are multiplied by the factors in brackets.
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TABLE Il. Summary of the results fow-A scattering, with 600
symbols as in Table I. The uncertainties in the potential depths are

almost the same as f@-« scattering. Central Potential Depths

400 -
1 ; i _ A - - '+—
System 7Einc 0% I, (real) Iw(imag) - i 4- 4 %
GeV)  (fm)  (MeVim®)  (MeVfmd) 200 |- ) 4T
- A}
a-d 1.050 0.3 283 740 B $ P %
a-a 0.070 1.7 —302 114 o 0 ~
0.155 1.6 —62 102 £ - ﬁ
0.495 0.3 182 442 S Lo | ‘
0643 03 274 466 2 i ; Real potential
1.050 0.3 350 620 = P
a-12C 0343 07 165 306 . L
1.050 0.3 439 750 42 0 0.25 0.5 0.75 1 1.25 15 1.75 2
© 1000 |-
dependence is shown by the dashed line in the upper part OE -
Fig. 4, which is also in good agreement with our results. £ g0 [ % 4T 7
The deduced potential strengths may be compared to the i Ot—A./. T
strength of the central spin and isospin-independent nucleon- - o - #
; i e 600 |- s -
nucleon potential, which is known to exhibit a strong energy i L i +, “ e
dependencésee Ref[20]). NN tmatrix strengths from Love - % B (J?ﬁ - P
and Franey[20,44] (at momentum transfeg=0) are given 400 3%; s + -
in the lower part of Fig. 4 by the solid line. Thesenatrix i /4 )
potentials were adjusted to describe M phase shift§45]. 200 ;% > ,+ Total potential

We see that the energy dependence of the cehtidl
potential is not very different from our potentials, however,

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
Ec (GeV)

FIG. 4. Depth of the real and total folding potentiaandU as
a function of the equivalent nucleon incident energy using relation
(9) for complex targets. The symbols are the same as in Fig. 3, and
a=p the open crosses correspondatal scattering. The solid line in the
lower part shows thé-matrix strengths fronNN scattering[20].
The dashed line in the upper part corresponds to a straightdme
in Ref. [8]), if the potential depths are plotted versusBg\ The
dashed and dot-dashed lines in the lower part show a quadratic fit of
the total potential above 400 MeV far-p and a-A, respectively,
using relation(12) for a-A.

the strength of the potential extracted frawp is generally
—‘é—’-@—*—ﬁ‘*— smaller. At low energies a reduction of the fid® tmatrix
strength in the scattering from nuclear systems is known to

Potential Mean Square Radius

[ee]
T T rrrt

—

> (fm?)

<r?,

w B
\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\

—eo—

2
be due to Pauli blocking, binding energy, and medium cor-
1 rections. A further reduction o&20% results from contribu-
tions of higher momentum transfeq$0) between the col-
P N N B N R R liding nucleons. Taking these effects into account, the
0 0.2 0.4 0.6 0.8 1 1.2 differences between the potentials frarp andNN can be
Fue/A (GeV) understood qualitatively at low energig46], see also the

results discussed in Sec. IV. However, the differences at the

FIG. 3. Mean square radius of the total folding potentialdep ~ Digher energies cannot be explained by nuclear effects.
scattering as a function of the incident energy. The open and closed N Sec. IV we make an attempt to deduce information on
points correspond tp-« scatteringopen points represent fits using the character of the effective interaction from the energy de-
the usual spin-orbit potential, closed points represent improved fitpendence of the potentials. This should also allow to under-
of cross sections and analyzing powerhe open stars and tri- Stand the differences found between thg andNN poten-
angles are deduced from-o and a-*2C scattering, respectively, tials. Further, a smooth energy dependence as obtained in
using relation(8). this description is advantageous for the DWBA calculations
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of inelastic N* excitations discussed in Sec. V, for which 300
optical potentials at many energies are needed. 250 Theoretical Potentials
200 LT T TN
IV. HOW CAN WE UNDERSTAND THE ENERGY 150 .

DEPENDENCE OF THE EFFECTIVE INTERACTION? 100

The interaction involved inx-p scattering is very selec- 5= 50
tive and contains only contributions from spin- and isospin- § 0 z/

N
Lomee, ~ \o.\):exchonge
“~._p—exchange AN

-CL

\\L\.\‘\‘\‘\‘\

independent parts of the nucleon-nucleon force in the centra% 50 |£ 2m—exchange
potential. In the following, we describe the energy depen-= 100 Meson—exchange potentials
dence of the potentials in the whole energy range from low— 350 Lol i bbb bbbl
energies up to the multi-GeV region using rather simple pa- g, 05 1 15 2 25 3 35 4 45 5
rametrizations of possible exchange contributions. These®
should give a consistent account of both the potential depthsg 100
and radii. e
Concerning meson exchange, omty(or 27) and w ex-
change can contribute to the real part of the potential, giving> 4,
rise to an attractive scalar and a repulsive vector potential.
For the absorptive potentigl, exchange may also contribute. 40
The energy dependence of these potentials arises from rela-
tivistic effects that are different for scalar and vector poten- /
tials. We assume that the linear momentum dependence of o Leef bl b b

120

Soft multi—gluon contributions

80

olum

20

\\\‘\\\‘\\\.L\\\‘\\\‘\\\o

the effective potentiaV/(p) is described by the same form as 6 05 1 15 2 25 3 35 4 45 5
the nucleon-nucleon potentials in Ref$6,47. However, in Ex (GeV)
order to fit the strong energy dependence of our potentials,
additional “decay” form factorsfsyv(p) have to be intro- FIG. 5. Energy dependence of the different theoretical potentials
duced. This yields discussed in Sec. IV with a coupling strength of 3. The dotted line
in the lower part is obtained using®~ p®%
VE(p) = —g3/m3(1—p?2md)f(p) (13
change probability. Expressed by a form factor, the decay
and constantks , is directly related to the width of the scalar or
V”(p)=55/m5(1+3p2/2mﬁ,)f,,(p). (14) vector meson resonance.

The form factors for the vector potentialdue to the de-
caysw— 37 andp—2) have to be used, which are much
harder. The decay constary, is expected to be very small
due to the smalb width. To obtain the potentials that extend
high enough in energymore than 3—4 GeV in agreement
with experimental information «,=0.3 (GeVk) 2 was
used. The width of the meson is much larger, therefokg

The form factors were used in the fornfg, (p)

= exfd — ks, (p—po)?] for p>p, and 1 for p<p, with py
~ck Y2 (c=0.15 for the scalar and 0.45 for the vector po-
tentialg. The effective coupling constan@ andaf were
fitted to the data together with the form factor constaats

andx, . ) ) , has to be larger. Its value may be estimated from the contri-
The strong falloff of the attractive potentiedee Fig. 4at  tion to the radiugthe details are given in Sec. IM)B

low energies(described bya.exchangbe requires a rather \ynich yields x,~1.0 (GeVk) 2. With these parameters,
steep decrease of,(p) with a slope parameterc,  the resulting potentials are given in Fig. 5.

~3.4 (GeVk) 2. Fourier transformation of this form factor A decrease at high energies as obtained for the vector
yields a mean square radigs?)~0.80 fnf, which is quitt  meson-exchange potentials in Fig. 5 is not seen in the experi-
close to 2r2)~0.84 fn?. This suggests, that the form factor mentally deduced potentia(ig. 4). The further increase of
arises from the “decay’o—2w. For NN scattering ¢ the optical potentials towards high energies may be ac-
=0.45 (as for the vector potentidisand a smaller slope counted for by a multigluon-exchange contribution. At multi-
parameter x,~2.4 (GeVk) 2 is required, which gives GeV energies, this effect is large and can be described in the
<r(2,)~0.56 fri?. Interestingly, the difference in the slope pa- Pomeron-exchange pictuf&8,19, for which well above 10
rameters foNN and «-p (which makes the scalat-p po-  GeV the energy dependence of the total cross sefti8his
tential more extendédakes into account implicitly a large given by o,(E) ~s%%. This functional form gives rise to a
part of the nuclear effects mentioned in Sec. Il B. It shouldvery flat falloff to lower energies. However, at several hun-
be noted that the introduction of decay form factors for scaladred MeV the strength is far too large in comparison vgith

and vector meson exchangehich corresponds to exchange cross sections. Therefore, in this energy domain multigluon
of more than one mespappears as a quite natural extensionexchange has to become small and the interaction is taken
of the one-meson exchange picture: at increasing linear mamver by meson exchange, which is dominant at the lower
mentump, the relative momenta of the exchanged two orenergies. Microscopically, this effect may be understood by
more pions become larger and lead to a falloff of the ex+the influence of more complex soft multigluon-exchange dia-
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grams(for the scalar channel this contribution may be called 600
“soft Pomeron exchangg’! Phenomenologically, this may

be taken into account by a threshold reduction function

thr(p) and we write the total soft Pomeron potential in the 400
form

Theoretical Potential Depths

p 008 200
USP(p)=0%p) / mﬁthr(p)(d : (15
—~ 0
with po=1 GeV/c. For an appropriate description of the "’E i
data, a very smootp dependence of thp) is needed, for «+ -
which we used o 20 Real potential
= i
expcp)—(1—€)\* = I
thr(p):( pcp)—( )) 5 400
exqcp)—i'_l m \\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\
% 0 025 05 075 1 125 15 175 2

With values ofc=1.3 (GeVk) ! ande=0.4, the results are
shown in the lower part of Fig. 5. As soft multi-gluon and £ 1000
meson-exchange contributions can interfere in a microscopics
description,c was chosen such that the deviation from the ©

m

flat Pomeron-exchange potential ends at the energy at whic 800 + o
meson exchange has fallen off. a-A T - T
- |

predominantly to the absorptive potential. Differently, for the
description of our data in the low energy region, we need
contributions to the real and imaginary potential. This ap- 400
pears quite physical, if soft Pomeron exchange develops a
rapid energy dependence. To obtain a description of the data

Further, Pomeron exchange at high energies contributes g9 |- -7
B Imaginary potential

consistent with the behavior of total and elagpidN cross 200
sections, we use the real potential of the form R
V() =T /m2thr(p)(£ 0-08f ) 16 0 025 05 075 1 125 15 175 2
(sP),' Me po, sPPh Ev™ (CeV)
and the imaginary potential is then given BP(p) FIG. 6. Calculated depth of the central potential with coupling

= \/Usp(p)Z_VsF’(p)Z_ We usedf¢p(p) =exp(— kspp) With strengths in Table Il in comparison with the data in Fig. 4. The
ksp=0.04 (GeVt) 1, which was adjusted to give the ratio closed squares are average values feemp, the open symbols are

of elastic/totalp-p cross sections up to about 10 GeV. The from a‘-A. The dashed line in the upper part shows a calculation
resulting potentials are also given in Fig. 5. For the mas&Ssuming meson (_exchang_e only. In the lower part the dot-dashed
term we usedn, =600 MeV, which is much smaller than,  'In€ is obtained using relatiofd2).

deduced at high enerdyL8]. This is justified because at our

energies the potential is still sensitive to the whole baryorﬁi of 2.8 is shown by the dashed line in Fig. 6. In this way
density (the radial extent is approximately given kjyi) the data in the higher energy region are not described. A fit
~6[ (hc)?/m?]), whereas at high energies a much smallerusing all three contributions with strength parameters in

part of the baryon density is probed. Table 11l is shown by the solid line. In this fit the coupling
is quite small, as expected from quark model calculations
[17].

A. Depth of the central p-a potential . . . o
For the imaginary potential we assume only contributions

Calculated potentials are compared in Fig. 6 with the defrom the repulsive potentials. This is consistent with the pic-
duced folding potentials. Using for the attractive scalar poyre that the dominant absorptive process, breakup ofthe
tential an effective masm, of 520-550 MeV(consistent particle, is caused by short range repulsion. With the param-
with [16,47), a coupling constanﬁi of about 17 is ex- etersin Table Il a good description is obtained, see the solid
tracted. Due to the form factor cutoff(p), the scalar part line in the lower part of Fig. 6. Using in addition relation
falls off quite rapidly with energy, yielding an average cou- (12), also a quite reasonable descriptionaefA scattering is
pling strength below 300 MeV, in reasonable agreement witlobtained(dot-dashed ling
the scalar coupling in the Bonn potentjd6,47]. For NN scattering the energy dependence of the central

At higher energies vector meson as well as soft Pomerotrmatrix potential from Ref[20] (solid line in Fig. 4 is also
exchange contribute. A fit of the real potential assuming scaguite well described in our approach with couplings given in
lar and vector meson exchange only with a coupling strengtffable 1ll. In the comparison op-a and NN potentials in
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TABLE Ill. Deduced coupling strengths for meson and soft —<rg>is)_ The radii<r'2)>iv and("f)is can be obtained from the

Pomeron exchange. charge mean square radii of proton and neutr(mﬁ,)ch
Potential Coupling =0.74 faf and (r3y¢p=0.12 fi? [49]. Assuming that the
— — — — core contributions fow andp exchange are the same, yields
Yor 9o 9 Ysp (rf2p>~0.24 fi?. This corresponds to a slope parametgr
Central ~1.0 (GeVk) 2 used in our calculations.
p-a real 17 15 12 If we interpret the electromagnetic radii of proton amd
p-a imag 2.7 0.8 18 particle [50] by vector meson exchange, we need an addi-
p-a total 17 30 0.8 22 tional core mean square radius of about 0.25.fithe scalar
NN potential[20] 14 6.0 0.8 22 radius of the nucleon has been found to be much larger
NN swave amplitudel 1 ~8 11 22 [51,52, of the order of 1.5 frA In our description a larger
p-a spin-orbit scalar mean square radius is obtained automatically due to
Volume real 15 017 0.32 the contribution from the scalar form factbg(p). The pre-
Volume imag 0.16  (0.50 dicted value of 1.5 frhcan be reproduced easily by assum-

ing a core contributiorisimilar to that forw exchanggand a
finite range effect.
To estimate the mean square radius offihe potential at

Sec. llIB, a discrepancy was found in the higher energ;}ow energies we have to know the scalar radius of ‘ﬁhe,
region. This is reflected in the deduced coupling strengths iR@rticle, which can be composed out of the nucleon density
Table 1lI: the scalar meson and the total soft Pomeron cou@nd the relative wave function of the four nucleons in the 1 s
plings are not very different fop-a and NN, but thew  State: (r2)=(rf)+(riy.Using (r2) and (r§) from Ref.
coupling is much stronger for tHeN potential. This can be [12], we obtain(rf.)=1.3 fn? for the relative wave function
explained by the spin 1l character of the vector potential. In of the four nucleons. If we use the same value also for the
p-a scattering, only the spin projectichJ=0 contributes, scalar part, we obtain a lower limit for the scalar radius of
whereasAJ=0 and 1 amplitudes are presentNrN scatter-  the « particle of about 3 frA. An upper limit is obtained by
ing. scaling the high energg-particle radius by the ratio of sca-

Another interesting aspect is the coupling constant it-  |ar to vector radius of the nucleon, which would gi{ ),
self for NNé which was found much stronger in the Bonn _4 2. A quite realistic estimate(ri)s~3.5 fn?. is ob-
potential @,~20, see Refs|16,47) than predicted in the aineq by comparing the scalar potential to the nucleon
flavor SU3) quark model(see also the discussion |n.Ref. term (discussed below The form factorf (p) adds a mean
[48]). For a-p scattering aslvzell as the centfN potential square radius of 0.8 ffn Still, an additional finite range of
[20], much smaller values af, are needed, which are con- the scalar 2r-exchange interaction with~ 1.2 fm is needed
sistent with the flavor S(8) prediction. To describdNN {5 gptain a potential mean square radius of # fconsistent
phase shift amplitudegdiscussed in Sec. IVDsomewhat  ith the low-energy data. The results, with coupling
largerw couplings were required, which may be due to spin-gyengths consistent with the potential depths in Table Ill, are
dependent interactions. given by the solid line in Fig. 7. They yield a good descrip-

_ _ tion of the deduced radii.
B. Mean square radius of thep-a: potential The above conclusions for the scalar potential can be

Using the q dependence from Ref$16,47, the mean checked by requiring that the scalar meson-exchange poten-

square radii of the meson-exchange potentials are directlifal at beam momentump=0 is constrained by the nucleon

3or the fit in Fig. 9 values of? of 4.5 and 2.2 ang? of 8.9 and
7.5 were used for the isocalar and isovector case, respectively.

related to the mass of the exchanged meson by o term[51] investigated in the timelike region. Approximat-
) ing the scalar interaction of finite rangeby the o term, this
<r\2/5’v>:26(hzc) _ (17 9ives v(f)=coe """, Using o=45 MeV from Ref.[51],

we get a volume integral of about 450 MeVitas extracted
atE,=0 from the fit in Fig. § if a rangey~ 1.2 fm is used.

To compare these radii with the potential radii, intrinsic core! IS IS in agreement with the above results far?) s

radii arising from additional vertex form factors should be =3.5 fn?. ) _
added as well as the contributions from the decay form fac- F"om the above analysis we can also extract the radius of
torsf,,(p). Concerning the latter, the slope parameter of théN€NN potential, which is given in Fig. 7 by the lower solid

scalar form factors yields a contributiér? ) of 0.77 f?. for line. We obtain a similar behavior as fpra scattering, but
. s the increase of the radius at small energies is weaker. This is
p-a and 0.47 fmM for NN. As discussed above, fav ex-

h Il sl . ded. which ai in excellent agreement with the extracted radius of khé
change a small slope paramelgy Is needed, which gives a 1 antial[44] given by the dotted line. Note that at smaller
negligible contribution to the radius. Fprexchange an es-

h 5 ) ’ energies, where our results deviate from the dotted hHé,
timate of(r{ ) can be obtained from the difference betweengcattering shows no diffractive pattern, and the radius of the
isovector and isoscalar radius of the nucle(rrf):((rf))iv potential is not determined by the data.

p

S,v
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spond to a core form factor with a slope parametgg,.
~1.1 (GeVk) 2. However, such a large effect is not seen

9 40
8 i 30 ; Spin-Orbit Potential Depths
E Theoretical Mean Square Radii C
7 : 20 -
J 10
6 C
~ f 0 f
o~ 5 - L
€ 5 r
< ~ -10 |
A ¢ g
Yo E o} )
3 [ > Real potential
u . [}
N v s -30
L ~
2? 6'40 7\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\
C &> 40 0025 05 075 1 125 15 175 2
1 ) :
L -t =
L c N
N - 35
o Il Il Il ‘ Il Il Il ‘ Il Il Il ‘ Il Il Il ‘ Il Il Il ‘ Il Il Il ‘ Il Q) B
0 02 04 06 08 1 12 g 30 - Imaginary potential
EyY (GeV) ) -
. _ > 25
FIG. 7. Calculated mean square radius of ke potential(up- o
per solid ling in comparison with the average-p data in Fig. 3. 20 [
Below are results foN N scattering, our radii given by the solid line C
in comparison with theNN potential of Ref[44] (dotted ling. 15
Finally, we want to make a comment about the core mean 10§
square radii, for which a valuér?).,,.~0.25 fnf was ob- s [
tained. According to the above discussion, this would corre- -
7\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\
0
0 025 05 075 1 125 15 175 2

in the energy dependence, suggesting, that. must be Ev (GeV)
much smaller € k,). Indeed, alsor exchange falls off up
to 5-10 GeV, indicatingc.,,e<0.2 (GeVk) 2. Therefore, FIG. 8. Calculated depth of the volume spin-orbit potential with

to reproduce the experimental radii, “effective” masses forcoupling strengths in Table IIl in c_omparison with the_ results in
the exchanged mesons have to be introduced in(Eg, Table |, the results of Ref23] are given by the open points.
which are (for the vector mesonsreduced by about 20%

with respect to the real masses. In contrast to the central potential, the spin-orbit potential

falls off towards large energies, indicating that a soft
Pomeron contribution is small. Studies of the Pomeron have
C. Spin-orbit strengths shown that its spin-flip amplitude should be very sm&8].

This is consistent with our observation, which suggests that

The energy dependence of the spin-orbit potential is quite, . : oI
different from the central potential, but also the uncertaintie;?hIS property of the Pomeron is not changed by going into the

are much larger. In Fig. 8 the volume spin-orbit potentialsmct .scattelrir_lg.regime_. . s
i ) : A . ; Finally, it is interesting to note that in the relativistic study
(with estimated uncertaintiggss compared with a theoretical 8] an increase of the Lorentz scalar potential towards the
fit using the parameters in Table Ill. The surface potential has : i
S : . ighest energies was observed. From Figs. 5-8, we see that
even larger uncertainties and is not further discussed. As for .
) . . . . .. _at these energies scalar meson exchange has already fallen
the central potential, the imaginary spin-orbit potential is . .
. ) o .~ off completely, but such a behavior is observed in our analy-
well described assuming contributions from the repulsive. o . .
f sis for the soft Pomeron contribution. This shows a consis-
orce only. tency of our analysis with that of Rdig]
The deduced vector coupling strengfitsr both volume y y '
and surface partsare strongly enhanced relative to the other
couplings; this is reflected in the large differences between
Figs. 6 and 8. Similar to the differences in the central poten- Most direct information on the structure of theN force
tial for p-a and NN discussed in Sec. IVA, this can be is contained in theNN phase shift amplitudes, which are
understood by different spin couplings: for the cenpak  available[54] for p-p up to 3 GeV and forp-n up to 1.2
potential, onlyAJ=0 andAl=0 contribute, whereas also GeV. These can be used for a detailed test of our meson
AJ=1 and Al=1 amplitudes contribute to the spin-orbit exchange and soft Pomeron potentials. We made calculations
potential. of the swave amplitudegsee Fig. 9, which show the stron-

D. NN amplitudes
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1 with their potentialsv*(E), andV, the potential strength at
i NN Phase Shift Ampitudes zero energy. HerEa,vyx(E)l are normalized\N N partial wave
0.8 I~ ({r#’—{;\ amplitudes of the differential cross section, calculated by us-
C ¢/.é" {’"%.\ ing double-folding optical potentials as discussed in Sec. Il.
0.6 | s %* - Calculations with different values of, long range forr and
4’/ (% s 27 exchange and short range for vector meson and soft
0.4 o/ :% Pomeron exchange, were performed, from which the partial
o 180 wave amplitudesa{?y"xm(E) were generated in small energy
' . steps ranging from 0 to 3 GeV. To get a continuous energy
0 isovector dependence, these amplitudes were fitted by double-
- exponential forms. All partial wave amplitudes have been
o2 | normalized, E|[a[?yX(E)2+a:f‘;x(E)2]=1, at E=1GeV.
- From these we  obtain |a,'7x(E)|=[a|r’eyx(E)2
8 -0.4 :* . _'_aa:f"l;llx(E)2]l/2.
g 06 Ll b i b b e Using coupling constants given in Table IlI, the imaginary
et 0 05 1 15 2 25 3 amplitudes are quite well described. Ferexchange, only a
g— I small effective couplingjfr is needed to reproduce the posi-
o 08 g’ tion of the minimum in the imaginary amplitudes. For the
i T L other coupling a reasonable agreement is found with the bare
06 | ,#" \'\-\_\ couplings used by Machleidit al.[16,47).
- #{‘:’ Sl In t-matrix theory the real scattering amplitude®(E)
0.4 jn/ 5 ’ is related to the imaginary amplitude bya°(E)
& ' ! =a™(E)—a™(E)?~inaj"(E), whereina,"(E) is the in-
02 4{ elastic part ofaj"™(E). First calculations have been done as-
& isoscalar sumingina;™(E) =0, the results are given by the dotted lines
°r in Fig. 9. At lower energies an excellent agreement with the
02 2 experimental amplitudef$4] is found, which shows clearly
ToF the t-matrix character of the effective interaction. At higher
04 o energies deviations are observed due to an increase of inelas-
b i ticity. If we assumeina"(E)=0.1a;"(E)(E—E;p,), where
o6 Lol ol Einr IS the inelastic threshold, we obtain a quantitative de-
0 05 1 15 2 25 3 scription of the real amplitudessolid lines in Fig. 9. The
Ey (Ge\/) decrease of the real amplitude at increasing energy is quite

the same as for the real soft Pomeron-exchange potential

FIG. 9. Average nucleon-nucleaawave amplitudegreal given ~ (16) shown in Fig. 5 and indicates the consistency of our
by solid points, imaginary by open poiftsom Arndtet al.[54] in description. Finally it should be mentioned that in our fold-
comparison with our calculations. The dot-dashed lines representifg approach(Sec. 1) the complete momentum dependence
fit of the imaginary amplitudes, the dotted lines show the realof the scattering amplitude is taken into account. This is
t-matrix amplitudeg(elastic only, whereas the solid lines indicate different from the usual meson-exchange apprdddh47],
the real amplitudes including a small inelasticity linear with energy.in which thet dependence is assumed of much simpler form.

gest energy dependence. In the imaginary amplitudes all V. INELASTIC a-p SCATTERING EXCITING N*

three large exchange components needed for the description RESONANCES

gf opr;;bf’;?(t)tretr;]r:ags?rrc)en Otr’iss irva?dsrggﬁcgggzzxs(:h;?;eer%'um Finally, we come to the discussion of inelastiep scat-
P 9 gies, 9 . féring. We restrict our calculations to the excitationNf
due tow exchange centered at about 1.6 GeV, and the in-

. H ’ * .
crease towards the highest energies due to soft Pomeron exoonances in the proton by the particle, a+p—a’'N*;

change. Different fronp-o scattering, pseudoscalarand » excitation of thew particle, \_Nhich hag a differen_t kiner_natics
exchanée can also contribute NN sc'attering and has been (see Refs[ll,Sﬂ), Is only cﬁscussgd In comparison Wlth t_h.e
included in our calculations ' experimental data. The differential cross section for initial
. . . energyE is given as a function of mass in distorted wave
To calculate thé\N phase shift amplitudes, a partial wave Born approximatio(DWBA) [14] by

description of the NN scattering amplitude,f(6,E)

=(1K)Z(21+1) [a/°(E)+ia|"(E)]P,(cosh), is needed. do 5
Using the optical theorem the imaginary amplitudes can be d_Q(E’m):(Z‘]i”Ll)(ZL”Ll)MW)
expressed by"(E)=[(1NV,)2V*(E)lay , (E)|1%, wherex

denotes the different exchange contributions discussed above XUy, (E,N)¥,(E,k,r)dr

f\p;f(E—m,E',F)

2
: (18)
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whereW; and¥; are solutions of the Schdinger equation 0.08
for the initial and final state with the optical potenti@fs. In
the DWBA calculations relativistic kinematics is used. The

< 0.06 |
inelastic transition potential,,(m,r) is given by o~ r g.s. density (exp)
. v - R oL §0.04}
Utr(Ear):J fpN*(rl)pz(rz)u(E,r~I—r1—r2)dr1dr2, > L
(19 2 ooz [
8 i
where pt,\j*(r}) represents an extendegu— N* transition 5 o -
density, p,(r,) the a-particle ground state density, anoidr >
+r,—r,) the same effective interaction as in E@), as o 002

determined from elastic scattering at the energy of the initialZ
a-p system. The study of broabl* resonances requires §
DWBA calculations at many energies in the exit channel; the g -0.04
theoretical potentials discussed in Sec. IV yield a smooth<
energy dependence and could be inserted directly in our cal- _j 56
culations.

The maximum excitation strength for scalar interaction b
with angular momentunt. is given by an energy weighted 008 = = o8 1 12 14 16 18 2
sum rule limit (see Refs[12,56). Using transition opera-
tors of the form[1/(2L+1)Y?r(-*2Y, for L=0, 1 and
[1/(2L+ 1)1/2] r'-Y!_ fo_r higherL, the energy weighted sum FIG. 10. L=0 transition densities for monopole vibration of the
rule [56] for L=0 is given by nucleon(solid line), approximate form of §—2s quark excitation

(dot-dashed ling and N—oN transition (dashed ling The g.s.
9(ﬁc)2 ) density is given by the upper solid line.
(rgs)- (20

o]

L=0 transition densities

radius (fm)

2mm

S(L=0)=2 Ei(r?Yo)|*=
fpt,\:*(r)rzdI‘:O. Assuming a monopole vibration of the
ForL=1 excitation, the c.m. recoil of the nucleon has to benucleon similar to that used in R¢fL2] (with a g.s. density

taken into account; this yields of exponential formy a transition density is obtained as given
by the solid line in Fig. 10. A correspondings®+ 2s con-
1 stituent quark transition give,st[\:*(r), as shown by the dot-
— — 3 2
S(L=1)=3 EI Eil{r¥Y)| dashed line.
There are large differences between these transition den-

33(#ic)? . 25 r§.5>2 sities. Asa-p scattering is sensitive to the surface reditre
= 8mm <rg,s> 1- 3—4 . (21 differential cross sectiofil8) scales roughly WitWﬁ)], this
rgs) gives much larger cross sections for the case of a monopole

density vibration(see below. On the other hand, im-p we
are insensitive to the inside part of the transition density,
which is also of large interest. In relativistic models the node

For excitation of highet values, we obtain

1
S(L)= (2L—+1) E Ei|<rLYL)|2 in the transition density can move towands 0O, if the tran-
' sition proceeds entirely byg@)" production. In this respect
L(2L+1)9(kc)?  , , aN—oN transition is of interestalthough the width of the
= 8wm __ \fus. ). (22) ¢ or 27 correlation is much larger than the width of d®y;

resonanck and an estimate of the corresponding transition
density is given by the dashed line in Fig. 10. Information on
A. Transition densities the small radius behavior of the transition density can be
obtained from a detailed comparison afp and electron
scattering. We expect much larger relatieed’) cross sec-
tions for aN— oN transition(dashed lingthan for a vibra-
tion of the nucleon densitysolid line). Preliminary results

For scalar excitation of the lowest natural pafity reso-
nances[with quantum number§=L+3 and w=(—1)"],
the transition densitiepy(r) may be described in a fluid-
dynamical approactisimilar to the Skyrmion model; see, ) ,

. . - from (e,e’x) experiments at JLafb8], however, show very
e.g., Ref.[57]) by a distortion of'the ground st.ate deﬁnsny little evidence for excitation of the scalar part of the
[12], ?“t alfo the overlap of radial wave functiopg, (r) P,1(1440) resonance, which is very strongarp. This is in
=u¢(r)-u;(r) from quark models may be used. If the par- favor of a transition density with a nodal structure similar to
ticle number/ p;(r)dr is not changed between the initial and the solid line, which gives strong cancellations e €’).
the final state, this requires for radial €£0) excitations Interestingly, for sound modes of highkr the node in the
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FIG. 11. t-Dependence of the DWBA cross sections at 0° for  FIG. 12. 7-N amplitudes forD,; and F 5 (real and imaginary
L=0 and 1 transitiongsolid lineg in comparison with the empiri- parts given by solid and open points, respectiyéigm Ref.[59] in
cal a-p form factor[55] fitted to the experimental datdot-dashed = comparison with modified Breit-Wigner shapes with the parameters

lines). in Table IV.
transition density moves to larger radii and gives also can- Scalar excitation of the resonances
cellations ina-p scattering. P11(1440),D5(1520), andr,5(1680) can contribute to the
a-p spectrum of Ref[11]. For the shapes of these reso-
B. Comparison with experimental data and results nances modified Breit-Wigner forni§5] were used, which

. . yield good fits of ther-N amplitudes. For the scalar part of

In the analysis of the experimental spectra Bl o p (1440) (Saturne resonangethe details are discussed
=4.2 GeV[11], thet dependenfe oj the differential cross j,, Ref. [55], fits of the 7=-N amplitudes from Ref[59] for
section[t=(1/c?)(E,—E./)>— (P~ Po’)?] has been well D,4(1520) andF,1680) are given in Fig. 12, using the
described(see Ref.[55]) by an empiricala-p form factor same mass dependent widtiee Ref[55]) as applied for the
F([t])?=exp(—ky|t]) +exd —ky|t| — (k;—ko)t,] with the con- P,(1440) resonance. The resulting resonance parameters
stants k; and k, of 29 and 10 (Gew) ? and t, are given in Table IV. We found, that a quantitative fit of
=0.25-0.27 (GeW)?. This exponential form is compared -N in the lower resonance mass region is essential to deter-
in Fig. 11 with thet dependence of the DWBA cross section mine the shape of the resonancenirp scattering.
at 0° scattering angle. Fdr=0 excitation the DWBA re- Differential cross sections faN* excitations withL =0
sults show a minimum at small momentum transfer, whichand 1 at 0° are given in Fig. 13 as a functiom\5f mass. An
reflects the diffractive structure seen in elastic scatteringupper cross section limit is obtained by using fluid-
This, however, is not important for the observed shape of thelynamical transition densitiedor L=0 given by the solid
P11(1440) resonance, which is excited with larger momendine in Fig. 10, which are constrained by sum rulg9) and
tum transfers. Therefore it is quite impressive that the falloff(21) (using for E the centroid energy of the corresponding
of the empirical form factor over three orders of magnitude isresonance In Fig. 13 the resonance shapes fy;(1440)
well described by the DWBA calculation. For highetrans-  andD5(1520) are also showdot-dashed lines as well as
fers the DWBA calculations show some deviations from thisthe resulting shapes fak-p (histograms The differential
empirical form. cross section at 0° fdr=0 excitation is about 100 mb/sr at
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TABLE IV. Modified Breit-Wigner resonance parametdsee
the definition in Ref[55]). For theP,(1440) the parameters of the
scalar parfSaturne resonangare given. The sum rule fractions are
determined by a fit of thex-p spectrum in Fig. 14.

Parameter P,1(1440) D 15(1520) F15(1680)
Mass(MeV) 1390 1510 1680
Width (MeV) 190 115 125
B, (I'YT) 0.30 0.61 0.71
Background 0.0 0.02 0.08
Cihres 8.0 4.8 4.0

Ceut 0.1 2.0 15
Extracted sum rule L=0 L=1 L=2
Fractions ina-p 75-100 % 50-80% 80-100 %

the centroid of theP,,(1440), this is about the size of the
experimental cross section for this resonaft®. Our re-

sults are rather close to the less detailed calculations in Ref.
[12] and confirm the previous conclusions. Here it should be
noted that the use of a constituent quark model transition 4090

p(a,a)N* E,=4.2 GeV
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FIG. 14. Calculated missing energy spectra of inelastip
scattering in comparison with the data from Réfl]. In addition to
projectile excitation and th®,,(1440) (as in Ref.[55]), contribu-
tions from theD,5(1520) andF,5(1680) resonance@ower solid
and dashed line, respectivelgre included.

density(dot-dashed line in Fig. 2Qunderpredicts the experi-
mental cross section by more than a factor of 4.

For L=1 excitation the differential cross section has al-
ready fallen off strongly at the mass centroid of the
D,5(1520). Therefore, this resonance is not strongly excited
in «-p at this incident energy, but may contribute to the
“background” under the Roper resonance. For even higher
N* resonance$e.g., theF;5(1680)], the available c.m. en-
ergy is not sufficient to excite the full resonance, but a con-
tribution from the low-mass tail is still possible.

To see whether excitation strength of highét reso-
nances can be accomodated in the obsetwgdspectra, we
made calculations of the inclusiwe-p spectrum similar to
those in Ref[55], including also the interference between
N* excitations in the target andl projectile excitation. We
assumed an instrumental background similar to that in Ref.

FIG. 13. Differential cross sections at 0° in the lab system forl 11], Which arises only from the tail of elastic scattering

L=0 and 1 excitation as a function of maésolid lineg. The
shapes of the lowest* resonances fromr-N (see Ref[55] and

caused by multiple scattering within the collimatsee Fig.
14). The “background” at higher energy transfers should be

Fig. 12 are given by the dot-dashed lines, and the resulting resoentirely due to excitation oN* resonances. Using the reso-
nance shapes in-p by the histograms. Below, the corresponding nance shapes given by the histograms in Fig. 13, the corre-

shapes are given in linear scale with arbitrary normalization.

sponding resonance shapes in thespectrum were calcu-

064001-14



FOLDING MODEL STUDY OF a-p SCATTERING: SYSTEMATIG. .. PHYSICAL REVIEW C 67, 064001 (2003

lated by the Monte Carlo method and fitted by spline
functions. We found, that thB ;5(1520) can be accomodated
below theP,,(1440) with aL =1 sum rule fraction of up to
about 80%. We see, however, that this resondloveer solid
line in Fig. 14 has fallen off almost entirely at an energy 10
transfer of 1 GeV, where the experimental yield is still rather
high. By including theF5(1680) with a sum rule strength 1
close to 100%, a quite reasonable description of the inclusive
spectrum is obtained. The contribution of this resonance is 15°
given by the dot-dashed line in Fig. 14, a fit including all
resonances by the upper solid linggth the sum rule frac-
tions in Table I\J. More detailed information on the excita-
tion of higher N* resonances can be obtained only from
exclusive experiments. Indeed, preliminary results from the
exclusive a-p experiment[60] support our interpretation,
yielding evidence for excitation of high&* resonances, in
particular of theD 15(1520).

The spectroscopic results for the different resonances in
Table IV deserve some attention. The;(1520 is observed
in a-p, but is also excited in photoinduced reactid6d],
which corresponds to isovector excitation. The fact that this 1
resonance is seen in both reactions indicates excitation of
mixed isospin. Consequently, one should not see the full en- -1
ergy weighted sum rule strengthdnp. This is in agreement
with the result of our fit. On the other hand, the fact that 2
large scalar sum rule fractions are obtained for all th&e s .
excitations in Table 1V indicate rather pure scalaon-spin- Ll 2 LRy 7
isospin-flip excitations, supporting a picture of these reso- 1 12 13 14 15 16 17
nances in terms of sound modéseathing mode fot =0, mass (GeV)
see Ref[56]). As discussed above, the cross sections cannot
be described in the constituent quark model; further, such FIG. 15. Invariant cross sections at minimum momentum trans-
pure scalar modes are not expected in a quark model pictufér for L=0 and 1 excitation aE,=4.2 GeV (solid lines and at
in which scalar and spin-isospin amplitudes should be mixedEp=2-2 GeV (dashed lingsas a function of mass. The resonance
For the Roper resonance this would indicate a mixture ofhapesdot-dashed lingsare the same as in Fig. 13, the histograms
scalar andM1 excitation, the latter has been found in With small and large heights show the shapesip at the lower
p(,27°) for the second component of thi,(1440) reso- gnc_i higher c.m. energy, respectlvely. All resonance shapes are given
nance[55], which has a structure different from the scalar™ linear scale with the relative strengths normalized.
excitation studied here.

10

N .
P, (1440) [
V

(linear) ~.

LA Ll B AL B RN B ALY L
7’

R PRI B L1

1.2 1.3 14 15 16 1.7

do/dt Imb/(GeV/c)™
[

\

Dis(1520) ¢/ \

(linear) _,‘/ \

=

energy is obtained, and for thH2,5(1520) resonance an in-

C. Estimates for p-a Scat’[ering at h|gher c.m. energies crease Of about 24 iS Obtained. ThIS W|” a”OW us a more
. . . . . . detailed study ofN* excitations, provided that at the higher

From _the previous dlsc_:ussmn stud|esl\ﬁ_‘f excua_nons n energy fully exclusive data over a wide angle range can be
a-p at higher c.m. energies appear very interesting. EXpe”Fneasured, from which a multipole decomposition is possible.
mentally, such investigations are possible in reverse kinemat-
ics using a proton beam up to 2.5 GeV and a ligdide
target. We have calculated cross sectionp-af scattering at
E,=2.2 GeV, which are compared with the cross sections of The present investigation has shown that a reliable de-
a-p scattering atE,=4.2 GeV in Fig. 15. Invariant cross scription of forward elastiex-scattering data from low ener-
sections forL=0 and 1 excitation in forward direction for gies up to several GeV has been obtained in the folding
E,=4.2 GeV are given by the solid lines, and thosepe  model, from which new information on the energy depen-
scattering aE,=2.2 GeV by the dashed lines. We observedence of the optical potential could be extracted, in particular
generally a large increase of the cross sections in the regiom its radius. By the investigation @f-a and -°C, it was
of higher masses. In addition, Fig. 15 shows the effect on thehecked that the folding model approach is valid for the
excitation of theP,1(1440) andD;5(1520) resonancen systems in question.
linear scalg the dot-dashed lines indicate the resonance The deduced potentials could be described by scalar and
shapes deduced from-N, whereas the histograms give the vector meson exchange, but also a soft multigluon-exchange
corresponding shapes i-p at the lower and higher c.m. contribution is needed, which becomes increasingly impor-
energies. For thd®{;(1440) excitation, an increase of the tant at higher energies. In this description the introduction of
differential cross section of a factor 6 at the higher c.m.decay form factors for the exchanged “mesorigktension

VI. CONCLUSION
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of the one-meson exchange picture to more-meson exnodel. It appears that a new degree of freedom comes into
change was essential to describe the low- and high-energylay (most likely due to gluons which gives rise to strong
behavior and the large change in the potential radii. With thexcitation of sound modes.
introduction of a soft Pomeron contribution and meson- The cross sections increase strongly with c.m. energy, this
exchange form factors, we see the connection to the highmakes a study oN* resonances ip-a scattering with a
energy description oNN scattering in terms of Regge tra- proton energy of the order of about 2.5 GeV very interesting.
jectories: the meson-exchange form factor falloffs can bélrhe special character and the high selectivityxa$cattering
identified with negative slope Regge trajectories and the softs well suited to complement studies of baryon resonances
Pomeron exchange to a very small positive Regge slopawvith electromagnetic probes.
Therefore, the present picture of the effective potential is
valid from very small energies up to the multi-GeV region.
For inelastic scattering, the present study has shown that
the differential cross sections are quite reliably described by Fruitful discussion with M. Rekalo, R. Machleidt, T. Bar-
DWBA calculations using effective interactions deducednes, and N. N. Nikolaev is acknowledged. In particular, we
from elastic scattering. From the data®fp scattering, im-  thank P. Zupranski for his help in solving detailed problems
portant spectroscopic information dWi* resonances is ex- and S. Krewald for many enlightening discussions and a
tracted, which is in severe conflict with the constituent quarkcareful reading of the paper.
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