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Screening effects on1S0 pairing in neutron matter
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The 1S0 superfluidity of neutron matter is studied in the framework of the generalized Gorkov equation.
Vertex corrections to the pairing interaction and the self-energy corrections are introduced and approximated
on the same footing in the gap equation. A suppression of the pairing gap by more than 50% with respect to
the BCS prediction is found, which deeply changes the scenario for the dynamical and thermal evolution of
neutron stars.
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Neutron superfluidity in neutron-star matter, though
old subject, is still of great actuality and vividly debated~for
a review, see Ref.@1#!. The reason for this stems from th
fact that superfluidity is an extraordinarily subtle proce
when it comes to quantitative predictions starting from
bare nucleon-nucleon~NN! interaction. On the other hand
for neutron stars, such quantitative predictions are neces
since the manifestations of the superfluidity are only rat
indirect through glitches and relaxation phenomena and c
ing rates. One, therefore, lacks direct experimental inform
tion on the magnitude of neutron pairing. However, there
no doubt that the dynamics and the thermodynamics of n
tron stars are strongly influenced by the superfluid chara
of neutron matter and it is therefore important to get pair
properties of neutron-star matter under better control fr
the microscopic point of view. Of course, neutron mat
superfluidity is not completely decoupled from the one p
vailing in finite nuclei. Though we have experimental info
mation for these objects, also in this case the fully mic
scopic explanation of the observed phenomena is far f
being completely settled. It may be argued that in finite m
croscopic systems, where the surface plays a very impor
role, the situation can be quite different from the homo
enous case. However, like for other quantities of nucl
physics, it should be possible to disentangle volume and
face effects also for pairing properties in finite nuclei and
is therefore our belief that the topic of superfluidity in ne
tron matter, nuclear matter, and finite nuclei should be st
ied in an interrelated way.

In this work we again concentrate on neutron matter
pursuing previous studies. However, it is planned to para
this work for nuclear matter in the near future. In the past
have mainly been concentrating on the influence of eit
dynamic self-energy corrections@2# ~see also Ref.@3#! or
vertex corrections to the neutron matter pairing problem@4#.
All investigations in this direction invariably led to the con
clusion that dynamic self-energy corrections yield a qu
strong reduction of1S0 pairing in neutron matter. Howeve
to be consistent, self-energy corrections have to be follow
by vertex corrections on the same footing. This is the obj
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tive of the present investigation. It will be seen that the v
tex corrections have a tendency to further reduce the gap
to a lesser extent than in the case of self-energy correcti
Our approach is based on the Gorkov Green’s function
malism where we develop systematically self-energy and
fective pairing interaction to lowest order in the particle-ho
bubble insertion. Though intuitively quite reasonable a
physically motivated, we should mention that this is neith
based on an expansion in a small parameter nor does it
on some variational principle. Nonetheless, our results w
be quite comparable to those of other works, notably to th
of Clark et al. @5# who based their investigation on the co
related basis function approach which, to a large exten
variational. In spite of the similarity between our results a
the results of Ref.@5#, we think that disentangling the sepa
rate contributions from self-energy and vertex correctio
yields rich additional physical insight into the complex ph
nomenon we are going to study.

The superfluid phase of a homogenous system of ferm
is described by the pairing fieldDk(v), which is the solution
of the generalized gap equation

DkW~v!5(
k8

E dv8

2p i
VkW ,kW8~v,v8!FkW8~v8!. ~1!

HereV is the sum of all irreducibleNN interaction terms and
Fk(v) the anomalous propagator@6–8#. In most pairing cal-
culations @1# the effects of the medium polarization hav
been included in the self-energy@2,3#, and not in the pairing
potential. A more general study requires the medium corr
tions to be treated on an equal footing also in the ver
corrections as well as in the self-energy. This is the m
concern of the present paper. Accordingly, the expansion
the interaction blockV and the self-energyS have both been
truncated to second order of the interaction. The correspo
ing diagrams are depicted in Fig. 1.

The limitation to lowest order bubble insertion may see
as a strong restriction because resummation of the bu
series into random-phase approximation~RPA! can have an
important influence. However, in the exploratory work whe
©2003 The American Physical Society02-1
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self-energy and vertex corrections are treated consistently
the first time, we think that higher order effects unnecessa
complicate the approach and that the lowest order effect
the density should at least give the correct tendency eve
to densities around saturation. This opinion is corrobora
by our experience in this matter. For example, in Ref.@9# the
nucleon optical potential was calculated for finite nuclei v
the local density approximation~LDA ! using the graphs o
Fig. 1 for S and obtained, with the Gogny force for th
vertices, quite reasonable agreement with empirically de
mined expressions. Furthermore, in Ref.@10# the incoherent
two particle–two hole contribution to the spreading width
giant resonances in nuclei was evaluated in LDA. This gi
an important fraction of the giant resonance widths and
ditional RPA correlations did not reverse this tendency.
therefore believe that our lowest order approach will a
qualitatively grasp the situation of the present problem w
quantitative corrections concerning higher order terms.

The matrix elements of the bare interaction V exhi
hard-core divergences that have to be removed by dres
them with the short-range particle-particle correlations~lad-
der diagrams!. This can be done either in a microscopic a
proach by replacingV with the G-matrix or in a semiphe-
nomenological approach by replacingV with an effective
interaction.

In the calculations of all diagrams, the superfluid prop
gators have been replaced by the normal phase propaga
This amounts to neglecting second-order corrections in
gap, which are actually negligible as shown in a fully se
consistent calculation discussed below.

In general, the interaction as well as the self-energy
complex quantities, which implies the energy gap to be
complex function. The introduction of the imaginary part
the self-energy amounts to taking into account the effect
the quasiparticle spectral function, which have been stud
elsewhere@11,12#. The complex nature of the potential is du
to finite time propagation and decay of processes show
Fig. 1. However, in this investigationV will be assumed to
be a real function, which implies the gap function to be r
also.

For the present calculation we adopted the semiphen
enological approach and chose the Gogny force D1 as e
tive interaction at each coupling vertex shown in Fig. 1. T
replacement of the vertices in Fig. 1 by the Gogny for

FIG. 1. The diagrams ofNN interaction and self-energy dis
cussed in the text. The exchange terms are understood.
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which can be considered as a phenomenological represe
tion of aG matrix, may seem unjustified for the lowest ord
term in Fig. 1~a!, since perturbation theory tells us that
should be the bareNN interaction. However, it is well known
@13# that limiting the k space, the bare interaction has
replaced by an effective one and choosing the cutoff to b
kF the effective force in Fig. 1~a! can be shown to be agai
equivalent to theG matrix. In neutron matter only the densit
independent part of the Gogny force survives with a range
k space of aboutkF at the saturation density. Therefore, fro
this point of view, it may not be unreasonable to take t
Gogny force even for the lowest order term in Fig. 1~a!,
which is further backed by the fact that the gap with t
Gogny force~without polarization terms! is quite close to the
one calculated from a bareNN force @14#. Also there exists
now an exact low momentum mapping of the bareNN force
by Kuo et al. @15# , calledVlow-k . From such a calculation i
can indeed be seen thatVlow-k is very close to the Gogny
force, except fork-vertices close to saturation whereVlow-k is
more repulsive@16#. In any case, the qualitative influence
the polarization on the lowest order solution of the gap eq
tion, given by retaining only graphs Figs. 1~a! and 1~c!,
should not depend very much on whether we use in Fig. 1~a!
the bare interaction or the Gogny force.

The self-energySk(v) in neutron matter has been calc
lated within the above described approximation. The fir
order contribution is reported in Fig. 2~b! for three values of
the nuclear matter density in the range where the pairin
expected to be largest. The second-order contributionsSpp

(2)

andShh
(2) @graphs~d! and ~e! in Fig. 1, respectively# are de-

picted in Fig. 2~a! as a function of the energy. Only th
energy dependence of these terms will be discussed, s
the Gogny force implicitly contains the static part, whic
will be removed from the gap equation, as described late

Shh
(2) exhibits a pronounced maximum in the vicinity o

the Fermi energy due to the high probability amplitude
particle-hole excitations near«F . It is in very good agree-
ment with the results obtained from Brueckner-Hartree-Fo
calculation withG matrix @2#, justifying, a posteriori, the use
of the Gogny force.

The second-order potential is given by the one-bubble
change term, plotted in Fig. 1~b!, which is the first one of the
ring diagram series. Physically it represents the screenin

FIG. 2. ~a! Rearrangement contributions to the self-ener
wherek is fixed tokF . ~b! The HF mean field is plotted vs momen
tum k at kF50.5, 0.8, and 1.1 fm21.
2-2
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the pairing due to the medium polarization. Again we ta
the Gogny force for all vertices in Figs. 1~a!,~b!. Our predic-
tion for V kk8

(2) (v) at three typical densities is reported in Fi
3. We plot the symmetric part

Ṽk,k8
(2)

~v,vk8![
1

2~2p!3
@V~v,vk8!1V~v,2vk8!#, ~2!

which is the only one relevant for the pairing gap. T
strength ofṼ is concentrated around the Fermi energyv
50) with a peak value atk5k85kF and a width increasing
with the density. Itsv dependence is shaped by the polariz
tion part, i.e., Lindhard functions@17#, which atv50 ~static
limit ! is repulsive at any momentum and density, but it b
comes attractive foruvu@«F . One therefore expects a redu
tion of the gap due to screening.

FIG. 3. Screening potential vs energy atkF50.5, 0.8, and
1.1 fm21, separately.
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The gap equation, Eq.~1!, is to be coupled to the closur
equation for the Green’s function

r5(
k
E dv

2p i
eiv01

Gk~v!, ~3!

fixing the chemical potential in the superfluid phase.
The anomalous propagator

Fk~v!5
D~v!

@\v2«k~v!#@\v1«k~2v!#
~4!

has two poles, symmetric with respect to the imaginary a
of the complexv plane@3#, which are the roots of the equa
tion

6vk5«k~6vk!. ~5!

The quasiparticle energy«k is given by

«k~v!5SkW
2

~v!1A@«k
01SkW

1
~v!#21DkW

2
~v!, ~6!

where

SkW
6

~v!5 1
2 @SkW~v!6SkW~2v!#. ~7!

The two poles are located close to the real axis on oppo
sides of the imaginary axis. Leaving aside a general integ
tion of the gap equation, we adopt the pole approximati
relying on replacing the full propagator by its pole part:

Fk~v!5
ZkDk~v!

«k~v!1«k~2v! F 1

v2vk1 ih
2

1

v1vk2 ihG .
~8!

In general, the residueZk at the poles is defined as

Zk5S 12
]«k~v!

]v U
v5vk

D 21

, ~9!

calculated at the Fermi surface. In the calculations we to
the limit of Zk for D→0, which corresponds to the quasipa
ticle strength. The factorZ is keeping the full dynamica
dependence of the self-energy reported in Fig. 2. Afterwa
we may subtract the static partS (2)(v50) from the self-
energy. In the calculation of the gap the inclusion of the lat
only brings a variation of less than 1% since the gap is
sensitive to the static self-energy far fromeF . Inserting Eq.
~8! for the anomalous propagator into the gap equation, a
v integration we obtain

Dk~v!52
1

2E k82dk8Ṽk,k8~v2vk8!
Zk8Dk8~vk8!

«k~vk8!1«k~2vk8!
.

~10!

Notice that the reason why only thev-even part of the
interaction contributes to the integral can be traced to ti
reversal invariance of the superfluid ground state for wh
the anomalous propagator as well as the gap function
even functions ofv. The remarkable advantage of this a
2-3
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proximation is that the gap depends only parametrically ov
and its energy dependence is only related to the energy
pendence of the interaction. The on-shell gapDk(vk) fulfills
the equation

Dk~vk!52
1

2E k82dk8Ṽk,k8
S

~vk2vk8!
Zk8Dk8~vk8!

«k~vk8!1«k~2vk8!
,

~11!

equivalent to the gap equation in the static limit.
The approximate version of the gap equation, Eq.~10!,

has been solved using as input the self-energy and pa
potential discussed in the preceding section. The focus
on the 1S0 neutron-neutron pairing for neutron matter, whi
is by far the most important component of pairing as to p
sible implications in nuclear systems. The energy gap at
Fermi surface (k5kF and v50) as a function ofkF is re-
ported in Fig. 4. The domain of existence of the superfl
state is mainly at low densities with a peak value of about
MeV at kF50.6 fm21. In the same figure we also report th
result in the BCS limit~for a review see Ref.@1#! ~neither
self-energy effects nor screening! and the result with self-
energy effects but without screening@2#. From the compari-
son of the three predictions one sees that the main supp
sion of D is due to the strong ground-state correlations t
lead to aZ factor much less than unity. However, screeni
of the pairing interaction produces an additional suppress
It has to be noticed that the screening potential also shifts
peak value of the gap to lower density, where the suppres
is less sizable. As final result, obtained solving Eq.~10!, we
report in Fig. 5 the gap as a function of the energy forkF
50.6 fm21. We point out here the relevance of such a fe
ture for the study of pair correlations in dynamical proces
such as the expanding and disassembling phases of the
mentation events in heavy-ion collisions@18#.

Screening effects on the pairing interaction have also b
studied in different contexts. One of the earliest calculatio
has been performed in the framework of the second-o
correlated basis perturbation theory@5#, where a pairing sup-
pression by a factor of 4 is predicted. In that work the m

FIG. 4. Energy gap in the present approximation. For comp
son the predictions from the pure BCS model~dotted line! and from
BCS plus self-energy effects~dashed line! are plotted.
06130
e-

ng
as

-
e

d
4

es-
t

n.
e

on

-
s
ag-

n
s
er

-

mentum dependence is mostly neglected, which amount
overestimating the suppression. Closer to the present
proach is the polarization potential@19,4# calculated from the
induced interaction theory@20#, which gives substantially the
same gap when treated within the Landau parameter app
mation @13#. Finally, we should mention a parallel study o
finite nuclei@21#, where the polarization potential is given b
the coupling to surface vibrations. While the self-ener
plays the same role as in neutron matter, the phonon
change produces an enhancement of the pairing at vari
with the dominant repulsive effect of the spin fluctuations
neutron matter@22#.

In conclusion, this work constitutes a continuation of
previous one~Ref. @2#! where we investigated self-energ
effects on the pairing gap in infinite neutron matter. Here
treated consistently the additional inclusion of vertex corr
tions. On the same footing we considered the lowest or
particle-hole polarization bubble both in the self-energy a
in the screening of the pairing force in great detail. In
different language one may say that we investigated the c
pling of the pairing mode to incoherent four quasipartic
states. We expect that this approximation yields at least
qualitative trend, whereas collectivity in the four quasipar
cle channel may change things quantitatively. Instead of
G matrix we used the phenomenological Gogny force at
coupling vertices. We verified that this replacement has o
very little influence on the numerical results. The screen
pairing interaction is, in principle, energy dependent but
the quasiparticle approximation used here, this depende
on energy becomes only a parametrical one which gre
facilitates the numerical task of solving the gap equati
The outcome of the inclusion of vertex corrections is that
gap as a function ofkF maintains approximately its bell
shaped form, but with respect to the self-energy correcti
only, a further substantial reduction of the gap is induced
screening the bareNN interaction in the gap equation. There
fore, with respect to the lowest order approach, i.e., with
any polarization effects, that is, with bare interaction andk
mass only, the gap at its maximum is now reduced by ab
50%. This strong reduction is a common feature of all p

i-

FIG. 5. Energy gap as a function ofv at kF50.6 fm21.
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vious calculations and in this sense our investigation i
confirmation of what has been found by other authors ear
even though the approaches differ in detail. Nonetheless,
strong reduction of the pairing due to the polarization
mains intriguing. If the same situation should prevail
nuclear matter, an estimate via the local density approxi
tion @8# would lead to a by far too low value of the gap
finite nuclei. However, the influence of polarization terms
r
.

m

ns

06130
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nuclear matter, due to the different quantum numbers
volved, may be quite different from the one in neutron m
ter. It may be a very interesting problem for studies in t
near future to see whether the polarization corrections in
different channels, i.e.,n-n pairing in neutron matter,n-n
pairing in nuclear matter, andn-p pairing in nuclear matter,
can, at least qualitatively, explain the experimental find
from finite nuclei.
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