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Regularized Legendre series of improved nearside-farside decomposition
for charged patrticle scattering
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A new regularization procedure is proposed for Coulombic Legendre series of improved nearside-farside
subamplitudes. The procedure is the extension of the standard one that defines the partial wave series for the
scattering amplitude in the presence of a long range Coulomb term in the potential, and it provides the same
convergence rate. The new method is applied to a pure Coulomb scattering case atf®0'%0 optical
potential atE,,= 145 MeV.
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In the optical potential analyses af particles, light and *
heavy ions, the Fuller nearside-farsidé) method[1] is an f(0)=>, aP,(cosx), 1)
effective tool to separate the full elastic scattering amplitude =0
f(6), whered is the scattering angle, into simpler subampli- . )
tudes[2,3]. The Fuller NF subamplitudes are usually moreWherex=cosé, Pi(x) is the Legendre polynomial of degree
slowly varying and less structured thd(6). This allows |, x#1, anda, is given in terms of the scattering matrix
one to explain the complicated patterns appearing in somelementS, by
cross sectionsg(6)=|f(6)|?, as interference effects be-
tween simpler nearsidéN) and farside(F) subamplitudes.
These subamplitudes can often be interpreted as contribu- =5 (21+1)S, 2
tions from simple scattering mechanisms allowing a physical
understanding of the scattering procég}; _ wherek is the wave number.
Sometimes, particularly when applied to scatteringnof =\ |\t that the improved NF method uses, on the right-
particles and light heavy ions at intermediate and high ener;: nd side(rhs) of Eq. (2), S in place of the usual%—1)
gies, the Fuller NF subamplitudes are biased by the presen%'% d d q- {2, hp f (E0f '
of unphysical contributions, making the NF subamplitudes € droppe term ensures the convergence o (Exifor
more structured than desired. Recently an improved NfECattering by short range potentials, for whigh-1 expo-
method has been propospti5] to further extend the effec- nentially for I—oo (Ref. [9], p. 82. In this case, having
tiveness of the original Fuller technique. The improved NFdropped from the series a termb(1—x), whered indicates
method is based on a modifidé] Yennie, Ravenall, and the Dirac distribution(e.g., see Ref.10], p. 52, the sum in
Wilson (YRW) [7] resummation identity, which holds for EQ. (1) is defined only in a distributional sense. In the pres-
Legendre polynomial series. The increased effectiveness dénce of a long range Coulomb term in the potential, the
scends from using resummation parameters with values revopped term 1 is not relevant for convergence. With or
ducing the unphysical contributions to the Fuller NF subam-without 1, the sum in Eq(l) is convergent only in a distri-
plitudes. butional sense. The standard trick used to reduce the calcu-
The Legendre function seried FS) defining the im- lation of f(#) to a convergent series is based on adding to
proved NF subamplitudes are, however, not convergent ifEq. (1) the analytical expression of the Rutherford scattering
the usual sense. A resummation technif@le named in the amplitude and subtracting ifermal partial wave expasion
following extended YRW(EYRW) resummation, was used (e.g., see Ref[11]). In Refs.[12-14, and in references
in Refs.[4,5] to obtain convergent series. At forward angles,therein, one can find more or less recent discussions on the
however, the rate of convergence of the EYRW series is notonvergence of the Coulombic partial wave series, and of
satisfactory in the presence of a long range Coulomb term inther techniquegPadeapproximants, Abel summation, or
the potential. Forr particles, light and heavy ions scattering, different regularization procedunessolving the problem
this fact is disturbing, because it compels one to use moraithout using the standard trick.
partial waves than necessary in standard optical potential cal- The improved NF subamplitudes are obtained by using
culations and in the usual Fuller NF method. Here we preserfor f(6), in place of(1), its resummed form
a new regularization procedure that, if applied to LFS of

improved NF subamplitudes, makes these series as rapidly 1 *
convergent as those of the conventional Fuller technique. f(0)=(H 1 Z af{)Pn(x), 3)
The starting point for the improved NF method is the =0 1+ Bix] =0
guantum mechanical partial wave series of the elastic scat-
tering amplitude wherer=0,1,2 ..., and
W_p N i, - ML e
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with B8,=0, a¥=a,, anda);=0. The resummed forrt8)  of the first and second kind Legendre functions, of integer
is an exact mathematical identitgeriving from the recur- degre€(LFS), is different from Eq(3). In fact, let us indicate
rence property of the Legendre polynomials. It holds for reawith

or complex values of the resummation parametgéi

#0), restricted only by the condition18;x#0, for —1 °°

<x<1. The integer index is the order of the resummation, FO)= 2 dnLn(x) (11
andr =0 means no resummation of the original series. In Eq. n=o

(3) we changed the index of suft) (from | to n) to remark
that the index of the resummed Legendre polynomial serie
in EqQ. (3) has not, for #0, the physical meaning of orbital
quantum number, differently from the index of the original
series(1). Similarly the coefficientse!"” do not have the
physical meaning of partial wave amplitudes. The YRW

LFS in L,(X)=pP,(x) +gQ,(x), with p andq indepen-

ent ofn. Owing to the propertnQ,_1(x)—1 asn—0 [8],

the resummed form af(x), of ordersand parameters; , is
(see Eq.(19) of Ref.[5])

S [
resummed form[7] for f(#) is obtained by settings; _ (s)
= —1 (i#0) in Eq.(3). F(0) |:1_Io 17 yx 240 8 Ln(X)
We note that for pure Coulomb scattering, for which . i
1 T(n+1+i7) R | L (12)
af®=af=7(2n+1) (5) =0 j=0 1+ X

n

I'in+1-in)’
Equation(12) is an exact mathematical identitgxtending
the validity of Eq.(3) to more general LFS, and it reduces to
Eq. (3) for Legendre polynomials serieg€0). The condi-
6) tions of validity of Eq.(12), and the recurrence relation for
the resummed coefficients, are the same as those faiSEqQ.
after substitutingr,3,«, anda with s,y,8, andd, respec-

where 7 is the Sommerfeld parameter, by using E4). one
obtains, for largen values,

agM=[1+B1+0(n"*)]ag®.

This means that foB;# —1 the asymptotic Coulombic be-

havior of " does not depend, apart from a renormal-tvel: - _ _
ization factor, on the resummation order On the other Because th€@;"’'(x) used to splitPy(x) in Eq. (7) are a

hand, given a resummed series of Legendre polynomials, diarticular case of the more genexg|(x) (with p=1/2, and
order r (eventually 0, by applying one additional YRW d==i/m), the presence of the last term in E42) is re-
(B.+1=—1) resummation a convergent series is obtainePonsible for the dependence tf;)(6) onr and ;. The
for asymptotically Coulombica ). Any successive YRW last term on the rhs of Eq12) gives a contribution if split-
resummation improves the convergence of the series by #d (7) is inserted in Eq1). This contribution is absent if the
factor O(n~2). splitting is inserted in Eq(3).

The improved NF subamplitudes are obtained by splitting. " Refs.[4,5] it was observed that unphysical contribu-
in Eq. (3) the P,(x) into traveling angular components tions, when appearing in the Fuller NF subamplituies
=0 in Eq. (10)], decrease by increasingin Eq. (10) (the

Pa(x)=Q{(x)+ QM (x), (7) valuesr=1, and 2 were testedif the g; are selected to
make null the coefficientsy{’,a{”, ... a!”, of the re-
where (for x# +1) summed LFS 5" and ) for the cases testedn this way

one drops the contributions to the NF resummed LEQ

from low n values, for which the splitting7) (though exact

by constructiohis not expected to be physically meaningful.
The «!” in Egs.(3) and(10) go asymptotically to a con-

with Qn(x) being the Legendre function of the second kindstant for short range potentials, or are Coulombic in the pres-

of degreen. By inserting Eq.(7) into Eq. (3), f(0) is sepa-  ence of a Coulomb term in the potential. Because of this the

1

(Fy)y= = +2_i
Q4= 5| Pa()=—Qu(x)], ®

rated into the sum of two subamplitudes series defining the full, N, and F amplitudes are not conver-
) (+) gent in the usual sense. In Refd4,5] the convergence of
f(0)=Tigf (0)+Tig(0), ©) Egs.(3) and(10) was forced, and accelerated, by applying to
. the improved LFS a final EYRW resummati¢t?), of order
with s=1, with d,=a”, y;=—1, andi#0. The final EYRW
r 1 o resummation ensures the numerical convergence of the LFS,
(F)( g)= o) with a convergence rate increasing withThe increased rate
Hai(®) (I—HO 1+Bix ngo @ Qn(X)- {0 of convergencg;]e costs, however, thge cancellation of significant

digits (see Ref[8] for detaily, and numerically the proce-
In Eq. (10), the subscripf8} indicates that the Nf({;)) and  dure may be not convenient or, in some cases, even impos-
F (f Eg})) subamplitudes depend, differently fron#), on  sible, using arithmetic with a fixed digit number.
the resummation orderand parameterg;. This occurs be- These troubles can be avoided by investigating the prop-
cause the resummed form of the series of linear combinatioarties of the resummation identitt2) with d, equal to the
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FIG. 1. The thick curves show the order0, 1, and 2 im-
proved F pure Coulomb cross sections calculated using(E).
The legend “Exact” indicates that in this case the sum avar Eq.

(13) is null. The other curves show the results obtained using 1000
and 100 partial wavegmedium thickness and thin curves, respec-

tively) and applying an EYRW resummation E42) of order 4 to
Eq. (10), as explained in the text.

pure Coulomta$ given by Eq.(5). In this case we explicitly
know the lhs of Eq.(12) for the physically interesting
and g values. In fact, ifp=1 andq=0, one obtains the
Rutherford scattering amplitude(#), while for p=1/2 and
g=*i/m one obtains the Fuller-Rutherford NF subampli-
tudesf 3 () [Ref.[1] Egs.(148 and(14b)]. This is because
the series in the rhs of Eq11) are theformal LFS of these
amplitudes.

Because Eq(12) is exact, it holds for arbitrary,, and
therefore also fory;= B;, with B; obtained by applying the
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FIG. 2. First order (=1) improved F cross sectioflower
pane) and LIP (upper panélfor the %0+'%0 case. The calcula-
tions were done using 150 partial waves with our regularization
procedurg(13) (thick curves and with different orders of the final
EYRW resummatior{12) (thin curves.

. . ) . i i i (*)
improved resummation method to any exact optical potentiaiormal series, the explicit expression 6k(6), or frz'(6),

S, with a Coulombic asymptotic behavior. With this choice,
the pure Coulomb resummed coefficiemig(r) asymptoti-
cally approachxg’) as rapidly as the pure Coulon®matrix
eIementsS1C approachs, in the usual optical potential calcu-
lations.

With the change of notatiorf(O=f, f(-D=f{Z) Q)
=fg, f¥ V=1, £QP=pP,, and £{7"=Q{", by sub-
tracting from Eq.(3), or Eq. (10), the corresponding re-
summed forms, Eq12), applied to pure Coulomb scattering
(s=r,7=pB;, 8=a%") andq=0,%i/7), one obtains the
final result

r

[

1=0

1

T3 5| 2, Lan = ad 1L 00+ 10(0)
|

n=0

f(M(g)=

.oor
| )
mt S g
T i=0

j=0

1
m, 13
with m=0 for the full amplitude andn==1 for the NF
subamplitudes.

Forr=0 andm=0, orm=*1, Eq.(13) is the standard
regularization procedure defining the rhs of E8), or Eq.

and subtracting itformal Legendre polynomials, or travel-
ing angular waves, series for the full amplitudel], or the
Fuller NF subamplitudelsl]. One obtains a convergent series
by combining the twdormal series together.

Forr=1, Eq.(13) is the generalization of this regulariza-
tion procedure to resummed forms of the full amplitude, or
NF subamplitudes. The sum appearing in ELp) is, forr
=1, as rapidly convergent as the sum obtained with the stan-
dard regularization procedure for 0.

Before showing the effectiveness of our regularization
procedure in a physically interesting case, we show the dif-
ficulties met by the EYRW techniquE8] to ensure, and
speed up, the convergence of improved, or not, LFS for pure
Coulomb scattering. In this casg=a$, and each term of
the LFS on the rhs of Eq.13) is identically null, with an
arbitrary choice of3;. Forr=0 (no resummation Eq. (13)
trivially states that the scattering amplitude<0) is the
Rutherford amplitude, and the NF subamplitudes=+1)
are the Fuller-Rutherford ones. For0, by choosingg;
according to the improved resummation method, E)
gives the explicit expressions for the improved NF subam-
plitudes (m==*1) in terms of the Fuller-Rutherford ones,

and of simple functions depending ¢h and «$0 Y. For

(10), in the presence of a long range Coulomb term in thesimplicity, we will nameexactthe explicit expression for
potential. This procedure is based on adding, to the origingbure Coulomb improved NF subamplitudes.
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In Fig. 1 the thick curves show the ratio to the Rutherfordderivative of the argument of the scattering amplitude with
cross sectiongg(#), of the exact pure Coulomb improved F respect to the scattering angle divided by the wave nuber
cross sections, of ordar=0, 1, and 2 (=0 meaning the As a second example of the effectiveness of our regular-
original Fuller methol In the same figure the thin curves ization procedure, we consider the first order improved F
show the F cross sections obtained by forcing, and accelefross section and LIP of the phenomenological optical poten-
ating, the convergence of E6L0) with an additional EYRW  tial WS2, used to fif17] the *%0+ %0 elastic cross section
resummation of ordes=4, and fixing the maximum number at Eiap=145 MeV. The improved resummation parameter is
of the summed partial waves 1g,,,=100 and 1000. The In this cases;=—0.9997-0.0798 [5]. The upper panel in

results were obtained with= 10, which is a typical value of F19- 2 Shows, for 1% #=<30° andl =150, the F LIP cal-

. : .culated using our regularization procedytigick curve and
the Sommerfeld parameter for heavy-ion scattering. For thi§Y LT .
» value the improved resummation parameters gve different order(thin lines EYRW resummations. The lower

~0.9802+0.1980 (for r=1), B,=1.0072+0.1166 and panel shows the corresponding F cross sections. Symmetri-
—VU. . - y 1— 4. .

B,=0.7804+0.6052 (for r=2). Figure 1 shows that the zation effects were ignored.

final EYRW iofi8 h fh Note that 150 partial waves are more than really neces-
ina resummatioig] ensures_t e convergence of the sary to obtain reliable scattering amplitudes using our regu-
LFS (10), but the convergence rate is low. Fé=5° a nu-

) . X s ) larization procedure. Using an EYRW resummation of order
merically satisfactory result is not obtained even Wi, 1 (thin dotted curves this partial wave number is not suffi-
=1000. By fixingl yay and the final resummation order, the cien to obtain a satisfactory result. By increasing the EYRW
angle at which the truncated LFS disagrees with the exaglsymmation order it decreases the angular width of the re-
resu_lt increases with the improved resummation order. _ gion where the thin curves differ from the corresponding
Figure 1 also shows that the improved resummationyicy gnes. However, fop=<5°, the 150 partial waves used
method reduces, particularly at forward angles, the unphysiz o ot enough, even using a fourth order final EYRW re-
cal F contribution present in the original Fuller NF method. g\, ymation.
However, the unphysical contribution is not suppressed. AISO  The new regularization procedure in E43) is very ef-
the improved method is rather ineffectivedt 180°. This IS fective in ensuring a rapid convergence of the LFS, which
an msurmoun?able dlfflc_ult)_/ connected with the NF splltt_mg define the improved NF subamplitudes for charged particles
(7), mathematically continuingat 6= 180°) the N subampli-  scattering. On the contrary, for asymptotically Coulombic
tude inb a F one, or vice versa. This holds also in the ab-g e effectiveness of the EYRW method is computation-
sence of physically meaningful subamplitudes justifying this;y hoor. The regularization procedure described here can be
continuation. In these situations the only practical suggestiogasny modified to make the LFS in Eq8) and(10) rapidly
we can give is to not take seriously the NF subamplitudes aonyergent for scattering by short range potentials. In these
6~180°, if in the neighborhood of this angle the cross secages, however, also an additional first order EYRW resum-

tion and the LIP(local impact parametgiof the full ampli- 400 makes the LFS convergent with the same rapidity.
tude have a nonoscillatory behavior, suggesting the domi-
nance of asingle side(positive LIP for F and negative for )N The author is indebted to J. N. L. Connor for stimulating

contribution. We recall that the LIP is defindd] as the and helpful discussions.
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