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Momentum-space Faddeev calculations for confining potentials

Humberto Garcilazo
Escuela Superior de Fı´sica y Matema´ticas, Instituto Polite´cnico Nacional, Edificio 9, 07738 Me´xico Distrito Federal, Mexico
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A momentum-space method to solve the Faddeev equations with confining potentials is presented. As an
application of this method, we estimate the effect of relativistic effects in the nonstrange baryon spectrum by
solving the nonrelativistic Faddeev equations for three quarks as well as a relativistic version of these equations
which incorporates relativistic kinematics.
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I. INTRODUCTION

The baryon spectrum is supposed to be generated by
ground and excited states of three quarks interacting thro
a confining potential plus additional two- and three-bo
short-range forces@1–4#. Therefore, for a given model of th
interaction between quarks, one has to deal with a three-b
problem which in principle can be solved by means of F
deev equations. There are several reasons why one w
like to perform Faddeev calculations in momentum space
we will discuss shortly. The main difficulty, however, in pe
forming three-quark calculations in momentum space is
confining potential that goes to infinity whenr→` so that
the Fourier transform of the potential does not exist. This
led to the result that all existing Faddeev calculations of
baryon spectrum have been performed in configuration sp
@3–6#. In the constituent quark model, however, the mass
the u and d quarks is about one-third of the mass of t
nucleon which is of the same size or even smaller than
excitations appearing in the spectrum so that relativistic
fect is not expected to be negligible. This means that for
calculation of the spectrum, one would like to use a rela
istic generalization of the Faddeev equations@7–15#, which
in turn requires that one works in momentum space.

One usually calls relativistic Faddeev equations to th
sets of equations for the three-body problem, which star
from a fully relativistic four-dimensional theory are reduc
by some approximation to three-dimensional form. Th
these equations have the same degree of complexity a
nonrelativistic Faddeev equations. The first attempts to
clude relativity into the Faddeev formalism@7–10# were
based on the method introduced by Blankenbecler and S
@8#. In this approach, a four-dimensional version of the F
deev equations is obtained by summing ladder-type diagr
in which three particles propagate. These equations are
reduced to three-dimensional form by introducing a thr
particle propagator that eliminates some of the fourth co
ponents of the momenta while keeping two- and three-b
unitarity. A second approach that comprises the work
Refs. @11–13# consists simply of putting all spectator pa
ticles on their mass shells, which again leads to thr
dimensional integral equations. A third approach that w
developed in Refs.@14,15# starts from a form of field theory
in which the three particles are kept on their mass shell
every stage@15#, and therefore, it is a three-dimension
theory from the very beginning. It is thus a straightforwa
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generalization of the nonrelativistic Faddeev equations
incorporating relativistic kinematics. We will use this la
approach in order to estimate the effects of relativity in t
three-quark system where we will keep the treatment of
spin nonrelativistic. Recently, several groups have perform
three-quark calculations within a covariant formalism bas
on the Bethe-Salpeter equation and where the spin has
treated dynamically@16–20#. This was done in the case o
models with confinement@16,17# by first reducing the Bethe
Salpeter equation to three-dimensional form, i.e., to the S
peter equation and then transforming the equations to c
figuration space. In the case of models without confinem
@18–20#, which are all based on the Nambu-Jona-Lasin
model @21#, the interaction is of separable form so that t
Bethe-Salpeter equation for three particles reduces to an
fective two-body Bethe-Salpeter equation.

In Secs. II and III we will present the nonrelativistic an
relativistic Faddeev formalisms, respectively, and in Sec.
we will describe our method of solution. Finally, in Sec.
we will discuss the results and conclusions.

II. NONRELATIVISTIC FADDEEV FORMALISM

The Schro¨dinger equation for three particles is

uc&5G0~E!@V11V21V3#uc&, ~1!

where we have defined the propagator for three free parti
as

G0~E!5
1

E2k1
2/2m12k2

2/2m22k3
2/2m3

. ~2!

Making the Faddeev decomposition

uc&5uf1&1uf2&1uf3&, ~3!

where

uf i&5G0~E!Vi uc&, ~4!

one gets the Faddeev equations

uf i&5G0~E!t i~E!@ uf j&1ufk&], ~5!

where t i(E) is the solution of the Lippmann-Schwinge
equation
©2003 The American Physical Society03-1
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t i~E!5Vi1ViG0~E!t i~E!. ~6!

In the overall c.m. systemkW11kW21kW350, one introduces the
relative Jacobi coordinates

pW i5
mkkW j2mjkW k

mj1mk
, ~7!

qW i5
mi~kW j1kW k!2~mj1mk!kW i

mi1mj1mk
52kW i . ~8!

The propagator~2! is given in terms of these coordinates

G0~E;piqi !5
1

E2pi
2/2h i2qi

2/2n i
, ~9!

with the reduced masses

h i5
mjmk

mj1mk
, ~10!

n i5
mi~mj1mk!

mi1mj1mk
. ~11!

Let us assume for the moment that the three particles h
no spin or isospin~we will include these variables later!.

Then the basis states areupW i•qW ĩ&, wherepW i and qW i are the
relative Jacobi momenta defined above. They are normal
as

^pW i•qW̃ i upW i8•qW̃ i8&5d~pW i2pW i8!•d~qW i2qW i8! ~12!

and satisfy the completeness relation

15E dpW i•dqW i upW i•qW̃ i&^pW i•qW̃ i u. ~13!

Using these basis states the Faddeev equations~5! take
the form

^pW i•qW ĩ uf i&5G0~E;piqi !(
j Þ i

E dpW i8•dqW i8dpW j•dqW j

3^pW i•qW ĩ ut i~E!upW i8•qW i 8̃&^pW i8•qW i8̃upW j•qW j̃&

3^pW j•qW j̃ uf j&, ~14!

where from Eq.~6!, the two-bodyt-matrix obeys

^pW i•qW ĩ ut i~E!upW i8•qW i8̃&5^pW i•qW ĩ uVi upW i8•qW i8̃&

1E dpW i9•dqW i9^pW i•qW ĩ i uVi upW i9•qW i9̃&

3G0~E;pi9qi9!^pW i9•qW i9̃ut i~E!upW i8•qW i8̃&.

~15!

The matrix elements of the potential are given by
05520
ve

ed

^pW i•qW ĩ uVi upW i8•qW i8̃&5d~qW i2qW i8!•Vi~pW i ,pW i8! ~16!

with

Vi~pW i ,pW i8!5
1

~2p!3E drWeipW i•rWV~r !e2 ipW i8•rW. ~17!

Substituting Eq.~16! into Eq. ~15! leads to

^pW i•qW ĩ ut i~E!upW i8•qW i8̃&

5d~qW i2qW i8!t i~pW i ,pW i8;E2qi
2/2n i !, ~18!

wheret i(pW i ,pW i8;E2qi
2/2n i) obeys the integral equation

t i~pW i ,pW i8;E2qi
2/2n i !

5Vi~pW i ,pW i8!1E dpW i9Vi~pW i ,pW i9!G0~E;pi9qi !

3t i~pW i9,pW i8;E2qi
2/2n i !. ~19!

Substituting Eq.~18! into Eq. ~14! and following Ref.
@22#, the Faddeev equations~14! can be projected into partia
waves as

^piqi ;, il i uf i
L&5G0~E;piqi !

3(
j Þ i

(
, jl j

E pi8
2dpi8pj

2dpjqj
2dqj

3t i, i~pi ,pi8 ;E2qi
2/2n i !

3^pi8qi ;, il i upjqj ;, jl j&L^pjqj ;, jl j uf j
L&,

~20!

where, i is the orbital angular momentum of the pairjk, l i
is the orbital angular momentum of particlei with respect to
the pair jk, andL is the total orbital angular momentum.

The two-body amplitudet i, i is given by the solution of
the partial-wave integral equation

t
i
, i~pi ,pi8 ;E2qi

2/2n i !

5Vi~pi ,pi8!1E
0

`

pi9
2dpi9Vi~pi ,pi9!

3G0~E;pi9qi !t i
, i~pi9 ,pi8 ;E2qi

2/2n i ! ~21!

with

Vi~pi ,pi8!5
2

pE0

`

r i
2dri j , i

~pir i !Vi~r i ! j , i
~pi8r i !. ~22!

The recoupling coefficient between the partial-wave sta
i and j is given by@22#
3-2
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^pi8qi ;, il i upjqj ;, jl j&L

5
1

2pi8qipjqj

mk

h ih j
AL

, il i , jl j~pi8qipjqj !

3dS pi8
2

2h i
1

qi
2

2n i
2

pj
2

2h j
2

qj
2

2n j
D

3u@12cos2~qW i ,pW i8!#, ~23!

whereu is the Heaviside function and

AL
, il i , jl j~pi8qipjqj !5

1

2L11 (
Mmimj

Cmi ,M2mi ,M
, il i L

3Cmj ,M2mj ,M
, jl j L G, imi

Gl i M2mi

3G, jmj
Gl j M2mj

cos@2M ~qW j ,qW i !

2mi~qW i ,pW i8!1mj~qW j ,pW j !# ~24!

with G,m50 if ,2m is odd and

G,m5
~2 !(,1m)/2A~2,11!~,1m!! ~,2m!!

2,@~,1m!/2#! @~,2m!/2#!
~25!

if ,2m is even. The angles (qW j ,qW i), (qW i ,pW i8), and (qW j ,pW j )
can be obtained in terms of the magnitudes of the mome
by using the relations

pW i852qW j2
h i

mk
qW i , ~26!

pW j5qW i1
h j

mk
qW j , ~27!

wherei j is a cyclic pair.
The integration overdpi8 in Eq. ~20! can be eliminated by

using thed of energy conservation that appears in the rec
pling coefficient~23!. Similarly, using Eq.~27! we have

pjdpj5
h j

mk
qiqjd cos~qW j ,qW i ![

h j

mk
qiqjd cosu, ~28!

so that Eq.~20! can be written in the final form

^piqi ;, il i uf i
L&5G0~E;piqi !(

j Þ i
(
, jl j

1

2E21

1

d cosu

3E
0

`

qj
2dqj

3t i, i~pi ,pi8 ;E2qi
2/2n i !

3AL
, il i , jl j~pi8qipjqj !^pjqj ;, jl j uf j

L&,

~29!

where from Eqs.~26! and ~27! we obtain
05520
ta

-

pi85Aqj
21S h i

mk
D 2

qi
21

2h i

mk
qiqjcosu, ~30!

pj5Aqi
21S h j

mk
D 2

qj
21

2h j

mk
qiqjcosu. ~31!

If there are no tensor or spin-orbit forces the Fadde
equations~29! can be generalized to include the spin a
isospin degrees of freedom as

^piqi ;, il iSiTi uf i
LST&

5G0~E;piqi !(
j Þ i

(
, jl jSjTj

1

2E21

1

d cosu

3E
0

`

qj
2dqj t i

, iSiTi~pi ,pi8 ;E

2qi
2/2n i !AL

, il i , jl j~pi8qipjqj !

3^SiTi uSjTj&ST^pjqj ;, jl jSjTj uf j
LST&, ~32!

whereSi andTi are the spin and isospin of the pairjk, Sand
T are the total spin and isospin, and

^SiTi uSjTj&ST5~2 !Sj 1s j 2SA~2Si11!~2Sj11!

3W~s jskSs i ;SiSj !

3~2 !Tj 1t j 2TA~2Ti11!~2Tj11!

3W~t jtkTt i ;TiTj !, ~33!

wheres i andt i are the spin and isospin of particlei, andW
is the Racah coefficient.

For a given set of values ofLST, the integral equations
~32! couple together the amplitudes of the different config
rations $, il iSiTi% with (2), i1Si1Ti51 as required by the
Pauli principle, since the wave function is color antisymm
ric.

III. RELATIVISTIC FADDEEV FORMALISM

We will base our formalism on the theory proposed
Kadyshevski@15# and Vinogradov@14#, where the three par
ticles are kept on their mass shells at every stage.

If we replace the nonrelativistic kinetic energy opera
by the corresponding relativistic expression, the Schro¨dinger
equation~1! becomes

uc&5G0~W0!@V11V21V3#uc&, ~34!

whereW0 is the invariant mass of the system and

G0~W0!5
1

W02v1~k1!2v2~k2!2v3~k3!
~35!

with

v i~ki !5Ami
21ki

2. ~36!
3-3
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Following the same steps as in Eqs.~3!–~6!, one obtains the
Faddeev equations

uf i&5G0~W0!t i~W0!@ uf j&1ufk&] ~37!

with

t i~W0!5Vi1ViG0~W0!t i~W0!. ~38!

In order to introduce the relative momenta, we will a
sume that the three particles are in the c.m. system, i.e.

kW11kW21kW350. ~39!

The relativistic analog of the Jacobi momenta~7! and~8! are
the momentapW i andqW i , wherepW i is the relative momentum
of the pair jk measured in the c.m. frame of the pair~that is,
the frame in which particlej has momentumpW i and particlek
has momentum2pW i), andqW i52kW i is the relative momen-
tum between the pairjk and particlei measured in the three
body c.m. frame~that is, the frame in which the pairjk has
total momentumqW i and particlei has momentum2qW i). The
invariant energy of the three particlesv1(k1)1v2(k2)
1v3(k3) can be written in terms of the relative momentapW i

andqW i as

W~piqi !5Wi~piqi !1v i~qi !, ~40!

where

Wi~piqi !5Av2~pi !1qi
2 ~41!

and

v~pi !5Amj
21pi

21Amk
21pi

2[v j~pi !1vk~pi !. ~42!

The invariant volume element for three particles satisfy
the condition~39! can be written in terms of the correspon
ing volume element for the relative momenta as

dkW1

2v1~k1!

dkW2

2v2~k2!

dkW3

2v3~k3!
d~kW11kW21kW3!

5
v~pi !

8Wi~piqi !v i~qi !v j~pi !vk~pi !
dpW i•dqW i . ~43!

Therefore, if the single-particle states are normalized inv
antly on the mass shell, i.e.,

^kW i ukW i8&52v i~ki !d~kW i2kW i8!, ~44!

then the basis statesupW i•qW i& are normalized as

^pW i•qW i upW i8•qW i8&5
8Wi~piqi !v i~qi !v j~pi !vk~pi !

v~pi !

3d~pW i2pW i8!d~qW i2qW i8!, ~45!

and satisfy the completeness relation
05520
-

g

i-

15E v~pi !

8Wi~piqi !v i~qi !v j~pi !vk~pi !

3dpW i•dqW i upW i•qW i&^pW i•qW i u. ~46!

We will also consider statesupW i•qW̃ i& that are normalized simi-
lar to the nonrelativistic states~12! and ~13!, i.e.,

^pW i•qW i ũpW i•qW ĩ&5d~pW i2pW i8!d~qW i2qW i8!, ~47!

15E dpW i•dqW i upW i•qW ĩ&^pW i•qW ĩ u. ~48!

It is clear from Eqs.~45!–~48! that the two sets of states ar
related to each other as

upW i•qW i&5F8Wi~piqi !v i~qi !v j~pi !vk~pi !

v~pi !
G1/2

upW i•qW ĩ&.

~49!

Using the basis states~45! and~46! the Faddeev equation
~37! are written explicitly as

^pW i•qW i uf i&5G0~W0 ;piqi !

3(
j Þ i

E v~pi8!

8Wi~pi8qi8!v i~qi8!v j~pi8!vk~pi8!

3dpW i8•dqW i8
v~pj !

8Wj~pjqj !v j~qj !vk~pj !v i~pj !

3dpW j•dqW j^pW i•qW i ut i~E!upW i8•qW i8&

3^pW i8•qW i8upW j•qW j&^pW j•qW j uf j&, ~50!

where

G0~W0 ;piqi !5
1

W02W~piqi !
, ~51!

and the two-bodyt-matrix Eq.~38! is also written explicitly
as

^pW i•qW i ut i~E!upW i8•qW i8&

5^pW i•qW i uVi upW i8•qW i8&

1E v~pi9!

8Wi~pi9qi9!v i~qi9!v j~pi9!vk~pi9!

3dpW i9•dqW i9^pW i•qW i uVi upW i9•qW i9&G0~W0 ;pi9qi9!

3^pW i9•qW i9ut i~E!upW i8•qW i8&. ~52!

The matrix elements of the potential can be obtained us
Eqs.~49! and ~16! as
3-4
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^pW i•qW i uVi upW i8•qW i8&

58v i~qi !

3FWi~piqi !v j~pi !vk~pi !Wi~pi8qi !v j~pi8!vk~pi8!

v~pi !v~pi8!
G 1/2

3d~qW i2qW i8!Vi~pW i ,pW i8!, ~53!

whereVi(pW i ,pW i8) is given by Eq.~17!. Substituting Eq.~53!
into Eq. ~52! we get

^pW i•qW i ut i~W0!upW i8•qW i8&

58v i~qi !

3FWi~piqi !v j~pi !vk~pi !Wi~pi8qi !v j~pi8!vk~pi8!

v~pi !v~pi8! G1/2

3d~qW i2qW i8!^pW i ut i~W0 ;qi !upW i8&, ~54!

where^pW i ut i(W0 ;qi)upW i8& satisfies the integral equation

^pW i ut i~W0 ;qi !upW i8&

5Vi~pW i ,pW i8!1E dpW i9Vi~pW i ,pW i9!G0~W0 ;pi9qi !

3^pW i9ut i~W0 ;qi !upW i8&. ~55!

If one substitutes Eq.~54! into Eq.~50! and makes the trans
formation

^pW i•qW i uf i&5FWi~piqi !v j~pi !vk~pi !

v~pi !
G1/2

^pW i•qW i uc i&,

~56!

one can project into partial waves in exactly the same fo
as done with Eq.~20! to get

^piqi ;, il i uc i
L&

5G0~W0 ;piqi !

3(
j Þ i

(
, jl j

E F v~pi8!Wj~pjqj !vk~pj !v i~pj !

Wi~pi8qi !v j~pi8!vk~pi8!v~pj !
G1/2

3pi8
2dpi8

v~pj !

8Wj~pjqj !v j~qj !vk~pj !v i~pj !
pj

2dpjqj
2

3dqj^pi ut i
, i~W0 ;qi !upi8&

3^pi8qi ;, il i upjqj ;, jl j&L^pjqj ;, jl j uc j
L&, ~57!

where the partial-wave two-bodyt matrix is the solution of
the integral equation
05520
^pi ut i
, i~W0 ;qi !upi8&

5Vi~pi ,pi8!1E
0

`

pi9
2dpi9Vi~pi ,pi9!G0~W0 ;pi9qi !

3^pi9ut i
, i~W0 ;qi !upi8& ~58!

with Vi(pi ,pi8) defined by Eq.~22!. The recoupling coeffi-
cient between the partial-wave statesi and j is given by
@23,24#

^pi8qi ;, il i upjqj ;, jl j&L

5
4v~pi !v~pj !

pi8qipjqj
A

L
, il i , jl j~pi8qipjqj !

3d@W~piqi !2W~pjqj !#u@12cos2~qW i ,pW i8!#. ~59!

The angular functionAL
, il i , jl j(pi8qipjqj ) is defined by Eq.

~24!, where the relative angles between the vectors must n
be calculated from@25#

pW i852qW j2a i j ~qiqjcosu!qW i , ~60!

pW j5qW i1a j i ~qiqjcosu!qW j , ~61!

with

a i j ~qiqjcosu!5
Wi

22qi
21mj

22mk
212v j~qj !AWi

22qi
2

2AWi
22qi

2@Wi1AWi
22qi

2#
,

~62!

a j i ~qiqjcosu!5
Wj

22qj
21mi

22mk
212v i~qi !AWj

22qj
2

2AWj
22qj

2@Wj1AWj
22qj

2#
,

~63!

and

Wi5v j~qj !1vk~qk!, ~64!

Wj5v i~qi !1vk~qk!, ~65!

vk~qk!5Amk
21qi

21qj
212qiqjcosu. ~66!

The integration overdpi8 in Eq. ~57! can be eliminated by
using thed of energy conservation that appears in the rec
pling coefficient~59!. Similarly, from the relation

Wj~pjqj !5Ami
21qi

21Amk
21qi

21qj
212qiqjcosu,

~67!

one obtains

pjdpj5
Wj~pjqj !v i~pj !vk~pj !

v2~pj !vk~qk!
qiqjd cosu, ~68!

so that the relativistic Faddeev equations~57! take the final
form including the spin and isospin degrees of freedom
3-5
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^piqi ;, il iSiTi uc i
LST&

5G0~W0 ;piqi !(
j Þ i

(
, jl jSjTj

1

2E21

1

dcosu

3E
0

`

qj
2dqj

1

v j~qj !vk~qk!

3FWi~pi8qi !v j~pi8!vk~pi8!

v~pi8! G1/2

3FWj~pjqj !vk~pj !v i~pj !

v~pj !
G1/2

3^pi ut i
, iSiTi~W0 ;qi !upi8&

3A
L
, il i , jl j~pi8qipjqj !

3^SiTi uSjTj&ST̂ pjqj ;, jl jSjTj uc j
LST&, ~69!

where from Eqs.~60! and ~61!

pi85Aqj
21a i j

2 ~qiqjcosu!qi
212a i j ~qiqjcosu!qiqjcosu,

~70!

pj5Aqi
21a j i

2 ~qiqjcosu!qj
212a j i ~qiqjcosu!qiqjcosu.

~71!

If we take the nonrelativistic limit, it is easy to see tha

a i j ~qiqjcosu!→ h i

mk
, ~72!

a j i ~qiqjcosu!→ h j

mk
, ~73!

so that Eqs.~60! and ~61! become~26! and ~27! and conse-
quently Eqs.~70! and ~71! become~30! and ~31!. Similarly,
in this limit the relativistic propagator~51! reduces to the
nonrelativistic propagator~9! and

1

v j~qj !vk~qk!
FWi~pi8qi !v j~pi8!vk~pi8!

v~pi8! G1/2

3FWj~pjqj !vk~pj !v i~pj !

v~pj !
G1/2

→1, ~74!

so that the relativistic Faddeev equation~69! becomes the
nonrelativistic equation~32! and the relativistic Lippmann
Schinger equation~58! becomes the nonrelativistic one~21!.

It is also interesting to consider the behavior of the in
gral equations at large momenta. Let us start with the tw
body equations. The nonrelativistic Lippmann-Schwing
equation~21! differs from relativistic equation~58! only in
that the propagatorG0 is given in the nonrelativistic case b
Eq. ~9!, so thatG0(E;pi9qi);pi9

22 whenpi9→`. In the rela-
tivistic case, however,G0 is given by Eq. ~51! so that
G0(W0 ;pi9qi);pi9

21 whenpi9→`. This means that the rela
tivistic equation falls down more slowly at high momen
05520
-
-
r

and, therefore, it is more sensitive to the behavior of
interaction at high momenta, which corresponds to its beh
ior at small distances.

In order to see the high-momentum behavior of the thr
body equations~32! and ~69!, let us consider, for example
the case of S waves where AL

, il i , jl j(pi8qipjqj )
5A0

0000(pi8qipjqj )51. If we go to the limitqi5qj→` it is
easy to see that

1

v j~qj !vk~qk!
FWi~pi8qi !v j~pi8!vk~pi8!

v~pi8! G1/2

3FWj~pjqj !vk~pj !v i~pj !

v~pj !
G1/2

;qi
0 , ~75!

so that again the behavior at high momenta is determined
the propagatorG0. Thus, also in the case of the three-bo
equations, the relativistic Faddeev equation falls down m
slowly than the nonrelativistic one at high momenta an
therefore, it is more sensitive to the high-momentum beh
ior of the interaction which corresponds to the behavior
the interaction at small distances.

IV. THE METHOD OF SOLUTION

The problem with confining potentials of the form

VC~r !5brn, n51,2, etc., ~76!

is that the Fourier transform of the potential does not ex
since VC→` when r→`. Therefore, we will replace the
potential~76! by the finite potential

V~r !5H b~r n2Rn!, r<R

0, r .R
~77!

for which the Fourier transform is well defined. The Schr¨-
dinger equation for three particles interacting with one a
other through the potential~76! is

F k1
2

2m1
1

k2
2

2m2
1

k3
2

2m3
1VC~r 1!1VC~r 2!1VC~r 3!G uCC&

5ECuCC&, ~78!

wherekW i is the momentum operator of particlei andrW i is the
relative coordinate between particlesj and k. The Schro¨-
dinger equation for three particles interacting with each ot
through the potential~77! is, on the other hand

F k1
2

2m1
1

k2
2

2m2
1

k3
2

2m3
1V~r 1!1V~r 2!1V~r 3!G uC&5EuC&,

~79!

so that in the limitR→` Eqs.~78! and ~79! are equivalent,
provided that the eigenvalues are related as

EC5E23bRn. ~80!
3-6
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Thus, our method comprises solving the three-body prob
with the potential~77! with R sufficiently large such thatEC
given by Eq.~80! does not change appreciably ifR is in-
creased further. A momentum-space method, based on i
similar to ours for the two-body problem with singular p
tentials, has been developed in Refs.@27,28# and applied in
Ref. @29# to the meson spectrum.

In the particular case of the nonstrange baryons where
have a system of three identical particles, the Faddeev e
tions ~32! can be cast in the form

Ta~piqi ;E!5(
b

E
21

1

d cosuE
0

`

dqj t
a~pi ,pi8 ;E2qi

2/2n i !

3Bab~qi ,qj ,cosu;E!Tb~pjqj ;E!, ~81!

where a stands for the quantum numbers, il iSiTi . If we
make the change of variables

pi5b
11xi

12xi
, ~82!

qi5b
11yi

12yi
, ~83!

whereb is a scale parameter, Eq.~81! becomes

Ta~xiyi ;E!5(
b

E
21

1

d cosuE
21

1 2b

~12yj !
2 dyj

3taFxi ,xi8 ;E2
1

2n i
S b

11yi

12yi
D 2G

3Bab~yi ,yj ,cosu;E!Tb~xjyj ;E!, ~84!

where the variablesxi and yi run from 21 to 1, therefore,
one can expand the two-body amplitude in terms of L
endre polynomials as@26#

ta~xi ,xi8 ;e!5(
n

Pn~xi !tn
a~xi8 ;e!, ~85!

so that the three-body amplitude is of the form

Ta~xi ,yi ;E!5(
n

Pn~xi !Tn
a~yi ;E!. ~86!

Using Eq. ~86!, Eq. ~84! reduces to the set of integra
equations in one variable

Tn
a~yi ;E!5(

bm
E

21

1

dyjBnm
ab~yi ,yj ;E!Tm

b ~yj ;E! ~87!

with
05520
m

as

e
a-

-

Bnm
ab~yiyj ;E!5

2b

~12yj !
2E

21

1

d cosu

3tn
aFxi8 ;E2

1

2n i
S b

11yi

12yi
D 2G

3Bab~yi ,yj ,cosu;E!Pm~xj !. ~88!

In order to carry out the expansion in Legendre polyn
mials ~85!, we use the transformation~82! to write the
Lippmann-Schwinger equation~21! as

ta~xi ,xi8 ;e!5Va~xi ,xi8!1E
21

1 S b
11xi9

12xi9
D 2

2b

~12xi9!2

3dxi9V
a~xi ,xi9!G0~e;xi9!ta~xi9 ,xi8 ;e!.

~89!

If we expand the potential as

Va~xi ,xi8!5(
n

Pn~xi !Vn
a~xi8!, ~90!

where

Vn
a~xi8!5

2n11

2 E
21

1

dxi Pn~xi !V
a~xi ,xi8!, ~91!

then the two-body amplitude is of the form

ta~xi ,xi8 ;e!5(
n

Pn~xi !tn
a~xi8 ;e!, ~92!

and Eq.~89! reduces to the set of linear equations

tn
a~xi8 ;e!5Vn

a~xi8!1(
k

ank
a ~e!tk

a~xi8 ;e! ~93!

with

ank
a ~e!5E

21

1 S b
11xi9

12xi9
D 2

2b

~12xi9!2

3dxi9Vn
a~xi9!G0~e;xi9!Pk~xi9!. ~94!

Since in the potential~77! one must takeR large~typically
R;12 fm), the momentum-space representation of this
tential V(pi ,pi8) is a function that oscillates very rapidly
Therefore, in order to get an accurate representation of
potential by means of the Legendre expansion~90!, it is nec-
essary to include a large number of polynomials~we use 200
Legendre polynomials! and a similarly large number of inte
gration points in the integrals~91! and~94!. However, in the
solution of the three-body equations~87! where the functions
tn
a(xi8 ;e) enter as input, one needs a much smaller numbe

Legendre components to reach convergence. We found
one needs at most 13 Legendre components in order to r
convergence.
3-7
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This is the advantage of a Faddeev formulation, where
input of the three-body equations is not two-body potent
but two-bodyt matrices, which have been obtained by so
ing already an integral equation so that they contain all
information on the energy dependence of the two-body s
systems. This energy dependence is much smoother tha
momentum dependence of the potential so that a few te
suffice to represent it. Also, one should notice that in
calculation of three-body bound states what matters is
energy dependence of the equations, since bound state
poles in the variableE.

We replaced the integral in Eq.~87! by a Gauss quadra
ture and found that the number of integration points requi
is of the order of 30–35. We took for the scale parameteb
52 fm21. In the case of the relativistic model, however, o
needs to use 5<b<10 fm21, since in that case the equation
effectively extend further out in momentum space.

Our method is very stable since, for example, the mas
the nucleon changes by less than 1 MeV when we varR
between 8 and 14 fm. We performed all our calculations w
R512 fm. Some applications of the nonrelativistic forma
ism have already been presented for the case of the c
quark cluster model@30,31#.

V. RESULTS

In this paper, our main interest is to explore the imp
tance of relativistic effects. Moreover, since relativistic e
fects will be the largest for those systems that are compo
of the lightest quarks, we will restrict our study to the no
strange sector that involves onlyu andd quarks. In addition,
the u andd quarks differ only in their isospin projection, s
that we have a system of three identical particles and
Faddeev equations~32! and ~69! which couple the three
components of the wave functionf i

LST or c i
LST with i

51,2,3 will become a single equation since all three com
nents are equal.

We will take for the quark-quark interaction the potent
proposed by Bhaduri, Cohler, and Nogami@2#, which is
known to give a reasonably good description of the bary
spectrum within a nonrelativistic framework@2,3#. This in-
teraction has the form

Vi~r i !5
1

2 F2k

r i
1

r i

a22D1
k

m2

1

r 0
2r i

e2r i /r 0sW j•sW kG
~95!

with k5102.67 MeV/c, a50.0326 (MeV21fm)1/2, D
5913.5 MeV, r 050.4545, and the mass of the quark,m

TABLE I. The masses of the nucleon and delta~in MeV! ob-
tained from the potential~95! for both the nonrelativistic and rela
tivistic Faddeev equations including only the three-body configu
tions with , i5l i5L50.

Theory MN MD MD2MN

Nonrelativistic 1058 1332 274
Relativistic 21071 1159 2230
05520
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5337 MeV. Using this interaction in the Feshbach-Rubino
variational method@32#, Bhaduri et al. obtained for the
masses of the nucleon and Delta,MN51052 MeV andMD

51354 MeV. In order to compare with these results,
have calculated the nucleon and Delta masses conside
only the three-body configurations where all orbital angu
momenta areS waves. We show these results in Table I f
both the nonrelativistic and relativistic theories. Our resu
for the nonrelativistic theory are in good agreement w
those of Ref. @2#, since the accuracy of the Feshbac
Rubinow method is about 20 MeV@2#. As it appears from
this table the relativistic effects are very large, particula
for the nucleon, and they lower the masses. The nucl
mass is lowered by 2129 MeV, while the Delta mass is lo
ered by 173 MeV so that the mass splitting which is 2
MeV for the nonrelativistic theory increases to 2230 MeV f
the relativistic one, i.e., to about eight times the experimen
value of 292 MeV. From the results of Table I, one m
conclude that a relativistic description of the baryon sp
trum based on the potential~95! would not be possible. This
however, is not the case as it will be shown below.

The large sensitivity to relativistic effects shown in Tab
I, as we will see next, is due to a particular feature of t
interaction at short distances. The last term of the interac
~95! contains a smeared-outd function with smearing param
eter r 0. The d function must be smeared-out otherwise t
mass of the nucleon would collapse to2` whenr 0→0. We
show this effect in Fig. 1, where we plot the mass

-

FIG. 1. The masses of the nucleon and Delta, as functions of
parameterr 0 for the nonrelativistic~dashed lines! and relativistic
~solid lines! theories.
3-8
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of the nucleon and delta as functions of the parameterr 0 for
both the nonrelativistic theory~dashed lines! and the relativ-
istic one ~solid lines!. As one can see from this figure th
inclusion of relativity produces two main effects: first of a
as already noticed, it lowers the masses of the baryons
second, it raises the values of the parameterr 0 at which the
mass of the nucleon would collapse to large negative va
from ;0.15 fm for the nonrelativistic theory to;0.45 fm
for the relativistic one. Thus, whiler 050.4545 is a reason-
able value for the nonrelativistic theory, it is not so in t
case of the relativistic one where instead the value ofr 0
should be of the order of 0.7 fm in order to get the corr
excitation energy.

The behavior of the nucleon mass in the relativistic the
is a consequence of the fact that this theory is more sens
to the form of the interaction at short distances as we h
shown in Sec. III. That is the reason why the pathologi
effects produced by thed function appear in the case of th
relativistic theory much sooner~i.e., at larger values ofr 0)
than in the case of the nonrelativistic one.

If we include all three-body configurations with, i andl i
up to 5 and take for the relativistic theoryr 050.74 fm, we
obtain for MN and MD the results given in Table II. Ou
results for the nonrelativistic theory are in very good agr
ment with those of Ref.@3#. In both the cases the excitatio
energy is close to the experimental value of 292 MeV. T
mass of the nucleon comes out above the experimental v
for the nonrelativistic theory and below it for the relativist
one. This problem can be solved by changing the param
D in Eq. ~95! to 970 MeV in the nonrelativistic case and 80
MeV in the relativistic one. Of course, the parameterD has
no effect on the excitation energies.

TABLE II. The masses of the nucleon and delta~in MeV! in-
cluding all the three-body configurations with, i andl i up to 5. The
nonrelativistic results correspond to the potential~95! and the rela-
tivistic results correspond to the potential~95! with the parameter
r 050.74 fm.

Theory MN MD MD2MN

Nonrelativistic 1025 1331 306
Relativistic 780 1072 292
to
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We show in Fig. 2 the excitation energy spectrum o
tained using both the nonrelativistic theory~dashed lines!
and the relativistic model withr 050.74 fm ~solid lines!. As
it can be seen from this figure, the description provided
the relativistic model is of similar quality to that of the non
relativistic one and in some respects even better. For
ample, the spacing between the positive parity states is
more reasonable and the ordering between the positive
negative parity statesN(1440) andN(1535), which is in-
verted in both theories, has a smaller discrepancy in the c
of the relativistic model.

Notice that the essential parameters of the interaction~95!
are the strength of the one-gluon-exchange potential~the pa-
rameterk) and the slope of the confining potential~the pa-
rametera), which we have not touched. The parameterD
fixes the overall scale of the spectrum but it has no effect
the excitation energies, and the parameterr 0 is necessary in
order to avoid the collapsing of the nucleon mass. Thus,
conclude that using the potential~95! in a relativistic theory
leads to a similar or somewhat better description of
baryon spectrum.
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FIG. 2. Nonstrange baryon spectrum for the interaction~95!
obtained from the nonrelativistic~dashed lines! and relativistic
~solid lines! theories as explained in the text.
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