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Momentum-space Faddeev calculations for confining potentials
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A momentum-space method to solve the Faddeev equations with confining potentials is presented. As an
application of this method, we estimate the effect of relativistic effects in the nonstrange baryon spectrum by
solving the nonrelativistic Faddeev equations for three quarks as well as a relativistic version of these equations
which incorporates relativistic kinematics.
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[. INTRODUCTION generalization of the nonrelativistic Faddeev equations but
incorporating relativistic kinematics. We will use this last

The baryon spectrum is supposed to be generated by tlapproach in order to estimate the effects of relativity in the
ground and excited states of three quarks interacting througffiree-quark system where we will keep the treatment of the
a confining potential plus additional two- and three-bodyspin nonrelativistic. Recently, several groups have performed
short-range forcell—4]. Therefore, for a given model of the three-quark calculations within a covariant formalism based
interaction between quarks, one has to deal with a three-bod§n the Bethe-Salpeter equation and where the spin has been
problem which in principle can be solved by means of Fadireated dynamicallf16—2@. This was done in the case of
deev equations. There are several reasons why one wouldodels with confinemeritl6,17] by first reducing the Bethe-
like to perform Faddeev calculations in momentum space, a§alpeter equation to three-dimensional form, i.e., to the Sal-
we will discuss shortly. The main difficulty, however, in per- peter equation and then transforming the equations to con-
forming three-quark calculations in momentum space is thdiguration space. In the case of models without confinement
confining potential that goes to infinity wher-« so that [18-20, which are all based on the Nambu-Jona-Lasinio
the Fourier transform of the potential does not exist. This haghodel[21], the interaction is of separable form so that the
led to the result that all existing Faddeev calculations of thd3ethe-Salpeter equation for three particles reduces to an ef-
baryon spectrum have been performed in configuration spadgctive two-body Bethe-Salpeter equation.

[3—6]. In the constituent quark model, however, the mass of In Secs. lI and Il we will present the nonrelativistic and
the u and d quarks is about one-third of the mass of the relativistic Faddeev formalisms, respectively, and in Sec. IV
nucleon which is of the same size or even smaller than th&e Wwill describe our method of solution. Finally, in Sec. V
excitations appearing in the spectrum so that relativistic efwe will discuss the results and conclusions.

fect is not expected to be negligible. This means that for the

calculation of the spectrum, one would like to use a relativ- Il. NONRELATIVISTIC FADDEEV FORMALISM

istic generalization of the Faddeev equatipiis15], which

in turn requires that one works in momentum space.

One usually calls relativistic Faddeev equations to those
sets of equations for the three-body problem, which starting
from a fully relativistic four-dimensional theory are reduced
by some approximation to three-dimensional form. Thus
these equations have the same degree of complexity as the
nonrelativistic Faddeev equations. The first attempts to in- 1
clude relativity into the Faddeev formalisfy—10 were Go(E)= .
based on the method introduced by Blankenbecler and Sugar ° E— k§/2m, — k3/2m,— k3/2my
[8]. In this approach, a four-dimensional version of the Fad- . .
deev equations is obtained by summing ladder-type diagran{\éIaklng the Faddeev decomposition
in which three particles propagate. These equations are then _
reduced to three-dimensional form by introducing a three- ¥)=1¢2)+]¢2)+[$3), ®
particle propagator that eliminates some of the fourth comy pare
ponents of the momenta while keeping two- and three-body
unitarity. A second approach that comprises the work of |1y =Go(E)Vi| ), (%)
Refs.[11-13 consists simply of putting all spectator par-
ticles on their mass shells, which again leads to threeone gets the Faddeev equations
dimensional integral equations. A third approach that was
developed in Refq.14,15 starts from a form of field theory |#i)=Go(E)tL(E)[| b)) +|di)], (5)
in which the three particles are kept on their mass shells at
every stage[15], and therefore, it is a three-dimensional where t;(E) is the solution of the Lippmann-Schwinger
theory from the very beginning. It is thus a straightforwardequation

The Schrdinger equation for three particles is
|)=Go(E)[V1+ Vot Vs[4, 1)

where we have defined the propagator for three free particles

2
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ti(E)=V;+VGo(E)ti(E). (6)

In the overall c.m. systetk, + k,+ks=0, one introduces the

relative Jacobi coordinates

: mj+mk '
»:mi(lzj'f‘lzk)_(mj'f'mk)lzi: N

Qi —ki. 8

m; +m; +my

The propagatof?) is given in terms of these coordinates as

E' 0.)=
GolEspict) E_piz/zﬂi—Qiz/ZVi, ®
with the reduced masses
.=M (10)
i mj+mk’
B m,(m] + mk)
N m o me (D
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(pi-aqilVilp/ -afy=8(qi—a")- Vi(pi ,pi") (16)

with

- 1 T
Vi(Pi,pi')I(ZT)af drePi'v(r)e Pt (17)
Substituting Eq(16) into Eq. (15) leads to

(pi-qilt(E)|p; -a;)

=58(0i—q)t(p;i,pi s E—q¥/2v), (18

Whereti(ﬁi ,5i’;E—qi2/2vi) obeys the integral equation

ti(pi ,pi’ s E—a?/2vy)
=Vi(p; ,5i')+f dp"Vi(pi,pi")Go(E; P/ )
Xt(p".pi'; E—q?2v)). (19

Substituting Eq.(18) into Eq. (14) and following Ref.

Let us assume for the moment that the three particles ha"[‘%Z], the Faddeev equatiofis4) can be projected into partial

no spin or isospin(we will include these variables lajer
Then the basis states afg;-G;), wherep; andq; are the

waves as

relative Jacobi momenta defined above. They are normalized p;q; ;€;\;| #F) = Go(E;p;iq;)

as
(pi-ailp{ -al)=(pi—p{)- 8(ci—ay) (12

and satisfy the completeness relation
12] dp;-dailpi- gi){(pi- Gl (13

Using these basis states the Faddeev equatidntake
the form

<5i'ai|¢i>:GO(E;piQi)j§i f dﬁi"dai'dﬁj'dai

X(pi-Gilti(E)|pi" - ai’ Yp{ -q/ |p;- ;)
X(p;-ajl ;).
where from Eq.6), the two-bodyt-matrix obeys

(14

(pi- Gilt(E)Ip] -al y={(pi- il Vi|p{ -a])
+ f dp”-dq{p;-qii| Vilpi"- af)
X Go(E;p/ai)(pi"- a/|ti(E)|p; - q/).
(15

The matrix elements of the potential are given by

x> > f pi2dp/ pidp;q’do;
J#I (fj)\j
Xti€;(pi,p{ ;E—0f12v;)

X(p{ i ;€iNi|p;a;: €N j)(P;q; ;€j)\j|¢jL>.
(20)

where¢; is the orbital angular momentum of the pgkr, \;
is the orbital angular momentum of partidlevith respect to
the pairjk, andL is the total orbital angular momentum.

The two-body amplitude;¢; is given by the solution of
the partial-wave integral equation

t.€i(pi. Py JE—qf/2v)
=Vi(pi.pi)+ foocpiﬁzdpi”vi(pi i)
X Go(E;p'ant, €i(p{,p{ E—af/2) (21)
with
Vi(pi,pi)= %f:ﬁzdrijei(piri)Vi(ri)jei(pi’ri)- (22)

The recoupling coefficient between the partial-wave states
i andj is given by[22]
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N
o= o+ |

If there are no tensor or spin-orbit forces the Faddeev

i) qI +—q|qjcosa (30

i

qJ q,q]cose (31

><0[1—cosz(ﬁi ’5i,)]’ 23) equations(29) can be generalized to include the spin and

where g is the Heaviside function and

1
€, i O GnL
PP = 5T 2, Comiom

Nl
]
><c:m M= m Mrfimir)\iM*mi

Xngij)\jM_mjcos{— M(ﬁj ai)

—mi(qi,pi )+ m(a;,p)] (29

with T'y,=0 if €—m is odd and

(—)EM2J2¢+1)(€+m)!(£—m)!

Fem= 2 (€+m)/21[ (€ —m)/2]!

(29)

isospin degrees of freedom as
(Pig ;€N STil 65T

—Go(Ep) S zj d cosd

3 €)\ST
X Jo qudqjtieisi-ri(pi i E

—q?2v) AN N(plaipyay)
X(STiIS Ti)st(Pia; 1 €N S Ti| 55T, (32)

whereS; andT; are the spin and isospin of the p#ir, Sand
T are the total spin and isospin, and

(STIST))st=(—)5" 77 5{(2S+1)(2S;+1)

if {—m is even. The anglesﬁ(,&i), ((ii ,ﬁi’), and ((ij ,|5J-) XW(o0.So S S
can be obtained in terms of the magnitudes of the momenta (070, S01:5S)

by using the relations

X(=)TF57T(2T+1)(2T;+1)

N N . XW(T'TkTTi ,TlT), (33)
B/ =—Gj— i, (26) ’ '
K whereg; and r; are the spin and isospin of partidleandW
_ is the Racah coefficient.
5j:ai+ %&1 ’ (27) For a given set of values dfST, the integral equations

whereij is a cyclic pair.

The integration ovedp; in Eq.(20) can be eliminated by ..

(32 couple together the amplitudes of the different configu-
rations {€;\;S;T;} with (—=)%*S*Ti=1 as required by the
Pauli principle, since the wave function is color antisymmet-

using thed of energy conservation that appears in the recou-

pling coefficient(23). Similarly, using Eq.{(27) we have

7j > > 7j
depj:#k%q]'dcos(qj',Qi)EHLCquJ'dCOSG, (28)

so that Eq.(20) can be written in the final form

11
(Pitli s €iNi| ¢1) =Go(E;pici) 2 2, Ef_ld coséd

IE AN

i
X : »2d i
fo a7ca;

Xt ¢i(pi.p{ ;E—q?2v;)

CiNg €N

X AN (Pl aip;a)(pid; €Nl ),

IIl. RELATIVISTIC FADDEEV FORMALISM

We will base our formalism on the theory proposed by
Kadyshevski15] and Vinogradoy 14|, where the three par-
ticles are kept on their mass shells at every stage.

If we replace the nonrelativistic kinetic energy operator
by the corresponding relativistic expression, the Sdimger
equation(1) becomes

[)=Go(Wo)[V1+ Vot Vs]|9), (34)
whereW is the invariant mass of the system and

1

Go(Wp) = Wo— @1(Ky) — 05(Ky) — w3(Kz)

(39

with

(29

where from Eqs(26) and(27) we obtain

wi(kj)=\m?+ k2. (36)
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Following the same steps as in E¢B)—(6), one obtains the J o(p;)
B 1:

Faddeev equations 8W,(pigi) @i (i) @j(pi) wi(Pi)

| i) =Go(Wo) ti(Wo)[| ) + [ di)] (37) xdp;-dai|pi- G){pi - Gil. (46)
with —

We will also consider statdg; - g;) that are normalized simi-
t;(Wo) = Vi +V;Go(Wp)t;(Wp). (38 Jar to the nonrelativistic stated?2) and(13), i.e.,
In order to introduce the relative momenta, we will as- — S e o
sume that the three particles are in the c.m. system, i.e., (pi-ailpi-di) = 8(pi—p{) d(di—qy), (47
|21+l22+|23:0. (39) > - T = T
1:J’ dp;-dgi|pi-gi){p;-ail - (48)

The relativistic analog of the Jacobi momeffaand(8) are

the momentep; andgq;, wherep; is the relative momentum ¢ js clear from Eqs(45)—(48) that the two sets of states are
of the pairjk measured in the c.m. frame of the pé@hatis, (gjated to each other as

the frame in which particlghas momenturp] and particlek

has momentum-p;), andq;= —k; is the relative momen- - - [8WipiaD wi(g) o (p) wk(p) [MEm—
tum between the pajk and particleée measured in the three- Ipi-ai)= w(p)) |pi- i)
body c.m. framethat is, the frame in which the pajk has (49
total momentuny; and particlei has momentun’rﬁi). The
invariant energy of the three particles,(ky)+ w,(K») Using the basis staté45) and(46) the Faddeev equations
+ ws(ks) can be written in terms of the relative momepta  (37) are written explicitly as
andgq; as ..
(pi- Ail i) =Go(Wo; pidhi)
W(p;igi) = W;(p;di) + wi(d;), (40) ,
where 7 J 8Wi(p/a)wi(a))w;(p])wk(p)
Wi(pid) = Vo’(p) +af (4D < dpy - dd’ (p))
' ' 8W,(p;q;) w;(d;)) w(pj) wi(p;)

and
xdp;-dai(p;- qilti(E)[pi"-ai")

o(p))=m? +pf + Mg+ pi=w;(pi) + w(p).  (42)

o . L X(pi' - i’ [Py a;)(Pj - djl ). (50)
The invariant volume element for three particles satisfying
the condition(39) can be written in terms of the correspond- \yhere
ing volume element for the relative momenta as
. - _ 1
dk dk dk L. Go(Wy;pidi)= o——7—, 51
LSS Rkt Ko) oWoiPidh) = o~ Wipia) (5D

2w1(Ky) 2wy(Ka) 2w3(K3)
w(p)) . and the two-body-matrix Eq.(38) is also written explicitly
= d Pi: dq| . (43) as
8W;(pig;) wi(q;) w;(pi) wi(pi)

Therefore, if the single-particle states are normalized invari{p;-di|t(E)|p;’ - q/)
antly on the mass shell, i.e., . S
=(pi-qilVilpi"-a)

(Kil k) =2w;(k;) (K = K)), (44 ,
+j o(p;)
then the basis statép;-g;) are normalized as 8W;(p{ai) wi(a) w;(p}) wk(p;)
- e -, BWi(pig) @i(g) @i(p) oK(pi) xdpy"-d(p;- 4| Vilpi"- 6} )Go(Wo: pia)
(pi-gilpi -qf )= w(p;) - I
e .. X(pi"-q/[t(E)|pi"-qf). (52
X 3(pi—pj)d(di—ay), (45)
The matrix elements of the potential can be obtained using
and satisfy the completeness relation Eqgs.(49) and(16) as
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(pi-ai|Vilp{ -a/)

=8w;(d;)
y Wi (pig;) wj(pi) k(P Wi(p{ ai) @ (p]) w(p;) 12
w(p)o(p)
X 8(0i— 0 )Vi(pi.pi’), (53)

whereV,(p;,p;’) is given by Eq.(17). Substituting Eq(53)
into Eq. (52) we get

(pi- Qi ti(Wo)|p; -a; )

=8w;(q;)
y Wi(pia;) @j(pi) ok(P)Wi(p{ di) o;(p; ) wk(p]) 2
w(p)o(p)
X 8(0i—ai’ )(pil ti(Wo:a)[ Py ), (54)

where(5i|ti(W0;qi)|5i’> satisfies the integral equation
(Pilti(Wo;a)[pi")
=Vi(p; ,5i’)+f dpi"Vi(pi,pi") Go(Wo; P/ i)

X(pi"|ti(Wo; 0| pi")- (55)

If one substitutes Eq54) into Eq.(50) and makes the trans-

formation

- - Wi(pia) oj(p) ow(p) |2 - -
<pi'qi|¢i>:[ pqw(,pi[; <P } (Pi- qil i),

(56)

one can project into partial waves in exactly the same form

as done with Eq(20) to get

(pidi s ini] )
=Go(Wop;pidi)
o(p{)W;(p;a;) wk(p;) ®i(p;) 2
XJ; €j§>;j Wi(pi di) w(p{) o (p{) @(pj)
Xpi, w(pj)

2dp/ 24 n.g?
P 8Wj(quJ')wj(Qj)wk(pj)wi(pj)p' Pif
xda;(pilt.€;(Wo;a)[pi)

X (P g CiNilpia; €N Py N 4y), (57)

where the partial-wave two-bodymatrix is the solution of
the integral equation

PHYSICAL REVIEW C 67, 055203 (2003
<Pi|tfi(WoiQi)|I0i,>
=Vi(pi.p{)+ fo pi2dp{'Vi(pi . p}) Go( Wo; pi'd;)

X (p![t(Wo;q:)|p/) (59)

with V;(p;,p;) defined by Eq(22). The recoupling coeffi-
cient between the partial-wave statesnd | is given by
[23,24

CCHAN AN
_4w(pi)o(p))
Pi 4iP;q;
X o[ W(pia) —W(p;a)]16[ 1 cos(q; .p;")].
The angular functiomii)\i e‘m"(pi’qquj) is defined by Eq.

(24), where the relative angles between the vectors must now
be calculated fronj25]

AN €\ (P gip;a))

(59

- -

!

p; =0+ ;i(0;0;c0s6)q; (61

with
W2 —qf +m?—mg +2;(a) VW2~ g7

2VWE = af W+ VW~ ]

aij(g;q;cosp) =
(62)
W} =g+ mf —mi+ 2w;(0) VW — ]

2\/W12—qj2[wj + \/sz—qu]

@;ji(g;q;cosp) =

(63
and
Wi = w;(q)) + ok(dk), (64)
W= w;i(a) + @), (65)
k(g =M + g7+ g + 20;cosf. (66)

The integration ovedp; in Eq. (57) can be eliminated by
using thed of energy conservation that appears in the recou-
pling coefficient(59). Similarly, from the relation

W;(pja;) = Vm?+af + Jmg+ a7 +af +2qq;cos6, .

one obtains

.:Wj(quj)wi(pi)wk(pj)
J wz(pj)wk(qk)

pjdp q;q;d cos®, (68

so that the relativistic Faddeev equatidb3) take the final
form including the spin and isospin degrees of freedom
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(piq ;fiKiSiTiniLST) and, therefore, it is more sensitive to the behavior of the
interaction at high momenta, which corresponds to its behav-

11 ior at small distances.
ZGO(WO'piqi); (j}%-T- Ejildcosa In order to see the high-momentum behavior of the three-

o body equationg32) and (69), let us consider, for example,

« f“q_qu_ the case of S waves where Aii)\i{j}\j(pi/qiquj)
o Y wj(gj) k(g =A%p/q;p;gi)=1. If we go to the limitq;=q;— it is
0 JH) J
, , ' 1172 easy to see that
X[Wi(pi A @;(p)) w(p; )}
w(p) 1 Wi(pi’qi)wj(pi,)wk(pi,)}1/2
[Wj(piqj)wk(pj)wi(pj)rlz ;(9j) @k(q) w(p/)
o(p;j) y Wj(ijj)wk(pj)wi(pj)rlzwq_o 75
. [
(Pt ST (Woia)|p) «(Py)
XA N €N (plaipiy) so that again the behavior at high momenta is determined by
L the propagato6,. Thus, also in the case of the three-body
X(STi|ST))srpid; ;€N ST | 45T, (69)  €quations, the relativistic Faddeev equation falls down more
] SRS slowly than the nonrelativistic one at high momenta and,
where from Eqs(60) and (61) therefore, it is more sensitive to the high-momentum behav-
ior of the interaction which corresponds to the behavior of
p/= \/q12+ aizj(QiCIjCOS@)QiZ+ 2aj;(q;q;cosh)q;q;cosd, the interaction at small distances.
(70)
N , IV. THE METHOD OF SOLUTION
i=V0qi t aj(g;q;cosf)q; + 2a;;(g;q;c0sH)q;q; COSE.
PN i1, )9 i1 )i, (71) The problem with confining potentials of the form
If we take the nonrelativistic limit, it is easy to see that Ve(r)=br", n=1.2, etc, (76)

i is that the Fourier transform of the potential does not exist
“ii(QiquOSG)_’E’ (72 gince Ve— whenr—. Therefore, we will replace the
potential(76) by the finite potential

aji(qiq;cosﬁ)ﬂ%, (73 b(r"-R"), r<R
‘ ViD= 0, r>R (77

so that Eqs(60) and(61) become(26) and (27) and conse-
quently Eqs(70) and(71) become(30) and (31). Similarly, ~ for which the Fourier transform is well defined. The Sehro
in this limit the relativistic propagato(51) reduces to the dinger equation for three particles interacting with one an-

nonrelativistic propagatai©) and other through the potenti&V6) is
1 Wi(pi’qi)wj(p{)wk(p{)}1’2 Ki KK
; + + +Ve(ry)+Ve(ry)+Ve(rg) ||V
wj(q])wk(qk) w(pl ) 2ml 2m2 2m3 C( 1) C( 2) C( 3) | C>
12 =Ec|¥c), (78)

X W;(p;d;j) k(pj) wi(pj)
w(pj)

—1, (74)

wherek; is the momentum operator of partidlandr; is the
so that the relativistic Faddeev equatit®9) becomes the relative coordinate between particlesand k. The Schre
nonrelativistic equatiorf32) and the relativistic Lippmann- dinger equation for three particles interacting with each other
Schinger equatiof68) becomes the nonrelativistic of21).  through the potential77) is, on the other hand

It is also interesting to consider the behavior of the inte-
gral equations at large momenta. Let us start with the two-[ ki k3 k3
body equations. The nonrelativistic Lippmann-Schwinger | 5y, * 2m2+2m3+V(r1)+V(r2)+V(r3) | V) =E[¥),
equation(21) differs from relativistic equatiori58) only in (79)
that the propagatdB, is given in the nonrelativistic case by
Eq.(9), so thatGy(E;pjq;) ~p/ 2 whenp{—. Inthe rela-  so that in the limitR— Egs.(78) and(79) are equivalent,
tivistic case, howeverGy is given by Eq.(51) so that provided that the eigenvalues are related as
Go(Wo:p!'ai)~p! ! whenp!— . This means that the rela-
tivistic equation falls down more slowly at high momenta Ec=E—-3bR". (80
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Thus, our method comprises solving the three-body problem

with the potential77) with R sufficiently large such tha
given by Eq.(80) does not change appreciably K is in-

creased further. A momentum-space method, based on ideas
similar to ours for the two-body problem with singular po-

tentials, has been developed in Rdf&7,28 and applied in
Ref.[29] to the meson spectrum.

PHYSICAL REVIEW C 67, 055203 (2003

BoR(yiy; i E) T2 J d cosé

1 1+y;
Py, }

XBP(y;.y; ,cosa;E)Pm(xj).

I .

Xt % E

(89)

In the particular case of the nonstrange baryons where we
have a system of three identical particles, the Faddeev equa- In order to carry out the expansion in Legendre polyno-

tions (32) can be cast in the form

T(pidi;E) Ef dcosﬁf dgt*(p;,p{ ;E—q%/2v;)

B*?(q;,q;,cos6;E)TA(p;q;;E), (8
where « stands for the quantum numbefs\;S;T,;. If we
make the change of variables

_b 1+X; 82
pi - 1_Xi ’ ( )
1+y;
b——, 83
ai=b— (83

whereb is a scale parameter, E1) becomes

2b
oy, 2

To(xy; E)= Zf dcosaf v

E 1 b1+yI
XX B PIy,

X B“®(y; ,y;,cos8;E)TA(x;y;;E), (84)

Xt

where the variableg; andy; run from —1 to 1, therefore,

mials (85), we use the transformatio(82) to write the
Lippmann-Schwinger equatia21) as

one can expand the two-body amplitude in terms of Legyith

endre polynomials a26]

04X 18)= 2 PO je), (85)
so that the three-body amplitude is of the form
T B)= 2 PO TH(y: E). (86)

Using Eq.(86), Eq. (84) reduces to the set of integral

equations in one variable
1
Talyi ?E):% fﬁldijgr/‘ri(yi i E)TE(y;;E) (87)

with

t( )=V )fl 1+X”2 2b
(X ,X{ ;8) =V, X )+
P b —1l 1-x) (1—x)2
Xdx' V(i ,X{)Gole;xi )t (X ,X{ ;e).
(89
If we expand the potential as
Vo4 X =20 PO VR(X), (90)
where
o 2n+1 (1 ,
Vﬂ(xi ): 2 f—ldXi Pn(XI)Va(Xl lXi )l (91)
then the two-body amplitude is of the form
(X, X/ ;e)=§ Pa(X)tr(x ;e), (92)
and Eq.(89) reduces to the set of linear equations
to(x/ ;e):vg(x()+% a% (e)rtd(x ;e (93
) fl p X 2
an(e)=
nk 1 1_Xin (l_XiH)Z
X dX' V(X ) Go(e; %) Pr(X{"). (94

Since in the potentidl77) one must tak® large(typically
R~12 fm), the momentum-space representation of this po-
tential V(p;,p/) is a function that oscillates very rapidly.
Therefore, in order to get an accurate representation of the
potential by means of the Legendre expansi@b), it is nec-
essary to include a large number of polynomiale use 200
Legendre polynomiajsand a similarly large number of inte-
gration points in the integral®1) and(94). However, in the
solution of the three-body equatio(®&7) where the functions
ty (X ;e) enter as input, one needs a much smaller number of
Legendre components to reach convergence. We found that
one needs at most 13 Legendre components in order to reach
convergence.
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TABLE I. The masses of the nucleon and delia MeV) ob- T T T
tained from the potential95) for both the nonrelativistic and rela- 1500 - i
tivistic Faddeev equations including only the three-body configura- L __A
tions with ¢;=\;=L=0. =

Theory My Ma MAr—My

Nonrelativistic 1058 1332 274 _
Relativistic -1071 1159 2230 1000 - ]

eV)
~
~

This is the advantage of a Faddeev formulation, where thes ;
input of the three-body equations is not two-body potentials , /
but two-bodyt matrices, which have been obtained by solv- & 5oL 1 i
ing already an integral equation so that they contain all the /

information on the energy dependence of the two-body sub-
systems. This energy dependence is much smoother than tr
momentum dependence of the potential so that a few term:
suffice to represent it. Also, one should notice that in the
calculation of three-body bound states what matters is the 0
energy dependence of the equations, since bound states a
poles in the variablé.

We replaced the integral in EG87) by a Gauss quadra-
ture and found that the number of integration points required
is of the order of 30—35. We took for the scale parambter -500
=2 fm~L. In the case of the relativistic model, however, one 0.1 03 05 0.7 0.9
needs to useSb=10 fm 1, since in that case the equations r

: . o (fm)
effectively extend further out in momentum space.

Our method is very stable since, for example, the mass of giG. 1. The masses of the nucleon and Delta, as functions of the
the nucleon changes by less than 1 MeV when we \Rry parameter, for the nonrelativistic(dashed linesand relativistic
between 8 and 14 fm. We performed all our calculations with(slid lineg theories.

R=12 fm. Some applications of the nonrelativistic formal-
ism have already been presented for the case of the chirat337 MeV. Using this interaction in the Feshbach-Rubinow

Mas

N N

I
I
!
!
|
Lo 4

!

|

|

!

I

!

1

quark cluster mod€l30,31]. variational method[32], Bhaduri et al. obtained for the
masses of the nucleon and Deldy=1052 MeV andM ,
V. RESULTS =1354 MeV. In order to compare with these results, we

_ o _ _ have calculated the nucleon and Delta masses considering
In this paper, our main interest is to explore the impor-gnly the three-body configurations where all orbital angular
tance of relativistic effects. Moreover, since relativistic ef- momenta ares waves. We show these results in Table | for
fects will be the largest for those systems that are composegbth the nonrelativistic and relativistic theories. Our results
of the lightest quarks, we will restrict our study to the non-fgr the nonrelativistic theory are in good agreement with
strange sector that involves ornlyandd quarks. In addition, those of Ref. [2], since the accuracy of the Feshbach-
the u andd quarks differ only in their isospin projection, S0 Rupinow method is about 20 Mef2]. As it appears from
that we have a system of three identical particles and thenjs table the relativistic effects are very large, particularly
Faddeev equations32) and (69) which couple the three for the nucleon, and they lower the masses. The nucleon

components of the wave fU”CtiO_ﬁ’g'ST_ or 75T with i mass is lowered by 2129 MeV, while the Delta mass is low-
=1,2,3 will become a single equation since all three compoered by 173 MeV so that the mass splitting which is 274
nents are equal. MeV for the nonrelativistic theory increases to 2230 MeV for

We will take for the quark-quark interaction the potential the relativistic one, i.e., to about eight times the experimental
proposed by Bhaduri, Cohler, and Nogaf@], which is  value of 292 MeV. From the results of Table I, one may
known to give a reasonably good description of the baryortonclude that a relativistic description of the baryon spec-
spectrum within a nonrelativistic framewofR,3]. This in-  trum based on the potentig5) would not be possible. This,

teraction has the form however, is not the case as it will be shown below.
The large sensitivity to relativistic effects shown in Table
-k kK 1. - I, as we will see next, is due to a particular feature of the
Viri)=5|——+ 227D+ — ——e 1700} oy ; : - : i
2/, a m< rgr; interaction at short distances. The last term of the interaction

(95 (95 contains a smeared-odtfunction with smearing param-
eterry. The 6 function must be smeared-out otherwise the
with «=102.67 MeV/c, a=0.0326 (MeV 'fm)*?, D  mass of the nucleon would collapse-tae whenr,—0. We
=913.5 MeV, ry=0.4545, and the mass of the quatky  show this effect in Fig. 1, where we plot the masses
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TABLE II. The masses of the nucleon and delta MeV) in-
cluding all the three-body configurations withand\; up to 5. The 1000 — U
nonrelativistic results correspond to the potent®d) and the rela- ] ===
tivistic results correspond to the potenti&@b) with the parameter s _ %
ro=0.74 fm. i . T , _
s — i
Theory My M, My—My 2 o0 — AT
Nonrelativistic 1025 1331 306 = &an —— T
Relativistic 780 1072 292 400
of the nucleon and delta as functions of the parametdor 0

N %Y N % N 327 N 527 A3t AW A 372

both the nonrelativistic theorfdashed linesand the relativ-
istic one (solid lineg. As one can see from this figure the  FIG. 2. Nonstrange baryon spectrum for the interacti®s)
inclusion of re|ativity produces two main effects: first of all, obtained from the nonrelativisti€dashed lines and relativistic
as already noticed, it lowers the masses of the baryons ar{golid lines theories as explained in the text.
second, it raises the values of the paramegeait which the
mass of the nucleon would collapse to large negative values We show in Fig. 2 the excitation energy spectrum ob-
from ~0.15 fm for the nonrelativistic theory te-0.45 fm  tained using both the nonrelativistic theofglashed lines
for the relativistic one. Thus, while,=0.4545 is a reason- and the relativistic model withy=0.74 fm(solid lines. As
able value for the nonrelativistic theory, it is not so in theit can be seen from this figure, the description provided by
case of the relativistic one where instead the valug pf the relativistic model is of similar quality to that of the non-
should be of the order of 0.7 fm in order to get the correctrélativistic one and in some respects even better. For ex-
excitation energy. ample, the spacing between the positive parity states is now
The behavior of the nucleon mass in the relativistic theorymore reasonable and the ordering between the positive and
is a consequence of the fact that this theory is more sensitiveegative parity statebl(1440) andN(1535), which is in-
to the form of the interaction at short distances as we havi&erted in both theories, has a smaller discrepancy in the case
shown in Sec. IIl. That is the reason why the pathologicalof the relativistic model.
effects produced by thé function appear in the case of the ~ Notice that the essential parameters of the intera¢8n
relativistic theory much soonei.e., at larger values of,)  are the strength of the one-gluon-exchange potefitial pa-
than in the case of the nonrelativistic one. rameterx) and the slope of the confining potentighe pa-
If we include all three-body configurations with andx; ~ rametera), which we have not touched. The parameler
up to 5 and take for the relativistic theory=0.74 fm, we fixes the overall scale of the spectrum but it has no effect on
obtain for My and M, the results given in Table II. Our the excitation energies, and the parameteis necessary in
results for the nonrelativistic theory are in very good agreeorder to avoid the collapsing of the nucleon mass. Thus, we
ment with those of Ref[3]. In both the cases the excitation conclude that using the potenti@) in a relativistic theory
energy is close to the experimental value of 292 MeV. Thdeads to a similar or somewhat better description of the
mass of the nucleon comes out above the experimental vallRaryon spectrum.
for the nonrelativistic theory and below it for the relativistic
one. This problem can be solved by changing the parameter
D in Eqg. (95) to 970 MeV in the nonrelativistic case and 807
MeV in the relativistic one. Of course, the paramediehas This work was supported in part by COFAA-IPN
no effect on the excitation energies. (Mexico).
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