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Effective theory of the D„1232… resonance in Compton scattering off the nucleon

Vladimir Pascalutsa* and Daniel R. Phillips†

Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701
~Received 4 December 2002; published 7 May 2003!

We formulate a new power-counting scheme for a chiral effective-field theory of nucleons, pions, andDs.
This extends chiral perturbation theory into theD-resonance region. We calculate nucleon Compton scattering
up to next-to-leading order in this theory. The resultant description of existinggp cross-section data is very
good for photon energies up to about 300 MeV. We also find reasonable numbers for the spin-independent
polarizabilitiesap andbp .
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I. INTRODUCTION

Compton scattering on the proton (gp) and the deuteron
(gD) provides a clean and unique probe of nucleon elec
magnetic structure, revealing information different to th
obtained in electron scattering. During the last decad
number of excellent experimental programs have been d
cated to these two processes~see Refs.@1–5# and @6–10#,
respectively!. At low photon energies, these experimen
probe the static properties of the nucleon, such as its ele
charge, magnetic moment, and polarizabilities. Above
pion-production threshold, the process becomes domin
by the excitation of resonances, most prominently
D(1232) isobar. Many theoretical methods aim at und
standing this process in both the low-energy and the re
nance region. In particular, significant progress has b
made recently using dispersion relations@11,12# and effec-
tive Lagrangian models@13–15#. On the other hand, previ
ous calculations using chiral perturbation theory (xPT) ap-
pear to work only at low photon energies—energies at
below the pion-production threshold@16,17#. This present
study attempts to extend thesexPT calculations above th
pion threshold and into theD-resonance region.

In the low-energy regime,xPT seems to work extremel
well. At next-to-leading order~NLO!, i.e., third order in
small momenta@5O(q3)#, heavy-baryon~HB! xPT for the
electric and magnetic polarizabilities predicts@18,19#:

ap5an5
5pa

6mp
S gA

4p f p
D 2

512.231024 fm3, ~1!

bp5bn5
pa

12mp
S gA

4p f p
D 2

51.231024 fm3, ~2!

where a5e2/4p.1/137, gA.1.26, f p.93 MeV, andmp
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.139 MeV.1 Since there are no Compton counterterm
present atO(q3), this is a genuine prediction ofxPT—a
prediction which, at least for the proton, is in remarkab
agreement with recent extractions of these quantities fr
low-energy data, e.g., Ref.@20#:

ap5~12.161.160.5!31024 fm3, ~3!

bp5~3.261.160.1!31024 fm3. ~4!

Here the first error is statistical, and the second one re
sents the theory error of the fit to data.

However, the agreement of the NLO HBxPT prediction
with the experimentalgp cross-section data is good only u
to photon energiesv.100 MeV @16#. The recent NNLO
@O(q4)# calculation@17# agrees with experiment to slightl
higher energies, but abovev.120 MeV significant discrep-
ancies begin to appear, most notably at backward ang
This is perhaps not surprising, since theD-isobar excitation
is not included explicitly in this chiral expansion. And, as w
shall argue, the breakdown scale ofxPT without an explicit
D is set essentially by theD-nucleon mass difference:

D[MD2MN'293 MeV. ~5!

Thus, to extend the region ofxPT applicability tov;D, the
D must be included as an explicit degree of freedom.

The D contribution for the Compton amplitude had a
ready been analyzed using chiral effective Lagrangians w
explicit Ds in Refs.@21–23#. These studies focused main
on nucleon polarizabilities. The predictions made in Re
@19,21,22# are obscured by off-shell ambiguities, in partic
lar by the so-calledoff-shell parametersthat control the in-
famous spin-1/2 sector of the spin-3/2D field. In a ‘‘reason-
able’’ range for these parameters theD contribution tobp

(D)

varies between 0 and 1431024fm3 @22#. In contrast, Hem-
mert et al. @23#, to next-to-leading order in theirsmall scale
expansion~SSE! @24#, found a result which was independe

1Throughout this paper the designations LO, NLO, etc. refer to
order in the gN amplitude. These one-loop results are, stric
speaking,leading-orderpredictions forap andbp , but we refer to
them as next-to-leading order~NLO! since Eq.~1! is derived by
considering the NLO result for the nucleon Compton amplitude
©2003 The American Physical Society02-1
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of the off-shell parameters, and thus is apparently a relia
prediction. But this prediction for theD contribution to the
magnetic polarizability isbp

(D)'931024 fm3, in dramatic
contradiction with experiment@25#. ~For an attempt to rem
edy this using a ‘‘modified SSE,’’ see Ref.@26#.!

In this work we include theD in the chiral Lagrangian in
a fashion somewhat different to this literature. First of all, t
Lagrangian is written such that the unphysical spin-1/2 co
ponents of theD field decouple from observables@27,28#,
hence no off-shell parameters appear. This feature of
Lagrangian, besides removing the redundant parameters
lows us to dress theD-pole contribution in a manifestly co
variant way.

Furthermore, we set up our power-counting scheme
that it is both closely connected to the usualxPT without
explicit Ds in the low-energy regionv;mp , andextends to
the D region v;D. This is achieved by recognizing th
hierarchy of scales:

mp!D!L;1 GeV, ~6!

whereL stands for the ‘‘high-energy scale,’’ the breakdow
scale of the theory. Therefore, our scheme is rather diffe
from the SSE of Refs.@23,24# ~see also Ref.@29#!, where the
D-nucleon mass difference is assumed to be of ordermp

~i.e., D;mp). A more detailed comparison of our schem
and the SSE will be given below.

With the three-scale hierarchy~6!, one in principle has
two small expansion parameters:mp /D andD/L. We regard
both of them as roughly the same size, and so introduc
single small parameter:

d5
D

L
;

mp

D
. ~7!

Note that this implies thatmp scales asd2.
The validity of the scale hierarchy~6! and the expansion

in powers ofd ~which we shall refer to as thed expansion! is
to be judged by the success of the resultant effective-fi
theory ~EFT! description of processes involving the excit
tion of D. We regard the results we shall present here forgp
scattering as significant evidence in favor of this EFT exp
sion.

To obtain the NLO result forgN scattering in our schem
for both the low-energy and theD regions, theD-pole con-
tribution to this process must be dressed, and then adde
the NLO HBxPT result. This introduces two free paramete
that characterize the strength of thegN→D transition,gM
andgE . Adjusting these parameters we find very good agr
ment with the experimentalgp differential cross section up
to v'300 MeV, thereby extending the domain of applic
bility of chiral EFT into theD region. At the same time we
also find reasonable values for the nucleon polarizabilitie

In the following section we introduce the Lagrangia
for theD and discuss its properties. Section III then descri
the d expansion for Compton scattering on the proton.
particular, we show that forv;mp the power counting
is very similar to that of HBxPT, while forv;D the power
counting mandates resummation of theD propagator, there-
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by dressing theD and giving it a finite width. In Sec. IV
we summarize the elements of our calculation, and then
Sec. V we present and discuss the results of our NLO ca
lation for the differential cross section, as well as for t
spin-independent polarizabilitiesap , bp . We conclude in
Sec. VI.

II. THE CHIRAL LAGRANGIAN

The pion-nucleon sector of the HBxPT Lagrangian is
well discussed in the literature, see e.g., Ref.@19#. The terms
relevant for our purposes are2

L5 1
2 Dm

abpaDmbcpc2 1
2 mp

2 p21N̄F ig•D2MN

2
gA

2 f p
~g•Dpa!tag51

k

4MN
gmnFmnGN

2
e2

32p2f p

FmnF̃mnp31•••, ~8!

wherepa represents the isovector pseudoscalar pion fieldN
is the isodoublet spinor field of the nucleon,ta are the isos-
pin Pauli matrices,Dm5]m2 ieQAm ~with Q representing
the electric charge isospin operator@Qp52 i«ab3, QN
5 1

2 (11t3)] !, Am the electromagnetic field,Fmn5]mAn

2]nAm , F̃mn5 1
2 «mnabFab , and k is the anomalous mag

netic moment of the nucleon (kp.1.79, kn.21.91).
Next we specify the terms involving theD field. Describ-

ing theD field by an isospin-3/2, spin-3/2 Rarita-Schwing
~RS! vector spinorDm(x), we write theD piece of the chiral
Lagrangian in the following form:

L5LRS1LpND1LgND1•••, ~9!

LRS5D̄m~ igmna]a2MDgmn!Dn , ~10!

LpND5
ihA

2 f pMD
N̄Ta

†gmnl~]mDn!]lpa1H.c., ~11!

LgND5
3e

2MN~MN1MD!
N̄T3

†~ igMF̃mn2gEg5Fmn!]mDn

1H.c. ~12!

These are the free spin-3/2 Lagrangian, and thepND and
gND couplings, respectively. HereTa are the isospin-1/2–
isospin-3/2 transition matrices satisfyingTa

†Tb5 2
3 dab

2 1
3 i«abctc .
We have kept only the couplings that are linear in theD

field and lowest order in the pion and the photon fields.

2Our conventions: metric tensorgmn5diag(1,21,21,21);
g-matricesgm, g55 ig0g1g2g3, $gm,gn%52gmn; fully antisymme-
trized products ofg matricesgmn5

1
2 @gm,gn#5gmgn2gmn, gmna

5
1
2 $gmn,ga%5 i«mnabgbg5 , gmnab5

1
2 @gmna,gb#5 i«mnabg5;

spinor indices are omitted.
2-2
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EFFECTIVE THEORY OF THED(1232) RESONANCE IN . . . PHYSICAL REVIEW C67, 055202 ~2003!
principle, there are many other couplings (ppNN, ppND,
gDD, etc.!, represented in Eqs.~8! and ~9! by the dots,
which are required by the chiral and electromagnetic ga
symmetries. However, they are not relevant for our calcu
tion at the order considered here.

For the purpose of power counting, we rearrange the
teraction Lagrangian according to the number of small qu
tities ~momentum, pion mass, and factors ofe) that each
term carries:

LI5(
i

L ( i ),

L (1)52
gA

2 f p
N̄~g•]pa!tag5N1

ieQpgA

2 f p
N̄g•Aptg5N

1eN̄QNg•AN1LpND ,

L (2)5
k

4MN
N̄gmnNFmn1 1

2 ~ ieQppA•]p1H.c.!

1e2Qp
2 A2pp1L gND

(gM) , ~13!

L (3)5L gND
(gE) ,

L (4)52
e2

32p2f p

FmnF̃mnp3 .

A. Spin-3Õ2 gauge invariance

It is important to note that ourND couplings, besides
being chiral and gauge invariant, are invariant under the
lowing local ~gauge! transformation of the spin-3/2 field:

Dm~x!→Dm~x!1]me~x!, ~14!

wheree is a spinor. This invariance ensures that the spin-
field has the correct number of spin degrees of freedom~i.e.,
2s1154), cf. Refs.@27,28#.

As a result of this additional symmetry, any vertex invol
ing aD field, Gm(p, . . . ), with m being the vector index and
p the 4-momentum of theD, will obey the transversality
condition

pmGm~p, . . . !50. ~15!

Using the well-known form of the spin-3/2 propagator,

Smn~p!5
1

p”2MD
F2gmn1

1

3
gmgn1

1

3MD
~gmpn2gnpm!

1
2

3MD
2

pmpnG , ~16!

it is easy to show that the spin-1/2 sector of the RS pro
gator decouples@28#, and one may equivalently use the fo
lowing propagator:
05520
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S̃mn~p!5
21

p”2MD

P mn
(3/2)~p!, ~17!

where P mn
(3/2)(p)5gmn2 1

3 gmgn2(1/3p2)(p”g” mpn1pmgnp” )
is the spin-3/2 projection operator.

As a matter of fact, it is then also possible to replace
vertices as follows:

G̃m~p, . . . !5P mn
(3/2)Gn~p, . . . !. ~18!

In this theory,G̃ andG are completely equivalent. Neverthe

less, verticesG̃ are sometimes more convenient in actu
calculations. For example, thepND vertex from Eq.~11!:

Gm~p,k!5~g/MD!gmabpakb , ~19!

whereg[hA/2f p andk is the pion four-momentum, can b
replaced by

G̃m~p,k!5~g/MD!p”P mn
3/2~p!kn, ~20!

where we have usedpmP mn
3/2(p)505gmP mn

3/2(p) . Further-
more, using P 3/2P 3/25P 3/2 and @p” ,P 3/2(p)#50,
D-exchange amplitudes are computed effortlessly, e.g.,

Gm~p,k8!Smn~p!Gm~p,k!5G̃m~p,k8!S̃mn~p!G̃m~p,k!

5
2g2

p”2MD

p2

MD
2
P mn

(3/2)~p!k8mkn.

~21!

B. Relation to conventionalD couplings

Our ND couplings are rather different from the usual on
of, e.g., Refs.@13,19,22–24#. As a rule, standard coupling
do not have the spin-3/2 gauge symmetry~14!. Exceptions
are thegND coupling of Jones and Scadron@30#, which
obviously satisfies Eq.~15!, and the couplings used by Kon
dratyuk and Scholten@15#. We have adopted the Jones a
Scadron convention for the magnetic (M1) coupling,gM , in
Eq. ~12!.

Other conventional couplings, including theG1 , G2 rep-
resentation of thegND vertex, do not have the spin-3/
gauge symmetry. As a result, they involve the unphysi
lower-spin sectors of the spin-3/2 field, and hence obse
ables become dependent on arbitrary ‘‘spin-1/2 ba
grounds’’ associated with off-shell parameters of theD.
Other pathologies~see Ref.@27# and references therein!—all
of which can be traced back to the fact that the couplin
violate the degrees-of-freedom-counting constraints of
free theory—also occur in these theories.

One can establish a relation between the ‘‘inconsiste
and ‘‘consistent’’ couplings using field transformations@31#,
but this relation holds only in perturbation theory,3 and so is

3Even then, it holds only if the ‘‘naive’’ Feynman rules apply i
the inconsistent theory, which, strictly speaking, is not true@27#.
2-3
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not strictly applicable when resummation of theD contribu-
tions is necessary, as is the case in the computation show
the following section.

III. COMPTON AMPLITUDE IN THE d EXPANSION

In Compton scattering the momenta of the particles
characterized by the photon energyv. For very low photon
energies pions can be ‘‘integrated out’’ of the theory, with
nonanalytic effects associated with their production being
placed by a power series inv/mp ~see, for instance, Ref
@32#!. Clearly, the condition for this EFT to be effective
v!mp . If, instead, we want to develop an EFT forv
;mp , we must treat bothv and mp as low-energy scales
which means that pions must appear in the theory as exp
degrees of freedom.

Similarly, for the next relevant scale,D[MD2MN
'293 MeV. A theory which does not treat it as a low-ener
scale is effective only forv!D. xPT without explicitDs is
an example of such an EFT. There onlymp is treated as a
small scale, and it is assumed thatv;mp!D. To extend
this description to theD region,v;D, we need to adoptD
as a low-energy scale and include theD as an explicit degree
of freedom. Thus, we naturally arrive at the scale hierarc

mp!D!L. ~22!

This hierarchy complies with the assumption ofxPT, mp

!D, and soxPT still gives the dominant effects in th
theory if v;mp . At the same time, Eq.~22! allows us to
extendxPT to theD region.

In developing our power counting below, we will ofte
keep the dependence of amplitudes onmp andD explicit, so
that the behavior of the amplitudes in the~independent! chi-
ral (mp→0) or the large-Nc (D→0) limits is manifest@33#.
Nevertheless, for the purposes of assigning an overall siz
the amplitude arising from a particular graph or set
graphs, we would like to have one expansion parameter

d[
D

L
'

mp

D
, ~23!

where we conservatively adoptL'600 MeV, the scale in-
troduced by the excitation energy of the next baryon re
nance. In fact,L will represent not only this scale but all o
the various high-energy scales, such asmr , MN , MD , and
4p f p . Obviously, in this counting,D scales asd, while mp

scales asd2.
While d is of order one-half, the expansion in powers ofd

is, in principle, no worse thanxPT ~which is an expansion in
mp /D) or the SSE@24# ~which is an expansion in powers o
D/L). Note that, since Eq.~23! is not necessarily true in
worlds with other values ofNc , mq , etc., once that equatio
is employed, the connection to the limitsmq→0 and Nc
→` is lost unless the chiral and large-Nc limits are taken
simultaneously withmpNc

2 held fixed.
We assign to each graph an overalld-counting indexa,

which simply tells us that the graph is of sizee2da/L. Be-
cause we deal with two different low-energy scales in o
05520
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EFT, the indexa has two different expressions, dependi
on whether the photon energyv is in the vicinity of mp or
D. For a graph withL loops, Np pion propagators,NN
nucleon propagators,ND D propagators, andVi vertices of
dimensioni, the index is

a5H 2axPT2ND , v;mp

axPT2ND , v;D,
~24!

whereaxPT5( i iVi2214L2NN22Np is the index of the
graph inxPT without explicitDs.

In deriving this power counting, we have used the fa
that no graphs containing vertices with powers ofmp

2 or D
occur up to the order to which we work. Such vertices
arise in higher-order graphs though. In general then, a ve
with j derivatives,k insertions of the quark mass, andl pow-
ers of theD2N mass difference scales asv jmp

2kD l , and so
has overall dimensioni 5 j 12k1 l . Denoting the number of
such vertices byVjkl , thed index of an arbitrary graph is

a55
(
jkl

~2 j 14k1 l !Vjkl12~4L2NN22Np22!2ND ,

v;mp;

(
jkl

~ j 14k1 l !Vjkl14L222NN22Np2ND ,

v;D,

which obviously reduces to Eq.~24! if only vertices withk
5 l 50 are present.

In the regionv;D, there is an important exception t
this scaling rule. Graphs that are one-D-reducible (ODR),
such as those in Fig. 1, scale not asda but as

daS 1

v2D D NODR

, ~25!

whereND in the equation fora now counts only the one
D-irreducible propagators, whileNODR is the number of
ODR propagators. In the low-energy region this does
affect the power counting; however, in the regionv;D,
these graphs can be dramatically enhanced. This forces
resum all the ODR contributions, which amounts to dressin
the D propagator, thus ameliorating the divergence that o

FIG. 1. Eight graphs which are one-D-reducible (ODR), and so
become enhanced in the regionv;D. The sliced vertex is theM1
gND vertex, while the sliced and dicedgND vertex is theE2
coupling fromL (3). Solid dots represent couplings fromL (1).
2-4



n
e

r

m
.
g
r

o

t i
or

g

the

t

e

f

is
s

w-

n

s
e
ch
s-

t
n

x
, a

d

l

EFFECTIVE THEORY OF THED(1232) RESONANCE IN . . . PHYSICAL REVIEW C67, 055202 ~2003!
erwise occurs at theD pole, and producing a width for theD
of roughly the experimentally observed size.

Details of the dressing are given below. By definitio
once dressing is performed, a ODR graph can have only on
D propagator, and such a graph then scales as

daS 1

v2D2S D , ~26!

whereS is the self-energy. The expansion forS begins at
d3, and so in the domainuv2Du;d3 the ODR graphs are
enhanced byd22 over the value expected from Eq.~24!.
Thus, the correct index of a ODR graph in the regionv
;D is

a5axPT2ND22. ~27!

As a result, for instance, thes-channel-poleD graph of Fig.
1~a!, which is the simplest ODR graph, is promoted from
NNLO in the low-energy region to LO in theD region.

The rest of this section is organized as follows. Befo
giving a detailed explanation of Compton counting in thed
expansion, we make a few comments on how our sche
compares to standard HBxPT and to the SSE of Refs
@23,24#. We then discuss power counting for the low-ener
regionv;mp . In Sec. III C we explain the central issue fo
the higher-energy domainv;D, the dressing of theD pole.
Then in Sec. III D we elucidate the impact of this dressing
the counting for Compton-scattering graphs.

A. Comparison with HBxPTÕSSE

In HBxPT the D is not included as an explicit ‘‘low-
energy’’ degree of freedom in the Lagrangian. Instead, i
integrated out of the theory, producing a low-energy the
that, in principle, breaks down forv;D. Power counting of
graphs is then performed in terms of the indexq, where

q[
v

L
;

mp

L
, ~28!

whereL is usually assumed to be of order 1 GeV, althou
the omission of explicitDs suggests insteadL;D.

Hemmertet al. @23,24# introduced the SSE~see also Ref.
@29#!, where the EFT expansion parameter is

e[
mp

L
,

v

L
,

D

L
. ~29!

TABLE I. The three different expansions discussed in the te
In all three cases the small expansion parameter is of order 1/2
L is the breakdown scale of the theory.

Expansion mp /L D/L

HBxPT q 1
SSE e e
d Expansion d2 d
05520
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The SSE treatsmp andD as the same scale, and hence theD
must be included explicitly in both energy domains,v
;mp andv;D.

This overemphasizes the importance of theD somewhat
at low energies. In contrast, in the low-energy region,
d-expansion amplitude is akin to that of HBxPT. In the re-
gion v;D the dressing of theD implemented here is no
performed in either HBxPT—naturally, sinceDs are ‘‘high-
energy’’ degrees of freedom—or the SSE, as forv;D
;mp all pN loop effects are a small correction to th
‘‘bare’’ D propagator.

The table below~Table I! summarizes the relationship o
the d expansion to HBxPT and the SSE.

B. Power counting for vÈmp

Here we make the identificationv,mp;d2. Graphs with-
out D propagators then scale exactly as inxPT, but with
small momentaq[d2.4 The general index of such a graph
then given by Eq.~24!. The leading contribution then come
from the sum of the relativistic nucleon Born graph~with
V152, NN51, L5Np5ND50) depicted in Fig. 2~a! and
its crossed partner. Both graphs behave ase2/v;d22 asv
→0. But the divergent parts cancel in the sum, as the lo
energy theorem tells us they must@34#. The dominant term
for small v is given by the ‘‘Thomson amplitude’’

T(Th)52
~Ze!2

MN
«8•«, ~30!

with « and«8 the photon’s initial- and final-state polarizatio
vectors. This, obviously, isO(d0).

When the expansion of the relativistic graphs@Figs. 2~a!
and 2~b!# in powers of v is made, there are also piece
;e2v5O(d2). These form part of the NLO amplitude. Th
rest of the NLO amplitude is obtained from graphs whi
have indexa52: nucleon tree graphs with the anomalou
magnetic-moment coupling~i.e., V252, NN51, L5Np

5ND50), see Fig. 2~c!, and thep0 exchange graph@Fig.
2~d!# involving the WZW anomaly, which hasV15V451,
Np51, L5NN5ND50.

4The electron charge is usually counted as one power ofq in xPT,
and thusO(q3)5O(e2q) for Compton scattering. Here we do no
count the factor ofe2, which is present in all Compton graphs whe
assessing thed index of a graph.

t.
nd

FIG. 2. The four relativistic tree-level graphs withoutDs, which
are included in our calculation.~We also include graphs generate
from these graphs by crossing and/or time reversal.! The dot is the
leading-order gNN coupling, while the sliced vertex is the
anomalous-magnetic-moment vertex fromL (2). The square indi-
cates thep0→gg vertex from L (4) which generates the chira
anomaly.
2-5
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Next we considerpN-loop contributions togN scatter-
ing. After making a heavy-baryon expansion of our relat
istic Lagrangian, in order to avoid difficulties with the a
pearance of the scaleMN inside loops,5 we construct the
leading loop graphs from vertices inL (1). This yields the
graphs of Fig. 3, together with their crossed partners, as
viewed in Ref.@19#. These graphs are specified byL51,
NN51, ND50, and either (V15V252, Np53), (V152,
Np51), or (V152, V251, Np52); and hence all havea
52. They are the only loop graphs with this counting ind
if we adopt Coulomb gauge and employ the heavy-bar
expansion. Explicit computation@17,19# reveals that the sum
of these graphs indeed produces a Compton amplitude
behaves as

T(pN loop)5
e2

~4p f p!2

v2

mp
F (1)S v

mp
D , ~31!

whereF (1) is a nonanalytic function whose form is given
detail for the various possible spin and polarization str
tures in Refs.@17,19# and in Appendix A.F (1) has the prop-
erty thatF (1);1 for v&mp . A crucial feature of Eq.~31! is
the fact that the sum of these leading loop graphs is pro
tional to v2. This is also a consequence of the low-ene
theorem@34#.

The counting formula~24! indicates that loop graphs wit
insertions from the second-orderxPT LagrangianL (2) are
down by two further powers ofd, being ofO(d4). Relativ-
istic corrections to Eq.~31! are suppressed byv/M , and so
areO(d4). Some loop graphs atO(d4) require renormaliza-
tion, and the corresponding counterterms must be includ
Meanwhile, graphs with twopN loops areO(d6) in this
counting. Thus—at least in this energy domain—it is n
until O(d6) that two-pion intermediate states contribute
the gN amplitude. And graphs involving additionalpN res-
catterings are similarly suppressed. Considering more lo
and/or insertions with more derivatives only serves to furt
increase thed index of graphs. Thus unitarity~in both the
pN and ppN channels! is violated in our calculation, bu
the violation is always an effect of an order beyond that
which we work.

Graphs containing theD begin to contribute atO(d3).
The tree graph with twoM1 gND vertices—see Fig. 1~a!—
has a53 (V252, ND51, L5NN5Np). Meanwhile, the

5The ideal solution to this difficulty would be to use infrare
regularization@35# to compute thepN loops. But the result of such
a computation should only differ from the HBxPT one by terms
suppressed byd. Such terms are of higher order than conside
here.

FIG. 3. The dominantpN-loop contributions togN scattering
~crossed and time-reversed partners are not shown, but ar
cluded!.
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counting of the one-pD-loop graphs, Fig. 4, is analogous t
that for thepN loops, the only difference being that no
NN50, ND51 instead ofNN51, ND50. This results in the
sum of the graphs in Fig. 4 beingO(d3), i.e., scaling as

T(Dp loop)5
e2

~4p f p!2

v2

D
H (1)S v

D
,
mp

D D , ~32!

whereH (1) is a nonanalytic function which is of order on
for mp /D;d, andv/D&1. Equation~32! is consistent with
the low-energy theorem, and agrees with the explicit com
tation performed for these loops in Ref.@24#.

In summary, in thed expansion the Thomson term is th
leading mechanism for Compton scattering on the nucleo
low energies,v;mp . In this region pion loops are sup
pressed by one power ofv;mp;d2, exactly as in HBxPT.
If explicit Ds are included in the theory, the leadingD-pole
andDp-loop graphs are suppressed byd3 relative to leading.
They thus occur one order higher in thed expansion than the
Np loop graphs of Fig. 3. They are, however, still one pow
of d21 larger than graphs arising fromL (2) insertions inpN
loop graphs.

C. Dressing theD

The key issue for the theory in the regionv;D is the
treatment of theD pole. One-D-reducible (ODR) graphs
must be resummed in order to remove the divergence wh
otherwise occurs whenp”5MD .

Formally, all ODR graphs can be summed via the serie

Smn~p!5Smn
(0)~p!1Smm8

(0)
~p!Sm8n8~p!Sn8n

(0)
~p!1•••,

~33!

where Smn(p) is the full one-D-irreducible (ODI) D self-
energy, andSmn(p) „Smn

(0)(p)… is the dressed~bare! D propa-
gator.

The functionSmn has ad expansion of its own,

Smn5Smn
(3)1Smn

(4)1•••. ~34!

This expansion begins atO(d3), with the graphs depicted in
Fig. 5, together with the counterterms necessary for th
renormalization. Insertions fromL pN

(2) generate effects in
S (4). These effects include relativistic corrections to t

d

in-
FIG. 4. The dominantpD-loop contributions togN scattering.

Again, graphs generated from these by crossing and/or time rev
are not shown.

FIG. 5. pN andpD contributions to theD self-energyS. The
vertices are fromL (1) and so both graphs areO(d3).
2-6



g

n

of
n
a
e

.
g

.

au
so
r

ra

o
sa

a
r

-

re
t

ap

th

be

nt

,

or

n

EFFECTIVE THEORY OF THED(1232) RESONANCE IN . . . PHYSICAL REVIEW C67, 055202 ~2003!
leading heavy-baryon resultS (3). Two-loop contributions to
the self-energy—including the leading effect of theNpp
channel—first occur inS (5), and are thus smaller byd2 than
the dominant piece ofS.

If

uv2Du;d3 ~35!

and we keep only the third-order piece of the self-ener
then all terms on the right-hand side of Eq.~33! are of the
same order. A perturbative expansion of the right-ha
side—which is certainly valid foruv2Du;d2 or larger—is
no longer appropriate. Instead, if Eq.~35! holds, the whole
series must be resummed, giving

Smn~p!5
21

p”2MD2S̄(3)~p!
P mn

(3/2)~p!. ~36!

Equation ~35! then defines precisely what we mean byv
;D.

In fact, the most general Lorentz-covariant form
Smn(p) is rather complicated. It contains up to ten indepe
dent scalar functions. As a result, the dressed propag
does not generally have the form~36!. This is a consequenc
of using ‘‘inconsistent’’ spin-3/2 couplings—ones thatdo not
obey the symmetry under Eq.~14!. If, however, couplings
which are consistent in that sense are used, then theD self-
energy can be written as

Smn~p!5S~p!P (3/2)mn~p!, ~37!

with S(p) akin to the usual fermion self-energy,S(p)
5A(p2)p”1B(p2), where A and B are scalar functions
Dressing then affects only the spin-3/2 piece of the propa
tor and the results of form~36!. The divergence atp”5MD is
ameliorated, and no further resummation is necessaryd
Counting indicates that the effects ofS (n) for n>4 can be
included by perturbing around propagator~36!.

D Propagators of this form have been used in other
thors’ extensions of chiral perturbation theory to the re
nance region@36–38#, although in these works it is not clea
why only the spin-3/2 sector is dressed. Note that in cont
to the work of, for instance, Ref.@37#, we do not dress the
nucleon pole bypN loops. Arguments analogous to those
this section suggest that nucleon dressing is only neces
from a power-counting point of view forv;0, and there
S(p) is purely real. As we shall now see, after renormaliz
tion the real part ofS (3) plays a negligible role in propagato
~36!.

In Eq. ~36! the quantityS̄(3) indicates that we are resum
ming the renormalized third-orderD self-energy. The explicit
renormalization of this quantity will be performed elsewhe
Here we make a more general argument which constrains
form and importance of any renormalized self-energy
pearing in Eq.~36!.

First, observe that the general Lorentz structure of
self-energyS results in
05520
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Smn~p!52
Z~p2!

p”2M ~p2!
P mn

(3/2)~p!, ~38!

with Z andM scalar functions ofp2. After mass, wave func-
tion, and coupling constant renormalization, these can
written as

Z~p2!511~p22MD
2 ! f Z~p2!1 i ImZ~p2!, ~39!

M ~p2!5MD1~p22MD
2 !2f M~p2!1 i ImM ~p2!, ~40!

with f Z and f M real functions ofp2.
Substituting these forms into Eq.~38! we find that

Smn~p!52
11 i ImZ~p2!

p”2MD2 i ImM ~p2!
P mn

(3/2)~p!1OS 1

L D .

~41!

In region ~35!, the pole piece isO(d23), while the remain-
ing ‘‘background’’ terms areO(d0). Thus any corrections to
Smn(p2) from ReZ(p2) or ReM (p2) are three powers ofd
beyond the leading one. Corrections from ImZ(p2) are
equally suppressed, since it too isO(d3).

Thus, up to corrections which are NNNLO, it is sufficie
to compute only ImM (p2). Provided thatv<D1mp , this
comes exclusively from Fig. 5~a!. A straightforward calcula-
tion gives

ImM ~s![2
G~s!

2
52S hA

2 f p
D 2 s1MN

2 2mp
2

24pMD
2

k3u~k!,

~42!

wherek is the on-shell value of the pion three-momentum

k5$@s2~MN1mp!2#@s2~MN2mp!2#/~4s!%1/2;d.
~43!

Thus, the width isO(d3), as promised.
The final form of the resummedD propagator is then

Smn~p!52
1

p”2MD1
i

2
G~p2!

P mn
(3/2)~p!. ~44!

If this propagator appears in a ODR gN graph and Eq.~35!
is satisfied, then it scales asd23.

D. Power counting for vÈD

The effect of this modified scaling for theD propagator is
that ~dressed! ODR graphs become the dominant effects f
v;D. Their d index is given by Eq.~27!. TheD-pole graph
in Fig. 1~a!, with M1 gND vertices~i.e., V252, ND51),
hasa521 in region~35! and gives the leading contributio
there. The graph of Fig. 1~h! with one E2 coupling ~i.e.,
V251, V351) hasa50, and hence is of NLO ifv;D.

Meanwhile, the ODR graphs of Figs. 1~b!–1~g! ~and their
time-reversed partners! are characterized byL5NN5ND

51 and eitherV15V25Np52 or V25Np51, V152.
2-7
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They too havea50 and contribute at NLO. These loo
graphs are divergent and must be renormalized. This
achieved via Fig. 1~h!. The loop effects may then be include
in the calculation by the use of an energy-dependentE2
coupling: gE→gE(s). The leading effect here again aris
from the imaginary part of the loops, hence

gE~s!5gE1 i S gAhA

4 f p
2 D s1MN

2 2mp
2

24ps

3
MNk2

vg

2MN~MN1MD!

3MDvg

3@Q0~vk /k!2Q2~vk /k!#u~k!, ~45!

wherevg5(s2MN
2 )/2As, vk5Amp

2 1k2, while k is given
by Eq. ~43!, andQl is the l th Legendre function of the sec
ond kind.

NLO effects can also be obtained by considering corr
tions fromS (4) to the leadingD self-energyS (3). More com-
plicated electromagnetic couplings and higher-order term
S lead to effects of NNLO in thed expansion of ODR
graphs.

What is thed index of graphs without aD pole? ODI
graphs such asDp and Np loops obey Eq.~24!—they are
not enhanced. They retain a positived index, and so are a
least NNLO in this counting.

One might wonder how to reconcile this with Eq.~31!
that seems to suggest that thed scaling of the dominantpN
loops will be, forv;D,

e2
v2

mp
5e2

D2

D2
5e2d0. ~46!

This conclusion is erroneous becauseF (1) is not O(1) if
v/mp is large. If v/mp@1, the loop functions should b
expanded about the large-v limit, not the smallv one, and
doing so results in

T(pN loop)5
e2

~4p2f p!2 F c1v1d1mp1c3

mp
2

v
1c5

mp
4

v3
1•••G .

~47!

Assigningv;D, mp;D2 we see that this series, rather th
one in increasing powers ofv is the correct one for the
‘‘medium-energy’’ regimev;D@mp . This is completely
opposite to a polarizability expansion in increasing pow
of v. In our approachv;D is sufficiently far from thresh-
old, so that a power-series expansion aroundv50 of D con-
tributions is not very useful.

IV. IN PRACTICE

A. Defining the NLO calculation

To perform a complete NLO calculation in the whole e
ergy region 0,v&D, we include all of the nucleon pole an
pN loop graphs of Figs. 2 and 3, together with their cross
partners. To these we add the ODR graphs of Fig. 1, which in
05520
is

-

in

s

d

the low-energy region contribute at NNLO and above, b
for uv2Du;d3 give effects of leading and next-to-leadin
order. We also include the ODR graph with twogE gND
couplings, even though it is formally NNLO.

We keep all of these effects in both kinematic region
Note that this means we are always keeping contributi
that are, strictly speaking, beyond the order to which
work. This is done in order to provide a smooth transiti
between the two different photon-energy domains. For
same reason, in both regions we always use the resummD
propagator~44!.

The power counting of Sec. III C indicates that at NL
we must include effects due to theO(d4) piece ofS, S (4).
The heavy-baryon graphs which contribute to theO(e4) self-
energy in a heavy-baryon calculation with explicitDs @40#
are shown in Fig. 6. The relativistic calculation of theD
width, which led to Eq.~42!, already includes the effects o
Figs. 6~a! and 6~b!. As for Fig. 6~c!, this graph gives a con
tribution to S which behaves as@40#

S6(c)~p!;
~b31b8!hA

f p
2 E d4k

~2p!4

k2

k22mp
2

v•k

v•~p2k!
.

~48!

The imaginary part of this graph is proportional tovkmp
2

@with k given by Eq.~43!#, so while it isO(e4) in the SSE, in
our counting it isO(d6), and so well beyond the order t
which we work. Thus the result~42! is already accurate up to
corrections of relative orderd2.

Theu-channelD-pole graph is NNLO throughout this en
tire energy region and isnot included in our Compton am
plitude. Therefore, by looking at its effect on cross sectio
we can estimate the importance of NNLO contributions.

B. Covariant decomposition of the Compton amplitude

To compute the amplitude of Compton scattering on
spin-1/2 target in a manifestly Lorentz- and gauge-invari
form, we specify it in terms of eight scalar amplitude
A1 , . . . ,A8 ~instead of the usual six!:

M f i5e2ū~p8!(
i 51

8

Ai~s,t !Oi
mnE8m* ~q8!En~q!u~p!, ~49!

wherep8, p ~andq8, q) are the final and initial 4-moment
of the nucleon~and photon!, respectively;u is the free
nucleon spinor,Em is a modified photon polarization vecto

FIG. 6. Heavy-baryon expansion graphs that representO(e4)
pN-loop contributions to theD self-energyS. The sliced squares
are vertices from the second-orderpND HB Lagrangian whose
coefficient is fixed by Lorentz invariance. The sliced circle rep
sents a vertex fromLpND with a coefficient which isa priori unde-
termined~see Ref.@40#!.
2-8
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EFFECTIVE THEORY OF THED(1232) RESONANCE IN . . . PHYSICAL REVIEW C67, 055202 ~2003!
Em~q!5«m2
P•«

P•q
qm , ~50!

with P5p1p8. TensorsOi are given by

O1
mn52gmn,

O2
mn5qmq8n,

O3
mn52gmn,

O4
mn5gmn~q8•g•q!,

O5
mn5qmqa8gan2gmaqaq8n, ~51!

O6
mn5qmqa8gan2gmaqaq8n,

O7
mn5qmq8n~q8•g•q!,

O8
mn5 ig5emnabqa8qb .

Mandelstam variabless, t, andu are defined as usual:

s5~p1q!25MN
2 12p•q,

t5~q82q!2522q•q8, ~52!

u5~p2q8!25MN
2 22p•q8,

where we have used the on-shell conditionsq25q8250 and
p25p825MN

2 . Note thatP•q5 1
2 (s2u)5P•q8.

The representation~49! is obtained by writing down the
most general covariant structure~for the on-shell situation!
and imposing the electromagnetic current-conservation c
dition. Thus this representation incorporates both covaria
and gauge invariance in a manifest way.

The amplitudesAi are most easily computed in the fo
lowing Lorentz-invariant gauge:

P•«505P•«8. ~53!

This condition can also be achieved in the Coulomb ga
(«0505«08) by going to the Breit frame,PW 50.

In the Coulomb gauge, the structuresO1–O6 exactly
match the ones in the standard decomposition~e.g., Refs.
@19,34#!, while O7 andO8 can be reduced to linear comb
nations ofO3 , O5, andO6,

O75~v21 1
2 t !@2tO31O5#2v2O6 , ~54!

O85 1
2 v~2tO31O52O6!. ~55!

In particular, the results for the nucleon-exchange~Born!
graphs, the anomaly graph, and theD exchange graphs ar
specified in terms of the amplitudesA1 , . . . ,A8 in Appendix
A. As our calculation of these graphs is fully relativistic,
differs from that of HBxPT in Refs. @19,23# by terms of
O(d).

Meanwhile, for thepN loop graphs depicted in Fig. 3, w
have used theO(q3) HBxPT result of Refs.@17,19#. This is
05520
n-
ce

e

done in order to avoid difficulties with the treatment of th
nucleon mass scaleMN inside the loops. The amplitude ob
tained in a fully relativistic calculation of these loops wou
differ from the result used here by terms ofO(v/M ) and
O(mp /M ), i.e., terms down byd2. The loop contributions
are given in Appendix A.

We do include one particular relativistic effect because
write the photon energyv that appears in the loop function
asv5As2MN . The standard choices forv—center-of-mass
photon energy@19# and Breit-frame photon energy@17#—
differ from this by terms which are of N3LO in our counting.
We adopt this prescription in order to ensure that the Com
ton amplitude’spN cut occurs at the correct value ofs.

V. RESULTS AND DISCUSSION

A. Differential cross sections forgp scattering

There are nogN contact terms at NLO in thed expan-
sion. This leaves us with three EFT parameters which m
be fixed using the data:gE , gM , andhA . For hA we adopt
the phenomenological valuehA52.81 (f pND

2 /4p.0.35),
which corresponds to aD width G(MD

2 ).111MeV—
consistent with the range given by the Particle Data Gro
@39#. This value ofhA is roughly 5% larger than that obtaine
from the large-Nc relationhA5(3/A2)gA .

This leaves us with two free parameters,gM and gE , of
the gND coupling ~12!. They represent the strength of, r
spectively, theM1 andE2 gN→D transitions.

In principle, these are relatively well known from pio
photoproduction. In particular, their ratio is related to t
REM5E2/M1 ratio,

REM5
gED

2gM~MN1MD!2gED
3100%. ~56!

The determination of this ratio has recently been the sub
of experimental programs at the JLab and the MAMI. T
present Particle Data Group~PDG! value is REM5(22.5
61.0)% @39#. However, this number is measured only ind
rectly through the extraction of the ratio of the pio
photoproduction multipoles at theD-resonance position
These multipoles are affected by a number of backgro
processes, and relationship~56! is only strictly true at lead-
ing order in thed expansion for thegp→pp amplitude. To
fully understand the constraint that pion photoproduct
places ongE /gM in this EFT, a higher-order calculation o
gp→pp using thed expansion is necessary.~For an attempt
to compute this process in the SSE, see Ref.@41#.! Such a
calculation being absent, here we regardgM andgE as free
parameters and fit them to get the best agreement withgp
cross-section data. An important future test of the usefuln
of d expansion will be whether the resultant value forgE /gM
is ultimately consistent with that found from pion
photoproduction data using the same framework.

The results for the differential cross section at seve
different energies are presented in Figs. 7 and 8. The lo
dashed orange curve represents a calculation which inclu
only the Born graphs of Fig. 2. The dashed blue curve is
2-9



es

ed
t
th

nd
tin

e

ec
re
r o
e

or

ral

tion
d.

ns.

f
uc-

e

t a
ar

n-
e of

,

n

rom
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result when thepN loops of Fig. 3 are added, and so giv
theO(q3) prediction of HBxPT. Finally, the complete NLO
calculation in thed-expansion is represented by the solid r
curve. The sharp rise at backward angles asv increases pas
the pion-production threshold is now reproduced in
theory. This sharp rise is very difficult to obtain inxPT with-
out explicit Ds.

In Figs. 7 and 8 we also show a theoretical error ba
demarcated by the red dots. This is obtained by estima
the size of the NNLO contribution in the following way:

T~theoretical error!52
e2

MN
«8•«3H v2/D, v;mp

v, v;D.
~57!

The error band in Figs. 7 and 8 is plotted with the bord
between the two kinematic domains atv5200 MeV. The
band is an estimate of how far we expect the NNLO corr
tions to change the results. It may overestimate the theo
cal error since our calculation already includes a numbe
NNLO contributions: relativistic effects coming from tre
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FIG. 7. Angular distribution of thegp differential cross section
at low energies. Data points are from Ref.@5#. The long-dashed
orange line represents the sum of nucleon and pion Born graphs
blue dashed line gives the NLOxPT prediction, and the red solid
line is the full result at NLO in thed expansion. The dots give a
estimate of the theoretical error.
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graphs,D-exchange~which is NNLO for v;mp), andpN
loops ~which are NNLO forv;D).

The fit of the cross section favors the following values f
the gN→D parameters:

gM52.660.2, gE526.060.9. ~58!

The solid line in Figs. 7 and 8 gives the result for the cent
values ofgM andgE . The uncertainty in Eq.~58! is found by
varying these couplings until the experimental cross sec
in theD region is no longer within the theoretical error ban

The resulting value ofgM is consistent with the largeNc

value,gM5(2A2/3)(11kp).2.63, while the value ofgE is
considerably different from phenomenological expectatio
For instance, fromREM522.5% and Eq.~56!, one would
expectgE521. This problem signifies the importance o
performing an analogous calculation of pion photoprod
tion to check the consistency of thed expansion.

Next we would like to note that, although formally th
imaginary and real parts ofgE(s) of Eq. ~45! are of the same
order, numerically the imaginary part is smaller by at leas
factor of 6. ImgE(s) has a negligible impact on the angul
distributions shown in Figs. 7 and 8.

The NLO prediction for the differential cross-section e
ergy dependence is shown in Fig. 9 for a scattering angl
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FIG. 8. Angular distribution of thegp differential cross section.
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2-10



-
r
s

ee

ur

tio
at

ou
is

s.

r

tl
f.
u

n-

la-

cal-

at

ly

n of
k-

the
tion

s
the
ig-

be-
his
ton

nd
iv
-

s are

EFFECTIVE THEORY OF THED(1232) RESONANCE IN . . . PHYSICAL REVIEW C67, 055202 ~2003!
90°. The solid purple line is the result when onlyD-pole
mechanisms are included, andgM andgE are chosen accord
ing to Eq. ~58!. The solid red line gives the result of ou
NLO calculation. Individual contributions from Born graph
and pN loops are given by the orange dashed and gr
short-dashed lines, respectively. TheO(q3) prediction of
HBxPT is represented by the blue dashed line. This fig
shows that our NLO calculation of theD width is in good
agreement with the data. This lends support to our adop
of the valuehA52.81. However, it must be pointed out th
since our EFT was only designed for 0<v&D, the agree-
ment at the higher energies~which is seen in Fig. 9! is prob-
ably somewhat fortuitous.

B. Polarizabilities

The results for the nucleon polarizabilities are worked
in Appendix B. The leading contribution to polarizabilities
from pN loops and hence is exactly the same as in HBxPT,
see Eq.~1!. On the other hand, our results for theD contri-
butions differ from earlier ones in several ways as follow

~1! First of all, in contrast to the results of Refs.@13,22#,
they are independent of ‘‘off-shell parameters.’’

~2! The leading SSE result of Ref.@23# for the magnetic
polarizability is also free of off-shell parameters~in the SSE
they enter at NLO!. Formally, the result of Appendix B
agrees with that found in Ref.@23#—apart from a higher-
order relativistic effect which is numerically only of orde
10%:

bN
(D) this work5

2

21D
bN

(D) SSE.

However, our fit to the cross section prefers a significan
smaller value of thegND coupling than was used in Re
@23#, and this leads to a markedly smaller numerical res
for bp

(D) .
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ωlab [MeV]
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c.
m

. [
nb

/s
r]

SAL 1993
LEGS 1997
LEGS 2001
NLO
∆
Born+π0

πN loops
B+π0

+loops

θc.m.=90
o

FIG. 9. Energy dependence of thegp differential cross section
at 90°. Data points are from Ref.@1# ~SAL’93!, Ref.@3# ~LEGS’97!,
and Ref.@4# ~LEGS’01!. The red solid, orange long-dashed, a
blue dashed lines are as above, while the purple curve now g
the contribution arising solely from theD, and the green short
dashed curve is the effect ofpN loops alone.
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~3! Perhaps most importantly, our NLO calculation i
cludes neitheru-channelD exchange norpD loops, since
both are NNLO in thed expansion. In fact, theD contribu-
tions quoted in Appendix B stem from both thes- and
u-channelD exchange graphs. However, the NLO calcu
tion presented above has nou-channel graph. Thus to find
the polarizabilities that correspond to the cross-section
culation of Sec. V A, one must halve theD pieces of polar-
izabilities given in Appendix B.

All of these effects produce aD contribution to the mag-
netic polarizability, which is significantly smaller than th
found in previous EFT calculations with explicitDs @21–
23,25#:

bp
(D)5

agM
2

~MN1MD!2D
5~2.760.4!31024 fm3. ~59!

TheD contribution to the electric polarizability comes sole
from thes-channelD pole with twogE couplings:

ap
(D)52

agE
2

~MN1MD!3
5~22.060.7!31024 fm3.

~60!

The observant reader might have noticed that the inclusio
D contributions in the polarizabilities is not, strictly spea
ing, consistent at NLO in our power counting. Thes-channel
D pole is, like itsu-channel counterpart, NNLO forv;0. In
spite of this we have included theD contributions in the
results shown in Table II. The numbers there represent
polarizabilities corresponding to the cross-section calcula
already presented.

We expect that in an NNLOd-expansion calculation the
D ’s effect onbp will roughly double.ap will also be modi-
fied, thanks to the graphs in Fig. 4 and theu-channelD-pole
graph with twogE couplings. Estimating these effects give
the theory error bars that appear in the second line of
table. We note that, even though NNLO effects make a s
nificant difference in the values forap andbp , their impact
on the low-energy differential cross section is not large,
ing represented by the theoretical error band in Fig. 7. T
suggests that the extraction of polarizabilities from Comp
data is a delicate process.

es

TABLE II. Proton polarizabilities inxPT, thed expansion, and
the SSE, compared to values extracted from experiment. Result
in units of 1024 fm3.

Reference ap bp

NLO HBxPT @19# 12.2 1.2
NLO d @this work# 10.222.0

14.2 3.920.4
12.7

NLO SSE@25# ~@23#! 16.4 ~20.8! 9.1 ~14.7!
PDG average@39# 12.060.7 1.660.6
LEGS @4# 11.862.0 1.461.5
MAMI @5# 11.962.1 1.261.4
Beaneet al. @20# 12.161.6 3.261.2
2-11
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VI. CONCLUDING REMARKS

The expansion developed in this paper for thegN ampli-
tude is based on the scale hierarchymp!D!L. The EFT
expansion parameter employed here isd, which represents
both the ratio ofmp to D and the ratio ofD to L. The
success of the resulting ‘‘d expansion’’ is to be judged by its
efficacy as an EFT of Compton scattering.

The existence of two different low-energy scales in t
theory forces us to develop independent power countings
the two different photon-energy regimes. Forv;mp , the
Compton amplitude obtained is exactly that ofxPT up to
effects from theD, which are down byd3 relative to leading.
On the other hand, ifv;D, ODR graphs dominate the
Compton amplitude. Resummation of theD self-energy is
necessary in these graphs. TheD propagator appearing in
them acquires a finite, energy-dependent width. Up to effe
suppressed byd3, this is the only correction necessary to t
D propagator. Vertex corrections also appear at NLO in t
region.

We performed a calculation of thegN amplitude, which
includes all effects that are of leading or next-to-leading
der in the regionv;mp , as well as all effects that are o
leading or next-to-leading order in the regionv;D. The
sum of all of these pieces of the amplitude defines our N
calculation. Thus, in each of the two regions consider
mechanisms of NNLO in that particular region are includ
in the calculation. Nevertheless, effects of relative orderd3

~e.g.,Dp loops! are omitted in the low-energy region, whil
effects of relative orderd2 ~e.g., two-loop dressing of theD)
are omitted in the higher-energy domain. These neglec
effects define the theoretical error bar of our calculation.

Note that in this calculation tree-level graphs are co
puted relativistically, while for loop graphs we use th
HBxPT result. While this gives the correctgN amplitude up
to the order to which we work, a fully relativistic treatme
of pN loops would be more aesthetically pleasing.

After fitting the only two free parameters in our theor
the E2 and M1 gND couplings, good agreement with th
low-energygp data is found. The spin-independent polar
abilitiesa andb that result from our NLO calculation are i
reasonable agreement with contemporary extractions f
data@5,20#.

The development of thed expansion opens up a numb
of avenues for further study. Higher-order calculations
Compton scattering on the nucleon will be necessary to se
the good agreement found at NLO persists, and if the exp
sion in powers ofd is well behaved or not. Also, the use o
the d expansion in other processes, e.g., pion photoprod
tion, is an important potential future application. Indeed,
EFT presented here should ultimately be judged by its s
cess in simultaneously describing data on nucleon Comp
scattering, pion photoproduction, andpN scattering. Only
then can the reliability of the EFT, and hence of our extr
tion of gE andgM from gN data to NLO in thed expansion,
really be judged.

The use of thed expansion in two-nucleon systems mig
also reap significant rewards. We plan to use the amplit
developed here, together with consistent two-body curre
05520
or

ts

is

-

,

d

-

-

m

f
if
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in a calculation ofgD scattering@42#. It is also possible that
thed expansion could be profitably employed to organize
D contributions to the chiral nucleon-nucleon potential d
veloped in Refs.@43–45#.
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APPENDIX A: RESULTS FOR COMPTON INVARIANT
AMPLITUDES

We define the photon energy asv5(p•q)/MN5(s
2MN

2 )/2MN . The results for the invariant amplitudes a
presented in the nucleon mass units (MN51). BelowZ51
for the proton,Z50 for the neutron. Expressions for theD
exchange are obtained using the algebraic manipulation
gram Form@46#.

1. Nucleons channel

A1~v,t !52
1

2 FZ 21
1

4v
~Z1k!2t1

1

2
k2S v1

1

4
t D G ,

A2~v,t !5
k

2v FZ1
1

2
kS 12

1

2
v2

1

8
t D G ,

A3~v,t !5A1~v,t !,

A4~v,t !52
1

4v F ~Z1k!21
1

2
k2vG ,

A5~v,t !5
~Z1k!2

4v
, ~A1!

A6~v,t !52
Z~Z1k!

4v
,

A7~v,t !5
k2

16v
,

A8~v,t !52A4~v,t !.

2. p0\gg anomaly graph

A8~v,t !5
gA

~2p f p!2

2Z21

t2mp0
2 ; A1 , . . . ,A750. ~A2!
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3. D s channel

A1~v,t !5F~v,D!H 2
3 ~v21 1

2 t !~21D!GM
2 2 2

3 v2DGE
2

1
2

3
v3~GM

2 1GE
22GMGE!1 1

8 t2GM
2

1vt@~21 5
6 D1 7

6 v1 1
4 t !GM

2 2 1
6 ~21D

1v!GMGE1 1
6 vGE

2 #J ,

A2~v,t !5F~v,D!$2 2
3 ~21D!GM

2 2 1
3 v@~813D!GM

2

12DGE
22~21D!GMGE#1v2~2 7

6 GM
2 1 5

6 GE
2

1 2
3 GMGE!1t@2 1

12 ~12D!GM
2 2 1

12 DGE
2

1 1
3 v~2 1

2 GM
2 1GE

21 5
4 GMGE!1 1

32 t~GM

1GE!2#%,

A3~v,t !5F~v,D!$2 1
3 v2@2GM

2 1D~GM
2 2GE

2 !#

2 1
3 v3~GM

2 1GE
224GMGE!1t@2 1

6 ~21D!GM
2

1 1
3 vGM~GM~ 3

2 1D!1GE~21D!!1v2~ 11
12 GM

2

2 1
12 GE

21 1
3 GMGE!1 1

4 tGM
2 ~ 1

2 1v!#%,

A4~v,t !5F~v,D!$2 1
3 ~21D!GM~GM1vGE!

2v~11 1
3 D!GM

2 1 1
3 v2~GM

2 1GE
22GMGE!

1 1
2 tGM

2 ~ 1
2 1v!%, ~A3!

A5~v,t !5F~v,D!$ 1
3 ~21D!GM

2 2 1
6 v@2~11D!GM

2 2DGE
2

1~21D!GMGE#2v2GM~GM2GE!1 1
4 t@GMGE

1 1
2 DGM~GM1GE!2vGM~GM2GE!#%,

A6~v,t !5F~v,D!$vGM@GM1 1
2 D~GM1GE!#

1v2GM~GM2GE!1 1
4 t@GM

2 1 1
2 DGM~GM1GE!

1vGM~GM2GE!#%,

A7~v,t !5F~v,D!$~21D!~ 7
12 GM

2 1 1
2 GMGE!2 1

12 DGE
2

1v~ 7
12 GM

2 2 5
12 GE

22 1
3 GMGE!2 1

16 t~GM

1GE!2%,

A8~v,t !5F~v,D!$ 4
3 ~21D!GM

2 1v@4~11 1
3 D!GM

2

2 2
3 ~21D!GMGE#1 1

6 v2~GM
2 1GE

224GMGE!

2 1
2 tGM

2 ~ 1
2 1v!%,
05520
with GM ,E5(3/2)gM ,E/(21D) and

F~v,D!52
2

3

1

s2MD
2 1 iM DG~s!

52
2

3

1

2v2D~21D!1 iM DG~v!
. ~A4!

Here 2
3 5T3

†T3 is the isospin factor, and the widthG is given
by Eq. ~42!.

The correspondingu-channel graphs are obtained b
crossing, so that the crossing-symmetric amplitude is gi
by

Ai~v,t !1Ai~2v8,t ! for i 51,2,8;

Ai~v,t !2Ai~2v8,t ! for i 53, . . . ,7;

with v85p•q85(12u)/2.

4. HBxPT pN loops

Defining z5(As2MN)/mp and t522z2(12cosu),
whereu is the center-of-mass angle between the incom
and outgoing photon momenta, one finds@19#

A1~s,t !52
gA

2mp

8p f p
2 H 12A12z21

22t

A2t

3F1

2
arctan

A2t

2
2I 1~z,t!G J ,

A2~s,t !52
gA

2

8p f p
2 mp

22t

~2t!3/2
@ I 1~z,t!2I 2~z,t!#,

A3~s,t !5
gA

2mp

8p2f p
2 F1

z
arcsin2z2z12z4sin2uI 3~z,t!G ,

A4~s,t !5
gA

2

4p2f p
2 mp

I 4~z,t!,

A5~s,t !52
gA

2

8p2f p
2 mp

@ I 5~z,t!22z2cosuI 3~z,t!#,

A6~s,t !5
gA

2

8p2f p
2 mp

@ I 5~z,t!22z2I 3~z,t!#. ~A5!

Here

I 1~z,t!5E
0

1

dzarctan
~12z!A2t

2A12z2z2
,

I 2~z,t!5E
0

1

dz
2~12z!A2t~12z2z2!

4~12z2z2!2t~12z!2
,

2-13



s

VLADIMIR PASCALUTSA AND DANIEL R. PHILLIPS PHYSICAL REVIEW C 67, 055202 ~2003!
I 3~z,t!5E
0

1

dxE
0

1

dz
x~12x!z~12z!3

S3 Farcsin
zz

R
1

zzS

R2 G ,

I 4~z,t !5E
0

1

dxE
0

1

dz
z~12z!

S
arcsin

zz

R
,

I 5~z,t !5E
0

1

dxE
0

1

dz
~12z!2

S
arcsin

zz

R
, ~A6!

with

S5A12z2z22t~12z!2x~12x!,

R5A12t~12z!2x~12x!. ~A7!

APPENDIX B: RESULTS FOR POLARIZABILITIES

The nucleon electric (aN) and magnetic (bN) polarizabil-
ities:
.

C

e

ck

.

. E

nd

ys

05520
aN5
a

2

]2

]v2
A1

(NB)~0,0!1aA2
(NB)~0,0!

5
5pa

6mp
S gA

4p f p
D 2

2
2agE

2

~MN1MD!3
,

bN52aA2
(NB)~0,0!52a

]

]t
A1

(NB)~0,0!

5
pa

12mp
S gA

4p f p
D 2

1
2agM

2

~MN1MD!2D
, ~B1!

where Ai
(NB) are the amplitudes with the Born graph

subtracted.
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