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Effective theory of the A(1232 resonance in Compton scattering off the nucleon
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We formulate a new power-counting scheme for a chiral effective-field theory of nucleons, pionssand
This extends chiral perturbation theory into theresonance region. We calculate nucleon Compton scattering
up to next-to-leading order in this theory. The resultant description of existingross-section data is very
good for photon energies up to about 300 MeV. We also find reasonable numbers for the spin-independent
polarizabilitiesa, and g, .

DOI: 10.1103/PhysRevC.67.055202 PACS nunierl4.20.Dh, 12.39.Fe, 13.60.Fz, 25.20.Dc

[. INTRODUCTION =139 MeV! Since there are no Compton counterterms
present atO(q®), this is a genuine prediction ofPT—a
Compton scattering on the protoryf) and the deuteron prediction which, at least for the proton, is in remarkable
(yD) provides a clean and unique probe of nucleon electroagreement with recent extractions of these quantities from
magnetic structure, revealing information different to thatlow-energy data, e.g., Ref20]:
obtained in electron scattering. During the last decade a 4.3
number of excellent experimental programs have been dedi- ap=(12.1+1.120.5X10"" fm, ©)
cated to these two processeee Refs[1-5] and[6—10, _
respectively. At low photon energies, these experiments Bp=(3.2£1.120.1) X 10 *m?, )
probe the static _properties of the nuclepn, S.L.“.:h as its EIeCtriI‘-:Iere the first error is statistical, and the second one repre-
charge, magnetic moment, and polarizabilities. Above theS

. duction threshold. th b dominat cients the theory error of the fit to data.
pion-production threshold, the process becomes dominated ., veyver, the agreement of the NLO WBT prediction
by the excitation of resonances, most prominently th

; . . Qwith the experimentalyp cross-section data is good only up
A(1232) isobar. Many theoretical methods aim at under-to photon energieso=100 MeV [16]. The recent NNLO

standing this process in both the low-energy and the res<EO(q4)] calculation[17] agrees with experiment to slightly

nance region. In particular, significant progress has beep. : . .
. . . . igher energies, but above=120 MeV significant discrep-
made recently using dispersion relatigid, 12 and effec- ancies begin to appear, most notably at backward angles.

tive Lagrangian modelgl3-13. On the other hand, previ- This is perhaps not surprising, since theisobar excitation

ous calculations using chiral perturbatlop theoyéP(r) aP- s not included explicitly in this chiral expansion. And, as we
pear to work only at low photon energies—energies at or,

) : ) hall argue, the breakdown scale)dT without an explicit

below the pion-production threshold.6,17]. This present Shé . : !

study attempts to extend theg®T calculations above the A is set essentially by tha-nucleon mass difference:

pion threshold and into tha-resonance region. A=M,—My~293 MeV. (5)

In the low-energy regimeyPT seems to work extremely

well. At next-to-leading orderNLO), i.e., third order in Thus, to extend the region P T applicability tow~A, the

small momentd =0(q®)], heavy-baryor{HB) xPT for the A must be included as an explicit degree of freedom.

electric and magnetic polarizabilities predi¢is,19: The A contribution for the Compton amplitude had al-
ready been analyzed using chiral effective Lagrangians with
explicit As in Refs.[21-23. These studies focused mainly

Sral ga |2 on nucleon polarizabilities. The predictipns_,_mad_e in Refs.
ap:a”ZGT(Mrf ) =12.2x10"* fm?, (1)  [19,21,23 are obscured by off-shell ambiguities, in particu-
m m lar by the so-calleaff-shell parametershat control the in-
famous spin-1/2 sector of the spin-A2field. In a “reason-
able” range for these parameters thecontribution toﬁff)
ma | ga |2 B varies between 0 and ¥410 “fm? [22]. In contrast, Hem-
Bp:ﬁn:m(élﬂ_f ) =1.2x10"* fm?, (20 mertet al.[23], to next-to-leading order in thegmall scale

expansionSSH [24], found a result which was independent

where a=e?/47=1/137, go=1.26, f ;=93 MeV, andm,, Throughout this paper the designations LO, NLO, etc. refer to the
order in the yN amplitude. These one-loop results are, strictly
speakingJeading-orderpredictions fore, and 8, but we refer to
*Email address: vlad@phy.ohiou.edu them as next-to-leading ordé¢NLO) since Eq.(1) is derived by
"Email address: phillips@phy.ohiou.edu considering the NLO result for the nucleon Compton amplitude.
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of the off-shell parameters, and thus is apparently a reliabley dressing thel and giving it a finite width. In Sec. IV
prediction. But this prediction for thA contribution to the we summarize the elements of our calculation, and then in
magnetic polarizability ingA)ng 10 4 fm®, in dramatic  Sec. V we present and discuss the results of our NLO calcu-
contradiction with experimeri25]. (For an attempt to rem- lation for the differential cross section, as well as for the
edy this using a “modified SSE,” see R¢R6].) spin-independent polarizabilities,, 8,. We conclude in

In this work we include the\ in the chiral Lagrangian in  Sec. VL.
a fashion somewhat different to this literature. First of all, the
Lagrangian is written such that the unphysical spin-1/2 com- Il. THE CHIRAL LAGRANGIAN
ponents of theA field decouple from observabl¢27,2§, ) o
hence no off-shell parameters appear. This feature of our N€ pion-nucleon sector of the KPT Lagrangian is
Lagrangian, besides removing the redundant parameters, Ayell discussed in the literature, see e.g., R&8]. The terms
lows us to dress tha-pole contribution in a manifestly co- €levant for our purposes dre
variant way.

Furthermore, we set up our power-counting scheme so 5:%D’waaD#chC_%miﬂuﬁ{iy.D_MN
that it is both closely connected to the usud@®T without

explicit As in the low-energy regiom~m_, andextends to Ia

the A region w~A. This is achieved by recognizing the _F('Y'Dﬂ'a)Ta'yS'l' ﬁywpw N
hierarchy of scales: 7 N
A<~ e -
m, <A<A~1 GeV, (6) _ T F;wF'uVﬂ's’l' ce (8)

whereA stands for the “high-energy scale,” the breakdown
scale of the theory. Therefore, our scheme is rather differentheremr, represents the isovector pseudoscalar pion fiéld,
from the SSE of Refd23,24] (see also Ref.29]), where the s the isodoublet spinor field of the nucleon, are the isos-
A-nucleon mass difference is assumed to be of ordgr pin Pauli matricesD ,=d,—ieQA, (with Q representing
(i.e., A~m_). A more detailed comparison of our schemethe electric charge isospin operatpf,.=—is?, Qy
and the SSE will be given below. =3(1+13)]), A, the electromagnetic fieldF,,=d,A,
With the three-scale hierarchi), one in principle has —3,A,, r:uvzésuvaﬁpaﬁ' and « is the anomalous mag-
two small expansion parameters;. /A andA/A. We regard  netic moment of the nucleonc(=1.79, k,=—1.91).

both of them as roughly the same size, and so introduce a Next we specify the terms involving thk field. Describ-

single small parameter: ing the A field by an isospin-3/2, spin-3/2 Rarita-Schwinger
(RS vector spinorA ,(x), we write theA piece of the chiral
= AN My Lagrangian in the following form:
) AT (7)
L=Lrst Lona+Loynat -, 9
Note that this implies than, scales ass.
The validity of the scale hierarchi) and the expansion Lrs= Kﬂ(i YA, —Myy*YA (10
in powers ofs (which we shall refer to as th& expansionis
to be judged by the success of the resultant effective-field- thy — . a
theory (EFT) description of processes involving the excita- ‘CwNA:mNTaVu (d,A,)9\m+H.c, (11

tion of A. We regard the results we shall present hereyjor
scattering as significant evidence in favor of this EFT expan-

sion. L NA=—WT$(igME“V—gEy5FMV)& A,
To obtain the NLO result foiyN scattering in our scheme ! ZMy(My+ M) g
for both the low-energy and th& regions, theA-pole con- +H.c. (12)

tribution to this process must be dressed, and then added to

the NLO HByPT result. This introduces two free parametersThese are the free spin-3/2 Lagrangian, and #NA and
that characterize the strength of th&— A transition, gy, vNA couplings, respectively. Herg, are the isospin-1/2—
andge . Adjusting these parameters we find very good agreeisospin-3/2 transition matrices satisfying i Tp=2 8,
ment with the experimentayp differential cross section up —1ijg ..

to @w~300 MeV, thereby extending the domain of applica- We have kept only the couplings that are linear in the

bility of chiral EFT into theA region. At the same time we field and lowest order in the pion and the photon fields. In
also find reasonable values for the nucleon polarizabilities.

In the following section we introduce the Lagrangian
for the A and discuss its properties. Section Ill then describes 2oyr conventions: metric  tensomg*”=diag(1-1,—1,—1);
the 6 expansion for Compton scattering on the proton. Iny-matricesy”, y°=iy°y'y?y%, {y*,y"}=2g**; fully antisymme-
particular, we show that fow~m, the power counting trized products ofy matricesy’= [y, y"]= y*y"—gh", y**«
is very similar to that of HRPT, while foro~A the power — =3{y#* y*}=igtrePy vy, yrraB= Il ypuve Bl=jgnraby.
counting mandates resummation of thepropagator, there- spinor indices are omitted.
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principle, there are many other couplingstNN, 7m7NA, ~
yAA, etc), represented in Eqg8) and (9) by the dots, S,.(p)= Pff,fz)(p), 17)
which are required by the chiral and electromagnetic gauge p—M,
symmetries. However, they are not relevant for our calcula-
here P(BIZ)( p) gp,v 3 ’)’,U,’)/V (1/3p2)(¢7$//¢pv+ p,u.)’vp)

tion at the order considered here.
is the spin-3/2 projection operator.

For the purpose of power counting, we rearrange the in- A £ f h | iol | h
teraction Lagrangian according to the number of small quan- AS @ matter of fact, it is then also possible to replace the
vertices as follows:

tities (momentum, pion mass, and factors &f that each
term carries:

T(p,..)=PC2r"(p,...). (19)

L= EI £®, In this theory,1~“ andI” are completely equivalent. Neverthe-

less, verticesl” are sometimes more convenient in actual
calculations. For example, theNA vertex from Eq.(11):

ga — ieQ,0a—
LB=—==N(y-dmy) 7aysN+ ——Ny-AmrysN
2, o 2, (P, k)= (9/M ) y*“Pp K, (19
+eNQuy-AN+ Ly . whereg=h,/2f . andk is the pion four-momentum, can be
replaced by
K —
(2) = v Lk . ~
L 4MN # NFMV"‘ 2(|eQ7T’7TA (9’7T+HC) ]._"u(p,k) (g/MA)pPS/Z p)kv (20)
+e2Qf,A27-m-r+[,(gNMA), (13 where we have useg”P¥2(p)=0=y*P¥(p) . Further-
more,  using p32p3lpdz  gng [p 7?3’2(p)] 0,
£ 3= @ A-exchange amplitudes are computed effortlessly, e.g.,
yNA?
2 F”(p,k’)SMV(D)F“(p,k)=f”(p,k’)~S AP)T#(p,k)
LO=— FErms.
32m%f, ¥ ° -g° p’ (312); m\ L’ Bl
— P (PIK' K"
lb Ma M3
A. Spin-32 gauge invariance (21)

It is important to note that ouNA couplings, besides
being chiral and gauge invariant, are invariant under the fol- B. Relation to conventional A couplings

lowing local (gaugg transformation of the spin-3/2 field: Our NA couplings are rather different from the usual ones

AL ()= A L(X) +3,€(X), (14  of, e.g., Refs[13,19,22-24 As a rule, standard couplings
do not have the spin-3/2 gauge symmetiy). Exceptions
wheree is a spinor. This invariance ensures that the spin-3/2re the yNA coupling of Jones and ScadrdB0], which
field has the correct number of spin degrees of freeti@n ~ Obviously satisfies Eq15), and the couplings used by Kon-
2s+1=4), cf. Refs[27,28. dratyuk and Scholtefl5]. We have adopted the Jones and
As a result of this additional symmetry, any vertex involy- Scadron convention for the magneti {) coupling,gy , in
ing aA field, T“(p, . ..), with x being the vector index and EQ. (12).

p the 4-momentum of the\, will obey the transversality Other conventional couplings, including t&, G, rep-
condition resentation of theyNA vertex, do not have the spin-3/2
gauge symmetry. As a result, they involve the unphysical
p.L*“(p,...)=0. (15)  lower-spin sectors of the spin-3/2 field, and hence observ-
ables become dependent on arbitrary “spin-1/2 back-
Using the well-known form of the spin-3/2 propagator, grounds” associated with off-shell parameters of the

Other pathologiessee Ref[27] and references thergin-all
1 1 of which can be traced back to the fact that the couplings
—gf”+§y”yV+ m(}/"p”— y'pH) violate the degrees-of-freedom-counting constraints of the

S (p)=

p—My free theory—also occur in these theories.
One can establish a relation between the “inconsistent”
+ p“p¥ (16) and “consistent” couplings using field transformatioigi],
3M3 but this relation holds only in perturbation thedrgnd so is

it is easy to show that the spin-1/2 sector of the RS propa=—
gator decouplef28], and one may equivalently use the fol- 3Even then, it holds only if the “naive” Feynman rules apply in
lowing propagator: the inconsistent theory, which, strictly speaking, is not {i2ig.
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not strictly applicable when resummation of thecontribu-
tions is necessary, as is the case in the computation shown
the following section.

Ill. COMPTON AMPLITUDE IN THE 6 EXPANSION

In Compton scattering the momenta of the particles are

characterized by the photon energy For very low photon
energies pions can be “integrated out” of the theory, with all

nonanalytic effects associated with their production being re

placed by a power series i/m_ . (see, for instance, Ref.
[32]). Clearly, the condition for this EFT to be effective is
o<m_. If, instead, we want to develop an EFT far

~m,_, we must treat botlw andm,_. as low-energy scales,

which means that pions must appear in the theory as explic

degrees of freedom.
Similarly, for the next relevant scaleA=M,—My

~293 MeV. Atheory which does not treat it as a low-energy

scale is effective only fom<<A. yPT without explicitAs is
an example of such an EFT. There omhy, is treated as a
small scale, and it is assumed that-m_<A. To extend
this description to the\ region,w~A, we need to adoph
as a low-energy scale and include thes an explicit degree

PHYSICAL REVIEW C 67, 055202 (2003
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_ FIG. 1. Eight graphs which are ofe+educible (&AR), and so
become enhanced in the region-A. The sliced vertex is thiM 1
vNA vertex, while the sliced and dicegNA vertex is theE2
coupling from£ ®). Solid dots represent couplings frof®).

EFT' the indexa has two different expressions, depending
on whether the photon energy is in the vicinity ofm_ or
A. For a graph withL loops, N, pion propagatorsNy
nucleon propagatordy, A propagators, an¥; vertices of

dimensioni, the index is

2aXp-|-— NA y
a=

w~m,;

w~A. (24

a,pr— Ny,

of freedom. Thus, we naturally arrive at the scale hierarchywhere @ pr=%;iV;—2+4L—Ny—2N_ is the index of the

m, <A<A. (22
This hierarchy complies with the assumption @PT, m_.
<A, and soxPT still gives the dominant effects in the
theory if o~m_ . At the same time, Eq(22) allows us to
extendyPT to theA region.

In developing our power counting below, we will often
keep the dependence of amplitudesnopandA explicit, so
that the behavior of the amplitudes in thedependentchi-
ral (m,—0) or the largeN; (A—0) limits is manifes{33].

Nevertheless, for the purposes of assigning an overall size to

the amplitude arising from a particular graph or set of
graphs, we would like to have one expansion parameter:

A m,
N (23
where we conservatively adopt~600 MeV, the scale in-
troduced by the excitation energy of the next baryon reso
nance. In factA will represent not only this scale but all of
the various high-energy scales, suchngs My, M, , and
47f .. Obviously, in this counting) scales as5, while m_.
scales ag.

While & is of order one-half, the expansion in powerssof
is, in principle, no worse thagPT (which is an expansion in
m,/A) or the SSH24] (which is an expansion in powers of
A/A). Note that, since Eq(23) is not necessarily true in
worlds with other values o, my, etc., once that equation
is employed, the connection to the limits,—0 and N,
—oo is lost unless the chiral and lardé: limits are taken
simultaneously Withanﬁ held fixed.

We assign to each graph an overéltounting indexa,
which simply tells us that the graph is of sigé5%/A. Be-

graph inyPT without explicitAs.

In deriving this power counting, we have used the fact
that no graphs containing vertices with powersmﬁ or A
occur up to the order to which we work. Such vertices do
arise in higher-order graphs though. In general then, a vertex
with j derivativesk insertions of the quark mass, ahgdow-
ers of theA—N mass difference scales adm2*A!, and so
has overall dimension=j + 2k+1. Denoting the number of
such vertices by, , the § index of an arbitrary graph is

]
Zkl (2)+4k+1)Vj+2(4L—Ny—2N,—2)— Ny,

]
w~m

il

- (J+4k+ 1)V +4L—2—Ny—2N,— Ny,

L w~A,
which obviously reduces to E@24) if only vertices withk
=1=0 are present.

In the regionw~A, there is an important exception to
this scaling rule. Graphs that are oAereducible (AR),
such as those in Fig. 1, scale not&fshut as

1

w—A

5(1

Noar
) (25

where N, in the equation fore now counts only the one-
A-irreducible propagators, whil®g,r is the number of
OAR propagators. In the low-energy region this does not
affect the power counting; however, in the regian-A,
these graphs can be dramatically enhanced. This forces us to
resum all the QR contributions, which amounts to dressing

cause we deal with two different low-energy scales in ourthe A propagator, thus ameliorating the divergence that oth-
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TABLE I. The three different expansions discussed in the text.

In all three cases the small expansion parameter is of order 1/2, an% E‘ j E‘ 1 i \\Trﬂ
A is the breakdown scale of the theory. |

-
Expansion m, /A AIA (a) ) () (d)
HBYPT q 1 FIG. 2. The four relativistic tree-level graphs withauis, which
SSE € € are included in our calculatiorfWe also include graphs generated

from these graphs by crossing and/or time reverddie dot is the

leading-order yNN coupling, while the sliced vertex is the
anomalous-magnetic-moment vertex fraf?). The square indi-

cates them®— yy vertex from £®*) which generates the chiral
anomaly.

S

& Expansion 5

erwise occurs at thA pole, and producing a width for thie
of roughly the experimentally observed size.

Details qf the dressing are given below. By definition, 1o s treats_ andA as the same scale, and henceshe
once dressing is performed, a\®@ graph can have only one st be included explicitly in both energy domains,
A propagator, and such a graph then scales as ~m. andw~A.

This overemphasizes the importance of thesomewhat
5a( 1 ) (26) at low energies. In contrast, in the low-energy region, the
w—A-3%)’ S-expansion amplitude is akin to that of WBT. In the re-
gion w~A the dressing of theé\ implemented here is not
wheres is the self-energy. The expansion fbir begins at performed in either HRPT—naturally, since\s are “high-
5%, and so in the domaitw—A|~ &° the QAR graphs are energy” degrees of freedom—or the SSE, as forA

enhanced bys~ 2 over the value expected from E¢R4). ~m_ all =N loop effects are a small correction to the
Thus, the correct index of a AR graph in the regiorw “bare” A propagator.
~Ais The table below(Table |) summarizes the relationship of

the § expansion to HRPT and the SSE.
a=apr—Ny—2. (27
B. Power counting for o~m
As a result, for instance, thechannel-poleA graph of Fig.
1(a), which is the simplest @R graph, is promoted from out A propagators then scale exactly asxRT, but with

NN_II_‘hO in tr;e IfO\t/;/]-.energ%( region to L.O '3 thAfr?Iglon. Bef small momenta)= 6%.# The general index of such a graph is
_ 'he rest of this section 1S organized as Tollows. Belor€y, ., given by Eq(24). The leading contribution then comes
giving a detailed explanation of Compton counting in the

: from the sum of the relativistic nucleon Born graphith
expansion, we make a few comments on how our schem@1=2 Ny=1, L=N.=N,=0) depicted in Fig. @) and
compares to stan_dard HPT and to the SSE of Refs. its crossed partner. Both graphs behave4ds~ 6 2 asw
[23324}' We then discuss power countlng for the Iqw—energy_)o' But the divergent parts cancel in the sum, as the low-
regionw~m,. In Sec. Il C we explain th_e central issue for energy theorem tells us they my&4]. The dominant term
the higher-energy domaia~ A, the dressing of th& pole. for small w is given by the “Thomson amplitude”

Then in Sec. lll D we elucidate the impact of this dressing on

the counting for Compton-scattering graphs. (Ze)?
TM=——— ¢’ ¢, (30

Here we make the identification,m_~ 6. Graphs with-

My

A. Comparison with HB xPT/SSE _ o _ o
In HBYPT the A is not included as an explicit “low- with eandg the p.hotons.mmal— and final-state polarization
vectors. This, obviously, i©(5°).

energy” degree of freedom in the Lagrangian. Instead, it is . R .
integrated out of the theory, producing a low-energy theory, When t_he expansion of.the relativistic grafisgs. Z_a)

. L 4 and 2b)] in powers ofw is made, there are also pieces
that, in principle, breaks down fas~A. Power counting of

2 2 i
. ; : ~e“w=0(6%). These form part of the NLO amplitude. The
graphs is then performed in terms of the indgxvhere rest of the NLO amplitude is obtained from graphs which

m have indexa=2: nucleon tree graphs with the anomalous-
NTW' (28 magnetic-moment couplindi.e., V,=2, Ny=1, L=N_
=N,=0), see Fig. &), and thew® exchange graphFig.
2(d)] involving the WZW anomaly, which ha¥;=V,=1,
N,=1, L=Ny=N,=0.

>l e

qE

whereA is usually assumed to be of order 1 GeV, although
the omission of explici\s suggests insteati~A.
Hemmertet al.[23,24 introduced the SSksee also Ref.

[29]), where the EFT expansion parameter is “The electron charge is usually counted as one powgrifyPT,

A and thusO(qg®) =0(e?q) for Compton scattering. Here we do not
- count the factor oé?, which is present in all Compton graphs when
e (29

m7T
GE _l . .
A assessing thé index of a graph.

> e
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FIG. 3. The dominantrN-loop contributions toyN scattering FIG. 4. The dominantrA-loop contributions toyN scattering.
(crossed and time-reversed partners are not shown, but are imgain, graphs generated from these by crossing and/or time reversal
cluded. are not shown.

Next we considerrN-loop contributions toyN scatter-  counting of the onerA-loop graphs, Fig. 4, is analogous to
ing. After making a heavy-baryon expansion of our relativ-that for the 7N loops, the only difference being that now
istic Lagrangian, in order to avoid difficulties with the ap- Ny=0, N,=1 instead oNy=1, N,=0. This results in the
pearance of the scalsly inside loops, we construct the sum of the graphs in Fig. 4 beir@(5%), i.e., scaling as
leading loop graphs from vertices i8(*). This yields the
graphs of Fig. 3, together with their crossed partners, as re- (Ax loop) e’ w? @ Mz
viewed in Ref.[19]. These graphs are specified hy=1, T :mf '
Nn=1, N,=0, and either {;=V,=2, N.=3), (V;=2, B
N,=1), or (V;=2, V,=1, N;=2); and hence all have  \whereH® is a nonanalytic function which is of order one
=2. They are the only loop graphs with this counting indexfor m_/A~ 8, andw/A=<1. Equation(32) is consistent with
if we adopt Coulomb gauge and employ the heavy-baryoRhe |ow-energy theorem, and agrees with the explicit compu-
expansion. Explicit computatidri7,19 reveals that the sum tation performed for these loops in RER4].
of these graphs indeed produces a Compton amplitude that |n summary, in thes expansion the Thomson term is the

A’ A (32

behaves as leading mechanism for Compton scattering on the nucleon at
5 5 low energies,o~m_. In this region pion loops are sup-
(N loop) _ € w—F<1) o (31) pressed by one power af~m,~ 6, exactly as in HRPT.
(4arf_)2 My m,/’ If explicit As are included in the theory, the leadidgpole

andA 7-loop graphs are suppressed&yrelative to leading.
whereF®) is a nonanalytic function whose form is given in They thus occur one order higher in theexpansion than the
detail for the various possible spin and polarization strucN7 loop graphs of Fig. 3. They are, however, still one power
tures in Refs[17,19 and in Appendix AF(!) has the prop- of 6~ 1 larger than graphs arising from(® insertions inmN
erty thatF(Y)~1 for e=m_ . A crucial feature of Eq(31) is  loop graphs.
the fact that the sum of these leading loop graphs is propor-
tional to w?. This is also a consequence of the low-energy C. Dressing theA
theorem[34].

The counting formuld24) indicates that loop graphs with
insertions from the second-ordgPT Lagrangian’ (®) are
down by two further powers of, being ofO(5%). Relativ-
istic corrections to Eq(31) are suppressed ky/M, and so
areO(6%. Some loop graphs @ (5% require renormaliza-
tion, and the corresponding counterterms must be included. _ (0) (0) 1yt (0)

Meanwhile, graphs with twarN loops areO(8°) in this Su(P)=S,(P)+S, (P2 (p)S, (P)+ -,

. : X 2 (33
counting. Thus—at least in this energy domain—it is not
until O(5°) that two-pion intermediate states contribute towhere 3#*(p) is the full oneA-irreducible (Q\l) A self-
the YN amplitud_e. _And graphs involving ao_lditiqnaiN rés-  energy, ands,,(p) (SELOV)(p)) is the dressedbare A propa-
catterings are similarly suppressed. Considering more loopgator.
and/or insertions with more derivatives only serves to further The functions ,, has as expansion of its own,
increase thes index of graphs. Thus unitarit{in both the .
#N and 7N channels is violated in our calculation, but DI D (34)
the violation is always an effect of an order beyond that at
which we work. This expansion begins &( %), with the graphs depicted in

Graphs containing thé begin to contribute aD(5%). Fig. 5, together with the counterterms necessary for their
The tree graph with twd11 yNA vertices—see Fig. (8)— renormalization. Insertions front th), generate effects in
has =3 (V,=2, Ny=1, L=Ny=N,). Meanwhile, the 3. These effects include relativistic corrections to the

The key issue for the theory in the regian~A is the
treatment of theA pole. OneA-reducible (QAR) graphs
must be resummed in order to remove the divergence which
otherwise occurs whep=M, .

Formally, all QAR graphs can be summed via the series

5The ideal solution to this difficulty would be to use infrared
regularization{35] to compute therN loops. But the result of such (a) (b)
a computation should only differ from the HBT one by terms
suppressed by. Such terms are of higher order than considered FIG. 5. #N and A contributions to the\ self-energy?. The
here. vertices are fromC () and so both graphs af@(s°).
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leading heavy-baryon resuit®. Two-loop contributions to Z(p?)
the self-energy—including the leading effect of ther S.u(p)=————=P5p), (39)
channel—first occur it ®), and are thus smaller b§? than p—M(p°)

the dominant piece .

If with Z andM scalar functions op?. After mass, wave func-

tion, and coupling constant renormalization, these can be
o= A~ &3 (35 written as
Z(p?)=1+(p*~M3)f2(p?) +ilmZ(p?), (39
and we keep only the third-order piece of the self-energy,
then all terms on the right-hand side of H83) are of the M(p?)=M,+(p?>—M3)2fu(p?) +ilmM(p?), (40)
same order. A perturbative expansion of the right-hand
side—which is certainly valid fofw—A|~ &2 or larger—is ~ With f; andf, real functions ofp?.
no longer appropriate. Instead, if E@®5) holds, the whole Substituting these forms into E(88) we find that
series must be resummed, giving
1+ilmzZ(p?) (312)
S;Lv(p):_ . 2 P/,LV (p)+o
-1 32) p—M,—ilmM(p9)
——————P(p). (36) (41)
p—M,—3C)(p)

In region (35), the pole piece i©(5 %), while the remain-
Equation (35) then defines precisely what we mean by ing “background” terms ared(s°%). Thus any corrections to
~A. S,.,(p? from ReZ(p?) or ReM(p?) are three powers of
In fact, the most general Lorentz-covariant form of beyond the leading one. Corrections from Z(p?) are
3. #4¥(p) is rather complicated. It contains up to ten indepen-equally suppressed, since it tooGg 6°).
dent scalar functions. As a result, the dressed propagator Thus, up to corrections which are NNNLO, it is sufficient
does not generally have the for@®6). This is a consequence to compute only ImM(p?). Provided thaw<A+m_, this
of using “inconsistent” spin-3/2 couplings—ones thi not  comes exclusively from Fig.(8). A straightforward calcula-
obey the symmetry under Eql4). If, however, couplings tion gives
which are consistent in that sense are used, thertkelf-
energy can be written as I'(s) hy |\ 2s+ Mﬁ—mi
ImM(s)E——=—(— ———"k30(k),
2 2f.)  24nM3
3#7(p) =3 (p)PE(p), (37 (42)

S.(p)=

with 3 (p) akin to the usual fermion self-energ¥,(p) wherek is the on-shell value of the pion three-momentum,
=A(p?)p+B(p?), where A and B are scalar functions.

Dressing then affects only the spin-3/2 piece of the propaga- k={[s=(My+m.)?J[s—(My—m,)?]/(48)} 2~ 6. 43
tor and the results of fornB6). The divergence gi=M, is (43
ameliorated, and no further resummation is necesséry. Thys, the width i<O(5%), as promised.
Counting indicates that the effects Bf" for n=4 can be The final form of the resummedl propagator is then
included by perturbing around propagat86).

A Propagators of this form have been used in other au- 1
thors’ extensions of chiral perturbation theory to the reso- Su(p)=— ————P(p). (44)
nance regiof36-38, although in these works it is not clear p— MA+§F(D2)

why only the spin-3/2 sector is dressed. Note that in contrast
to the work of, for instance, Ref37], we do not dress the
nucleon pole byrN loops. Arguments analogous to those o
this section suggest that nucleon dressing is only necessaﬁl
from a power-counting point of view fow~0, and there

flf this propagator appears in aA®R yN graph and Eq(35)
is, satisfied, then it scales &5 3.

3(p) is purely real. As we shall now see, after renormaliza- D. Power counting for &~A
tion the real part ok ) plays a negligible role in propagator  The effect of this modified scaling for the propagator is
(36). that (dressefl OAR graphs become the dominant effects for

In Eq. (36) the quantity>(®) indicates that we are resum- o~ A. Their § index is given by Eq(27). The A-pole graph
ming the renormalized third-ordér self-energy. The explicit in Fig. 1(a), with M1 yNA vertices(i.e., V,=2, Ny=1),
renormalization of this quantity will be performed elsewhere.hasa= —1 in region(35) and gives the leading contribution
Here we make a more general argument which constrains tiiéere. The graph of Fig. () with one E2 coupling (i.e.,
form and importance of any renormalized self-energy apV,=1, V3=1) hasa=0, and hence is of NLO itb~A.

pearing in Eq.(36). Meanwhile, the @QR graphs of Figs. (b)—1(g) (and their
First, observe that the general Lorentz structure of thdime-reversed partnersare characterized by =Ny=N,
self-energy?, results in =1 and eitherV,=V,=N_=2 or V,=N_=1, V,;=2.
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They too havea=0 and contribute at NLO. These loop RN
graphs are divergent and must be renormalized. This S —e— =$—z= =$—®=
achieved via Fig. (h). The loop effects may then be included (@) (b) (©)

in the calculation by the use of an energy-dependeat
coupling: gg—ge(s). The leading effect here again arises  FIG. 6. Heavy-baryon expansion graphs that repre@at)

from the imaginary part of the loops, hence wN-loop contributions to the\ self-energy?,. The sliced squares
are vertices from the second-ordeNA HB Lagrangian whose
[ gahal s+ M,%,—m,zT coefficient is fixed by Lorentz invariance. The sliced circle repre-
ge(S)=ge+ti 452 24ms sents a vertex fronf .y, With a coefficient which isa priori unde-
w

termined(see Ref[40]).

Myk? 2My(My+My)

3M, o the low-energy region contribute at NNLO and above, but
’ for |o—A|~ 6° give effects of leading and next-to-leading

X[ Qo @y /k) — Qo wy /k)]0(k), (45) order. We also include the &R graph with twogg yNA

couplings, even though it is formally NNLO.

@y

where w,/=(S—Mﬁ)/2\/§, w,=\m>+k?, while k is given We keep all of these effects in both kinematic regions.
by Eqg.(43), andQ, is thelth Legendre function of the sec- Note that this means we are always keeping contributions
ond kind. that are, strictly speaking, beyond the order to which we

NLO effects can also be obtained by considering correcwork. This is done in order to provide a smooth transition
tions from3 () to the leading\ self-energy (®). More com-  between the two different photon-energy domains. For the
plicated electromagnetic couplings and higher-order terms isame reason, in both regions we always use the resumimed
> lead to effects of NNLO in theS expansion of QR  propagator(44).
graphs. The power counting of Sec. Ill C indicates that at NLO

What is theé index of graphs without & pole? Q\l we must include effects due to ti@(5*) piece of3, S®.
graphs such ad 7 and N+ loops obey Eq(24)—they are  The heavy-baryon graphs which contribute to @(?) self-
not enhanced. They retain a positidendex, and so are at energy in a heavy-baryon calculation with explidis [40]
least NNLO in this counting. are shown in Fig. 6. The relativistic calculation of the

One might wonder how to reconcile this with E®1)  width, which led to Eq(42), already includes the effects of
that seems to suggest that thecaling of the dominantrN Figs. 6a) and @b). As for Fig. 6c), this graph gives a con-

loops will be, foro~A, tribution to 2 which behaves agi0]
2 A? (bg+bg)h d*k k? v-k
2 _22 250 (46) $60(p)~ ——2 Af a2 2 K
m, — A? f2 (2m)* k2—m2 v-(p—k)

(48)
This conclusion is erroneous becausg’ is not O(1) if
w/m is large. If o/m;>1, the loop functions should be The imaginary part of this graph is proportional ddkm?
expanded about _the largedimit, not the smallow one, and [with k given by Eq.(43)], so while it isO(e?) in the SSE, in
doing so results in our counting it isO(6°%), and so well beyond the order to
which we work. Thus the resulé?2) is already accurate up to
corrections of relative ordes?.
Theu-channelA-pole graph is NNLO throughout this en-
(47) tire energy region and isot included in our Compton am-
plitude. Therefore, by looking at its effect on cross sections,
Assigningw~A, m_~A? we see that this series, rather thanwe can estimate the importance of NNLO contributions.
one in increasing powers ab is the correct one for the
“medium-energy” regimew~A>m_. This is completely
opposite to a polarizability expansion in increasing powers

| e m2  m
TN 0P = ——— | ¢+ dym, +C3—+Cs— + - |.
a2t ?| & 1 37, 7O 3
™ .

B. Covariant decomposition of the Compton amplitude

of w. In our approachw~ A is sufficiently far from thresh- 10 compute the amplitude of Compton scattering on a
old, so that a power-series expansion arowre0 of A con- spin-1/2 target in a manifestly Lorentz- and gauge-invariant
tributions is not very useful. form, we specify it in terms of eight scalar amplitudes
Aq, ... Ag (instead of the usual sjix
IV. IN PRACTICE 8

a2 veork '
A. Defining the NLO calculation Myi=e“u(p )izl Ai(s,)Of"E . (a")E(aQ)u(p), (49)

To perform a complete NLO calculation in the whole en-
ergy region <w=<A, we include all of the nucleon pole and wherep’, p (andq’, q) are the final and initial 4-momenta
7N loop graphs of Figs. 2 and 3, together with their crossedf the nucleon(and photol respectively;u is the free
partners. To these we add th&R graphs of Fig. 1, which in  nucleon spinor£,, is a modified photon polarization vector:
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P-e
€M(q)=s#—P—qu (50
with P=p+p’. TensorsO; are given by
Of"=—g",
O5"=0"q"",
Of"=—y"",
04"=g""(q"- y-q),
Of"=0g"a,y""~ v"“q.9"", (51)
Of"=a"a,y" = v"d,0"",
Of"=0"q'"(a"- y-a),
OQLV:Ws‘EMW'BQLQB-
Mandelstam variables, t, andu are defined as usual:
s=(p+a)*=M{+2p-q,
t=(a'-9)?=-2q-q’, (52)
u=(p—q)*=M{-2p-q’,

where we have used the on-shell conditiods-q’'?=0 and
p?=p’2=M2. Note thatP-q=3(s—u)=P-q’".

PHYSICAL REVIEW &7, 055202 (2003

done in order to avoid difficulties with the treatment of the
nucleon mass scald inside the loops. The amplitude ob-
tained in a fully relativistic calculation of these loops would
differ from the result used here by terms ©{ w/M) and
O(m,/M), i.e., terms down bys?. The loop contributions
are given in Appendix A.

We do include one particular relativistic effect because we
write the photon energy that appears in the loop functions
asw=1/s—My. The standard choices far—center-of-mass
photon energy{19] and Breit-frame photon energyl7]—
differ from this by terms which are of RLO in our counting.
We adopt this prescription in order to ensure that the Comp-
ton amplitude’'swN cut occurs at the correct value af

V. RESULTS AND DISCUSSION
A. Differential cross sections foryp scattering

There are noyN contact terms at NLO in thé expan-
sion. This leaves us with three EFT parameters which must
be fixed using the datayg, gy, andh,. For hy we adopt
the phenomenological valudé,=2.81 (f2,,/47=0.35),
which corresponds to aA width I'(M%)=111MeV—
consistent with the range given by the Particle Data Group
[39]. This value ofh, is roughly 5% larger than that obtained
from the largeN, relationh,=(3/1/2)g,.

This leaves us with two free parametegg, and gg, of
the yNA coupling (12). They represent the strength of, re-
spectively, theM1 andE2 yN— A transitions.

In principle, these are relatively well known from pion
photoproduction. In particular, their ratio is related to the

The representatiofd9) is obtained by writing down the R_,,=E2/M1 ratio,

most general covariant structu(e®r the on-shell situation

and imposing the electromagnetic current-conservation con-
dition. Thus this representation incorporates both covariance

and gauge invariance in a manifest way.

The amplitudesA; are most easily computed in the fol-

lowing Lorentz-invariant gauge:

P.-e=0=P-¢’. (53

Ro. — geA
EMT2gm(My+M,y) —geA

% 100%. (56)

The determination of this ratio has recently been the subject
of experimental programs at the JLab and the MAMI. The
present Particle Data Grou®DG) value is Rgy=(—2.5
+1.0)% [39]. However, this number is measured only indi-

This condition can also be achieved in the Coulomb gaugéectly through the extraction of the ratio of the pion-

(e0=0=g}) by going to the Breit frameP=0.
In the Coulomb gauge, the structur€s—Og exactly
match the ones in the standard decompositieny., Refs.

[19,34)), while O; and Og can be reduced to linear combi-

nations ofO5, Og, andOg,
0O;=(w?+3t)[ —tO3+ O5]— w?Og, (54)

In particular, the results for the nucleon-exchan@rn)

graphs, the anomaly graph, and theexchange graphs are

specified in terms of the amplitudds, . . . ,Ag in Appendix

A. As our calculation of these graphs is fully relativistic, it

differs from that of HB(PT in Refs.[19,23 by terms of
O(9).

Meanwhile, for therN loop graphs depicted in Fig. 3, we

have used th©(g®) HBYPT result of Refs[17,19. This is

photoproduction multipoles at thé-resonance position.
These multipoles are affected by a number of background
processes, and relationshi6) is only strictly true at lead-
ing order in thes expansion for theyp— mp amplitude. To
fully understand the constraint that pion photoproduction
places ongg /gy in this EFT, a higher-order calculation of
vyp— mp using thed expansion is necessafyzor an attempt

to compute this process in the SSE, see R&f].) Such a
calculation being absent, here we regggg andgg as free
parameters and fit them to get the best agreement wgth
cross-section data. An important future test of the usefulness
of & expansion will be whether the resultant valuedar gy

is ultimately consistent with that found from pion-
photoproduction data using the same framework.

The results for the differential cross section at several
different energies are presented in Figs. 7 and 8. The long-
dashed orange curve represents a calculation which includes
only the Born graphs of Fig. 2. The dashed blue curve is the
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FIG. 8. Angular distribution of the/p differential cross section.
Caption for the curves is the same as in Fig. 7. Data points are from
rléef. [5] (MAMI'01), Ref.[1] (SAL'93), and Ref.[4] (LEGS'0]).

FIG. 7. Angular distribution of theyp differential cross section
at low energies. Data points are from REF]. The long-dashed
orange line represents the sum of nucleon and pion Born graphs, t
blue dashed line gives the NL@PT prediction, and the red solid
line is the full result at NLO in the5 expansion. The dots give an
estimate of the theoretical error.

graphs,A-exchanggwhich is NNLO for w~m,), and 7N
loops (which are NNLO foro~A).
The fit of the cross section favors the following values for

result when therN loops of Fig. 3 are added, and so gives the yN—A parameters:

the O(g®) prediction of HByPT. Finally, the complete NLO — oAt P
calculation in thes-expansion is represented by the solid red On=26202, ge=-6.0=09. 8)
curve. The sharp rise at backward angles»dacreases past The solid line in Figs. 7 and 8 gives the result for the central
the pion-production threshold is now reproduced in theyajyes ofg,, andge . The uncertainty in Eq(58) is found by
theory. This sharp rise is very difficult to obtainy®T with-  varying these couplings until the experimental cross section
out explicitAs. _ in the A region is no longer within the theoretical error band.
In Figs. 7 and 8 we also show a theoretical error band, The resulting value of, is consistent with the larghi,
deme_lrcated by the red dot_s. 'Ifh|s.|s obtained _by estlmat|nga|ue’gM:(2 J2/3)(1+ Kp)=2.63, while the value ofic is
the size of the NNLO contribution in the following way:  considerably different from phenomenological expectations.
5 ) For instance, fronRgy,=—2.5% and Eq(56), one would
. e ©A, o~m; expectge=—1. This problem signifies the importance of
T(theoretical errog=— —¢'-eX 4 : ;
My w, w~A. performing an analogous calculation of pion photoproduc-
(57)  tion to check the consistency of tlieexpansion.
Next we would like to note that, although formally the
The error band in Figs. 7 and 8 is plotted with the borderimaginary and real parts gfz(s) of Eq. (45) are of the same
between the two kinematic domains @t=200 MeV. The order, numerically the imaginary part is smaller by at least a
band is an estimate of how far we expect the NNLO correcfactor of 6. Ingg(s) has a negligible impact on the angular
tions to change the results. It may overestimate the theoretdistributions shown in Figs. 7 and 8.
cal error since our calculation already includes a number of The NLO prediction for the differential cross-section en-
NNLO contributions: relativistic effects coming from tree ergy dependence is shown in Fig. 9 for a scattering angle of
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250 F ‘ ‘ TABLE II. Proton polarizabilities inyPT, theé expansion, and
o Eééslig; the SSE, compared to values extracted from experiment. Results are
A i ; 4¢3
200 | » LEGS 2001 in units of 10°* fm*®.
= NLO
2 A Reference a, Bp
c, 150 ¢ Born+Tt
= N loops NLO HByPT [19] 12.2 1.2
o 100 ||~ — B+m+loops NLO § [this work] 10.233 3.9°%7
XS, NLO SSE[25] ([23]) 16.4(20.8 9.1(14.7)
'8 50 | PDG averag¢39] 12.0+0.7 1.6-0.6
LEGS[4] 11.8+2.0 1.4-15
0 i | | | ‘ ‘ MAMI [5] 11.9+2.1 1.2+1.4
100 150 200 250 300 350 400 450  Beaneetal.[20] 12.1+1.6 3212
Qab [Mev]
FIG. 9. Energy dependence of the differential cross section (3) Perhaps most importantly, our NLO calculation in-

at 90°. Data points are from RélL] (SAL93), Ref.[3] (LEGS'97), cludes neithew-channelA exchange norrA loops, since
and Ref.[4] (LEGS'01). The red solid, orange long-dashed, and both are NNLO in thes expansion. In fact, th& contribu-
blue dashed lines are as above, while the purple curve now givedons quoted in Appendix B stem from both the and
the contribution arising solely from thd, and the green short- u-channelA exchange graphs. However, the NLO calcula-
dashed curve is the effect afN loops alone. tion presented above has mechannel graph. Thus to find
the polarizabilities that correspond to the cross-section cal-
90°. The solid purple line is the result when onlypole  culation of Sec. V A, one must halve tie pieces of polar-
mechanisms are included, aggl andgg are chosen accord- izabilities given in Appendix B.
ing to Eq. (58). The solid red line gives the result of our  All of these effects produce A contribution to the mag-
NLO calculation. Individual contributions from Born graphs Nnetic polarizability, which is significantly smaller than that
and 7N loops are given by the orange dashed and greefpund in previous EFT calculations with explicks [21—
short-dashed lines, respectively. TIqg®) prediction of 23,29
HBxPT is represented by the blue dashed line. This figure

shows that our NLO calculation of th& width is in good @) agd, I
agreement with the data. This lends support to our adoption By’ = YIEYRE =(2.7£0.4HXx10 " fm°. (59
of the valueh,=2.81. However, it must be pointed out that (M A

since our EFT was only designed fo<@w=<A, the agree-
ment at the higher energiéhich is seen in Fig. Ris prob-
ably somewhat fortuitous.

The A contribution to the electric polarizability comes solely
from thes-channelA pole with twogg couplings:

2
a®=— a—gEs =(—2.0+0.7)X10°* fmd.
The results for the nucleon polarizabilities are worked out (My+My) (60)
in Appendix B. The leading contribution to polarizabilities is
from 77N loops and hence is exactly the same as inyRB,
see Eqg.(1). On the other hand, our results for thecontri-
butions differ from earlier ones in several ways as follows.

(1) First of all, in contrast to the results of Refd.3,27,
they are independent of “off-shell parameters.”

(2) The leading SSE result of Rg23] for the magnetic
polarizability is also free of off-shell parametdia the SSE
they enter at NLQ2 Formally, the result of Appendix B
agrees with that found in Ref23]—apart from a higher-
order relativistic effect which is numerically only of order
10%:

B. Polarizabilities

The observant reader might have noticed that the inclusion of
A contributions in the polarizabilities is not, strictly speak-
ing, consistent at NLO in our power counting. Thehannel

A pole is, like itsu-channel counterpart, NNLO fas~0. In
spite of this we have included th& contributions in the
results shown in Table Il. The numbers there represent the
polarizabilities corresponding to the cross-section calculation
already presented.

We expect that in an NNL&-expansion calculation the
A’s effect on g, will roughly double.«, will also be modi-
fied, thanks to the graphs in Fig. 4 and trehannelA-pole
graph with twogg couplings. Estimating these effects gives
the theory error bars that appear in the second line of the
table. We note that, even though NNLO effects make a sig-
nificant difference in the values far, and3,, their impact
However, our fit to the cross section prefers a significantlyon the low-energy differential cross section is not large, be-
smaller value of theyNA coupling than was used in Ref. ing represented by the theoretical error band in Fig. 7. This
[23], and this leads to a markedly smaller numerical resulsuggests that the extraction of polarizabilities from Compton
for g4V data is a delicate process.

BL8) this work__ (A) SSE
N N .

2+A’3
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VI. CONCLUDING REMARKS in a calculation ofyD scatterind42]. It is also possible that
the § expansion could be profitably employed to organize the
A contributions to the chiral nucleon-nucleon potential de-
veloped in Refs[43—45.

The expansion developed in this paper for ¢ ampli-
tude is based on the scale hierarahy<A<A. The EFT
expansion parameter employed hereSjswhich represents
both the ratio ofm_ to A and the ratio ofA to A. The
success of the resultings*expansion” is to be judged by its

efficacy as an EFT of Compton scattering. We thank Sergey Kondratyuk and Olaf Scholten for com-
The existence of two different low-energy scales in thements on the manuscript. D. R. P. thanks Harald GrieBham-
theory forces us to develop independent power countings fomer and Thomas Hemmert for useful discussions and the
the two different photon-energy regimes. For-m_, the  Benasque Centre for Science for its hospitality during part of
Compton amplitude obtained is exactly that ®T up to  this work. This research was supported by the U.S. Depart-
effects from theA, which are down bys® relative to leading. ment of Energy under Grant Nos. DE-FG02-93ER40756,
On the other hand, iflo~A, OAR graphs dominate the DE-FG02-02ER41218, and by the National Science Founda-
Compton amplitude. Resummation of the self-energy is tion under Grant No. NSF-SGER-0094668.
necessary in these graphs. Thepropagator appearing in

them acquires a finite, energy-dependent width. Up to effects ppenDIx A' RESULTS FOR COMPTON INVARIANT
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suppressed by®, this is the only correction necessary to the AMPLITUDES

A propagator. Vertex corrections also appear at NLO in this

region. We define the photon energy as=(p-q)/My=(s
We performed a calculation of thgN amplitude, which —Mﬁ,)/ZMN. The results for the invariant amplitudes are

includes all effects that are of leading or next-to-leading orpresented in the nucleon mass unitd\(=1). Below Z=1

der in the regionw~m_, as well as all effects that are of for the proton,Z=0 for the neutron. Expressions for tide
leading or next-to-leading order in the regi@~A. The exchange are obtained using the algebraic manipulation pro-
sum of all of these pieces of the amplitude defines our NLOgram Form[46].
calculation. Thus, in each of the two regions considered,

mechanisms of NNLO in that particular region are included

. . . 1. Nucleons channel
in the calculation. Nevertheless, effects of relative oréer

(e.g.,A loops are omitted in the low-energy region, while 1 1 1 1
effects of relative ordes? (e.g., two-loop dressing of th&) Al(wt)=—=| 2%+ —(Z+Kk)%+ =k’ 0+ =t] ],
. . ) . 2 4w 2 4

are omitted in the higher-energy domain. These neglected
effects define the theoretical error bar of our calculation.

Note that in this calculation tree-level graphs are com- _ K l _ } _ l

S . As(w,t)=—|Z+ zk| 1 1) t,

puted relativistically, while for loop graphs we use the 2w 2 2 8

HBxPT result. While this gives the corregN amplitude up
to the order to which we work, a fully relativistic treatment Az(w,t)=A;(w,t),
of N loops would be more aesthetically pleasing.

After fitting the only two free parameters in our theory, 1
the E2 andM1 yNA couplings, good agreement with the Ay, t)=——
low-energyyp data is found. The spin-independent polariz- 4o
abilities « and B that result from our NLO calculation are in
reasonable agreement with contemporary extractions from (Z+k)?
data[5,20]. As(w,) = —7——, (A1)

The development of thé expansion opens up a number
of avenues for further study. Higher-order calculations of (24 x)
Compton scattering on the nucleon will be necessary to see if Ag(w,t)=— —K,
the good agreement found at NLO persists, and if the expan- 4o
sion in powers ofs is well behaved or not. Also, the use of
the & expansion in other processes, e.g., pion photoproduc- P
tion, is an important potential future application. Indeed, the Arw,t)= 160"

EFT presented here should ultimately be judged by its suc-

cess in simultaneously describing data on nucleon Compton

scattering, pion photoproduction, antN scattering. Only Ag(@,)=—Ag(w,1).
then can the reliability of the EFT, and hence of our extrac-

tion of ge andgy, from yN data to NLO in thed expansion, 2. w°— yy anomaly graph
really be judged.

The use of they expansion in two-nucleon systems might grn  22-1
also reap significant rewards. We plan to use the amplitude Ag(w,t)= 5.2 Ai....A=0 (A2)
developed here, together with consistent two-body currents, (27 )" t—mo

1
(Z+ K)2+§K20)

055202-12
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3. A schannel

Al(w,t)=F(w,A)( 2(w?+31)(2+A)GYH— 2w?AGE

2
+30%(Gl+GE~GuGe) + 5 1°Gj,
+tot[(2+ EA+ Lw+it)GE— L(2+A

+ )Gy Ge+ %weé]},

Ax(w,)=F(w,A){~ §(2+A4)G{— 5 0[(8+3A)Gj;

+2AGZ—(2+A)GyGel+ w?(— § G4+ 2 GE

+2GyGp) +t[— & (1-A)G4— 5 AGE
5 0(= 3G+ GE+ § GuGe) + 5 t(G
+Gp)?1},

As(w,t)=F(0,A0){~ 507 [2G}+A(GYH—GF)]
—30%(G{+GE—4GyGe) +t[ — §(2+A)Gj
+30G(Gy(3 +4)+Ge(2+A4)) + (13 Gjy

-5 GEZ+1iGyGp) + 3G (3 +w)],

Ay(,1)=F(w,A){~3(2+A)Gy(Gy+ wGE)
—o(1+3A)GE+ 3 0?(G3+ G2— Gy Gp)

+3tGH(3+ )}, (A3)

As(w,1)=F(0,A){3(2+A)G}— § w[2(1+A)GY—AGE
+(2+A)GyGe]l— 0?Gy(Gy—Gg) + 7t[ G Ge
+3AGu(Gy+Gg)—wGy(Gy—Gg) 1},

As(,1)=F(w,A){wGy[Gy+3A(Gy+Gg)]
+@’Gu(Gy—Ge) + 1[Gl + MGy (G + Ge)
+wGu(Gu—Ge)l},

Aq(0,0=F(0,){(2+8)( G} + 1GuGe) ~ & AGE

+o(f5 Gy~ 13 GE—3GuGe) — 55 t(Gy

+GE)2},
Ag(w,t)=F(w,A){%(2+A)G+ w[4(1+1A)GE,
—%(2+A)GyGel+ ¢ 0*(Gy+GE—4GyGe)

2tG (2"“1’)}

PHYSICAL REVIEW &7, 055202 (2003

W|th GM,E:(3/2)gM,E/(2+A) and

o) 2 1
wA)=— =
3 s—M3+iM,I'(s)

2 1
=T 3%0-AQFMFIM (@) AY

Here§=T§T3 is the isospin factor, and the widthis given
by Eq. (42).

The correspondingu-channel graphs are obtained by
crossing, so that the crossing-symmetric amplitude is given

by

Ai(w,t)-i—Ai(—a)',t) for i=1,2,8;

Ai(w,t)—Ai(—w’,t) for

with o’ =p-q'=(1—u)/2.

4. HBYPT «N loops

Defining Z=(ys—My)/m, and r=-27%(1—cog),
where 6 is the center-of-mass angle between the incoming
and outgoing photon momenta, one find9)]

2
m,, 2—7
Al(s,t):—gA [1— 1-2+

2 \/—_T

m

X

1 -7
—arctan——ll(g,r)H,

2 2
g 2-
Ag(s,)=— Smc;‘ — )3,2[11@ 7)=1a(47)],
gam, [1
As(s,t)= ———| =arcsirf{ — {+24sirf 0l 5(¢,7) |,
872 fw s
92
ASD= 25— 147,
g2
A5(S,t):—&TTAETmW['s(&T)—ZZZCOSﬂ3(5:7)],
g2
Ag(s,t)= 262 [|5(§ 7)—2%5(L,7)].  (A5)
Here
1 (1-2)-7
Il(g,r):fodzarctanﬁ,

2(1-2)\— T(l—gzzz)

41— %28 - 1(1-2)%"

1
|2(§,T):fodz
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1 (1 x(1-x)z(1-2)° {z (zS
I3(§,r)=jo de’0 dz ( )83( arcsm%JrZR—2 ,
B ld ld z2(1-2) Lz
I4(§,t)—f0 xfo Z S arcsmﬁ,
Lot (-2 {7z
I5(§,t)=f dxf dz S arcsmﬁ, (AB)
0 0
with
S=1-?7>— 7(1—-2)’x(1—x),
R=1-7(1-2)*x(1—X). (A7)

APPENDIX B: RESULTS FOR POLARIZABILITIES

The nucleon electricdy) and magnetic 8y) polarizabil-
ities:

PHYSICAL REVIEW C 67, 055202 (2003

a & NB NB
aNziﬁA(l (0,0 +«ASN®) (0,0
_57Ta( ga |2 2ag2

6m \4mf, ] (My+M,)3

J
,8N=—aA(zNB)(O,O)=2aEA(1NB)(O,0)
_ ma ( Oa )2 2ag§,| ®1)
12m \4nf. ) (My+M,)2A°

where AN® are the amplitudes with the Born graphs
subtracted.
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