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Production of gluons in the classical field model for heavy ion collisions
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The initial stages of relativistic heavy ion collisions are studied numerically in the framework of a
(211)-dimensional classical Yang-Mills theory. We calculate the energy and number densities and momentum
spectra of the produced gluons. The model is also applied to noncentral collisions. The numerical results are
discussed in the light of RHIC measurements of energy and multiplicity and other theoretical calculations.
Some problems of the present approach are pointed out.
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I. INTRODUCTION

In ultrarelativistic heavy ion collisions such as those stu
ied at RHIC and LHC, particle production in the central r
pidity region is dominated by the gluonic degrees of freed
in the nucleus. At sufficiently smallx the phase space densi
of these gluons is large, so one can try to treat them a
classical color field. Let us first briefly review the model
Refs.@1–3# before turning to our results in Sec. IV and the
phenomenological implications in Sec. V. Our notation
essentially that of Refs.@1–3#.

The idea of Ref.@1# was to model the high momentum
degrees of freedom of a nucleus as static random clas
color sources with a Gaussian probability distribution:

^ra~xT!rb~yT!&5g2m2dabd2~xT2yT!, ~1!

where xT and yT are vectors in the transverse plane. T
classical color field generated by this source is then obta
from the equations of motion

@Dm ,Fmn#5Jn. ~2!

This original formulation of the model is very simple
beyond the nuclear radiusRA it only depends on one dimen
sional phenomenological parameterm ~related toLs intro-
duced in Ref.@4# by Ls5g2m) and the QCD couplingg that
does not run in this classical approximation. One may, ho
ever, argue that the Gaussian probability distribution sho
be replaced by something else, namely, a solution of
‘‘JIMWLK’’ renormalization group equation@5#.

The McLerran-Venugopalan model@1# describes the wave
function of one nucleus. Nucleus-nucleus collisions w
first studied in this framework in Ref.@2#. The source curren
is taken to be

Jm5dm1r (1)~xT!d~x2!1dm2r (2)~xT!d~x1!, ~3!

where the color charge densitiesr (m) of the two nuclei are
independent. In the regionx2,0, x1,0, which is causally
connected to neither of the nuclei, the solution can be cho
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as Am50. In the regionsx2,0, x1.0 and x2.0, x1

,0, which are causally connected to only one of the nuc
the solutions are ‘‘transverse pure gauges’’

A(m)
i 52

i

g
eiL(m)] ie2 iL(m) with ¹T

2L (m)52gr (m) .

~4!

The initial condition (t50) for the interesting regionx2

.0, x1.0 is obtained by matching the solutions on t
light cone. This yields

Ai ut505A(1)
i 1A(2)

i ,
~5!

Ahut505
ig

2
@A(1)

i ,A(2)
i #.

Modeling the sources asd functions on the light cone@Eq.
~3!# makes the initial conditions boost invariant. We sh
also restrict ourselves to strictly boost invariant field co
figurations. This elimination of the longitudinal degrees
freedom makes the numerical solution of the equations
motion easier, but is a serious limitation, especially
studying thermalization~see, e.g., Ref.@6#!.

II. „2¿1…-DIMENSIONAL CLASSICAL HAMILTONIAN
CHROMODYNAMICS ON THE LATTICE

The analytic solution of the equations of motion, Eq.~2!,
with the initial conditions, Eqs.~5!, is not known, but they
can be studied numerically. A lattice Hamiltonian formul
tion of the model was first developed in Ref.@3#.

Assuming that the field configurations are boost invari
reduces the system to a~211!-dimensional one. Choosing
the Schwinger gaugeAt50, one can cast the equations
motion into a Hamiltonian form. The lattice Hamiltonian i

aH5(
xT

H g2a

t
Tr EiEi1

2Nct

g2a
S 12

1

Nc
Re TrU'D

1
t

a
Trp21

a

t (
i

Tr ~f2f̃ i !
2J , ~6!

wherea is the lattice spacing andEi ,Ui ,p, and f are di-
mensionless lattice fields. The fields are matrices in co
©2003 The American Physical Society03-1
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space, withEi5Ea
i ta , etc., and the generators of the fund

mental representation normalized in the conventional wa
Tr tatb51/2dab . The first two terms are the transverse ele
tric and magnetic fields, with the transverse plaquette

U'~xT!5Ux~xT!Uy~xT1ex!Ux
†~xT1ey!Uy

†~xT!. ~7!

The last two terms are the kinetic energy and covariant
rivative of the rapidity component of the gauge fieldf
[Ah52t2Ah, which becomes an adjoint representati
scalar with the assumption of boost invariance. For the p
allel transported scalar field we have used the notation

f̃ i~xT![Ui~xT!f~xT1ei !Ui
†~xT!. ~8!

In the Hamiltonian, Eq.~6!, there is a residual invarianc
under gauge transformations depending only on the tra
verse coordinates. The Hamiltonian equations of motion

U̇ i5 i
g2

t
EiUi~no sum overi !, ~9!

ḟ5tp, ~10!

Ėx5
i t

2g2
@Ux,y1Ux,2y2H.c. #2trace1

i

t
@f̃x ,f#,

~11!

Ėy5
i t

2g2
@Uy,x1Uy,2x2H.c. #2trace1

i

t
@f̃y ,f#,

~12!

ṗ5
1

t (
i

@f̃ i1f̃2 i22f#. ~13!

The Gauss law, conserved by the equations of mot
reads

(
i

@Ui
†~xT2ei !E

i~xT2ei !Ui~xT2ei !2Ei~xT!#

2 i @f,p#50. ~14!

On the lattice, the initial conditions~5! become

Tr $ta@~Ui
(1)1Ui

(2)!~11Ui
†!2H.c. #%50, ~15!

Ei50, ~16!

f50, ~17!

p~xT!5
2 i

4g (
i

$@Ui~xT!21#@Ui
†~2)~xT!2Ui

†~1)~xT!#

1@Ui
†~xT2ei !21#@Ui

(2)~xT2ei !2Ui
(1)~xT2ei !#

2H.c. %, ~18!
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whereU (1,2) in Eq. ~15! are the link matrices correspondin
to the color fields of the two nuclei@Ai

(1,2) in Eq. ~4!# and the
link matrix Ui corresponding to thet>0 color fieldAi must
be solved from Eq.~15!.

The model has three free parameters, the couplingg, the
source densitym, and the nuclear transverse areapRA

2 . In
this work the lattice size is taken to beL25N2a25pRA

2 .
This means that the field modes have an infrared cutof
the order 1/RA , while physically one would expect them t
be cut off at a scale;LQCD by confinement physics no
included in the classical field model. So, in order to be phy
cally sensible, our results should not depend on this infra
cutoff.

The values of the three parametersg, m, andpRA
2 sepa-

rately are needed when translating lattice units to phys
units, but the dimensionless parameterg2mRA controls the
qualitative behavior of the model; the weak coupling or we
field limit is reached for small values of this parameter~see
also Ref.@7#!. To see this consider the system on a transve
lattice of spacinga. Now we haved2(xT);1/a2. Thus, from
Eq. ~1!, the charge densityr;gm/a. The Green’s function
of the operator¹T

2 in Eq. ~4! is a logarithm, which is para-
metrically constant. ThusL(xT) is obtained by summing
contributions;ga2gm/a from each of the;RA

2/a2 cells
~the area of a cell beinga2). Because the charges are distri
uted as Gaussians with zero expectation value, their s
scales as a square root of the number of lattice sites, and
get L(xT);ag2mARA

2/a2;g2mRA . Because of the expo
nentials ofL in Eq. ~4! it is the magnitude of the dimension
less fieldL that determines the nonlinearity of the model.

The same argument can also be formulated in momen
space. The Poisson equation, Eq.~4!, can be written as
kT

2L(kT)5gr(kT). One needs a prescription to deal with th
zero mode, the one chosen here is color neutrality of
system as whole,r(kT50T)505L(kT50T). Then the
dominant contribution comes from the smallest nonzero F
rier mode,kT;1/RA . In momentum space the correlator~1!
is ^r(kT)r(pT)&;g2m2d2(kT1pT) with d2(kT);RA

2 . Thus
L(kT);gRA

2r(kT);gRA
2gmRA and L(xT);L(kT)/RA

2

;g2mRA .
In this Hamiltonian formalism the energy per unit rapidi

in different field components is naturally the easiest and
most fundamental quantity to compute. One can also m
sure equal time correlation functions of fields:

^Ei
a~kT ,t!Ei

a~2kT ,t!&, ~19!

^Ai
a~kT ,t!Ai

a~2kT ,t!&, ~20!

^pa~kT ,t!pa~2kT ,t!&, ~21!

^fa~kT ,t!fa~2kT ,t!&. ~22!

These correlation functions are not gauge invariant. One
however, argue that in the Coulomb gauge] iAi50 a physi-
cal meaning can be assigned to them~see also Ref.@8#!.
Using equal time field correlation functions one can defin
3-2
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PRODUCTION OF GLUONS IN THE CLASSICAL FIELD . . . PHYSICAL REVIEW C67, 054903 ~2003!
gluon number densityn(kT), but the definition is not unique
The question of defining the number density is discusse
the following section.

III. PARTICLES IN A CLASSICAL FIELD

In a weakly interacting scalar theory it is easy to defin
particle number corresponding to a given classical field c
figuration. Take a free Hamiltonian and Fourier transform

H5E ddxF1

2
p2~x!1

1

2
~“f!2~x!1

1

2
m2f2G ~23!

5E ddk

~2p!d F1

2
up~k!u21

1

2
v2~k!uf~k!u2G

5E ddkv~k!n~k!, ~24!

with the free dispersion relationv2(k)5k21m2. Averaged
in time, the energy is distributed equally between the degr
of freedom,

1
2 up~k!u25 1

2 v2~k!uf~k!u2, ~25!

so we can identify

up~k!u25v~k!n~k!, uf~k!u25
n~k!

v~k!
. ~26!

For an interacting theory one candefinethe number dis-
tribution as follows:

n~k!5Aup~k!u2uf~k!u2, v~k!5Aup~k!u2

uf~k!u2
. ~27!

There is also another possibility, we can alsoassumea dis-

persion relationv free(k)5Am21k2 and define

n~k!5
up~k!u2

v free~k!
. ~28!

The latter approach is the one we take. Explicitly, for th
particular theory described by the Hamiltonian, Eq.~6!, a
two-dimensional gauge field with an adjoint representat
scalar field on the lattice, we define

n~kT!5
2

N2

1

k̃
F g2

2t
Ei

a~kT!Ei
a~2kT!1

t

2
pa~kT!pa~2kT!G ,

~29!

where

k̃ 25
4

a2 Fsin2
akx

2
1sin2

aky

2 G ~30!
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is the free, massless lattice dispersion relation. We can
verify that our method is consistent with the approach of E
~27! by looking at the correlation functions

1

t
A^Ei

a~kT!Ei
a~2kT!&

^Ai
a~kT!Ai

a~2kT!&
and tA^pa~kT!pa~2kT!&

^fa~kT!fa~2kT!&
~31!

and verifying that they behave asv( k̃)' k̃ ~see Fig. 1!.

IV. RESULTS

To state our results in a form easily comparable with R
@4#, let us define the same dimensionless quantitiesf N and f E
as follows:

f E5
1

g4pRA
2m3

dEinit

dh
, ~32!

f N5
1

g2pRA
2m2

dNinit

dh
. ~33!

As discussed in Sec. II, the quantitiesf E and f N are functions
of only one dimensionless variableg4pRA

2m2. In the weak
field limit, namely, forAg4pRA

2m2&50, f E and f N have a
strong dependence ong4pRA

2m2. This signals a dependenc
on the infrared cutoff of the theory. In the strong field lim
i.e., at large enough values ofg4pRA

2m2, the nonlinearities
of the infrared modes regulate this infrared divergence
f E and f N become approximately independent ofg4pRA

2m2,
as can be seen from Fig. 2. Our results for the energy
multiplicity are summarized in Figs. 2 and 3 and Table I. T
total energy as a function of time in different field comp
nents is plotted in Fig. 4 and the energy in the different fie
components in Fig. 5.

Our result for f E is smaller than that of Ref.@4# by ap-
proximately a factor of 2. The functiondN/d2kT(kT) we
obtain is different although its integral overkT space, and
thus f N , happens to be the same. This difference is illu
trated in Fig. 6.

One can also derive a largekT analytic expression for the
multiplicity in the classical field model@2,9# ~see also Ref.
@10#!. An expansion to the lowest nontrivial order in the fie
strength gives

0 0.5 1 1.5 2~ka

0

0.5

1

1.5

2

ω
(~ k)

a

FIG. 1. The functions~31!. The circles arev( k̃) determined

from the transverse fieldsEi and Ai , the solid line isv( k̃) deter-

mined fromp andf. The maximum value ofk̃a is 2A2.
3-3
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dN

dhd2kT

5
pRA

2

~2p!3

1

p

Nc~Nc
221!g6m4

kT
4

ln
kT

2

L2
, ~34!

with L some infrared cutoff. A useful check of the numeric
computations is that they should approach the analytic re
in the weak field limit of smallg2mRA , although the uncer-
tainty from the infrared divergence of the analytical res
can be numerically large. Figure 7 shows that we do ind
observe a transition to a perturbative 1/kT

43 logarithmic
factors—behavior aroundkT*2g2m, although in this region
the shape of the spectrum is already severely modified
lattice effects, as can be seen comparing the plots for the
lattice sizes. But, as seen in Fig. 8, the overall normaliza
of our numerical result is far away from the analytical res
at largeAg4m2pRA

2 and approaches it only forAg4m2pRA
2

&10. This would suggest that the weak field approximat
used to obtain the analytical result~34! is unsuitable for a
quantitative understanding of this classical field mod
whose justification lies, after all, in the argument of stro
fields.

Our definition of the gluon number spectrum, Eq.~29!, is
based on equal time correlators of fields. These correla
are gauge dependent, which is a fundamental difficulty
defining a multiplicity of gluons for this classical fiel
model. We have studied this gauge dependence by usin

0 50 100 150 200
(g

4µ2πR
A

2
)
Ω

0.2

0.3

0.4

0.5

0.6

0.7

f E
, f

N

f
E

f
N

FIG. 2. The functionsf E and f N , as defined by Eqs.~32! and
~33!, vs Ag4m2pRA

2. Computed on a 2562 lattice.

0 0.5 1 1.5 2
g

2µa

0.2

0.25

0.3

f E
, f

N

µ=0.3 GeV, f
E

µ=0.5 GeV, f
E

µ=0.8 GeV, f
E

µ=0.3 GeV, f
N

µ=0.5 GeV, f
N

µ=0.8 GeV, f
N

FIG. 3. The functionsf E and f N defined by Eqs.~32! and ~33!
for constantAg4m2pRA

2 and with different lattice spacings. Th
horizontal axis isg2ma, so the continuum (a→0) limit is obtained
by extrapolating each set of points to theg2ma50 axis on the left.
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an example the electric field correlator^Ei
a(kT)Ei

a(2kT)&,
which is plotted in Fig. 9. Its gauge dependence is limit
mainly by the constraint that the integral

E d2kTEi
a~kT!Ei

a~2kT!, ~35!

which is proportional to the energy in the electric field,
gauge independent.

To determine the multiplicity using Eq.~29!, we take the
fields resulting from the initial conditions, Eqs.~15!, and
evolve them in time according to the equations of motio
Eqs. ~9!. The ‘‘no gauge fixing’’ curve in Fig. 9 shows th
^Ei

a(kT)Ei
a(2kT)& correlator obtained in this way. The field

are then gauge transformed into the two-dimensional C
lomb gauge] iAi50 to get the ‘‘Coulomb gauge’’ correlator
also plotted in Fig. 9. This is the one that is used to de
mine the multiplicity. In Fig. 9 we also plot the same co
relator in two other gauges,]xAx50 and a ‘‘Coulomb
1random’’ gauge, which is obtained by taking a field co
figuration in the Coulomb gauge and perfoming an indep
dent random gauge transformation on each lattice site. In
latter the independent~Gaussian in this case! transformations
on each lattice site naturally enhance the high momen
parts of the spectrum.

According to the discussion in Sec. V the value of t
parameterm relevant to RHIC phenomenology would bem
50.5 GeV orLs52 GeV. One can then ask whether this
indeed in the domain of validity of the present model, i.
whether the occupation numbers of gluons are high enou

TABLE I. The values forf N and f E corresponding to the points
nearest to the continuum limit in Fig. 2. The value ofm in physical
units is computed takingg52 andpRA

25148 fm2. The value off E

is obtained by fitting the energy to a formA1Be2t/t0 and using the
value A. The multiplicity is measured at a timet55/m, but its
dependence ont is very weak.

Ag4m2pRA
2 m (GeV) f E f N

72 0.29 0.26560.005 0.29760.006
120 0.49 0.22760.003 0.28960.003
192 0.78 0.23860.005 0.32960.006

0 0.5 1 1.5 2
τ (fm)

0

500

1000

1500

2000

dE
/d

η 
(G

eV
)

FIG. 4. Total energy per unit rapidity as a function of time f
m50.5 GeV. The three curves give an error estimate from fi
trajectories on a 5122 lattice.
3-4
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To address this question we plot in Fig. 10 the tw
dimensional phase space density

f ~kT!5
1

2~Nc
221!

~2p!2

pRA
2

dN

d2kT

,

where the spin and color degeneracy have been divided
It is of order 1 only up to momenta of a fraction ofg2m,
meaning that the assumption of high occupation number
only marginally satisfied.

Seeing that the results of Refs.@4,14# are in many aspect
qualitatively similar to ours and after a comparison of t
numerical methods, it seems that the differences in our
sults concerning the energy and the number spectrum
simply due to a different normalization of the SU~3! genera-
tors @compare Eq.~6! and Eq.~A5! of Ref. @14##. Any phe-
nomenological discussion, such as the following, cannot
considered as an argument for the correctness of one o
other numerical result.

0 0.5 1 1.5 2
τ (fm)

0

100

200

300

400

500

600

dE
/d

η 
(G

eV
)

B
E
φ
π

FIG. 5. Energy in different field components from the sam
simulations as in Fig. 4.

0 1 2 3 4 5 6 7
~k/g

2µ

0.001

0.01

0.1

A

FIG. 6. ~2k̃/mRA
2)dN/d2kT as a function of k̃/g2m for

Ag4m2pRA25120. The solid line is our result for a 5122 lattice,
the dotted line for a 2562 lattice, and the dashed line a fit to th
numerical result of Ref.@4#. The area under the curves@which is
just f N defined in Eq.~33!# is approximately the same~although the
logarithmic scale makes this hard to see!. The dashed curve practi
cally falls on top of the solid one if the vertical axis is scaled by
and the horizontal by 1/2—a signal of a difference in the norm
ization.
05490
-

ut.

is

e-
re

e
he

V. PHENOMENOLOGY

A. What to expect

To discuss the phenomenological implications of these
sults in the light of RHIC experiments@11#, one must relate
the calculated initial multiplicities and transverse energies
the observed quantities. There are several scenarios tha
be used to do this. Let us compare different results with
assumption of early thermalization and adiabatic expans
that has been successful in explaining particle yields
elliptic flow. In this scenario the initial and final multiplici
ties, related by entropy conservation, are approxima
equal, and we take the total~charged and neutral! multiplic-
ity per unit rapidity to be

dNinit

dh
'

dNfinal

dh
'1000. ~36!

The observed transverse energy is

dEfinal

dh
'600 GeV. ~37!

The initial energy is larger than this, due to the expansion
the system. In a freely streaming system the energy per
rapidity is constant, whereas adiabatic longitudinal exp
sion makes it decrease ast21/3. In Ref. @12# the energy is

l-

0 1 2 3 4 5 6 7
~k/g

2µ

0

0.05

0.1

0.15

0.2

2k
/(

g
µ

R
A

) 
dN

/d
k

FIG. 7. ~2k̃4/g6m4RA
2)dN/d2kT as a function ofk̃/g2m from the

same simulations as in Fig. 6. The solid line is our result for a 52

lattice and the dotted line for a 2562 lattice.

0.5 1 1.5 2~ka

10
5

10
6

10
7

10
8

10
9

1/
(µ

4 a6 ) 
dN

/d
2 k

0.02 GeV
0.05 GeV
0.1 GeV
0.2 GeV
0.5 GeV
analytic

FIG. 8. (1/m4a6)dN/d2kT as a function of k̃a plotted for
Ag4m2pRA

25240m/ GeV with values ofm given in the figure,
compared with the analytical continuum result, Eq.~34!.
3-5
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found to be reduced by a factor of 3.5. Because the calc
tion of Ref. @12# is done assuming a very early thermaliz
tion, it gives an upper bound to the reduction. This transla
into a bound for the initial transverse energydEinit /dh
&2100 GeV. Thus, a conservative estimate assum
‘‘parton-hadron duality,’’ be it from entropy conservation o
some other mechanism, would be

dEinit

dh
&2.1 GeV

dN

dh
. ~38!

The final state saturation model of Ref.@12# is a pertur-
bative QCD ~pQCD! calculation supplemented by a sha
infrared cutoff determined from a simple geometrical fin
state saturation argument. The result of the calculation is@Eq.
~5! of @12##

psat

dNinit

dh
50.288 GeVA1.050~As!0.574, ~39!

Setting dNinit /dh to 1000 and taking A5200, As
5130 GeV givespsat51.23 GeV. Then, from Eq.~7! of
Ref. @12#, we get

dEinit

dh
51.43psat

dN

dh

51.76 GeV
dN

dh
. ~40!

Intrinsically, such an unphysically sharp infrared cuto
should produce too large an average energy per particle
cause there are no gluons withpT,psat in the model. The
constant coefficient in front of Eq.~39! is determined by the
parton distributions and is not fitted to match the RHIC da
The result~40! could thus be regarded as a theoretical up
bound on the initial energy.

0 1 2 3 4 5
~k/g

2µ

10

100

1000
No gauge fixing
∂

x
A

x
=0

Coulomb
Coulomb + random

i
<

E
(k

)E
(-

k)
>

i
(a

rb
itr

ar
y 

un
its

)
a

a

FIG. 9. The correlator̂ Ei
a(kT)Ei

a(2kT)& in different gauges:
the correlator resulting from the initial conditions and the equati
of motion without additional gauge fixing, in ‘‘partial Coulomb
]xAx50 gauge, in the Coulomb gauge] iAi50, and in a gauge
obtained by a random gauge transformation of the Coulomb ga
field.
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B. Classical Yang-Mills result

Let us take from Table I the result form'0.5 GeV, which
is the value ofm that gives approximately the right multi
plicity. We get

dNinit

dh
50.29g2pRA

2m2. ~41!

This givesm50.48 GeV orLs51.9 GeV. Then the energy
is

dEinit

dh
50.23g4pRA

2m3 ~42!

50.79g2m
dNinit

dh
~43!

51.5 GeV
dNinit

dh
. ~44!

This is well within the bound~38!.
The result of Ref.@4# is f N50.3. Setting dNinit /dh

51000 this gives usLsRA565. TakingpRA
25148 fm2, this

meansLs51.87 GeV. Forf E the result in Ref.@4# is f E
50.537 forLsRA525 andf E50.497 forLsRA583.7. Tak-
ing the valuef E50.5, one gets
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FIG. 10. The two-dimensional phase space densityf (k)

5@1/2(Nc
221)#@(2p)2/pRA

2 #dN/d2k as a function ofk̃/g2m for
m50.5 GeV andg52, i.e.,Ag4m2pRA

25120. The solid line is our
result, the dashed line a fit to the numerical result of Ref.@4#.
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dEinit

dh
51.67Ls

dNinit

dh
~45!

53.1 GeV
dNinit

dh
. ~46!

Thus the average energy per particle is 3.1 GeV, which
very hard to reconcile with the estimate~38! and forces one
to either give up the assumptions behind that estimate
conclude that RHIC energies are not in the domain of va
ity of the classical field model. One can indeed argue, a
Ref. @4#, that gluon number increasing processes lower
average energy per particle in the subsequent evolutio
the system.

VI. FINITE NUCLEI

It is easy to naively generalize the model to finite nucl
The Gaussian distribution of the random color charges
argued to arise from a sum of independent fluctuat
charges. Thus, it is the variance^ra(xT)rb(yT)& that should
be proportional to the thickness of the nucleus,

^ra~xT!rb~yT!&5g2m2dxT ,yT
dabT~xT2xT0! ~47!

with T(xT);ARA
22xT

2 ~or some more sophisticated thick
ness function!. Note that the normalization ofm is different
from the square nucleus case; here we fix it by the condi

(
xT ,yT

^ra~xT!rb~yT!&5dabg2m2pRA
2 . ~48!

One can then proceed as previously. But the problem
encounters is that the color fields generated by the sou
have long Coulomb tails outside the nuclei. In two dime
sions the initial color fields~4! decay only logarithmically
away from the nuclei. Physically, the color fields should d
cay at distances;1/LQCD due to confinement physics no
contained in this model.

The approach of Refs.@13,14#, also advocated by Ref
@15#, is to directly address this question by imposing co
neutrality of the sources at a length scale of the order o
nucleon radius. But it is also possible that a proper inclus
of saturation effects in the probability distribution of the in
tial color sources might cure this problem. Saturation do
after all, suppress the very long wavelength modes resp
sible for the long tails.

Exploring the full implications of the ‘‘JIMWLK’’ renor-
malization group equation for heavy ion collisions is out
the scope of this work, but in the spirit of, e.g., Ref.@16# we
have tried substituting the correlation function~47! with the
following procedure. We take random variablesf a(xT) dis-
tributed as

^ f a~xT! f b~yT!&5dxT ,yT
dabT~xT!. ~49!

The original McLerran-Venugopalan model, Eq.~1!, would
be obtained with the choicera(xT)5gm f a(xT). Now we
Fourier transform and take
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ra~kT!5gmA k̃2

k̃21g4m2
f a~kT!. ~50!

For k̃@g2m this approaches the original McLerran

Venugopalan model, but fork̃!g2m the fluctuations are cu

off as ^ra(kT)rb(kT)&; k̃2 Our results for the multiplicity
and energy as a function of centrality are plotted in Fig.
All data points have been produced with the same num
10, of configurations. The larger errors seen using the or
nal Gaussian weight function are a signal of its strong
pendence on few infrared modes. The discrepancy in
ratio E/N between our results and those of Refs.@4,14# re-
mains also in the finite nucleus case.

In Ref. @14# it is said that ‘‘our @using ‘‘color neutral’’
initial conditions# results may bequantitativelysimilar to RG
evolved predictions.’’ This can also be seen in Fig. 1 of@14#,
where the neutrality condition originally imposed at the sc
LQCD has an effect up to the scaleg2m, leading to a modi-
fication of the Gaussian weight function that is very simi
to ours. It might thus turn out that at RHIC energies it is n
yet possible to distinguish effects from two physically ve
different phenomena: confinement and saturation.

VII. CONCLUSIONS AND OUTLOOK

We have applied the classical field approach to heavy
collisions and calculated the energy and number dens
and the spectra of the gluons produced in the initial stage
the collisions. We have also extended the model to fin
nuclei and experimented with a crude saturation-inspi
modification of the original model. The gauge dependence
equal time correlators of the fields, which makes it difficu
to define a gluon number density, has also been investiga
A more practical difficulty in the model is that the pha
space density of particles at RHIC might not yet be lar
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FIG. 11. The functionsNmax/Npart f N ~circles! andNmax/Npart f E

~triangles! vs Npart. Nmax'375 isNpart corresponding to impact pa
rameterb50. The open symbols are results calculated with
original Gaussian weight function and the filled symbols with t
saturation ansatz~50!. The conversion fromb to Npart from Ref.
@17#.
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enough to justify its use, i.e., the saturation scale might
be large enough compared toLQCD. For hard modes whos
phase space density is small one does not even expe
classical field approach to work, and the transition to
pQCD regime should be understood better.

Further things that need to be investigated within this
proach include the incorporation of the ‘‘JIMWLK’’ renor
malization group equation into the calculation. A better u
derstanding of thermalization, if possible within the classi
approach, might require extending the study to a 311-
dimensional model. The ‘‘best estimate’’ in terms of physic
t,

.
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t

t a
a
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-
l

l

postdictions for RHIC or predictions for LHC phenomeno
ogy is not settled yet, but is hopefully converging.

ACKNOWLEDGMENTS

The author wishes to thank K. Kajantie for suggesting t
topic and his advice; F. Gelis, K. Rummukainen, and
Tuominen for numerous discussions and sharing their ex
tise; and A. Krasnitz, Y. Nara, and R. Venugopalan for d
cussions and correspondence. This work was supporte
the Finnish Cultural Foundation and the Academy of Finla
~Project No. 77744!.
n,
@1# L. McLerran and R. Venugopalan, Phys. Rev. D49, 2233
~1994!; 49, 3352~1994!; 50, 2225~1994!.

@2# A. Kovner, L. McLerran, and H. Weigert, Phys. Rev. D52,
3809 ~1995!; 52, 6231~1995!.

@3# A. Krasnitz and R. Venugopalan, Nucl. Phys.B557, 237
~1999!.

@4# A. Krasnitz, Y. Nara, and R. Venugopalan, Phys. Rev. Lett.87,
192302~2001!.

@5# J. Jalilian-Marian, A. Kovner, A. Leonidov, and H. Weiger
Nucl. Phys. B504, 415 ~1997!; Phys. Rev. D59, 014014
~1999!; J. Jalilian-Marian, A. Kovner, L. McLerran, and H
Weigert, ibid. 55, 5414 ~1997!; J. Jalilian-Marian, A. Kovner,
and H. Weigert,ibid. 59, 014015 ~1999!; E. Iancu, A. Le-
onidov, and L.D. McLerran, Phys. Lett. B510, 133 ~2001!; E.
Iancu and L. McLerran,ibid. 510, 145 ~2001!; H. Weigert,
Nucl. Phys.A703, 823 ~2002!; A.H. Mueller, Phys. Lett. B
523, 243 ~2001!.

@6# U.W. Heinz, S.M. Wong, Phys. Rev. C66, 014907~2002!.
@7# R.V. Gavai and R. Venugopalan, Phys. Rev. D54, 5795~1996!.
@8# A. Krasnitz and R. Venugopalan, Phys. Rev. Lett.84, 4309
~2000!; 86, 1717~2001!.

@9# M. Gyulassy and L. McLerran, Phys. Rev. C56, 2219~1997!.
@10# A. Dumitru and L. McLerran, Nucl. Phys.A700, 492 ~2002!.
@11# PHENIX Collaboration, K. Adcoxet al., Phys. Rev. Lett.87,

052301~2001!; STAR Collaboration, C. Adleret al., ibid. 87,
112303 ~2001!; PHOBOS Collaboration, B.B. Backet al.,
ibid. 87, 102303 ~2001!; BRAHMS Collaboration, I.G.
Beardenet al., Phys. Lett. B523, 227 ~2001!.

@12# K.J. Eskola, K. Kajantie, P.V. Ruuskanen, and K. Tuomine
Nucl. Phys.B570, 379 ~2000!.

@13# A. Krasnitz, Y. Nara, and R. Venugopalan, Phys. Lett. B554,
21 ~2003!.

@14# A. Krasnitz, Y. Nara, and R. Venugopalan, Nucl. Phys.A717,
268 ~2003!.

@15# C.S. Lam and G. Mahlon, Phys. Rev. D64, 016004~2001!;
C.S. Lam, G. Mahlon, and W. Zhu,ibid. 66, 074005~2002!.

@16# E. Iancu, K. Itakura, and L. McLerran, hep-ph/0212123.
@17# K. Tuominen~private communication!.
3-8


