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Production of gluons in the classical field model for heavy ion collisions
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The initial stages of relativistic heavy ion collisions are studied numerically in the framework of a
(2+1)-dimensional classical Yang-Mills theory. We calculate the energy and number densities and momentum
spectra of the produced gluons. The model is also applied to noncentral collisions. The numerical results are
discussed in the light of RHIC measurements of energy and multiplicity and other theoretical calculations.
Some problems of the present approach are pointed out.
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[. INTRODUCTION as A,=0. In the regionsx™ <0, x>0 andx >0, x*
<0, which are causally connected to only one of the nuclei,
In ultrarelativistic heavy ion collisions such as those stud-the solutions are “transverse pure gauges”

ied at RHIC and LHC, particle production in the central ra- i

pidity region is dominated by the gluonic degrees of freedom i niAmaia—iA ; 2 __

in the nucleus. At sufficiently smakthe phase space density Am g° e m with Vil = =8P

of these gluons is large, so one can try to treat them as a (4)

classical color field. Let us first briefly review the model of

- . . The initial condition ¢=0) for the interesting regiox™
Refs.[1-3] before turning to our results in Sec. IV and their >0, x*>0 is obtained by matching the solutions on the

phenomenological implications in Sec. V. Our notation isIi ht cone. This vields

essentially that of Ref§1-3]. 9 : y
The idea of Ref[1] was to model the high momentum Ai|T:0=Ai(1)+Ai(2),

degrees of freedom of a nucleus as static random classical (5)

color sources with a Gaussian probability distribution:

(P*(x7)p°(y1)) = 9 u? %P 5* (X1 = Y1), 1)
] Modeling the sources asfunctions on the light confEg.
where X7 and yr are vectors in the transverse plane. The(3)] makes the initial conditions boost invariant. We shall
classical color field generated by this source is then obtaineglso restrict ourselves to strictly boost invariant field con-

ig_ .
A7 TZOZ?[AI(].) :Al(z)]-

from the equations of motion figurations. This elimination of the longitudinal degrees of
v , freedom makes the numerical solution of the equations of
[D,.F#]=J" 2 motion easier, but is a serious limitation, especially for

. o , ) . studying thermalizatiorisee, e.g., Ref.6]).

This original formulation of the model is very simple,
beyond the nuclear radil, it only depends on one dimen- ;. (241)-DIMENSIONAL CLASSICAL HAMILTONIAN
sional phenomenological parameter(related toAq intro- CHROMODYNAMICS ON THE LATTICE
duced in Ref[4] by A=g?ux) and the QCD coupling that ) ) ) .
does not run in this classical approximation. One may, how- The analytic solution of the equations of motion, &2),
ever, argue that the Gaussian probability distribution shouldVith the initial conditions, Egs(5), is not known, but they
be replaced by something else, namely, a solution of th€an be studied numerically. A lattice Hamiltonian formula-

The McLerran-Venugopalan moddl] describes the wave Assuming that the field configurations are boost invariant
function of one nucleus. Nucleus-nucleus collisions wergeduces the system to @+1)-dimensional one. Choosing
first studied in this framework in Reff2]. The source current the Schwinger gaugé, =0, one can cast the equations of

is taken to be motion into a Hamiltonian form. The lattice Hamiltonian is
_ _ 2
W= p@xn) dX )+ pa) (X0 dXT), () aH=>, [%TrE‘EivLZNZCT 1_NiReTrUl)
XT g a c

where the color charge densitipg,, of the two nuclei are
independent. In the region <0, x* <0, which is causally T, & ~ 5
connected to neither of the nuclei, the solution can be chosen + ET”T T EI Tr(¢=a)7, ©®

wherea is the lattice spacing anB; ,U;,w, and ¢ are di-
*Email address: tuomas.lappi@helsinki.fi mensionless lattice fields. The fields are matrices in color
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space, withE'= Eiata, etc., and the generators of the funda-whereU? in Eq. (15) are the link matrices corresponding
mental representation normalized in the conventional way a® the color fields of the two nucI@Ai(l'z) in Eq.(4)] and the
Trtat,=1/26,,. The first two terms are the transverse elec-link matrix U; corresponding to the=0 color fieldA; must
tric and magnetic fields, with the transverse plaquette be solved from Eq(15).
The model has three free parameters, the cougirthe
U, (x)=U(xp)Uy(xr+e)Ul(xr+e)Ul(x).  (7)  source density., and the nuclear transverse areR3 . In
this work the lattice size is taken to h&=N?a?= 7R3 .
The last two terms are the kinetic energy and covariant deThis means that the field modes have an infrared cutoff of
rivative of the rapidity component of the gauge fiell  the order 1R,, while physically one would expect them to
=A,=—7°A”7, which becomes an adjoint representationpe cut off at a scale~ Agcp by confinement physics not
scalar with the assumption of boost invariance. For the parncjuded in the classical field model. So, in order to be physi-
allel transported scalar field we have used the notation  caly sensible, our results should not depend on this infrared
cutoff.
bi(x7)=U;(x7) p(xr+€) U (x7). (8 The values of the three parametegsu, and wR3 sepa-
rately are needed when translating lattice units to physical
In the Hamiltonian, Eq(6), there is a residual invariance ynjts. but the dimensionless parametgi.R, controls the
under gauge transformations depending only on the trangualitative behavior of the model; the weak coupling or weak
verse coordinates. The Hamiltonian equations of motion arge|d |imit is reached for small values of this paramefsze
also Ref[7]). To see this consider the system on a transverse
(9) lattice of spacinga. Now we haves?(x;)~ 1/a. Thus, from
Eqg. (1), the charge density~gu/a. The Green’s function
of the operatoV# in Eq. (4) is a logarithm, which is para-
b=, (10) metrically constant. Thus\(x7) is obtained by summing
contributions ~ga?gu/a from each of the~R3/a? cells
_ i i (the area of a cell being?). Because the charges are distrib-
EX=—2[UX,y+ Uy —y—H.c.]—tracet —[ ¢y, 4], uted as Gaussians with zero expectation value, their sum
T scales as a square root of the number of lattice sites, and we
(1D) get A(xy)~ag?uR3/a’~g?uR,. Because of the expo-
nentials ofA in Eq. (4) it is the magnitude of the dimension-
less fieldA that determines the nonlinearity of the model.
The same argument can also be formulated in momentum
(120  space. The Poisson equation, Hd), can be written as
k%A(kT) =gp(ky). One needs a prescription to deal with the
.1 - - zero mode, the one chosen here is color neutrality of the
= Z [bi+d_i—2¢]. (13)  system as wholep(k;=07)=0=A(k;y=0;). Then the
dominant contribution comes from the smallest nonzero Fou-

The Gauss law, conserved by the equations of motion[i€" modekr~1/R,. In momentum space the correlaidy

reads is (p(ky)p(pr)) ~9?w?8*(kr+ pr) with 6%(ky)~R3. Thus
A(kr)~gRap(kr) ~gRRguRs  and A (x7)~A(ky)/R}
S ot i i Ngz'uR.A' I . . .
>, [Ui(xr—e)E'(Xr—&)Uj(xr—€) —E'(X7)] In this Hamiltonian formalism the energy per unit rapidity
' in different field components is naturally the easiest and the
—i[¢,m]=0. (14) most fundamental quantity to compute. One can also mea-
sure equal time correlation functions of fields:

2
Ui:ig?EiUi(nosum over),

. iT P~
Eyzz_gz[UWJ“ Uy, x—H.c.]—tracet —[ &y, 4],

On the lattice, the initial condition&) become

(Ef(kr, 7)EX(—kr,7)), (19)

Tr{t (U + U (1+U))—He]}=0, (19
Ei=0 (16) (Al(kr, T)AT(—kr,7)), (20
$=0, (17) (m(kr ) —kr,7), (21)
<¢a(kT!T)¢a(_kTiT)>- (22)

—i
(%)= 7o 2 ALUi(x0) = LIV D 0xp) = U Dxp)]
9 These correlation functions are not gauge invariant. One can,
+[UiT(XT_ei)_ 1][Ui(2)(XT_ei)_Ui(l)(XT_ei)] however, argue that in th(_e Coulomb gaugé;=0 a physi-
cal meaning can be assigned to thésee also Ref[8]).
—H.c.}, sing equal time field correlation functions one can define a
H (18  Usi | time field lation functi defi
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gluon number densitgi(ky), but the definition is not unique. 2 : : : E
The question of defining the number density is discussed in I o
the following section. 15l P MR )
Ill. PARTICLES IN A CLASSICAL FIELD &1 1
In a weakly interacting scalar theory it is easy to define a 3
particle number corresponding to a given classical field con- 05 : i
figuration. Take a free Hamiltonian and Fourier transform it, '
l 1 1 0 L | L | L
_ dy| — 2 - 2 T2 42 0 0.5 1 15 2
H dezw(x)+2(V¢) (x)+2m¢} (23 ra
d 11 1 FIG. 1. The functions31). The circles arew(k) determined
=f d{§|w(k)|2+§w2(k)|¢(k)|2} from the transverse field8' andA;, the solid line isw(k) deter-
(2m) mined froms and ¢. The maximum value oka is 2/2.
g is the free, massless lattice dispersion relation. We can then
Zf d%kw(k)n(k), (24)  verify that our method is consistent with the approach of Eq.

with the free dispersion relation?(k) =k?+m?. Averaged

in time, the energy is distributed equally between the degrees

of freedom,
3| m(K)]?=3 0*(k)| p(K)|?, (25)
so we can identify
— —— n(k)
|m(K)|>=w(k)n(k), [p(k)[*= oK)’ (26)

For an interacting theory one calefinethe number dis-
tribution as follows:

n(k)= V]m(k)[?p(k)|? w(k)=

|7(K)|?
|p(K)|?

There is also another possibility, we can aéssumea dis-
persion relationweedk) = Vm?+k? and define

. (27

EC:
0= )

(28)

The latter approach is the one we take. Explicitly, for thisfe andfy become approximately independentgdfrR;

particular theory described by the Hamiltonian, E6), a

(27) by looking at the correlation functions

- <7Ta(kT)7Ta(_kT)>
(¢%(ky) d*(— k1))
(31

1 [(Ef(kpE(—k7)

T V(AN (kD) AN (—kr))

and verifying that they behave agk)~k (see Fig. 1

IV. RESULTS

To state our results in a form easily comparable with Ref.
[4], let us define the same dimensionless quantfiigandf¢
as follows:

(= 1 dEjnit (32
" g*mR3u® dn

1 dN
. init (33)

 g?rR3u? d7

As discussed in Sec. Il, the quantitigsandf are functions

of only one dimensionless variabwwRi,uz. In the weak
field limit, namely, for \/g47TRA2,u,2550, fg and fy have a
strong dependence cgﬁ‘a-rR,i,uz. This signals a dependence
on the infrared cutoff of the theory. In the strong field limit,
i.e., at large enough values gwai,uz, the nonlinearities

of the infrared modes regulate this infrared divergenge and

as can be seen from Fig. 2. Our results for the energy and

two-dimensional gauge field with an adjoint representatiodmultiplicity are summarized in Figs. 2 and 3 and Table I. The

scalar field on the lattice, we define

2 1 gz a a T a a
n(kT):mi Z_Ei(kT)Ei(_kT)+E7T (kp)m(—=k7) |,
(29)
where
~. 4 ak ak
k2=; sin27x+sin27y (30

total energy as a function of time in different field compo-
nents is plotted in Fig. 4 and the energy in the different field
components in Fig. 5.

Our result forfg is smaller than that of Ref4] by ap-
proximately a factor of 2. The functiodN/d?k(ks) we
obtain is different although its integral ov&r space, and
thus fy, happens to be the same. This difference is illus-
trated in Fig. 6.

One can also derive a lardfg analytic expression for the
multiplicity in the classical field mod€l2,9] (see also Ref.
[10]). An expansion to the lowest nontrivial order in the field
strength gives
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‘ ‘ TABLE I. The values forfy andfg corresponding to the points

0‘7f ¢ o fe ] nearest to the continuum limit in Fig. 2. The valuewoin physical
0.6- - fy | units is computed taking=2 andwR%= 148 fnf. The value off ¢
. ] is obtained by fitting the energy to a fortn+ Be~ ™70 and using the
.z05- a value A. The multiplicity is measured at a time=5/u, but its
__Eu04’ 7 1 dependence om is very weak.
0.3; b s o= . - = Vot ulaRy n (GeV) fe fn
0.2; o= = -] 72 0.29 0.265:0.005 0.29%0.006
0 50 100 150 200 120 0.49 0.2220.003  0.28%0.003
@W’mRAH? 192 0.78 0.2380.005  0.329-0.006

FIG. 2. The functiondg andfy, as defined by Eqg32) and

P a as_
(39), vs \/g*pZmRZ. Computed on a 258iatiice. an example the electric field correlatQg; (k) Ef(—k7)),

which is plotted in Fig. 9. Its gauge dependence is limited
mainly by the constraint that the integral

dN 7RE 1 Ny(NZ—1)gbu? k2
2. 3 4 In-=. G4
dndky (2m)° 7 Ky A f d?kE2(k1)E3(—k7), (35)

with A some infrared cutoff. A useful check of the numerical \yhich is proportional to the energy in the electric field, is
computations is that they should approach the analytic resuﬁauge independent.

in the weak field limit of smalg?uR,, although the uncer- To determine the multiplicity using E429), we take the
tainty from the infrared divergence of the analytical resultfie|gs resulting from the initial conditions, Eqél5), and
can be numerically large. Figure 7 shows that we do indeedyolve them in time according to the equations of motion,
observe a transition to a perturbativekiLx logarithmic Egs. (9). The “no gauge fixing” curve in Fig. 9 shows the
factors—behavior arounklr=2g?, although in this region (Ea(k;)E3(—k;)) correlator obtained in this way. The fields
the shape of the spectrum is already severely modified byre then gauge transformed into the two-dimensional Cou-
lattice effects, as can be seen comparing the plots for the W@ mp gauge’, A, =0 to get the “Coulomb gauge” correlator,
lattice sizes. But, as seen in Fig. 8, the overall normalizationysg plotted in Fig. 9. This is the one that is used to deter-
of our numerical result is far away from the analytical resultpine the multiplicity. In Fig. 9 we also plot the same cor-
at large g*u*mR} and approaches it only foyg*u’7Rs  relator in two other gaugess,A,=0 and a “Coulomb
=10. This would suggest that the weak field approximation+ random” gauge, which is obtained by taking a field con-
used to obtain the analytical res84) is unsuitable for a figuration in the Coulomb gauge and perfoming an indepen-
quantitative understanding of this classical field modeldent random gauge transformation on each lattice site. In the
whose justification lies, after all, in the argument of strongjatter the independeriGaussian in this caséransformations

fields. on each lattice site naturally enhance the high momentum
Our definition of the gluon number spectrum, E29), is  parts of the spectrum.

based on equal time correlators of fields. These correlators According to the discussion in Sec. V the value of the
are gauge dependent, which is a fundamental dlfflCU'ty irparametew relevant to RHIC phenomenok)gy would be
defining a multiplicity of gluons for this classical field =0.5 GeV orA;=2 GeV. One can then ask whether this is
model. We have studied this gauge dependence by using gfdeed in the domain of validity of the present model, i.e.,
whether the occupation numbers of gluons are high enough.

T T T T T T T T T T T T T 7
I /}i}}\{ ’ 2000
03 ¥, #2 [.p=03Gev,T| | f
> | ~ep=05GeV, f_| | 1500 1
= —.p=0.8GeV, f_ 3
“~0.25- = A
F\ oo p=0.3 GeV, € 1000 1
I ==p=05GeV,f | | 5
s p=0.8 GeV, f %
0.2 ] 500p |
o o5 1 15 2
2 o) . | . | . | .
gpa 0 05 15 2

1
T(fm
FIG. 3. The functiond¢ and fy defined by Eqs(32) and (33) (tm

for constant\/g“,uszA2 and with different lattice spacings. The FIG. 4. Total energy per unit rapidity as a function of time for
horizontal axis igy?ua, so the continuumg— 0) limit is obtained ~ «=0.5 GeV. The three curves give an error estimate from five
by extrapolating each set of points to t)gua=0 axis on the left.  trajectories on a 5Flattice.
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2k /(g R, ) dN/d k

% 05 1 = 15 = 2
T (fm)

FIG. 5. Energy in different field components from the same Fig. 7. (2k%/g®u*R%)dN/d2%k; as a function ok/g?u from the
simulations as in Fig. 4. same simulations as in Fig. 6. The solid line is our result for &512
lattice and the dotted line for a 25¢attice.
To address this question we plot in Fig. 10 the two-
dimensional phase space density V. PHENOMENOLOGY

A. What to expect

1 (2m)? dN To discuss the phenomenological implications of these re-
= PNZ-D) 7R d sults in the I|ght _o_f RHIC_ e>_(pe_r|men($1], one must rela_lte

c TRA T the calculated initial multiplicities and transverse energies to
the observed quantities. There are several scenarios that can

where the spin and color degeneracy have been divided oge used o do this. Let us compare d‘ﬁere‘?t res.ults with t'he
It is of order 1 only up to momenta of a fraction gfu assumption of early thermalization and adiabatic expansion

meaning that the assumption of high occupation numbers ig;l"."t t.hafT be?n tﬁgccessful_ mthexplf';':!nllng g?_rtlclle ylﬁ_ldl_s _and
only marginally satisfied. elliptic flow. In this scenario the initial and final multiplici-

; - ties, related by entropy conservation, are approximately
Seeing that the results of Refd,14] are in many aspects ' ' T
qualitatively similar to ours and after a comparison of theiqual' angi we .tda}lt<ettheb totharged and neutiaiuitiplic-
numerical methods, it seems that the differences in our re™y PEf unit rapidity to be

f(kr)

sults concerning the energy and the number spectrum are ANy dNgng
simply due to a different normalization of the &)Y genera- 5 LIPS ] ¢ ~1000. (36)
tors [compare Eq(6) and Eq.(A5) of Ref.[14]]. Any phe- K 7

nomenological discussion, such as the following, cannot be
considered as an argument for the correctness of one or the
other numerical result.

The observed transverse energy is

Efina

dn

~600 GeV. (37)

The initial energy is larger than this, due to the expansion of
the system. In a freely streaming system the energy per unit
rapidity is constant, whereas adiabatic longitudinal expan-
sion makes it decrease as'. In Ref.[12] the energy is

0.1:

0.01;

0.001;

'..' oo

| [ I | L] S

0 1 2 3]2/24 5 7 %
gi gi

=1

FIG. 6. (2k/uR3)dN/d’k; as a function of k/g?u for
Jo*u?ZmR,2=120. The solid line is our result for a 53 2attice,
the dotted line for a 256lattice, and the dashed line a fit to the
numerical result of Refl4]. The area under the curvéwhich is
just f defined in Eq(33)] is approximately the sam@lthough the
logarithmic scale makes this hard to s€Ehe dashed curve practi-
cally falls on top of the solid one if the vertical axis is scaled by 2 FIG. 8. (1u*a®dN/d%k; as a function ofka plotted for
and the horizontal by 1/2—a signal of a difference in the normal-\/g4,¢L2wRA2=24O;L/ GeV with values ofu given in the figure,
ization. compared with the analytical continuum result, E34).
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@ —
= ’ — Nogaugefixing || 10— ‘ : \ : ‘ —
% 1000¢ .. 0 Ag:Og 9 E 3 ]
> f < XX ] 1)

g . N — Coulomb ] 10 7 EY E
2 M — - Coulomb + random| K \

& ol N ’ 10%F ]
~ 100: N ] . g

~ b S 1 X 3f

o [ - ] + 10

/LI-J\ [ W ."V" ~ -4:

X 10k 1 | 10 ¢

mLIJ_ § . I . I . | . | ) J _5?

Vv 0 1 2 3 4 5 10

Kigp

FIG. 9. The correlatok Ef(kr)EF(—ky)) in different gauges:
the correlator resulting from the initial conditions and the equations 1
of motion without additional gauge fixing, in “partial Coulomb” i
J,A,=0 gauge, in the Coulomb gauggA;=0, and in a gauge
obtained by a random gauge transformation of the Coulomb gauge
field.

f(k)

0.1
found to be reduced by a factor of 3.5. Because the calcula- F
tion of Ref.[12] is done assuming a very early thermaliza-
tion, it gives an upper bound to the reduction. This translates
into a bound for the initial transverse energ\g;,;/d»
<2100 GeV. Thus, a conservative estimate assuming 0.01O
“parton-hadron duality,” be it from entropy conservation or
some other mechanism, would be

FIG. 10. The two-dimensional phase space denditk)
Einit N =[1/2(N2—1)][(27)% wR%]dN/d’k as a function ofk/g?u for
g, =210ev . (38 L=0.5Gevang=2, i.e. \g*uZmRe=120. The solid line is our
result, the dashed line a fit to the numerical result of R&f.

The final state saturation model of R¢L2] is a pertur- B. Classical Yang-Mills result
bative QCD (pQCD) calculation supplemented by a sharp )
infrared cutoff determined from a simple geometrical final L€tus take from Table | the result far~0.5 GeV, which.
state saturation argument. The result of the calculatipfigs 'S the value ofu that gives approximately the right multi-
(5) of [12]] plicity. We get

Ninit

d
- 2, 2 2
a7 0.29° mRyu”. (41

N
psatd_l7;lt=0.288 Ge\A1-050(\/§)0.574, (39)

This givesu=0.48 GeV orA;=1.9 GeV. Then the energy

Setting dN,,,/d7 to 1000 and takingA=200, s 'S

=130 GeV givesps,=1.23 GeV. Then, from Eq(7) of dE
init

Ref.[12], we get O - 0.2y wRAu® (42)
dEjnit

_ dN...

d Satd _ 2 init
7 0.7%°n g, (43)

1.76 G vd—'\I (40)
=1. e .

dzn d Ninjt

=15 Gevv. (44)

Intrinsically, such an unphysically sharp infrared cutoff

should produce too large an average energy per particle, bdhis is well within the bound38).

cause there are no gluons wifh<psy in the model. The The result of Ref.[4] is fy=0.3. SettingdN;y;/d»
constant coefficient in front of Eq39) is determined by the = 1000 this gives us\ Ry=65. TakingmR43= 148 fn?, this
parton distributions and is not fitted to match the RHIC datameansA =1.87 GeV. Forf: the result in Ref[4] is fg
The result(40) could thus be regarded as a theoretical upper=0.537 forA;R,=25 andfg=0.497 forA;R,=83.7. Tak-
bound on the initial energy. ing the valuef=0.5, one gets
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very hard to reconcile with the estimatg8) and forces one
to either give up the assumptions behind that estimate or
conclude that RHIC energies are not in the domain of valid-
ity of the classical field model. One can indeed argue, as in
Ref. [4], that gluon number increasing processes lower the
average energy per particle in the subsequent evolution of F|G. 11. The fUNCHONN i /Npart iy (Circles and N o /Noar f e
the system. (triangles vs Nyar. Nima=375 isN . corresponding to impact pa-
rameterb=0. The open symbols are results calculated with the
VI. FINITE NUCLEI original Gaussian weight function and the filled symbols with the

) ) ) o _saturation ansatg50). The conversion fronb to N, from Ref.
It is easy to naively generalize the model to finite nuclei.[17.

The Gaussian distribution of the random color charges is
argued to arise from a sum of independent fluctuating

charges. Thus, it is the varian¢g®(xy) p°(yt)) that should . k2 A
be proportional to the thickness of the nucleus, prkr) =g 1224-—9“#2 Pk, 0
(P2(X1)p (Y1) =G p?8y 4 T (X —X10)  (47)

with T(x7)~RE—xZ (or some more sophisticated thick- For k=>g?u this approaches the original McLerran-
ness function Note that the normalization of is different  Venugopalan model, but fde<g?u the fluctuations are cut
from the square nucleus case; here we fix it by the conditionyf as (p2(k;)p®(ks))~K2 Our results for the multiplicity
and energy as a function of centrality are plotted in Fig. 11.
> (p2(x7)p°(y1)) = 8292 uPwR2 . (48  All data points have been produced with the same number,
YT 10, of configurations. The larger errors seen using the origi-
nal Gaussian weight function are a signal of its strong de-
endence on few infrared modes. The discrepancy in the
atio E/N between our results and those of Ré#14] re-

- . o+
-

o
0
L

Eini dNiyi 0.5 ‘ ‘ ‘
5 ;;‘” =167 - 7'7”" (45) <1 . 5
g I ®
Z04- i bog ® tpeE]
- d Nipnjt g1
=3.1 GeV—=. (46) z ]
dn < 03
"_LIJ :
Thus the average energy per particle is 3.1 GeV, which is “Hopr PP ozoz ol oioad i
Z 3 - - * *
i
£
£

200 250 300 350
N,

One can then proceed as previously. But the problem on
encounters is that the color fields generated by the sourc
have long Coulomb tails outside the nuclei. In two dimen-mains also in the finite nucleus case
sions the initial color fieldg4) decay only logarithmically L . . N .,
away from the nuclei. Physically, the color fields should de-, In Ref. [14] it is said that “our[using “color neutral

cay at distances- 1/A ocp due to confinement physics not initial conditiond results may bguantitativelysimilar to RG
contained in this modgl. evolved predictions.” This can also be seen in Fig. 11f],

The approach of Refd13,14, also advocated by Ref. where the neutrality condition originally imp-osed at the s.cale
[15], is to directly address this question by imposing color/qcp has an effect up to the scagu, leading to a modi-
neutrality of the sources at a length scale of the order of dication of the Gaussian weight function that is very similar
nucleon radius. But it is also possible that a proper inclusiod© ours. It might thus turn out that at RHIC energies it is not
of saturation effects in the probability distribution of the ini- Yet possible to distinguish effects from two physically very
tial color sources might cure this problem. Saturation doesdlifferent phenomena: confinement and saturation.
after all, suppress the very long wavelength modes respon-
sible for the long tails.

Exploring the full implications of the “JIMWLK” renor- VII. CONCLUSIONS AND OUTLOOK
malization group equation for heavy ion collisions is out of ) ) _ ]
the scope of this work, but in the spirit of, e.g., Rif6] we We have applied the classical field approach to heavy ion

have tried substituting the correlation functiet) with the ~ collisions and calculated the energy and number densities

following procedure. We take random variablg§xy) dis-  and the spectra of the gluons produced in the initial stages of
tributed as the collisions. We have also extended the model to finite
nuclei and experimented with a crude saturation-inspired

(FAx) F2(y1)) = 8y 1y, 60T (7). (49 modification of the original model. The gauge dependence of
equal time correlators of the fields, which makes it difficult

The original McLerran-Venugopalan model, E4), would  to define a gluon number density, has also been investigated.
be obtained with the choicg®(x1)=guf?(x7). Now we A more practical difficulty in the model is that the phase
Fourier transform and take space density of particles at RHIC might not yet be large
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enough to justify its use, i.e., the saturation scale might nopostdictions for RHIC or predictions for LHC phenomenol-
be large enough compared Aq,cp. For hard modes whose 0gy is not settled yet, but is hopefully converging.

phase space density is small one does not even expect a
classical field approach to work, and the transition to a

PQCD regime should be understood better. The author wishes to thank K. Kajantie for suggesting this
Further things that need to be investigated within this aPtopic and his advice; F. Gelis, K. Rummukainen, and K.
proach include the incorporation of the “JIMWLK" renor- Tyominen for numerous discussions and sharing their exper-

malization group equation into the calculation. A better un-tise: and A. Krasnitz, Y. Nara, and R. Venugopalan for dis-
derstanding of thermalization, if possible within the classicalcussions and correspondence. This work was supported by
approach, might require extending the study to 413 the Finnish Cultural Foundation and the Academy of Finland
dimensional model. The “best estimate” in terms of physical (Project No. 77744

ACKNOWLEDGMENTS

[1] L. McLerran and R. Venugopalan, Phys. Rev.49, 2233 [8] A. Krasnitz and R. Venugopalan, Phys. Rev. L&, 4309

(1994); 49, 3352(1994); 50, 2225(1994. (2000; 86, 1717(2001).
[2] A. Kovner, L. McLerran, and H. Weigert, Phys. Rev. 32, [9] M. Gyulassy and L. McLerran, Phys. Rev.56, 2219(1997).
3809(1995; 52, 6231(1995. [10] A. Dumitru and L. McLerran, Nucl. PhysA700, 492 (2002.
[3] A. Krasnitz and R. Venugopalan, Nucl. PhyB557, 237 [11] PHENIX Collaboration, K. Adcoet al, Phys. Rev. Lett87,
(1999. 052301(2001); STAR Collaboration, C. Adleet al, ibid. 87,
[4] A. Krasnitz, Y. Nara, and R. Venugopalan, Phys. Rev. L&t. 112303 (2001); PHOBOS Collaboration, B.B. Baclet al,
192302(2001). ibid. 87, 102303 (2001); BRAHMS Collaboration, I.G.
[5] J. Jalilian-Marian, A. Kovner, A. Leonidov, and H. Weigert, Beardenret al,, Phys. Lett. B523 227 (2001).
Nucl. Phys.B504, 415 (1997; Phys. Rev. D59, 014014 [12] K.J. Eskola, K. Kajantie, P.V. Ruuskanen, and K. Tuominen,
(1999; J. Jalilian-Marian, A. Kovner, L. McLerran, and H. Nucl. Phys.B570, 379 (2000.
Weigert, ibid. 55, 5414(1997); J. Jalilian-Marian, A. Kovner, [13] A. Krasnitz, Y. Nara, and R. Venugopalan, Phys. Letc%,
and H. Weigert,ibid. 59, 014015(1999; E. lancu, A. Le- 21 (2003.
onidov, and L.D. McLerran, Phys. Lett. B10 133(2002); E. [14] A. Krasnitz, Y. Nara, and R. Venugopalan, Nucl. Ph4g17,
lancu and L. McLerranjbid. 510 145 (2001); H. Weigert, 268 (2003.
Nucl. Phys.A703, 823 (2002; A.H. Mueller, Phys. Lett. B [15] C.S. Lam and G. Mahlon, Phys. Rev. @&, 016004(2002);
523 243(2001). C.S. Lam, G. Mahlon, and W. Zhibid. 66, 074005(2002.
[6] U.W. Heinz, S.M. Wong, Phys. Rev. &, 014907(2002. [16] E. lancu, K. ltakura, and L. McLerran, hep-ph/0212123.

[7] R.V. Gavai and R. Venugopalan, Phys. Re\b4) 5795(1996. [17] K. Tuominen(private communication

054903-8



