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Inclusive electron scattering in a relativistic Green’s function approach
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A relativistic Green’s function approach to the inclusive quasielastje’] scattering is presented. The
single-particle Green’s function is expanded in terms of the eigenfunctions of the non-Hermitian optical
potential. This allows one to treat final state interactions consistently in the inclusive and in the exclusive
reactions. Numerical results for the response functions and the cross sections for different target nuclei and in
a wide range of kinematics are presented and discussed in comparison with experimental data.
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I. INTRODUCTION single-particle Green’s function, based on a biorthogonal ex-
pansion in terms of the eigenfunctions of the non-Hermitian
The inclusive electron scattering in the quasielastic regioroptical potential, allows one to perform explicit calculations
addresses to the one-body mechanism as a natural interpi@?d to treat final state interactions consistently in the inclu-
tation. However, when the experimental data of the separsive and in the exclusive reactions. Important and peculiar
tion of the longitudinal and transverse responses were avaigffects are given, in the inclusive reactions, by the imaginary
able, it became clear that the explanation of both responsd¥art of the optical potential, which is responsible for the
necessitated a more complicated framework than the singléedistribution of the strength among different channels.
particle model coupled to one-nucleon knockout. In a previous paper of ouf45] the approach was used in
A review till 1995 of the experimental data and their pos-@ nonrelativistic framework to perform explicit calculations
sible explanations is given in RdfL]. Thereafter, only a few of the longitudinal and transverse inclusive response func-
experimental papers were publishgj3]. New experiments tions. The main goal of this paper is to extend the method to
with high experimental resolution are planned at J[4in a relativistic framework and produce similar results. Al-
order to extract the response functions. though some differences and complications are due to the
From the theoretical side, a wide literature was producedPirac matrix structure, the formalism follows the same steps
in order to explain the main problems raised by the separaéind approximations as those developed in the nonrelativistic
tion, i.e., the lack of strength in the longitudinal response andramework of Refs[15,16. The numerical results obtained
the excess of strength in the transverse one. The more recdtthe relativistic approach allow us to check the relevance of
papers are mainly concerned with the contribution to theelativistic effects in the kinematics already considered in
inclusive cross section of meson exchange currents and istRef. [15] and can be applied to a wider range of kinematics
bar excitationd5-7], with the effect of correlation§s,d], where the nonrelativistic calculations are not reliable.
and the use of a relativistic framework in the calculatipris In Sec. Il the hadron tensor of the inclusive process is
At present, however, the experimental data are not ye@xpressed in terms of the relativistic Green'’s function, which
completely understood. A possible solution could be thdS reduced in Sec. Ill to a single-particle expression. The
combined effect of two-body currents and tensor correlation®roblem of antisymmetrization is discussed in Sec. IV. In
[8,10,11. Sec. V, the Green’s function is calculated in terms of the
In this paper we want to discuss the effects of final statespectral representation related to the optical potential. In Sec.
interactions in a relativistic framework. Final state interac-V|. the results of the calculations are reported and compared
tions are an important ingredient of the inclusive electronwith the experimental data. Summary and conclusions are
scattering, since they are essential to explain the exclusivdrawn in Sec. VII.
one-nucleon emission, which gives the main contribution to
the inclusive reaction in the quasielastic region. The absorp- Il. THE GREEN'S FUNCTION APPROACH
tion in a given final state due, e.g., to the imaginary part of
the optical potential produces a loss of flux which is appro-
priate for the exclusive process, but inconsistent for the in- In the one-photon exchange approximation the inclusive
clusive one, where all the allowed final channels contributecross section for the quasielastie,é’) scattering on a

A. Definitions and main properties

and the total flux must be conserved. nucleus is giveril] by
This conservation is preserved in the Green'’s function ap-
proach considered here, where the components of the nuclear oinc=K(2e R +Ry), @

response are written in terms of the single-particle optical . . .
) . : - -~ whereK is a kinematical factor and
model Green’s function. This result was originally derived

by arguments based on the multiple scattering th¢ag} 2 2 -1
and successively by means of the Feshbach projection opera- stQ— 1+2q_ targ(ﬁe/z)) 2
tor formalism[13—16. The spectral representation of the 2 Q?
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measures the polarization of the virtual photon. In E), A+l

9, is the scattering angle of the electrap?=¢’— w?, and IMG =2, i*q), (8)
g*=(w,q) is the four-momentum transfer. All nuclear struc- =1
ture information is contained in the longitudinal and trans-

” . :
verse response functiong, andR;, defined by wherej# acts only on the variables of the nucleiorBy Eq.

(8), one can express the hadron tensor as the sum of two
RL(w,q)=W?o(i(w,q), terms, i.e.,

Re(,0)=Wi(©,0) + W(0,0), ® Wt (0@ =W 0@+ Wegi(0.@), 9
whereW**(w,q) is the incoherent hadron tenddr7], which
contains only the diagonal contributionleTGj{‘, whereas
the coherent hadron tensvi/(w, athers the residual
W{‘L’{L(w’q):f Ef: [(PIQ) Vo)l *5(Eo+ w—Ey. terms of interference betweé%h(diffg)re%t nucleons. As the in-
(4) coherent hadron tensdl:/(w,q) can be expressed in terms
of single-particle quantitieésee Sec. 9 of Refl16]), but for
HereJ* is the nuclear charge-current operator that connectghe transferred momenta considered in this paper, we can
the initial state|W,) of the nucleus, of energ,, with the  take advantage of the high-approximation[18] and retain
final states|Wy), of energyE;, both eigenstates of theA(  only W*“(w,q). This term can be further simplified using
+1)-body HamiltoniarH. The sum runs over the scattering the symmetry ofG for the exchange of nucleons and the

states corresponding to all of the allowed asymptotic conantisymmetrization of¥,). Therefore, we write
figurations and includes possible discrete states. As was done

in terms of the diagonal components of the hadron tensor,

for |W;), the degeneracy indexes will be omitted whenever " " A+1

they are unnecessary. The ground sfitg) is assumed to be Wigt (@,Q) =W**(w,q) = — r

nondegenerate. In order to avoid complications of little in-

terest in the present context, we neglect recoil effects and XIM(W ol j“T(a) G(En)j“(a)|¥o), (10)

consider only pointlike nucleons, without distinguishing be- g u .
tween protons and neutrons. Unless stated otherwise, thherej*(q) is the component 03*(q) related to an arbi-

wave functions are properly antisymmetrized. trarily selected nucleon. Due to the well-known complete-
The hadron tensor of Eq4) can equivalently be ex- N€SS property, i.e.,
pressed as 1
1 Z_mf dE[G'(E)-G(E)]=1, (11
Wit (0,0)=— ;Im<‘1’o|J“T(0|)G(Ef)J"(q)I‘I’o% ©)
the incoherent hadron tensor fulfills the energy sum rule,
whereE;=Ey+ w andG(E;) is the Green'’s function related
toH, ie, | dower(o,.0)= A+ (vl @il vo).

(12

G(Ey)= (6)

Ef_ H +i n '
B. Projection operator formalism
Here and in all the equations involving, the limit for »

— +0 is understood. It must be performed after calculatinghadron tensor of Eq(10) in terms of eigenfunctions and

the matrix elements between normalizable states. , . : . .

; . . A Green'’s functions of the optical potentials related to the vari-

In this paper the interest is focused on relativistic wave : S

. L . ous reaction channels. Apart from complications due to the
functions for initial and final states. Therefore, the

(A+1)-body HamiltoniarH is the sum of one-nucleon free D|ra<_: matnx structur(_e, we follow the S"’?me_StepS and ap-
proximations as in the nonrelativistic treatment

This formalism yields an expression of the incoherent

Dirac Hamiltonians and two-nucleon interactiovg. , i.e., [12,13,15,16
A+1 A+1 Let us decomposekl as
H=S (g pr B+ SV, (7)
= 2,2, H=a-p+BM+U+Hg, (13

where the 44 Dirac matricesg; and 8;, act on the bis- wherea-p+BM is the kinetic energy of an arbitrarily se-
pinor variables of the nuclegn No particular assumption is lected nucleony is the interaction between this nucleon and
made on the X4 matrix structure o¥;; . the other ones, anHy is the residual Hamiltonian oA in-

In order to express the hadron tensor in terms of singleteracting nucleons. Such a decomposition cannot be per-
particle quantities, the same approximations as in the nonreformed in the physical space of the totally antisymmetrized
ativistic cas€[15] are required. The first one consists in re- (A+1)-nucleon wave functions. Therefore, we must operate
taining only the one-body part of the charge-current operatoin the Hilbert spacé+ of the wave functions which are an-
J#. Thus, we set tisymmetrized only for exchanges of the nucleonsHgf.
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This treatment is presented here only for the sake of simplic- .
ity. In Sec. IV we shall discuss its physical drawbacks and W (0,0)= 2, WA w,q),
outline the necessary changes. "

Let |[n) and|e) denote the antisymmetrized eigenvectors

~ A+1
of Hy, related to the discrete and continuous eigenvalyes WEE(w,q) = — ——Im(W | j*T(q) P,G(Ef) Qn
ande, respectively. We introduce the operat®s, project- ™
ing onto then-channel subspace 6{, andQ,, projecting XjH()| W), (20)

onto the orthogonal complementary subspace, i.e.,
which gathers the contributions due to the interference be-

P, = 2 J’ drlra;n)(n:ral, Lv;tlasen the intermediate stat@s;n) related to different chan-
a .
We note that the interference term does not contribute to
Q,=1-P,. (14)  the energy sum rule. In fact, E¢L1) yields

Here|ra;n) is the unsymmetrized vector obtained from the J doWeH = (A+ 1WA (@) PO %(a) W) =0
tensor product between the discrete eigenstajeof Hp, oW (@,q)=( H(Woli* () PrQni (@) ¥ o) =0.
and the orthonormalized eigenvectdra) (a=1,2,3,4) of (21
the position and the spin of the selected nucleon, The ?'.genfhus, the full contribution to the sum rule of the incoherent
vectors|ra) have been chosen only for the sake of defm'te'hadron tensor is given only by the direct term, i.e

ness, as every complete orthonormalized set of single- T
nucleon vectors could define the same operalRys Apart
from minor differences due to the present relativistic context, de“"(w,Q)If doW5*(w,q)
P, andQ,, are the projection operators of the Feshbach un-
symmetrized formalisrfil9]. Note, for later use, the relations . .

=(A+1)(Wolj“"() 2 Poj*(@)|Wo),

[Pn,a~p+,8M]=O, (22)

HRPn=2nPn. (19 which, as a pure consequence of the omission of the continu-

ous channels described 1B, is smaller than the value of

Moreover, we introduce the projection operator into the con Eq. (12

tinuous channel subspace, i.e.,

IIl. SINGLE-PARTICLE EXPRESSION
Pc:f dez fdf|fai8><8;ra|- (16) OF THE HADRON TENSOR

A. Single-particle Green’s functions

Due to th let f th ;ny,|ra;e)}, h . . - :
ue to the completeness of the §gin),[ra;z)}, one has For the time being, we will disregard the effects of inter-

ference between different channels and consider only the di-

> P, +P.=1. (17 rect contribution to the hadron tensor of E#j9). The matrix
" elements ofP,G(E)P,, in the basigra;n) define a single-
particle Green’s functio,,(E) having a 4<4 matrix struc-

Then, we insert Eq(17) into Eq. (10) disregarding the con-

tribution of P.. This approximation, which simplifies the wre, 1.e.,
calculations, is correct for sufficiently high values of the (ra|Gn(E)|r'a’y=(n;ra|G(E+ey)|r'a’;n). (23
transferred momentuim Thus, the hadron tensor of E{.0)
can be expressed as the sum Note that here the energy scale is in accordance with Ref.
[16] and differs from Ref[15].
Wt (w,q) = Wg*(w,q) + Wit (o,q) (18 The self-energy ofG,(E) is determined following the
same steps used by Feshbach to determine the optical poten-
of a direct term, tial from the Schrdinger equatiori19]. One starts from the
relation
Wi (@,q)= 2 Wit (w.q), (E—a-p—BM—Hg—U+e,+in)(Py+Qy)
y Asl L XG(E+e,)P,=P,, (24)
Wi (@,0)= = ——Im(Woj*'(q) P, G(E() Py projects both sides b, and then byQ,,, uses Egs(15),
resolvesQ,GP,, in terms of P,GP,, and finally obtains
XjH(a)| Vo), (19
[E—a-p=BM—Vy(E)+in]P,G(E+e,)Py=Py,
and of a term (25
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with in the bound statde,), the single-particle vectorgy,(E
—eg,)) representing the elastic scattering wave functions

_ 1 (n;ra|Wg) are eigenstates of the same optical potential, i.e.,
Val(E) = PaUPy+ PoUQn =5 o o777 QUPn-
(26) [a'p+:8M+Vn(E_8n)]|Xn(E_8n)>
Using Eq.(14) for P,, and considering the matrix elements in =(E—en)|xn(E—&p)). (36)

the basigra;n) of both sides of Eq(25), one has ) )
g ) 429 SinceE is the total energwk’+M?+¢,,, the argument of

V, is the kinetic energyincluding the rest mag®f the emit-

Gn(E)= E-h(E)+ig’ (27 ted nucleon.
where B. Interference hadron tensor
ho(E)=a-p+ BM+V,(E), (28) i Thg problem of expregsing the in.terferencrjz hadron tensor
W4 in a one-body form is treated in RdfL5] in the non-
andV,(E) has the 44 matrix structure defined by relativistic context. It is argued that the contributionVbf*

PN — ot can be included in the direct hadron tenddf* by the
(ra|Va(E)[r'a’y=(n;ra|V,(E)|r'a’;n). (29 simple replacement

Thus, h,(E) is the self-energy of the Green’s function off v ;

Gn(E), andV,(E) is the related mean field. Using the same Gn(E) = Gn (B)=V1-V(BE)Gn(E)V1=W4(E), (37)
arguments as in the nonrelativistic case, one findsWh , . I .
is gt]he unsymmetrized Feshbach optical potenfiél, relate)d where)/n(E) is the energy derivative of the Feshbach optical
to the channeh, for the relativistic HamiltoniarH. potential.

Using the first equation in Eq14) and Eq.(23), the direct In Ref.[21], the problem is reconsidered from a rigorous
hadron tensoW“*(w,q) of Eq. (19) becomes viewpoint. The interference hadron tensor is expressed ex-
n ’ .

actly as a series involving energy derivativesy{E), of
1 increasing order, plus a residual term which cannot be re-
WE(w,0) = — =Nl @n i#T(Q) Gn(Es— 1) i“(Q)| @n), duced to a single-particle form. The series is expected to
& rapidly converge near the quasielastic peak and at intermedi-
(30 . . S i
ate energies. It is argued that in this region of momenta and

where the initial statée,), normalized to 1, is represented energies, the residual term is negligible. Thus, one recovers

by the bispinor defined by the matrix elements, the result of Eq(37) and second-order corrections, which do
not seem to give a sizable contribution.
A+1 Neither the treatment nor the conclusions change if one
(raleq)= . (n;ralWo), (3D considers the relativistic Hamiltoniath Thus, for the hadron
" tensor of Eq.(18), we use the approximated expression ob-
\, is the related spectral strendt?0], tained from Eq.(30) with the replacement37),
1 :
No=(A+1)> f dri(n;ra|¥o)|?, (32 Wes(0,0) = = — 2 Nalm( gl j#(0)
a
with XG(Er—en)i“(@leq). (38
2 N 33 Since the interference terﬁdﬁ” of Eg. (20) has no influence
= n ' on the energy sum rule of the total hadron tensor of(E§),
a natural question arises whether the approximation leading
The symbok(f|g) denotes the scalar product, to Eqg. (38) may change the sum rule. Actually, one can ob-
serve that in Eq(37), G,(E) is modified by factors that
_ * neither change its properties of analyticity in the energy
(flg) g f drf*(rajg(ra). (34) complex plane nor its high energy behavior. This fact is used

in Ref.[15] to prove the relation
In Eq. (30) the hadron tensor is expressed in terms of single-
particle quantities. As in the nonrelativistic cake,) are the 1 off L
eigenstates of the optical potential, i.e., - ;J dE Im(ra|G(E)[r'a’)

[a-p+BM +Vn(E0_8n)]|<Pn>:(Eo_sn)|(Pn>- (35

If |Wg) is the eigenstate dfi corresponding asymptotically
to a nucleon, of momentutn colliding with a target nucleus (39

1
= fdEIm(ra|gn(E)|r’a’)=5(r—r’)5aa,.

v
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Therefore, the energy sum rule obtained from E2B) is B of Ref.[15]) uses the Feshbach projection operator onto
exactly the same as in E(R2), i.e., the correct sum rule of antisymmetrized states, i.e.,
the incoherent hadron tensor, apart from the contribution of

the continuous channels. pF= D f drdr’a:a|n)(ra|(1—Kn)‘llr’a’><n|arrar ,
a,a’
C. Excited states of the residual nucleus (43

As neither microscopic nor empirical calculations aréwherea/, creates a nucleon in the stata) andK, is the
available for the optical potential, associated with the ex- one-pody density matrix defined by

cited statesle,), a common practice relates them to the
ground state potentidf, by means of an appropriate energy (ra|Kn|r'a’>E<n|a;r,a,ara|n)_ (44)
shift. Here, as in Ref[15], we use the kinetic energy pre-
scription for the shifts(see Sec. 5 of Ref.16]), which is  The results of the preceding section remain true with the
naturally suggested by the plane wave impulse approximaeplacement
tion. Such a prescription preserves the value of the kinetic .
energy(including the rest masgsdirectly related to the value  (ralGn(E)[r'a’)—(ra|Gn(E)[r'a’)
of the optical potential variable in the energy scale adopted 1
— T

here. Therefore we set =% f d5<“|aramasb|”>
VHEI= V(B “o X (sb[(1-Ky) " Hr'a’), (45)
which implies

where Gf is the Green’s function related to the “symme-
Gn(E)=Go(E). (41)  trized” Feshbach optical potential’ [22]. In this approach
the spurious degeneracy disappears, since one operates in a
Hilbert space of antisymmetrized states, but at the price of
new drawback$16,23, namely, (1) g,ﬁ is not fully invert-

Using these approximations in E8), we write

1
WHE(w,q) = — p E Aalm{ @nli*T(q) ible, and so in some cases it gives rise to incorrect Dyson
n equations;(2) both G and Vi, are not symmetric for ex-
X GMEi—en)j*“(Q)| @n). (42)  changera—r’a’, and therefor/, is non-Hermitian below

the threshold of the inelastic processes; &8dthe usual
These approximations do not change the energy sum rule ofonlocal models of potential are probably inadequatéor
WHH(w,q). which shows a complicated nonlocal structure.
In short, the approach based m’rﬁ has nontrivial math-
IV. ANTISYMMETRIZATION ematical problems and it is not really useful, since this po-
o tential bears no close relation with the empirical optical
For simplicity, the treatment of Secs. Il and Il was basedyggel potential.
on the unsymmetrized projection operaRy defined in Eq. The second approach, where the above drawbacks disap-

(14), leading to the Green’s functiod, of Eq. (23). In this  pear, is that of Ref[16]. It is based on the extended projec-
section we examine the drawbacks of this formulation and itgjon operator of Ref[24],

possible alternatives. From a mathematical viewpgaiptle-

serves the name of Green’s function since it fulfills sum rule (p+h)_ N N

(39), which is a qualifying property. Moreover, and inti- Pn —Ea: Jdr(ara+ara)|n><n|(ara+ara)r (46)

mately related,G, is an invertible operator on the whole

Hilbert space B(R®). Consequently, its self-energy is not which leads to

affected by any undue restriction of domain and by the re-

lated mathematical problems. (ralGy(E)|r'a’y—(ralgP " (E)|r'a’)
Notwithstanding, the optical potentiaf, related togG,

suffers from the drawback of having spurious eigenfunctions. E<n|ara;-a-rr |n)

In fact, H has both antisymmetrized and unsymmetrized E-H+egpt+in 2
eigenvectord W) and the latter ones generate eigenfunc- 1

tions (n;ra|¥g) of V,(E—e,), which have no physical +<n|aT, j=—————————a,,|n).
meaning. No tool exists to make a distinction inside this TYE+H—e iy
unphysical degeneracy. Moreover, it is apparent Matan- (47

not be compared with any empirical optical model potential.

The remedy is a treatment based on projection operatoi@ "™ (E) is the full Green’s function, including particle and
onto antisymmetrized states, although their inclusion into théole contributions. It fulfills the sum rule of E¢9), is fully
hadron tensor is more laborious. Two approaches are availavertible, and produces mathematically correct Dyson equa-
able. tions. The related mean fiel’*"(E) has no spurious

The first approacksee Sec. 3.2 of Reff16] and Appendix  eigenfunctions corresponding to unsymmetrized states, and
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its properties of nonlocality and symmetry make it more eas- The eigenfunctions of Eq$53) and(54) satisfy the bior-

ily comparable with the empirical optical model potentials. thogonality condition

Therefore, we understand that in the following equati@ps

will denote the full Green’s functiog®*" of the relativistic XEXL(E)=86-¢), (55)
HamiltonianH. The associated mean field}, is nonlocal as

in the nonrelativistic case, and does not conserve the prima&nd, in absence of bound eigenstates, the completeness rela-
rily 4 X4 matrix structure oV, . tion

V. SPECTRAL REPRESENTATION fxdg|}(<g—>(E)><X(€‘>(E)| =1, (56)
OF THE HADRON TENSOR M

In this section we consider the spectral representation afyhere the nucleon mad4 is the threshold of the continuum
the single-particle Green’s function, which allows practicalof h(E).

calculations of the hadron tensor of E¢2). In expanded Equations(55) and (56) are the mathematical bases for
form, it reads the biorthogonal expansions. The contribution of possible
" bound state solutions of Eq$53) and (54) can be disre-
W (w,q) garded in Eq(56) since their effect on the hadron tensor is
1 negligible at the energy and momentum transfers considered
=—= > Nlm{enli*T () V1=V (E) in this paper.
mon Inserting Eq.(56) into Eq. (49) and using Eq(54), one
X G(E) \/W’(E)j"(q)lsonh (48) obtains the spectral representation
where E=E;—¢,. Here and below, the lower index O is :f@ ~(-) 1 (-)
omitted in the Green’s functions and in the related quantities. 9B) M delxe (E)>E—5+i 7I<X£ S

According to the discussion of the preceding section, we
understand thag is the full particle-hole Green'’s function of Therefore, Eq(48) can be written as
Eq. (47) and thatV is the mean field potential related goby
the equations

Wt = 1Z| fxdf,’
(0.@)==T 2 Im | 46—~y

IE)= e (49)
E=h(E)+in XTEr(E E—g,) |, (58)
h(E)=a-p+ BM+V(E). (50
. ) where
The use of this Green’s function does not change the expres-
sions of the normalized initial statég,) and of the related TEA(EE) =\ it 1=V (E)¥)(E
spectroscopic factors,,, defined in Eqs(31) and(32), re- W (EB)=M{enli* (@ (B)lxs(B)
spectively. Equivalently, they can be written as X(xSNE)|VI=V (E)j“Q)|¢n). (59
(raeny=X, Y%nlar|¥o), (51 The limit for — +0, understood before the integral of Eg.
(58), can be calculated exploiting the standard symbolic re-
M= | drlinlae ol sg  lation
n— 5 ra 0 "

1 1
E-crig \E-€

lim
7—0

Due to the complex nature of(E), the spectral representa- —im6(E=8), (60)

tion of G(E) involves a biorthogonal expansion in terms of
. . T . .

the (_algenfunctlons Oh.(E) andh (E). We cor_13|der the in- where P denotes the principal value of the integral. There-

coming wave scattering solutions of the eigenvalue equag, o Eq.(58) reads

tions, i.e., T

[E-hT(E)]|x{(E))=0, (53) Wet(w,q) =D, | RETAX(Eq— &, Ei—ep)

[E-h(E)][x{(E))=0. (54) 1 (= 1
- —Pf dé=————— IMTFH(E,E—gy) |,
The choice of incoming wave solutions is not strictly neces- ™ Ju o Bren—é
sary, but it is convenient in order to have a closer comparison (61)
with the treatment of the exclusive reactions, where the final

states fulfill this asymptotic condition and are the eigenfuncwhich separately involves the real and imaginary parts of
tions | xL ) (E)) of h'(E). THR,
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Some remarks on Eq¢59) and (61) are in order. Let us we insert Eq(62) into Eq. (48). Then, all the developments
examine the expression 8f#(&,E) atE=E=E;—e, fora  of this section can be repeated with the simple replacement
fixed n. This is the most important case since it appears irof V(E) by V, (E).
the first term in the right hand side of E@1), which gives

the main cqntribution. Disregarding the square root correc- VI. RESULTS AND DISCUSSION
tion, due to interference effects, one observes that in&3). . . .
the second matrix elemefwith the inclusion ofm) is the The cross sections and the response functions of the in-

transition amplitude for the single-nucleon knockout from aclusive quasielastic electron scattering are calculated from
nucleus in the statp¥ ) leaving the residual nucleus in the the single-particle expression of the coherent hadron tensor
state|n). The attenuation of its strength, mathematically duein Ed. (61). After the replacement of the mean fieifE) by

to the imaginary part o¥', is related to the flux lost towards the empirical optical model potentidd (E), the matrix ele-

the channels different from. In the inclusive response this ments of the nuclear current operator in E§9) (which
attenuation must be compensated by a corresponding gafgPresent the main ingredients of the calculatiare of the

due to the flux lost, towards the chanmeby the other final Same kind as those giving the transition amplitudes of the
states asymptotically originated by the channels differenglectron induced nucleon knockout reaction in the relativistic
from n. In the description provided by the spectral represendistorted wave impulse approximatio(RDWIA) [25]. Thus,
tation of Eq.(61), the compensation is performed by the first the same treatment can be used as that which was success-
matrix element in the right-hand side of E&9), where the  fully applied to describe exclusives(e’p) and (y,p) data
imaginary part of)’ has the effect of increasing the strength.[25,26.

Similar considerations can be made, on purely mathematical The final wave function is written in terms of its upper
grounds, for the integral of Eq61), where the amplitudes Ccomponent following the direct Pauli reduction scheme, i.e.,
involved in T4* have no evident physical meaning &s

#E¢—¢,. We want to stress here that in the Green’s func- Wiy

tion approach it is just the imaginary part ¥f which ac- X(g_)(E): 1 . (63
counts for the redistribution of the strength among different o-p¥y,
channels. M+E+S'(E)=V(E)

The matrix elements in Eq59) contain the mean field
V(E) and its Hermitian conjugate’ (E), which are nonlocal Where S(E) and V(E) are the scalar and vector energy-
operators with a possibly complicated matrix structure. Neij-dependent components of the relativistic optical potential for
ther microscopic nor empirical calculations o{E) are & nucleon with energ§ [27]. The upper component. is
available. In contrast, phenomenological optical potentialgelated to a Schitinger equivalent wave functioi; by the
are available. They are obtained from fits to experimentaParwin factor, i.e.,
data, are local, and involve scalar and vector components

only. The necessary replacement of the mean field by the Vi =D E)Py, (64)
empirical optical model potential is, however, a critical step.

In the nonrelativistic treatment of Refgl5,21], this re- S(E)—V(E)
placement is justified on the basis of the approximated equa- Dg(E)=1+ TMiE (65)

tion (holding for every statéy))

@ is a two-component wave function which is the solution
Im( ¢/ \/1—V’(E)Q(E)\/1—V’(E)|¢//> of a Schraﬂmger.equatlor) containing equivalent central and
spin-orbit potentials obtained from the scalar and vector po-
=Im(y| 1=V (E)G(E)N1-V[(E)| %), tentials[28,29.
As no relativistic optical potentials are available for the
(62) bound states, the wave functias, is taken as the Dirac-
Hartree solution of a relativistic Lagrangian containing scalar

where V), (E) is the local phase-equivalent potential identi- @nd vector potentialg30,31]. _

fied with the phenomenological optical model potential and Concerning the nuclear current operator, no unambiguous

GL(E) is the related Green’s function. In RéR1], the proof approach eX|sts. for dealing with off-shell nucleons. In the

of Eq. (62) is based on two reason&l) a model of (E) ~ Present calculations we u$g2—-34

commonly used in dispersion relation analyses; é)cthe

combined effect of the factoyl—)'(E) and of the Perey

factor, which connects the eigenfunctions ©{E) and

V.(E). We stress that it is just the factqil—V'(E), intro-

duced to account for interference effects, which allows thewvhere  is the anomalous part of the magnetic momeént,

replacement oi(E) by V| (E). andF, are the Dirac and Pauli nucleon form factors, which
Although the Perey effect is not sufficiently known for the are taken from Ref.35], and o*"=(i/2)[ y*, y"].

Dirac equation, we have a reasonable confidence that Eq. Current conservation is restored by replacing the longitu-

(62) holds also in the present relativistic context. Thereforedinal current33] by

K
Jtca=F1(Q?) y*+i sz(QZ)U’”Qy, (66)
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— 0.025

w
JL:JZ:_ JO . (67) I> F g = 400 Me\//c
L 0.02[
d
=
20.015F

The calculations have been performed with the same boun g
state wave functions and optical potentials as in Refs. °0'¢
[25,26, where the RDWIA was able to reproduce,€’p)
and (y,p) data. b

The relativistic bound state wave functions have been ob- T T T e T e T e a0 e
tained from the code of Ref30], where relativistic Hartree- w [MeV]
Bogoliubov equations are solved in the context of a relativ- _ 3.
istic mean field theory to reproduce single-particle propertiesT> o095k

0.005F

of several spherical and deformed nudl]. The scattering 2 80y ﬁ
; E -~ % 0

state is calculated by means of the energy-dependent and% 0.02¢ DQQD/ N\ 05 §§§
A-dependentEDAD1) complex phenomenological optical o155 o 7 : 3
potential of Ref.[27], which is fitted to proton elastic scat- ool o
tering data on several nuclei in an energy range up to 1040 [ &
MeV. 0.005? °

In the calculations, the residual nucleus stdtesare re- ol L L ‘

. . . . 0 50 100 150 200 250 300
stricted to single-particle one-hole states in the target. A pure w [IMeV]

shell model is assumed for the nuclear structure, i.e., we take
a unitary spectral strength for each single-particle state, and FIG. 1. Longitudinal(upper pangland transversdower pane)
the sum runs over all the occupied states. response functions for th&’C(e,e’) reaction atq=400 MeV/c.

The results presented in the following contain the contri-Solid and dotted lines represent the NLSH results with and without
butions of both terms in Eq61). The calculation of the the inclusion of the factor in Eq68), respectively. Dashed lines
second term, which requires integration over all the eigendive the result without the integral in E¢61). Dot-dashed lines are
functions of the continuum spectrum of the optical potential,the contribution of integrated single-nucleon knockout only. The
is a rather complex task. This term was neglected in thélata are from Ref.36].

qonrelat|V|st_|c investigation of Refl5], where its contnb.u-. _ The contribution from all the integrated single-nucleon
tion was estimated to be very small. In the present relativistignockout channels is also drawn in Fig. 1. It is significantly
calculations the effect of this term can be significant, and it iSmaller than the complete calculation. The reduction, which
therefore included in the results. is larger at lower values of, gives an indication of the
relevance of inelastic channels.
For the calculations in Fig. 1, the Hartree-Bogoliubov
equations for the single-particle bound states have been
The longitudinal and transverse response functions fosolved using the set of the parameters of the relativistic mean
12C atq=400 MeV/c are displayed in Fig. 1 and compared field theory Larangian, which was called NLSH in REg1].
with the Saclay datf36]. The low energy transfer values are In Fig. 2 a comparison is shown between the results obtained
not given because the relativistic optical potentials are nowith this choice of parameters and the one called &B|.
available at low energies. The shapes of the responses calculated with the different
The agreement with the data is generally satisfactory fopound states show small differences. Their integrals must
the longitudinal response. In contrast, the transverse respon&&hain unchanged, according to the fact that the sum rule has
is underestimated. This is a systematic result of the calculd® be preserved. ,
tions, and was also found in the nonrelativistic approach of An €xample of the comparison between the results of our

Ref.[15]. It may be attributed to physical effects that are not'elativistic approach and those of the nonrelativistic one of
considered in the single-particle Green'’s function approac Ref. [.15] Is presented in Fig. 3 for the Iongnudma} response
e.g., meson exchange currents unction of 2C atq=400 MeV/c. In the nonrelativistic cal-

. . . . culations, the hole states and the optical potentials are taken
o fom e 37,33 especively.Soih corplte reastc
. Mpo P and nonrelativistic calculations are in satisfactory agreement
perimental longitudinal response.

with the data. This result, however, is due to a different effect

A. The R, and Ry response functions

. As explained in Sec. lll, the contribution arising from ¢ the various contributions in the two approaches. In the
interference between different channels, see E8#. and  nonrelativistic case, the interference between different chan-
(62), gives rise to the factor nels produces a factor similar to that of E§8), i.e.,

V1=V (E)=y1-BS'(E)—V'(E). (68) V1-V/(E)=\1-V/(E), (69)

where V,(E) is the nonrelativistic optical potential. This
We see, however, that here it gives only a slight contributionfactor gives a substantial reduction that is necessary to repro-
due to a compensation between the energy deriva8i/fS)  duce the longitudinal response function. The integral in Eq.
andV’(E). (61) gives only a small contribution, and is neglected. In the
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— 0.0251 — 0.015
|> g g = 400 MeV/c '> [ q = 500 MeV/c
L 0.02 [0} F
= E = ool
_0.015F » L
o : o’ [
0.01F 3
E 0.0055
0.005F 3
o o"‘o‘mr‘mH\HH\HH\‘H
0 0 50 100 150 200 250 300
w [MeV]
— 0.03 — 0.025¢
i E T r
%0.025? b 0.02
g OAOZi g E
— E D}_-o,ms;
D50.015} C
F 0.01
0.01F F
0,0052— 0005; 050
F . . T S S S S RS RS BRI
OO 50 100 150 200 250 300 OO 50 100 150 200 250 300
w [MeVl] w [MeV]
FIG. 2. Longitudinal(upper panéland transversdower panel FIG. 4. The same as in Fig. 1, but fqre=500 MeV/c. The data
response functions for th&C(e,e’) reaction atq=400 MeV/c. are from Ref[36].
Solid lines represent the NLSH results, and dashed lines the NL3 ) )
results. Data as in Fig. 1. 5, respectively, and are compared with the Saclay [z6a

The bound state wave functions have been obtained with the
relativistic approach, the factor of E(68) is generally neg- NLSH parametrization. As already found in Fig. 1 at
ligible, while the integral in Eq(61) is essential to reproduce =400 MeV/c, a good agreement with the data is obtained in
the experimental data. both cases for the longitudinal response, while the transverse

The longitudinal and transverse response functions foresponse is underestimated. Also in Figs. 4 and 5, only a
12C atq=500 and 600 MeW are displayed in Figs. 4 and slight effect is given by the factor in E¢68) arising from

the interference between different channels. The role of the

—0.025 integral in Eq.(61) decreases on increasing the momentum
S i transfer. Atgq=500 MeV/c, its contribution is smaller than
§ L g = 400 MeV/c at q=400 MeV/c, but still important to reproduce the ex-
E ol perimental longitudinal response, while @600 MeV/c
: — 0.01
|- | |-
i > | q = 600MeV/c
0.015 = 5
r o 0.005—
0.01 :
|- oi )
r 0
0.005—
L — 0.025¢
L | C
> r
o 0.02—
L % F §§§§®§%%
% 50 100 150 200 250 300 D}_-o,ms;— o
w [MeV] oot
FIG. 3. Longitudinal response functions for thi€(e,e’) reac- 0.0055
tion atq=400 MeV/c. Solid and dotted lines represent the NLSH F o0
results with and without the inclusion of the factor in EG8), 05— ‘O;‘o ——% e 70" 70

respectively. Dashed line gives the result without the integral in Eq. w MeVl
(61). Dot-dashed and long-dashed lines are the nonrelativistic re-

sults of Ref[15] with and without the inclusion of the factor in Eq. FIG. 5. The same as in Fig. 1, but fge=600 MeV/c. The data
(69), respectively. Data as in Fig. 1. are from Ref[36].
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— 0.06r =
1 E — (-
% 005 q = 450 MeV/c g |
s 3 sl : E, = 2020 MeV
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= 60 4
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50—
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w [MeV] 40—
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L 30
0.06

Ry IMeV™']
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FIG. 6. Longitudinal(upper pangland transversdower panel
response functions for th#Ca(e,e’) reaction atq=450 MeV/c.
The Saclay datéopen circlegare from Ref[39] and the MIT-Bates
ones(black circles are from Ref[3]. Line convention as in Fig. 1.

FIG. 7. The cross section for the inclusiV&C(e,e’) reaction at
¥.=15.02° andE.=2020 MeV. The data are from SLAQA0].
Line convention as in Fig. 1.

the effect is negligible, and the two curves with and without In this ;ect|oq, we focus our gttentlon on experimental
cross sections witlw <300 MeV, since our model does not

the integral overlap. The effect of the inelastic channels, in- ud h ( d isob itati
dicated in the figures by the difference between the completgm ude meson exchange currents and isobar excitation con-

results and the contribution from all the integrated singleiPutions. _ _ , L
nucleon knockout channels, is always visible and even siz- 1he calculated mclusw_é%(e,_e ) cross section is dis-
able, but it decreases on increasing the momentum transfePlayed in Fig. 7 in comparison with the SLAC d4&0] in a

The response functions fot’Ca atq=450 MeV/c are  kinematics with a beam enerdy,=2020 MeV and a scat-
shown in F|g 6 and Compared with the Sac[sﬁ] and the tering angleﬂe: 15°. The bound state wave function has
MIT-Bates[3] data. The results obtained with the NLSH setbeen obtained with the NLSH set. A visible enhancement is
of parameters have been plotted, since the results with oth@roduced by the factor in E§68). The effect of the integral
sets are almost equivalent. The calculated response functioits Eq. (61) gives a significant reduction which underesti-
are of the same order of magnitude as the MIT-Bates datanates the data. As in the case of the transverse response of
while for the Saclay data the longitudinal response is overFigs. 1-6, the discrepancy might be due to two-body mecha-
estimated and the transverse response underestimated. Tiiems which are neglected here.
factor in Eq.(68) produces an enhancement that is minimal  |n order to extend our analysis to different kinematics and
but visible in the figure. target nuclei, we consider in Fig. 8 tHéO(e,e’) inclusive
cross section data taken at ADONE-Fras¢ati with beam
energy ranging from 700 to 1200 MeV and a scattering angle
¥.=32°. The NLSH wave functions have been used in the

Investigation of inclusive electron scattering in the regioncalculations. The agreement with data is good in all the situ-
of largeq is of great interest to provide information on the ations considered. The integral in H§1) produces a reduc-
nuclear wave functions and excitation and decay of nucleofion that is now essential to reproduce the data at 700 MeV,
resonances. Several experiments have been carried out \ighich correspond to a momentum transées 400 MeV/c.
explore this region. The separation of the longitudinal andts contribution can be neglected in the other kinematics,

transverse components of the nuclear response would be vepyhereq~600 MeV/c. The effect of the factor in Eq68) is
interesting, but very difficult to perform because of the de-yery small.

creasing of the longitudinal-transverse ratio with increasing

g. Precise measurements over a kinematical range that would

allow longitudinal-transverse separation for several nuclei VIl. SUMMARY AND CONCLUSIONS

are, however, planned in the future at JLab, whereBid -

016 approved experimefi] will make a precise measure- A relativistic approach to inclusive electron scattering in
ment in the momentum transfer range G&H<1.0 GeVk  the quasielastic region has been presented. This work can be
in order to extract the response functions. considered as an extension of the nonrelativistic many-body

B. The inclusive cross section
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(o1
o

The transition matrix elements are calculated using the

E 601~ bound state wave functions obtained in the framework of a
= 40 relativistic mean field theory. The direct Pauli reduction
E 205 s method is applied to the scattering wave functions. Numeri-
< of ‘ cal results for the longitudinal and transverse response func-
° ° e tions of 12C and *°%Ca have been presented in comparison
with data in a momentum transfer range between 400 and
o~ 16; E. = 1080 MeV T~ 600 MeV/c.
5 PE 8.=32 The role and relevance of the various effects of final state
§ 8t s interactions can be different in the relativistic and nonrela-
2 4 tivistic calculations. This is a consequence of the different
g o = L T T T S T 0 f_eatures of t_he optical potgnpals in the two approac_hes_. The
w [MeV] final effect is, however, similar and produces qualitatively
g similar results in comparison with data. The relativistic
% tor E.= 1200 Mev framework has, however, the advantage that it can be more
E 2: 8. =32 reliably applied to a wider range of situations and kinemat-
N ics.
S 2 o Our relativistic results confirm that the effects of final
N T T e e T e 0 e e 380 state interactions are large and essential to reproduce the

w [MeV] data. The term with the integral, entering the definition of the

FIG. 8. The cross section for the inclusi¥®(e,e’) reaction at hgdrqn tenS(.)W“.“(-w,q) in Eq. (6,1)’ gives a significant con-
9.=32 and E,=700, 1080, and 1200 MeV. The data are from tribution, which is important to improve the agreement with
ADONE-Frascati2]. Line convention as in Fig. 1. data. This result is different from the one obtained in the

nonrelativistic analysig15], where this term gave only a
small contribution and was thus neglected in the calculations.

approach of Ref[15]. The components of the hadron tensor We stress that this term is due to the imaginary part of the
are written in terms of Green’s functions of the optical po-optical potential, which thus produces different but important
tentials related to the various reaction channels. The projecffects in the relativistic and nonrelativistic approaches. The
tion operator formalism is used to derive this result. An ex-effects of the integral in Eq61), as well as the difference
plicit calculation of the single-particle Green’s function can between the complete result and the contribution of inte-
be avoided by means of its spectral representation, based g@nated single-nucleon knockout, which are both entirely due
a biorthogonal expansion in terms of the eigenfunctions ofo the imaginary part of the optical potential, tend to decrease
the non-Hermitian optical potentidd(E) and of its Hermit-  with increasing momentum transfer.
ian conjugate. The interference between different channels is The factor\y1—V'(E) is conceptually very important. It
taken into account by the factafl— V' (E), which also al- accounts for interference effects and allows the replacement
lows the replacement of the mean figi¢E) by the phenom- of V(E) by V. (E). In the nonrelativistic analysis of Ref.
enological optical potential, (E). After this replacement, [15], this factor produced an overall reduction of the calcu-
the nuclear response functions are expressed in terms of mited strength, which significantly improved the agreement
trix elements similar to the ones that appear in the exclusivavith the experimental longitudinal response function. Only a
one-nucleon knockout reactions, and the same RDWIA treatsmall contribution is given by this factor in the present rela-
ment[25] can be applied to the calculation of the inclusive tivistic approach. It generally produces a small enhancement
electron scattering. of the calculated responses, which does not significantly

The effects of final state interactions are thus described¢hange the comparison with data.
consistently in exclusive and inclusive processes. Both the Final state interactions have a similar effect on the longi-
real and imaginary parts of the optical potential must betudinal and transverse components of the nuclear response.
included. In the exclusive reaction the imaginary part acdn comparison with data, the longitudinal response is usually
counts for the flux lost towards other final states. In the in-well reproduced, while the transverse response is underesti-
clusive reaction, where all the final states are included, thenated. This seems to indicate that more complicated effects,
imaginary part accounts for the redistribution of the strengtte.g., two-body meson exchange currents, have to be added to
among the different channels. the present single-particle approach.

All the final states contributing to the inclusive reaction  The inclusive cross section fol’C and '°0 has been
are contained in the Green’s function, and not only thosesalculated for momentum transfer600 MeV/c. The results
regarding one-nucleon emission. Our calculations for the infor 12C are in agreement with those obtained for the response
clusive electron scattering are different from the contributionfunctions. The lack of strength in the determination of the
of integrated single-nucleon knockout only. The differencetransverse response results in an underestimation of the data.
between the two results is originated by the imaginary part oA satisfactory agreement is obtained for tH&€0(e,e’)
the optical potential. results.
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