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Inclusive electron scattering in a relativistic Green’s function approach
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A relativistic Green’s function approach to the inclusive quasielastic (e,e8) scattering is presented. The
single-particle Green’s function is expanded in terms of the eigenfunctions of the non-Hermitian optical
potential. This allows one to treat final state interactions consistently in the inclusive and in the exclusive
reactions. Numerical results for the response functions and the cross sections for different target nuclei and in
a wide range of kinematics are presented and discussed in comparison with experimental data.
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I. INTRODUCTION

The inclusive electron scattering in the quasielastic reg
addresses to the one-body mechanism as a natural inte
tation. However, when the experimental data of the sep
tion of the longitudinal and transverse responses were a
able, it became clear that the explanation of both respon
necessitated a more complicated framework than the sin
particle model coupled to one-nucleon knockout.

A review till 1995 of the experimental data and their po
sible explanations is given in Ref.@1#. Thereafter, only a few
experimental papers were published@2,3#. New experiments
with high experimental resolution are planned at JLab@4# in
order to extract the response functions.

From the theoretical side, a wide literature was produ
in order to explain the main problems raised by the sep
tion, i.e., the lack of strength in the longitudinal response a
the excess of strength in the transverse one. The more re
papers are mainly concerned with the contribution to
inclusive cross section of meson exchange currents and
bar excitations@5–7#, with the effect of correlations@8,9#,
and the use of a relativistic framework in the calculations@7#.

At present, however, the experimental data are not
completely understood. A possible solution could be
combined effect of two-body currents and tensor correlati
@8,10,11#.

In this paper we want to discuss the effects of final st
interactions in a relativistic framework. Final state intera
tions are an important ingredient of the inclusive electr
scattering, since they are essential to explain the exclu
one-nucleon emission, which gives the main contribution
the inclusive reaction in the quasielastic region. The abso
tion in a given final state due, e.g., to the imaginary part
the optical potential produces a loss of flux which is app
priate for the exclusive process, but inconsistent for the
clusive one, where all the allowed final channels contrib
and the total flux must be conserved.

This conservation is preserved in the Green’s function
proach considered here, where the components of the nu
response are written in terms of the single-particle opt
model Green’s function. This result was originally deriv
by arguments based on the multiple scattering theory@12#
and successively by means of the Feshbach projection op
tor formalism @13–16#. The spectral representation of th
0556-2813/2003/67~5!/054601~12!/$20.00 67 0546
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single-particle Green’s function, based on a biorthogonal
pansion in terms of the eigenfunctions of the non-Hermit
optical potential, allows one to perform explicit calculatio
and to treat final state interactions consistently in the inc
sive and in the exclusive reactions. Important and pecu
effects are given, in the inclusive reactions, by the imagin
part of the optical potential, which is responsible for t
redistribution of the strength among different channels.

In a previous paper of ours@15# the approach was used i
a nonrelativistic framework to perform explicit calculation
of the longitudinal and transverse inclusive response fu
tions. The main goal of this paper is to extend the method
a relativistic framework and produce similar results. A
though some differences and complications are due to
Dirac matrix structure, the formalism follows the same ste
and approximations as those developed in the nonrelativ
framework of Refs.@15,16#. The numerical results obtaine
in the relativistic approach allow us to check the relevance
relativistic effects in the kinematics already considered
Ref. @15# and can be applied to a wider range of kinemat
where the nonrelativistic calculations are not reliable.

In Sec. II the hadron tensor of the inclusive process
expressed in terms of the relativistic Green’s function, wh
is reduced in Sec. III to a single-particle expression. T
problem of antisymmetrization is discussed in Sec. IV.
Sec. V, the Green’s function is calculated in terms of t
spectral representation related to the optical potential. In S
VI, the results of the calculations are reported and compa
with the experimental data. Summary and conclusions
drawn in Sec. VII.

II. THE GREEN’S FUNCTION APPROACH

A. Definitions and main properties

In the one-photon exchange approximation the inclus
cross section for the quasielastic (e,e8) scattering on a
nucleus is given@1# by

s inc5K~2«LRL1RT!, ~1!

whereK is a kinematical factor and

«L5
Q2

q2 S 112
q2

Q2
tan2~qe/2!D 21

~2!
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measures the polarization of the virtual photon. In Eq.~2!,
qe is the scattering angle of the electron,Q25q22v2, and
qm5(v,q) is the four-momentum transfer. All nuclear stru
ture information is contained in the longitudinal and tran
verse response functions,RL andRT , defined by

RL~v,q!5Wtot
00~v,q!,

RT~v,q!5Wtot
11~v,q!1Wtot

22~v,q!, ~3!

in terms of the diagonal components of the hadron tenso

Wtot
mm~v,q!5E (

f
u^C fuJm~q!uC0&u2d~E01v2Ef!.

~4!

HereJm is the nuclear charge-current operator that conne
the initial stateuC0& of the nucleus, of energyE0, with the
final statesuC f&, of energyEf , both eigenstates of the (A
11)-body HamiltonianH. The sum runs over the scatterin
states corresponding to all of the allowed asymptotic c
figurations and includes possible discrete states. As was d
for uC f&, the degeneracy indexes will be omitted whene
they are unnecessary. The ground stateuC0& is assumed to be
nondegenerate. In order to avoid complications of little
terest in the present context, we neglect recoil effects
consider only pointlike nucleons, without distinguishing b
tween protons and neutrons. Unless stated otherwise,
wave functions are properly antisymmetrized.

The hadron tensor of Eq.~4! can equivalently be ex
pressed as

Wtot
mm~v,q!52

1

p
Im^C0uJm†~q!G~Ef!J

m~q!uC0&, ~5!

whereEf5E01v andG(Ef) is the Green’s function relate
to H, i.e.,

G~Ef!5
1

Ef2H1 ih
. ~6!

Here and in all the equations involvingG, the limit for h
→10 is understood. It must be performed after calculat
the matrix elements between normalizable states.

In this paper the interest is focused on relativistic wa
functions for initial and final states. Therefore, th
(A11)-body HamiltonianH is the sum of one-nucleon fre
Dirac Hamiltonians and two-nucleon interactionsVj j 8 , i.e.,

H5 (
j 51

A11

~aj•pj1b jM !1
1

2 (
j , j 851

A11

Vj j 8 , ~7!

where the 434 Dirac matrices,aj and b j , act on the bis-
pinor variables of the nucleonj. No particular assumption is
made on the 434 matrix structure ofVj j 8 .

In order to express the hadron tensor in terms of sing
particle quantities, the same approximations as in the non
ativistic case@15# are required. The first one consists in r
taining only the one-body part of the charge-current opera
Jm. Thus, we set
05460
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Jm~q!5 (
i 51

A11

j i
m~q!, ~8!

where j i
m acts only on the variables of the nucleoni. By Eq.

~8!, one can express the hadron tensor as the sum of
terms, i.e.,

Wtot
mm~v,q!5Wmm~v,q!1Wcoh

mm~v,q!, ~9!

whereWmm(v,q) is the incoherent hadron tensor@17#, which
contains only the diagonal contributionsj i

m†G ji
m , whereas

the coherent hadron tensorWcoh
mm(v,q) gathers the residua

terms of interference between different nucleons. As the
coherent hadron tensor,Wcoh

mm(v,q) can be expressed in term
of single-particle quantities~see Sec. 9 of Ref.@16#!, but for
the transferred momenta considered in this paper, we
take advantage of the high-q approximation@18# and retain
only Wmm(v,q). This term can be further simplified usin
the symmetry ofG for the exchange of nucleons and th
antisymmetrization ofuC0&. Therefore, we write

Wtot
mm~v,q!.Wmm~v,q!52

A11

p

3Im^C0u j m†~q!G~Ef! j m~q!uC0&, ~10!

where j m(q) is the component ofJm(q) related to an arbi-
trarily selected nucleon. Due to the well-known comple
ness property, i.e.,

1

2p i E dE@G†~E!2G~E!#51, ~11!

the incoherent hadron tensor fulfills the energy sum rule,

E dvWmm~v,q!5~A11!^C0u j m†~q! j m~q!uC0&.

~12!

B. Projection operator formalism

This formalism yields an expression of the incohere
hadron tensor of Eq.~10! in terms of eigenfunctions and
Green’s functions of the optical potentials related to the va
ous reaction channels. Apart from complications due to
Dirac matrix structure, we follow the same steps and
proximations as in the nonrelativistic treatme
@12,13,15,16#.

Let us decomposeH as

H5a•p1bM1U1HR , ~13!

wherea•p1bM is the kinetic energy of an arbitrarily se
lected nucleon,U is the interaction between this nucleon a
the other ones, andHR is the residual Hamiltonian ofA in-
teracting nucleons. Such a decomposition cannot be
formed in the physical space of the totally antisymmetriz
(A11)-nucleon wave functions. Therefore, we must oper
in the Hilbert spaceH of the wave functions which are an
tisymmetrized only for exchanges of the nucleons ofHR .
1-2
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This treatment is presented here only for the sake of simp
ity. In Sec. IV we shall discuss its physical drawbacks a
outline the necessary changes.

Let un& and u«& denote the antisymmetrized eigenvecto
of HR related to the discrete and continuous eigenvalues«n
and«, respectively. We introduce the operatorsPn , project-
ing onto then-channel subspace ofH, and Qn , projecting
onto the orthogonal complementary subspace, i.e.,

Pn5(
a
E drura;n&^n;rau,

Qn512Pn . ~14!

Here ura;n& is the unsymmetrized vector obtained from t
tensor product between the discrete eigenstateun& of HR ,
and the orthonormalized eigenvectorsura& (a51,2,3,4) of
the position and the spin of the selected nucleon. The eig
vectorsura& have been chosen only for the sake of defini
ness, as every complete orthonormalized set of sin
nucleon vectors could define the same operatorsPn . Apart
from minor differences due to the present relativistic conte
Pn andQn are the projection operators of the Feshbach
symmetrized formalism@19#. Note, for later use, the relation

@Pn ,a•p1bM #50,

HRPn5«nPn . ~15!

Moreover, we introduce the projection operator into the c
tinuous channel subspace, i.e.,

Pc5E d«(
a
E drura;«&^«;rau. ~16!

Due to the completeness of the set$ura;n&,ura;«&%, one has

(
n

Pn1Pc51. ~17!

Then, we insert Eq.~17! into Eq. ~10! disregarding the con
tribution of Pc . This approximation, which simplifies th
calculations, is correct for sufficiently high values of th
transferred momentumq. Thus, the hadron tensor of Eq.~10!
can be expressed as the sum

Wmm~v,q!5Wd
mm~v,q!1Wint

mm~v,q! ~18!

of a direct term,

Wd
mm~v,q!5(

n
Wn

mm~v,q!,

Wn
mm~v,q!52

A11

p
Im^C0u j m†~q!PnG~Ef!Pn

3 j m~q!uC0&, ~19!

and of a term
05460
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Wint
mm~v,q!5(

n
Ŵn

mm~v,q!,

Ŵn
mm~v,q!52

A11

p
Im^C0u j m†~q!PnG~Ef!Qn

3 j m~q!uC0&, ~20!

which gathers the contributions due to the interference
tween the intermediate statesura;n& related to different chan-
nels.

We note that the interference term does not contribute
the energy sum rule. In fact, Eq.~11! yields

E dvŴn
mm~v,q!5~A11!^C0u j m†~q!PnQnj m~q!uC0&50.

~21!

Thus, the full contribution to the sum rule of the incohere
hadron tensor is given only by the direct term, i.e.,

E dvWmm~v,q!5E dvWd
mm~v,q!

5~A11!^C0u j m†~q!(
n

Pnj m~q!uC0&,

~22!

which, as a pure consequence of the omission of the cont
ous channels described byPc , is smaller than the value o
Eq. ~12!.

III. SINGLE-PARTICLE EXPRESSION
OF THE HADRON TENSOR

A. Single-particle Green’s functions

For the time being, we will disregard the effects of inte
ference between different channels and consider only the
rect contribution to the hadron tensor of Eq.~19!. The matrix
elements ofPnG(E)Pn in the basisura;n& define a single-
particle Green’s functionGn(E) having a 434 matrix struc-
ture, i.e.,

^rauGn~E!ur8a8&[^n;rauG~E1«n!ur8a8;n&. ~23!

Note that here the energy scale is in accordance with R
@16# and differs from Ref.@15#.

The self-energy ofGn(E) is determined following the
same steps used by Feshbach to determine the optical p
tial from the Schro¨dinger equation@19#. One starts from the
relation

~E2a•p2bM2HR2U1«n1 ih!~Pn1Qn!

3G~E1«n!Pn5Pn , ~24!

projects both sides byPn and then byQn , uses Eqs.~15!,
resolvesQnGPn in terms ofPnGPn , and finally obtains

@E2a•p2bM2Vn~E!1 ih#PnG~E1«n!Pn5Pn ,
~25!
1-3
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with

Vn~E!5PnUPn1PnUQn

1

E2QnHQn1«n1 ih
QnUPn .

~26!

Using Eq.~14! for Pn and considering the matrix elements
the basisura;n& of both sides of Eq.~25!, one has

Gn~E!5
1

E2hn~E!1 ih
, ~27!

where

hn~E!5a•p1bM1Vn~E!, ~28!

andVn(E) has the 434 matrix structure defined by

^rauVn~E!ur8a8&[^n;rauVn~E!ur8a8;n&. ~29!

Thus, hn(E) is the self-energy of the Green’s functio
Gn(E), andVn(E) is the related mean field. Using the sam
arguments as in the nonrelativistic case, one finds thatVn(E)
is the unsymmetrized Feshbach optical potential@19#, related
to the channeln, for the relativistic HamiltonianH.

Using the first equation in Eq.~14! and Eq.~23!, the direct
hadron tensorWn

mm(v,q) of Eq. ~19! becomes

Wn
mm~v,q!52

1

p
lnIm^wnu j m†~q!Gn~Ef2«n! j m~q!uwn&,

~30!

where the initial stateuwn&, normalized to 1, is represente
by the bispinor defined by the matrix elements,

^rauwn&[AA11

ln
^n;rauC0&, ~31!

ln is the related spectral strength@20#,

ln5~A11!(
a
E dru^n;rauC0&u2, ~32!

with

(
n

ln.A11. ~33!

The symbol̂ f ug& denotes the scalar product,

^ f ug&5(
a
E dr f * ~ra!g~ra!. ~34!

In Eq. ~30! the hadron tensor is expressed in terms of sing
particle quantities. As in the nonrelativistic case,uwn& are the
eigenstates of the optical potential, i.e.,

@a•p1bM1Vn~E02«n!#uwn&5~E02«n!uwn&. ~35!

If uCE& is the eigenstate ofH corresponding asymptoticall
to a nucleon, of momentumk, colliding with a target nucleus
05460
-

in the bound stateu«n&, the single-particle vectorsuxn(E
2«n)& representing the elastic scattering wave functio
^n;rauCE& are eigenstates of the same optical potential, i

@a•p1bM1Vn~E2«n!#uxn~E2«n!&

5~E2«n!uxn~E2«n!&. ~36!

SinceE is the total energyAk21M21«n , the argument of
Vn is the kinetic energy~including the rest mass! of the emit-
ted nucleon.

B. Interference hadron tensor

The problem of expressing the interference hadron ten
Ŵn

mm in a one-body form is treated in Ref.@15# in the non-

relativistic context. It is argued that the contribution ofŴn
mm

can be included in the direct hadron tensorWn
mm by the

simple replacement

Gn~E!→Gn
eff~E![A12Vn8~E!Gn~E!A12Vn8~E!, ~37!

whereVn8(E) is the energy derivative of the Feshbach optic
potential.

In Ref. @21#, the problem is reconsidered from a rigoro
viewpoint. The interference hadron tensor is expressed
actly as a series involving energy derivatives ofVn(E), of
increasing order, plus a residual term which cannot be
duced to a single-particle form. The series is expected
rapidly converge near the quasielastic peak and at interm
ate energies. It is argued that in this region of momenta
energies, the residual term is negligible. Thus, one recov
the result of Eq.~37! and second-order corrections, which d
not seem to give a sizable contribution.

Neither the treatment nor the conclusions change if o
considers the relativistic HamiltonianH. Thus, for the hadron
tensor of Eq.~18!, we use the approximated expression o
tained from Eq.~30! with the replacement~37!,

Wmm~v,q!52
1

p (
n

lnIm^wnu j m†~q!

3Gn
eff~Ef2«n! j m~q!uwn&. ~38!

Since the interference termŴn
mm of Eq. ~20! has no influence

on the energy sum rule of the total hadron tensor of Eq.~18!,
a natural question arises whether the approximation lead
to Eq. ~38! may change the sum rule. Actually, one can o
serve that in Eq.~37!, Gn(E) is modified by factors that
neither change its properties of analyticity in the ener
complex plane nor its high energy behavior. This fact is us
in Ref. @15# to prove the relation

2
1

pE dE Im^rauGn
eff~E!ur8a8&

52
1

pE dE Im^rauGn~E!ur8a8&5d~r2r8!daa8 .

~39!
1-4
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INCLUSIVE ELECTRON SCATTERING IN A . . . PHYSICAL REVIEW C67, 054601 ~2003!
Therefore, the energy sum rule obtained from Eq.~38! is
exactly the same as in Eq.~22!, i.e., the correct sum rule o
the incoherent hadron tensor, apart from the contribution
the continuous channels.

C. Excited states of the residual nucleus

As neither microscopic nor empirical calculations a
available for the optical potentialVn associated with the ex
cited statesu«n&, a common practice relates them to t
ground state potentialV0 by means of an appropriate energ
shift. Here, as in Ref.@15#, we use the kinetic energy pre
scription for the shifts~see Sec. 5 of Ref.@16#!, which is
naturally suggested by the plane wave impulse approxi
tion. Such a prescription preserves the value of the kin
energy~including the rest mass!, directly related to the value
of the optical potential variable in the energy scale adop
here. Therefore we set

Vn~E!.V0~E!, ~40!

which implies

Gn~E!.G0~E!. ~41!

Using these approximations in Eq.~38!, we write

Wmm~v,q!52
1

p (
n

lnIm^wnu j m†~q!

3G0
eff~Ef2«n! j m~q!uwn&. ~42!

These approximations do not change the energy sum ru
Wmm(v,q).

IV. ANTISYMMETRIZATION

For simplicity, the treatment of Secs. II and III was bas
on the unsymmetrized projection operatorPn defined in Eq.
~14!, leading to the Green’s functionGn of Eq. ~23!. In this
section we examine the drawbacks of this formulation and
possible alternatives. From a mathematical viewpoint,Gn de-
serves the name of Green’s function since it fulfills sum r
~39!, which is a qualifying property. Moreover, and int
mately related,Gn is an invertible operator on the whol
Hilbert space L2(R3). Consequently, its self-energy is n
affected by any undue restriction of domain and by the
lated mathematical problems.

Notwithstanding, the optical potentialVn related toGn
suffers from the drawback of having spurious eigenfunctio
In fact, H has both antisymmetrized and unsymmetriz
eigenvectorsuCE& and the latter ones generate eigenfun
tions ^n;rauCE& of Vn(E2«n), which have no physica
meaning. No tool exists to make a distinction inside t
unphysical degeneracy. Moreover, it is apparent thatVn can-
not be compared with any empirical optical model potent

The remedy is a treatment based on projection opera
onto antisymmetrized states, although their inclusion into
hadron tensor is more laborious. Two approaches are a
able.

The first approach~see Sec. 3.2 of Ref.@16# and Appendix
05460
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B of Ref. @15#! uses the Feshbach projection operator o
antisymmetrized states, i.e.,

Pn
F5 (

a,a8
E drdr8ara

† un&^rau~12Kn!21ur8a8&^nuar8a8 ,

~43!

whereara
† creates a nucleon in the stateura& and Kn is the

one-body density matrix defined by

^rauKnur8a8&[^nuar8a8
† araun&. ~44!

The results of the preceding section remain true with
replacement

^rauGn~E!ur8a8&→^rauGn
F~E!ur8a8&

[(
b
E dŝ nuara

1

E2H1«n1 ih
asb

† un&

3^sbu~12Kn!21ur8a8&, ~45!

where Gn
F is the Green’s function related to the ‘‘symme

trized’’ Feshbach optical potentialV n
F @22#. In this approach

the spurious degeneracy disappears, since one operates
Hilbert space of antisymmetrized states, but at the price
new drawbacks@16,23#, namely,~1! G n

F is not fully invert-
ible, and so in some cases it gives rise to incorrect Dy
equations;~2! both Gn

F and V n
F are not symmetric for ex-

changera↔r8a8, and thereforeVn
F is non-Hermitian below

the threshold of the inelastic processes; and~3! the usual
nonlocal models of potential are probably inadequate forV n

F ,
which shows a complicated nonlocal structure.

In short, the approach based onV n
F has nontrivial math-

ematical problems and it is not really useful, since this p
tential bears no close relation with the empirical optic
model potential.

The second approach, where the above drawbacks di
pear, is that of Ref.@16#. It is based on the extended proje
tion operator of Ref.@24#,

Pn
(p1h)5(

a
E dr~ara

† 1ara!un&^nu~ara
† 1ara!, ~46!

which leads to

^rauGn~E!ur8a8&→^rauGn
(p1h)~E!ur8a8&

[^nuara

1

E2H1«n1 ih
ar8a8

† un&

1^nuar8a8
† 1

E1H2«n2 ih
araun&.

~47!

Gn
(p1h)(E) is the full Green’s function, including particle an

hole contributions. It fulfills the sum rule of Eq.~39!, is fully
invertible, and produces mathematically correct Dyson eq
tions. The related mean fieldVn

(p1h)(E) has no spurious
eigenfunctions corresponding to unsymmetrized states,
1-5
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its properties of nonlocality and symmetry make it more e
ily comparable with the empirical optical model potentia
Therefore, we understand that in the following equationsGn

will denote the full Green’s functionGn
(p1h) of the relativistic

HamiltonianH. The associated mean fieldVn is nonlocal as
in the nonrelativistic case, and does not conserve the pri
rily 4 34 matrix structure ofVj j 8 .

V. SPECTRAL REPRESENTATION
OF THE HADRON TENSOR

In this section we consider the spectral representation
the single-particle Green’s function, which allows practic
calculations of the hadron tensor of Eq.~42!. In expanded
form, it reads

Wmm~v,q!

52
1

p (
n

lnIm^wnu j m†~q!A12V8~E!

3G~E!A12V8~E! j m~q!uwn&, ~48!

where E5Ef2«n . Here and below, the lower index 0
omitted in the Green’s functions and in the related quantit
According to the discussion of the preceding section,
understand thatG is the full particle-hole Green’s function o
Eq. ~47! and thatV is the mean field potential related toG by
the equations

G~E!5
1

E2h~E!1 ih
, ~49!

h~E!5a•p1bM1V~E!. ~50!

The use of this Green’s function does not change the exp
sions of the normalized initial statesuwn& and of the related
spectroscopic factorsln , defined in Eqs.~31! and ~32!, re-
spectively. Equivalently, they can be written as

^rauwn&5ln
21/2^nuarauC0&, ~51!

ln5(
a
E dru^nuarauC0&u2. ~52!

Due to the complex nature ofV(E), the spectral representa
tion of G(E) involves a biorthogonal expansion in terms
the eigenfunctions ofh(E) andh†(E). We consider the in-
coming wave scattering solutions of the eigenvalue eq
tions, i.e.,

@E2h†~E!#uxE
(2)~E!&50, ~53!

@E2h~E!#ux̃E
(2)~E!&50. ~54!

The choice of incoming wave solutions is not strictly nec
sary, but it is convenient in order to have a closer compari
with the treatment of the exclusive reactions, where the fi
states fulfill this asymptotic condition and are the eigenfu
tions uxE

(2)(E)& of h†(E).
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The eigenfunctions of Eqs.~53! and~54! satisfy the bior-
thogonality condition

^xE
(2)~E!ux̃E8

(2)
~E!&5d~E2E8!, ~55!

and, in absence of bound eigenstates, the completeness
tion

E
M

`

dEux̃E
(2)~E!&^xE

(2)~E!u51, ~56!

where the nucleon massM is the threshold of the continuum
of h(E).

Equations~55! and ~56! are the mathematical bases f
the biorthogonal expansions. The contribution of possi
bound state solutions of Eqs.~53! and ~54! can be disre-
garded in Eq.~56! since their effect on the hadron tensor
negligible at the energy and momentum transfers conside
in this paper.

Inserting Eq.~56! into Eq. ~49! and using Eq.~54!, one
obtains the spectral representation

G~E!5E
M

`

dEux̃E
(2)~E!&

1

E2E1 ih
^xE

(2)~E!u. ~57!

Therefore, Eq.~48! can be written as

Wmm~v,q!52
1

p (
n

ImF E
M

`

dE 1

Ef2«n2E1 ih

3Tn
mm~E,Ef2«n!G , ~58!

where

Tn
mm~E,E!5ln^wnu j m†~q!A12V8~E!ux̃E

(2)~E!&

3^xE
(2)~E!uA12V8~E! j m~q!uwn&. ~59!

The limit for h→10, understood before the integral of E
~58!, can be calculated exploiting the standard symbolic
lation

lim
h→0

1

E2E1 ih
5PS 1

E2ED2 ipd~E2E!, ~60!

whereP denotes the principal value of the integral. Ther
fore, Eq.~58! reads

Wmm~v,q!5(
n

FReTn
mm~Ef2«n ,Ef2«n!

2
1

p
PE

M

`

dE 1

Ef2«n2E ImTn
mm~E,Ef2«n!G ,

~61!

which separately involves the real and imaginary parts
Tn

mm .
1-6
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INCLUSIVE ELECTRON SCATTERING IN A . . . PHYSICAL REVIEW C67, 054601 ~2003!
Some remarks on Eqs.~59! and ~61! are in order. Let us
examine the expression ofTn

mm(E,E) at E5E5Ef2«n for a
fixed n. This is the most important case since it appears
the first term in the right hand side of Eq.~61!, which gives
the main contribution. Disregarding the square root corr
tion, due to interference effects, one observes that in Eq.~59!
the second matrix element~with the inclusion ofAln) is the
transition amplitude for the single-nucleon knockout from
nucleus in the stateuC0& leaving the residual nucleus in th
stateun&. The attenuation of its strength, mathematically d
to the imaginary part ofV†, is related to the flux lost toward
the channels different fromn. In the inclusive response thi
attenuation must be compensated by a corresponding
due to the flux lost, towards the channeln, by the other final
states asymptotically originated by the channels differ
from n. In the description provided by the spectral repres
tation of Eq.~61!, the compensation is performed by the fir
matrix element in the right-hand side of Eq.~59!, where the
imaginary part ofV has the effect of increasing the streng
Similar considerations can be made, on purely mathema
grounds, for the integral of Eq.~61!, where the amplitudes
involved in Tn

mm have no evident physical meaning asE
ÞEf2«n . We want to stress here that in the Green’s fun
tion approach it is just the imaginary part ofV, which ac-
counts for the redistribution of the strength among differ
channels.

The matrix elements in Eq.~59! contain the mean field
V(E) and its Hermitian conjugateV†(E), which are nonlocal
operators with a possibly complicated matrix structure. N
ther microscopic nor empirical calculations ofV(E) are
available. In contrast, phenomenological optical potent
are available. They are obtained from fits to experimen
data, are local, and involve scalar and vector compon
only. The necessary replacement of the mean field by
empirical optical model potential is, however, a critical ste

In the nonrelativistic treatment of Refs.@15,21#, this re-
placement is justified on the basis of the approximated eq
tion ~holding for every stateuc&)

Im^cuA12V8~E!G~E!A12V8~E!uc&

.Im^cuA12VL8~E!GL~E!A12VL8~E!uc&,

~62!

whereVL(E) is the local phase-equivalent potential iden
fied with the phenomenological optical model potential a
GL(E) is the related Green’s function. In Ref.@21#, the proof
of Eq. ~62! is based on two reasons:~1! a model ofV(E)
commonly used in dispersion relation analyses; and~2! the
combined effect of the factorA12V8(E) and of the Perey
factor, which connects the eigenfunctions ofV(E) and
VL(E). We stress that it is just the factorA12V8(E), intro-
duced to account for interference effects, which allows
replacement ofV(E) by VL(E).

Although the Perey effect is not sufficiently known for th
Dirac equation, we have a reasonable confidence that
~62! holds also in the present relativistic context. Therefo
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we insert Eq.~62! into Eq. ~48!. Then, all the development
of this section can be repeated with the simple replacem
of V(E) by VL(E).

VI. RESULTS AND DISCUSSION

The cross sections and the response functions of the
clusive quasielastic electron scattering are calculated f
the single-particle expression of the coherent hadron ten
in Eq. ~61!. After the replacement of the mean fieldV(E) by
the empirical optical model potentialVL(E), the matrix ele-
ments of the nuclear current operator in Eq.~59! ~which
represent the main ingredients of the calculation! are of the
same kind as those giving the transition amplitudes of
electron induced nucleon knockout reaction in the relativis
distorted wave impulse approximation~RDWIA! @25#. Thus,
the same treatment can be used as that which was suc
fully applied to describe exclusive (e,e8p) and (g,p) data
@25,26#.

The final wave function is written in terms of its uppe
component following the direct Pauli reduction scheme, i

xE
(2)~E!5S C f1

1

M1E1S†~E!2V†~E!
s•pC f1

D , ~63!

where S(E) and V(E) are the scalar and vector energ
dependent components of the relativistic optical potential
a nucleon with energyE @27#. The upper componentC f1 is
related to a Schro¨dinger equivalent wave functionF f by the
Darwin factor, i.e.,

C f15ADE
†~E!F f , ~64!

DE~E!511
S~E!2V~E!

M1E . ~65!

F f is a two-component wave function which is the soluti
of a Schro¨dinger equation containing equivalent central a
spin-orbit potentials obtained from the scalar and vector
tentials@28,29#.

As no relativistic optical potentials are available for th
bound states, the wave functionwn is taken as the Dirac-
Hartree solution of a relativistic Lagrangian containing sca
and vector potentials@30,31#.

Concerning the nuclear current operator, no unambigu
approach exists for dealing with off-shell nucleons. In t
present calculations we use@32–34#

j cc2
m 5F1~Q2!gm1 i

k

2M
F2~Q2!smnqn , ~66!

wherek is the anomalous part of the magnetic moment,F1
andF2 are the Dirac and Pauli nucleon form factors, whi
are taken from Ref.@35#, andsmn5( i /2)@gm,gn#.

Current conservation is restored by replacing the long
dinal current@33# by
1-7
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JL5Jz5
v

uqu
J0 . ~67!

The calculations have been performed with the same bo
state wave functions and optical potentials as in Re
@25,26#, where the RDWIA was able to reproduce (e,e8p)
and (g,p) data.

The relativistic bound state wave functions have been
tained from the code of Ref.@30#, where relativistic Hartree-
Bogoliubov equations are solved in the context of a rela
istic mean field theory to reproduce single-particle proper
of several spherical and deformed nuclei@31#. The scattering
state is calculated by means of the energy-dependent
A-dependent~EDAD1! complex phenomenological optica
potential of Ref.@27#, which is fitted to proton elastic sca
tering data on several nuclei in an energy range up to 1
MeV.

In the calculations, the residual nucleus statesun& are re-
stricted to single-particle one-hole states in the target. A p
shell model is assumed for the nuclear structure, i.e., we
a unitary spectral strength for each single-particle state,
the sum runs over all the occupied states.

The results presented in the following contain the con
butions of both terms in Eq.~61!. The calculation of the
second term, which requires integration over all the eig
functions of the continuum spectrum of the optical potent
is a rather complex task. This term was neglected in
nonrelativistic investigation of Ref.@15#, where its contribu-
tion was estimated to be very small. In the present relativi
calculations the effect of this term can be significant, and
therefore included in the results.

A. The RL and RT response functions

The longitudinal and transverse response functions
12C at q5400 MeV/c are displayed in Fig. 1 and compare
with the Saclay data@36#. The low energy transfer values a
not given because the relativistic optical potentials are
available at low energies.

The agreement with the data is generally satisfactory
the longitudinal response. In contrast, the transverse resp
is underestimated. This is a systematic result of the calc
tions, and was also found in the nonrelativistic approach
Ref. @15#. It may be attributed to physical effects that are n
considered in the single-particle Green’s function approa
e.g., meson exchange currents.

The effect of the integral in Eq.~61! is also displayed. Its
contribution is important and essential to reproduce the
perimental longitudinal response.

As explained in Sec. III, the contribution arising fro
interference between different channels, see Eqs.~37! and
~62!, gives rise to the factor

A12VL8~E!5A12bS8~E!2V8~E!. ~68!

We see, however, that here it gives only a slight contributi
due to a compensation between the energy derivativesS8(E)
andV8(E).
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The contribution from all the integrated single-nucle
knockout channels is also drawn in Fig. 1. It is significan
smaller than the complete calculation. The reduction, wh
is larger at lower values ofv, gives an indication of the
relevance of inelastic channels.

For the calculations in Fig. 1, the Hartree-Bogoliub
equations for the single-particle bound states have b
solved using the set of the parameters of the relativistic m
field theory Larangian, which was called NLSH in Ref.@31#.
In Fig. 2 a comparison is shown between the results obtai
with this choice of parameters and the one called NL3@31#.
The shapes of the responses calculated with the diffe
bound states show small differences. Their integrals m
remain unchanged, according to the fact that the sum rule
to be preserved.

An example of the comparison between the results of
relativistic approach and those of the nonrelativistic one
Ref. @15# is presented in Fig. 3 for the longitudinal respon
function of 12C atq5400 MeV/c. In the nonrelativistic cal-
culations, the hole states and the optical potentials are ta
from Refs. @37,38#, respectively. Both complete relativisti
and nonrelativistic calculations are in satisfactory agreem
with the data. This result, however, is due to a different eff
of the various contributions in the two approaches. In
nonrelativistic case, the interference between different ch
nels produces a factor similar to that of Eq.~68!, i.e.,

A12VL8~E!5A12Vnr8 ~E!, ~69!

where Vnr(E) is the nonrelativistic optical potential. Thi
factor gives a substantial reduction that is necessary to re
duce the longitudinal response function. The integral in E
~61! gives only a small contribution, and is neglected. In t

FIG. 1. Longitudinal~upper panel! and transverse~lower panel!
response functions for the12C(e,e8) reaction atq5400 MeV/c.
Solid and dotted lines represent the NLSH results with and with
the inclusion of the factor in Eq.~68!, respectively. Dashed line
give the result without the integral in Eq.~61!. Dot-dashed lines are
the contribution of integrated single-nucleon knockout only. T
data are from Ref.@36#.
1-8
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INCLUSIVE ELECTRON SCATTERING IN A . . . PHYSICAL REVIEW C67, 054601 ~2003!
relativistic approach, the factor of Eq.~68! is generally neg-
ligible, while the integral in Eq.~61! is essential to reproduc
the experimental data.

The longitudinal and transverse response functions
12C at q5500 and 600 MeV/c are displayed in Figs. 4 an

FIG. 2. Longitudinal~upper panel! and transverse~lower panel!
response functions for the12C(e,e8) reaction atq5400 MeV/c.
Solid lines represent the NLSH results, and dashed lines the
results. Data as in Fig. 1.

FIG. 3. Longitudinal response functions for the12C(e,e8) reac-
tion at q5400 MeV/c. Solid and dotted lines represent the NLS
results with and without the inclusion of the factor in Eq.~68!,
respectively. Dashed line gives the result without the integral in
~61!. Dot-dashed and long-dashed lines are the nonrelativistic
sults of Ref.@15# with and without the inclusion of the factor in Eq
~69!, respectively. Data as in Fig. 1.
05460
r

5, respectively, and are compared with the Saclay data@36#.
The bound state wave functions have been obtained with
NLSH parametrization. As already found in Fig. 1 atq
5400 MeV/c, a good agreement with the data is obtained
both cases for the longitudinal response, while the transv
response is underestimated. Also in Figs. 4 and 5, onl
slight effect is given by the factor in Eq.~68! arising from
the interference between different channels. The role of
integral in Eq.~61! decreases on increasing the moment
transfer. Atq5500 MeV/c, its contribution is smaller than
at q5400 MeV/c, but still important to reproduce the ex
perimental longitudinal response, while atq5600 MeV/c

3

.
e-

FIG. 4. The same as in Fig. 1, but forq5500 MeV/c. The data
are from Ref.@36#.

FIG. 5. The same as in Fig. 1, but forq5600 MeV/c. The data
are from Ref.@36#.
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MEUCCI, CAPUZZI, GIUSTI, AND PACATI PHYSICAL REVIEW C67, 054601 ~2003!
the effect is negligible, and the two curves with and witho
the integral overlap. The effect of the inelastic channels,
dicated in the figures by the difference between the comp
results and the contribution from all the integrated sin
nucleon knockout channels, is always visible and even
able, but it decreases on increasing the momentum tran

The response functions for40Ca at q5450 MeV/c are
shown in Fig. 6 and compared with the Saclay@39# and the
MIT-Bates@3# data. The results obtained with the NLSH s
of parameters have been plotted, since the results with o
sets are almost equivalent. The calculated response func
are of the same order of magnitude as the MIT-Bates d
while for the Saclay data the longitudinal response is ov
estimated and the transverse response underestimated
factor in Eq.~68! produces an enhancement that is minim
but visible in the figure.

B. The inclusive cross section

Investigation of inclusive electron scattering in the regi
of large q is of great interest to provide information on th
nuclear wave functions and excitation and decay of nucl
resonances. Several experiments have been carried o
explore this region. The separation of the longitudinal a
transverse components of the nuclear response would be
interesting, but very difficult to perform because of the d
creasing of the longitudinal-transverse ratio with increas
q. Precise measurements over a kinematical range that w
allow longitudinal-transverse separation for several nu
are, however, planned in the future at JLab, where theE-01-
016 approved experiment@4# will make a precise measure
ment in the momentum transfer range 0.55<q<1.0 GeV/c
in order to extract the response functions.

FIG. 6. Longitudinal~upper panel! and transverse~lower panel!
response functions for the40Ca(e,e8) reaction atq5450 MeV/c.
The Saclay data~open circles! are from Ref.@39# and the MIT-Bates
ones~black circles! are from Ref.@3#. Line convention as in Fig. 1
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In this section, we focus our attention on experimen
cross sections withv&300 MeV, since our model does no
include meson exchange currents and isobar excitation
tributions.

The calculated inclusive12C(e,e8) cross section is dis-
played in Fig. 7 in comparison with the SLAC data@40# in a
kinematics with a beam energyEe52020 MeV and a scat-
tering angleqe.15o. The bound state wave function ha
been obtained with the NLSH set. A visible enhancemen
produced by the factor in Eq.~68!. The effect of the integral
in Eq. ~61! gives a significant reduction which underes
mates the data. As in the case of the transverse respon
Figs. 1–6, the discrepancy might be due to two-body mec
nisms which are neglected here.

In order to extend our analysis to different kinematics a
target nuclei, we consider in Fig. 8 the16O(e,e8) inclusive
cross section data taken at ADONE-Frascati@2# with beam
energy ranging from 700 to 1200 MeV and a scattering an
qe.32o. The NLSH wave functions have been used in t
calculations. The agreement with data is good in all the s
ations considered. The integral in Eq.~61! produces a reduc
tion that is now essential to reproduce the data at 700 M
which correspond to a momentum transferq&400 MeV/c.
Its contribution can be neglected in the other kinemati
whereq.600 MeV/c. The effect of the factor in Eq.~68! is
very small.

VII. SUMMARY AND CONCLUSIONS

A relativistic approach to inclusive electron scattering
the quasielastic region has been presented. This work ca
considered as an extension of the nonrelativistic many-b

FIG. 7. The cross section for the inclusive12C(e,e8) reaction at
qe515.02° andEe52020 MeV. The data are from SLAC@40#.
Line convention as in Fig. 1.
1-10
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INCLUSIVE ELECTRON SCATTERING IN A . . . PHYSICAL REVIEW C67, 054601 ~2003!
approach of Ref.@15#. The components of the hadron tens
are written in terms of Green’s functions of the optical p
tentials related to the various reaction channels. The pro
tion operator formalism is used to derive this result. An e
plicit calculation of the single-particle Green’s function c
be avoided by means of its spectral representation, base
a biorthogonal expansion in terms of the eigenfunctions
the non-Hermitian optical potentialV(E) and of its Hermit-
ian conjugate. The interference between different channe
taken into account by the factorA12V8(E), which also al-
lows the replacement of the mean fieldV(E) by the phenom-
enological optical potentialVL(E). After this replacement
the nuclear response functions are expressed in terms of
trix elements similar to the ones that appear in the exclus
one-nucleon knockout reactions, and the same RDWIA tr
ment @25# can be applied to the calculation of the inclusi
electron scattering.

The effects of final state interactions are thus descri
consistently in exclusive and inclusive processes. Both
real and imaginary parts of the optical potential must
included. In the exclusive reaction the imaginary part
counts for the flux lost towards other final states. In the
clusive reaction, where all the final states are included,
imaginary part accounts for the redistribution of the stren
among the different channels.

All the final states contributing to the inclusive reactio
are contained in the Green’s function, and not only tho
regarding one-nucleon emission. Our calculations for the
clusive electron scattering are different from the contribut
of integrated single-nucleon knockout only. The differen
between the two results is originated by the imaginary par
the optical potential.

FIG. 8. The cross section for the inclusive16O(e,e8) reaction at
qe532o and Ee5700, 1080, and 1200 MeV. The data are fro
ADONE-Frascati@2#. Line convention as in Fig. 1.
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The transition matrix elements are calculated using
bound state wave functions obtained in the framework o
relativistic mean field theory. The direct Pauli reductio
method is applied to the scattering wave functions. Num
cal results for the longitudinal and transverse response fu
tions of 12C and 40Ca have been presented in comparis
with data in a momentum transfer range between 400
600 MeV/c.

The role and relevance of the various effects of final st
interactions can be different in the relativistic and nonre
tivistic calculations. This is a consequence of the differe
features of the optical potentials in the two approaches.
final effect is, however, similar and produces qualitative
similar results in comparison with data. The relativis
framework has, however, the advantage that it can be m
reliably applied to a wider range of situations and kinem
ics.

Our relativistic results confirm that the effects of fin
state interactions are large and essential to reproduce
data. The term with the integral, entering the definition of t
hadron tensorWmm(v,q) in Eq. ~61!, gives a significant con-
tribution, which is important to improve the agreement w
data. This result is different from the one obtained in t
nonrelativistic analysis@15#, where this term gave only a
small contribution and was thus neglected in the calculatio
We stress that this term is due to the imaginary part of
optical potential, which thus produces different but importa
effects in the relativistic and nonrelativistic approaches. T
effects of the integral in Eq.~61!, as well as the difference
between the complete result and the contribution of in
grated single-nucleon knockout, which are both entirely d
to the imaginary part of the optical potential, tend to decre
with increasing momentum transfer.

The factorA12V8(E) is conceptually very important. I
accounts for interference effects and allows the replacem
of V(E) by VL(E). In the nonrelativistic analysis of Ref
@15#, this factor produced an overall reduction of the calc
lated strength, which significantly improved the agreem
with the experimental longitudinal response function. Only
small contribution is given by this factor in the present re
tivistic approach. It generally produces a small enhancem
of the calculated responses, which does not significa
change the comparison with data.

Final state interactions have a similar effect on the lon
tudinal and transverse components of the nuclear respo
In comparison with data, the longitudinal response is usu
well reproduced, while the transverse response is under
mated. This seems to indicate that more complicated effe
e.g., two-body meson exchange currents, have to be add
the present single-particle approach.

The inclusive cross section for12C and 16O has been
calculated for momentum transfer&600 MeV/c. The results
for 12C are in agreement with those obtained for the respo
functions. The lack of strength in the determination of t
transverse response results in an underestimation of the
A satisfactory agreement is obtained for the16O(e,e8)
results.
1-11
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