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The intrinsic dynamics of a system with open decay channels is described by a non-Hermitian effective
Hamiltonian which at the same time allows one to find the external dynamics—reaction cross sections. We
discuss ways of incorporating this approach into the shell model context. The approach is capable of describing
a multitude of phenomena in a unified way combining physics of structure and reactions. Self-consistency of
calculations for a chain of nuclides and threshold energy dependence of the continuum coupling are crucial for
the description of loosely bound states. Schematic and realistic examples of open many-body systems where
internal configuration mixing is generated by pairing are presented.
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I. INTRODUCTION bound nuclei. Another direction of development was related
to the shell model description of nuclear reactiphs—13.

The center of interest in nuclear physics has recently The key challenges associated with the continuum shell
moved toward nuclei far from the region of stability. Weakly model approach are similar to the case of the traditional shell
bound nuclei cannot be fully described in the limited frame-model and can be identified as construction of the effective
work of the shell model with a discrete energy spectruminteraction and practical solution. In the continuum shell
Even the properties of their bound states reflect the proximitynodel the effective Hamiltonian becomes non-Hermitian and
of the continuum. Loosely bound nucleons create an exenergy dependent. In this work we will not discuss the most
tended spatial structure that determines the results of pogomplicated task in this treatment, namely, the problem of
sible reactions so that nearly all excitation mechanisms breathe effective interaction. It is virtually unknown what should
up the nucleus. The standard approaches to many-bodye an effective interaction of quasiparticles in the restricted
theory, such as the Hartree-Fock-Bogoliubov mean field anghell model space which includes the continuum. For our
random phase approximation, necessarily include virtual anfimited purpose below we assume that the Hermitian part of
real excitations to the continuum. The Borromean cases ahe effective interaction of the traditional shell moda&#]
®He, °Be, and!Li, when the system can be considered tocan be simply readjusted to the new problem. The new non-
be made of three clusters with all two-body subsystems beHermitian and energy-dependent terms associated with the
ing unbound, are very sensitive to the continuum physicscoupling to continuum at this stage can be determined phe-
This is the area where the conventional division of nucleahomenologically assuming the energy dependence appropri-
physics into “structure” and “reactions” becomes inappro- ate to the relevant kinematics and adjusting the remaining
priate, and the two views of the process, from the insidegparameters to the experimental data. Our goal here is to ad-
(structure and properties of bound statasd from the out- dress the second part of the problem, namely, to develop
side (cross sections of reactionshould be recombined. methods for a consistent and reliable treatment of open

The broad success of the nuclear shell model with effecmany-body systems assuming a given effective Hamiltonian.
tive interactions urges one to look for ways to incorporate the Perhaps it is worth identifying the main new features that
rich experience accumulated in the shell model into a mor@émerge in the continuum shell model in contrast to its tradi-
general context that would properly include the continuumtional analog. The non-Hermiticity of the effective Hamil-
part. The description with the aid of an effective non-tonian was extensively studied in various branches of phys-
Hermitian Hamiltonian is well known going back to the clas- ics during past several decades. At certain strength of the
sical Weisskopf-Wigner damping thedry], works in atomic  continuum coupling, the system undergoes restructuring re-
physics by Ricd2] and Fand3], and projection formalism vealing new collective phenomeriésuper-radiance[15)),
by Feshbaclh4]. The consistent formulation of the approach associated with the coherence of manybody states in the pro-
was given in the book by Mahaux and Weideni®wu[5] in  cess of decay or radiatiofi6—18, with bright manifesta-
application to processes with one particle in the continuumtions in nuclear physics of lowW19,20 and intermediate
This gave rise to the shell model embedded in the continuurfe1,22 energies, atomic physid23,24, molecular physics
[6,7] recently revived8—10Q] for the description of loosely [25], quantum chemistrj26], and condensed matter physics

[27-29. The energy dependence of the manybody effective
Hamiltonian is a poorly explored area, although simple ana-
*Email address: volya@anl.gov lytical models have been discussed. In the present work we
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incorporate the realistic energy-dependent and nonwhere the decay amplitudes;(E) are the matrix elements
Hermitian Hamiltonian into the shell model context. of the original total Hermitian Hamiltonian between the
The continuum shell model is expected to naturally comtateq 1) and|c;E) of different subspaces; the normalization
bine the physics of structure and reactions. Therefore it igoefficients are included in the definition Af . The second
impossible to consider each nucleus separately, as it is doRgrm of Eq.(1), A1,(E), originates from the principal value
traditionally for spectroscopic studies. The true solution, asf the same expression and corresponds to the virtual off-
we show below, treats together all nuclear systems within thehell processes taking place via the continuum. Therefore it
selected valence space. The nuclear reactions are the linkingcludes contributions from all, open and closed, channels.
mechanisms for a chain of nuclides. Properties such as opgtpr the system invariant under time reversal, one can use a

channels,Q _values, threshold behavior, s_ymmetrles, ?‘”dbasis, where the matrix elemerits,, Ao, andAS can be
spectroscopic factors for all allowed reactions and variousaken as real.

intrinsic eigenstates must enter the overall scheme so that the The same effective Hamiltoniafl) determines the scat-

resulting solution creates a fully consistent picture unitingering amplitude and the reaction cross sections. The relation
nuclear structure with reaction mechanisms. _ between the inside and outside views was studied in Refs.
Having set these goals, we conduct the discussion as fo[5,16,17’19’20,3]2 The scattering matrix in the channel

lows. In Sec. Il we briefly recall the underlying theory that space describing the—a process is given by
leads to the energy-dependent and non-Hermitian effective

Hamiltonian, with an emphasis on the points particularly rel- SAP=(g?) V2 520 — Tab)(sP) 12 3
evant to this work. In Sec. IV we present a two-state model

that elucidates the generic features of the problem including ab ax b

coupling of states to common decay channels, near-threshold ™= % AL E-H Az (4)
behavior, dynamics of resonances in the complex plane, and 12

reaction-structure relations. Sections V and VI are devoted t@jere s2=exp(45;,) stands for the smooth scattering phase

realistic systems, including the chain of oxygen isotopes¢oming from remote resonances not accounted for explicitly.
where, in general, a large number of states is involved anghe propagator E—7) ! in the scattering amplitud@a®
the self-consistency requirements appear as inalienable igpes not depend on a specific reaction and contains the full
gredients of the approach. The summary and conclusions aggective Hamiltonian(1) with the same amplitudeA$ as

presented in Sec. VII. those determining the entrance and exit channels in(4q.
This guarantees the unitarity of tlsamatrix since the virtual
Il. EFFECTIVE HAMILTONIAN processes of evolution of the open system to and from the

] o continuum channels are included in all orders in the propa-
We will not repeat here the derivation of the non- gator,

Hermitian effective Hamiltonian that can be achieved by Tne diagonalization of the non-Hermitian Hamiltonidi
separating the Hilbert space into the intrinsic part and thgyoduces the complex eigenvalues

continua and eliminating the continuum part with the aid of

projection operators. This procedure was reviewed by many ~ [

authors; see, for example, Refd,31]. We label intrinsic €a(BE)=Ea(BE) = 5Ta(E), )
states by 1,2.., and the continuum channels by

a,b,c_, e The matrlx_elements of the effective intrinsic \yhere the reaIEa) and imaginary T,) parts are functions
Hamiltonian can be written as of running real energyE. Without explicit energy depen-
dence of the effective Hamiltonian, these eigenvalues would
[ provide the unstable states with a pure exponential decay law
Hiz=Hiot Ago— EWlZ’ (@) exp(-T',t). The presence of energy dependence violates the
exponential decay, and the actual quasistationary states are

whereH is an internal, for example, a standard shell-modeffound at real energies,, determined by the self-consistency

part, and the last two ternfahich in general are functions of condition
running total energ¥) are generated by the exclusion of the
continuum.

The imaginary parW(E) originates from the_real pro- Tpe line shape is not of Breit-Wigner type, but we still call
cesses of decay to channe_ls that are open at a given energyrt(E ) the width of the resonance. In what follows, we
IS repr_esented by the_ re5|due§ of the on-shell terms Correo]ftnit tahe tilde sign fork,, if it does not lead to a confusion
sponding to thes functions coming from the energy conser- " f

vation and causality requirement imposed on the energy d% In the region of interest for loosely bound systems, the
nominators, EE()=E+i0. The quantity W has a ain energy dependence comes from the proximity of

factorized form thresholds as was stressed in R¢15,33. The channet is
’ open only if the total energl is above threshold enerds/®
for this channel. The decay amplitudes associated with the
W= S ASAS (22 channelc contain therefore the step fact6r(E— E©) and
ciopen can be written as

E.(E.)=E,. (6)
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Af=aj(E)O(E~E), @) HO= e,a’a (10

wherea{(E) is a smooth function of energy that falls off to

zero when energy decreases to the threshold value. Forgnd the effective Hermitian interaction As a renormaliza-
single-particle decay channel, it can be parametrfA§83 tjon of the standard shell-model interaction, the Hermitian
as proportional to the square root of the penetrability in thispatrix elements\,,, Eq. (8), generated by the virtual cou-

channel. _ ) ) pling through continuum, can be incorporated into the opera-
The re.a.l parﬂ Of.the effective pOtentIal can be written as tor V. The approximation of energy independence of the op-
the principal value integral, erator A and, as a result, energy independenceVofalso

used in previous workgl7,33) can be easily removed.

P ) , For an open system defined by Hamiltoni@ there are
AE)= ™= jE(c) ﬁai(E )3z (B (8 o types of states that can be selected as a starting point for
the diagonalization. In the spirit of the conventional shell
gpodel, it is convenient to start from the basis states, the
eigenstates oH?, that are Slater determinants of time
I§cheme or their linear combinations projected onto correct
alues of total spin] and isospinT. The coupling to con-
inuum makes the choice of doorway states, the eigenstates
W, another good possibility. As analyzed in detail in Ref.

!

Under the same assumption of a nonsingular character
aj, matrix elementg8) also have a smooth energy depen-
dence with no singularities near threshold and usually ca
be approximated by energy-independent quantities as i
Refs.[17,33. ¢

One formal conclusion concerning the existence of boun X ,
and unbound states can be reached just from the way t)%ﬂ’ the _d(_)orv_vay states (;orrespc_)nd to simplest configura-
theory is constructed. If the conventional shell model with aons participating dweptl_y In reactions. 'Because the nhumber
purely discrete spectrugmo coupling to the continuujpre- of channels may be limited, the associated reactions gener-

dicts a state with energy below all decay thresholds, this sta ”Y canr;ott zxtpl(;rr]e tfhetful_l cglmple?[(lty Off [[r;]ternal ;‘itruct(l;re.
will remain bound in the full calculation with the decay am- €ing related lo the factorizablé nature of tne operatem

plitudes included. Indeed, all widths depend on the total engegeneracy of its spectrum, this leaves some freedom in the

ergy and vanish below thresholds so that the old solution i§e|§ﬁ2°n Or]: baS|s Statﬁ'h wo choi diff t th
still valid. However, this statement is formal since it assumes ough In general the two choices are ditterent, there

that the reaction thresholds are known beforehand. In factz1re (?gse? W?ﬁre dthe operattb;r% anqt\rl]v com?utg,tgnq one
they have to be determined consistently for the chain of nu: an identify the doorway states with specific intrinsic con-

clides relevant to the reactions under consideration. Ilr?urgtlom.l The tmcl’Stdcom”TO[‘ and t;ransparFent exgmﬁ)lcte gf
Certainly, there are limitations in the applicability of the IS IS single-parlicie decay Into continuum. or an isclate

method in the form outlined in the present paper. As energyNdle-particle leve|r) embedded in the continuum, the un-
increases, a rapid growth of a number of interfering operP€rturbed real energy Beoet €, . If the only open channel,
channels makes this approach impractical. We also delibef= ?: iS associated with the emission of the particlethe
ately limit ourselves here by taking into account only the!Maginary partw leads to the width

energy dependence associated with threshold and resonance

phenomena although the smooth “potential” scattering part 7V=|AZ|2 (11
could be included without significant difficulties via the en-

trt?nce and exit scattering phases hidden in the fasfoand  for any configuration that consists of the particle on the level
s> of Eq. (3). The full energy dependence was discussed, in,) and an arbitrary state of the stable céne interaction
particular, in Refs[34,35. The main physical assumption petween them at this stagd@hreshold energy is determined
made here is that the states under consideration are close g the core configuration. This extends directly to the case of
threshold and, at relatively low energy, only few open chanseyeral different single-particle levels embedded in the con-
nels are really essential. For the purpose of this papekiyum.

namely, for the development of shell-model methods in- f there are several single-particle configurations with the
tended for the description of low-lying states near the bordeggme exact guantum numbers, the situation is more compli-
of stability, the presumed conditions are typically fulfilled to cated, and in generdtl® and W cannot be simultaneously

within a sufficient accuracy. diagonalized. This implies that, apart from the particle emis-
sion from a given single-particle state, we now also have the
. SHELL-MODEL APPROXIMATION interaction of close intrinsic states through continuum given

by the off-diagonal elements af/;,. Similarly, interaction
via the continuum is almost certainly present in cases where
. two-particle emission is possible from different initial con-
H=HO4V— I—W, (9) figurations._ In the case of pairing, fpr example,_a zero-spin
2 Cooper pair can be emitted from a fg¢uevels leading to the
same final state, and therefore into the same decay channel.
where we assume that the intrinsic Hermitian paft+V Here the coupling through the continuum may be very im-
consists of independent particle energies, portant; this situation is discussed in Sec. IV.

We view Hamiltonian(1) as a sum of three terms,
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The presence of continuum coupliig distorts the inter- non-Hermitian operatoyV is not of a single-particle nature,
nal states. Depending on the strengthVidf one observes and the model is more complicated than that of two Gamow
different regimes. In the weak coupling regim&, can be resonances. The novel aspects here include interference be-
treated perturbatively. Within the single-particle decay pic-tween internal and external interactions, violation of width
ture, this leads to the shell model, where spectroscopic facum rules, and possible appearance of bound state in the
tors are usually used to determine widths of the resonancegontinuum. Here we also show the calculation of the reaction
Once the decay widths of manybody states start to overlaRyoss section, a necessary step to the unified description of
the standard shell model fails and one enters the domain of & cture and reactions. The problem of two-body decay, es-
crossover behavidrl8], where the alignment of states along pecially relevant for Borromean systems, was recently ap-
doorway configurations competes with the intrinsic configu-proached with the use of different shell-model formalisms in
ration mixing. At strong continuum coupling the teril  Refs [9,10]. Two-proton radioactivity[38] is another ex-
dominates, and the eigenstates reorient along doorway CoBmple requiring a similar consideration. Many features of

figurations. This limit can be juxtaposed to the collectiveyyg-level unstable systems with other physical applications
effect of super-radiancgl5] where the internal states are \ere discussed in Ref39,40.

coherently coupled through the common decay channel
[16,36. The limits of this paper do not allow us to fully
illustrate the richness and nontrivial character of the compli-
cated interplay of internal and external dynamics, and we According to Sec. Il, the effective non-Hermitian Hamil-
refer the reader to Ref§16,36,7,18,3Yfor subjects such as tonian in the 2<2 space is

the phase transition to super-radiance, role of symmetries, . ]

redistribution of the widths, segregation of direct and com- ! _ I—A A

pound nucleus processes, interference between the intrinsic R 12

A. General features of the model

2

residual interaction and the interaction mediated by the ex- H= i i . (12
cursion into open decay char_mels, dynamics (_)f the poles i_n v— EAlA2 €2~ 572

the complex energy plane with unusual crossings and anti-

crossings.

Finally, the energy dependence of the amplitudds HereVi,=v is the real mixing matrix elementy; ,=A? ,,
makes the problem highly nonlinear since the positions oftnd the amplituded, , are also real. One should be careful
the quasistationary eigenstates %fin the complex plane With the phases. For a pure internal interaction, the sign of
should be determined consistently with special care taken the mixing matrix elemen¥, is irrelevant, it always can be
avoid false solutions that can appear due to the possiblehanged by the redefinition of the phase of one of the states,
nonanalytic energy dependence at thresholds. Another nelv Or 2. But, with the coupling to continuum present, this
feature is that threshold energies are not knaavpriori. ~ change must be accompanied by the corresponding phase
They are to be calculated self-consistently comparing totafhange in the decay amplitude; therefore we cannot simply
energies of the parent and daughter nuclei found in the saneut A; ,= \/72
approximation. The treatment of these consistency issues is A formal diagonalization of the effective Hamiltonian
presented in Secs. V and VI. gives the complex energies of the quasistationary states,

IV. DYNAMICS OF TWO STATES COUPLED

1 i
TO A COMMON DECAY CHANNEL 5i:§ 61"'62_5(')’1"")’2)

Here we consider a model that shows how the attractive 12
pairing-type interaction generates the binding of originally — (1t ¥2) =i (€e1— €)(y1— 7o) + AvAA,]
unstable states competing with the coupling through con- 4
tinuum. We consider two single-particle levels in the con- (13
tinuum; their unperturbed energies are positive if the con-
tinuum threshold is put at zero energf special case with For the case of stable state&,,—0, we come to the
only one initial nonzero decay amplitude was discussed iRtandard two-level repulsion, '

Ref.[33].) This is a prototype of the three-body Borromean

model for *Li with the inert core of °Li and particle- 1

unstable®Li. The two active orbitals,,, andp,, are those E.=E.=z[e+t e \(e1—€)°+4v%]. (14
for a pair of halo neutronss; =2¢(p),e,=2€¢(s). They are 2

quasistationary, and their decay amplitudgs, characterize .
the only open channel with the core nucleus in the grounJhe lower level reaches zero energy under the condition
state and the neutron pair in the std&=0" in the con-

tinuum. At this point the exact form of the energy depen- vi=e€r6p. (15
dence is not fixed, except for the fact that when the total

energy approaches zero, the decay becomes forbidden $othe case of degenerate resonancgs=(e,=e€) with dif-
that, as in Eq(7), the amplitude#\, , contain the step func- ferent widthsy; and y,, in the absence of intrinsic mixing
tion @ (E). Because of the Cooper pair in the continuum, the(v =0) we obtain

1
iz[(el—62)2+4vz
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The coupled equation®@1a and (21b) determineE andT .

[ i
Er=em g(ntrdE (ntyl) For an arbitrary energy dependence of the amplitudes
A (E) that are to be taken in these equation& atE, this
E=¢, I'=0 is still an implicit solution; even the number of roots can
(16) change.

For a sufficiently strong interaction, the repulsion of
real energies can bring the lower eigenvakie to zero(a
threshold valug Then both amplitude#\; , disappear to-
gether with the eigenwidtlh'_ , Eq. (21b). This means that
the lowest quasistationary state becomes bound under the
same condition(15). If the mixing increases further, the
binding energy of the lower state is going down,

i
E=e-3I, F=y1+7,.

In this case the Hamiltonian consists of the unit magrixnd

the matrix W of a factorized type(rank r=1) so that the

correct linear combinations are the eigenvectorg/pbne of

them, the analog of the Dicke coherent stgt6,16), accu-

mulates the total width, whereas the second one is stable.
The crossing and anticrossing of unstable levels were con- v2— €€,

sidered in Refs[23,31,40—42 and experimentally studied E_~-— e (22

with microwave cavities43]. In contrast to the avoided 1T €2

crossing(14) of stable levels, the coincidence of two com- aq \vas mentioned in Ref33] for a similar model with only

plex eigenvalues is possible, see Rgf4] and references o honvanishing, this is a prototype of the dynamics lead-
therein. In our case it requires that two conditions should b‘?ng to the binding of nuclei ad'Li, where the residual in-

fulfilled, teraction among the valence neutrons is of pairing type. The
(€1 €)= 717 17 higher level, in the point of bifurcatiofil5), has the energy

and E+=%[€1+62+ V(e +€)*+T . (T —yi—y2)],
(y1—72)*=160% (18 (23

The coinciding complex energies. , Eq. (13), evenly di- whereyy, are to be taken at energy=F .

. LS ; . The violation of Wigner sum rulegl3] associated with
vide the trace of the Hamiltonian. There is a difference be.'he widths of resonances is a critical feature of the physics

P(I)vr?igrr: %Lijsr(j;sszg?: g‘sﬁfﬁewgg?giﬁgZﬁggéiyoéf:;[{i;ﬁm' jear driplines. If the effective Hamiltonian were energy in-
T 9 dependent, both the real and imaginary parts of its trace

would be separately preserved by the complex orthogonal
transformation to the eigenvectors. This means that we
would always have

(e1—€2)(y1—v2) +4vA1A,=0 (19

leads to crossing of either real energies,=E_ , or widths,
I' ,=T_, for the negative or positive sign of T+ T =t'W=y,+ v, (24)

1
X=(e-e)*+40?=(yty)? (0 2

E.+E_=tre=¢;+e,. (25
respectively. In the energy-dependent case the same condi- _ _ .
tion remains true for the crossing of energies, however, nofit the bifurcation pointE_=T"_=0, we would have
for the crossing of the widths because generdfl{E )
+H(E_). ’ IFi=yit7y,, Ei=ete, (26)
The secular equgtlon for thg e|genvalues car] be .also Wr't\ivhile it follows from Eqgs.(15) and (21b) that
ten in a form explicitly separating the re&@, and imaginary,

T, parts of complex rootgshere we again restore the tilde [Al(E+)\/e—1+A2(E+)\/e—2]2
sign in order to distinguish the roots from the running energy I (Ey)= et e (27)
valueE). The real part of this equation gives
_ and
=y = r . )
E°—E(e;t fz)‘z(r_ Y1~ Y2) t €162 v°=0, ', (EL)—y1(Ey)—vo(EL)
21
(213 __mME e AP
while from the imaginary part we obtain e1te; ’

in contradiction to the first part of E¢26). The trace viola-
= (21  tion occurs because the imaginary parts have their own en-
2E—€1— € ergy behavior with compulsory zero-energy thresholds.

T E(y1+ 72) — v1i62— v261+ 20A1A,
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When the levels are repelled by the mixing interaction, their 2804
widths are changed by the dynamics outside the22matrix. 240
But the trace is preserved and EQg6) is fulfilled if 200
AL(E) € S 160-
——=1/= 29 2 ]
AAE) Ve < 120
. . . . LIJ 80-
so that in the entire energy range of interest the two partial 0]
widths grow proportionally, an interesting exceptional case. o]
B. Solutions with energy-dependent widths 401 0 50 100 150 200
To illustrate the dynamics of two states coupled to a com-
mon continuum with energy-dependent widths, we show a
numerical example. For all figures below we take ~
=100 keV ande; =200 keV for the particle pair ip ands O

states, respectively. For these parameters the ground statei’
reaches zero energy, and thus becomes boundp at
~141 keV by virtue of Eq(15).

The picture with energy-independent widths is not consis-
tent with the definition of thresholds. As seen from Figa)1
the residual interaction pushes the levels apart, and the lower
state crosses zero energy. However, the width of this
state, dashed lines in Figgbl and Xc), is still positive. For
the calculations shown by solid lines in Figgbjland Xc),

similar to Ref.[33], we assume in the low energy region the 3
3R =
square root energy dependence forgheave, and~E*'“ for =
the p wave,
v2(E)=a\E, yi(E)=BE™ (30)
This makes the evolution of complex energies as a function 0 50 100 150 200

of the residual interaction strengthconsistent with the ex- keV
istence of thresholds: at’= ¢, ¢, the lower state becomes v (keV)
stationary,E_=I"_=0. The near-threshold behavior of the G 1. panelgb) and(c) show the behavior of the widifi_ of
width is governed by the-wave component with the infinite 5 jower resonance as a function wffor energy-dependertsolid
slope,I'~ VE—E®©. However, ase becomes smaller, Fig. lines and energy-independefdashed lingsdecay amplitudes. Se-
1(c), the singularity is getting confined to a narrow vicinity lected parameters am;=8.1 (keV)*? and A,=12.8 (keV)"? in
of threshold, to the limit that at an observable scale the bethe energy-independent case, and=15 (keV)*? and B
havior is dominated by thp wave. =0.05 (keV) ¥2 in the energy-dependent cagpanel (b)]; A,
Besides the trivial situation, when the width of a particu-=7.1 (keV)*? and A,=3.1 (keV)'? dashed line, andea
lar state vanishes due to energy conservation, blocking of the 1 (keV)"?and3=0.05 (keV) “2[panel(c)]. Parameters are se-
decay via dynamical mixing at a single point Correspondindected in such a way that at=0 the two solid and dashed lines
to a certain strengtly is also possible. This effect of the agree. The relative phases are such that0 and A;A,>0. In
bound state in the continuum is seen in Figo)lwhere a Panel(a) energies of the two states are shown, solid lines, for the
conspiracy of the parameters leads to the vanishing width ~case relevant to panéb) with the energy-dependent amplitudes,
of the lower state at energg_ still in the continuum, Fig. E9- (30), and compared to the energies of a nondecaying system,
1(a). Equations(218 and (21b) with T_=0 show that this dashed lines. The QOtted line in all three plots corresponds to the
ha . - zero value of the width or energy.
ppens at the interaction strength

€1~ € 31 nalization of different matrices. The Hamiltonian matrices
Yi— Vs (3D) differ in their imaginary parW(E). The “interaction” be-
tween the levels occurs via the common Hermitian it
Here A, , and 71,2=Ai2 are to be taken at the ener@y. +V. Thus, for a general system it can be expected that
found from Eq.(213. For the model in Fig. (b), this hap- bound states and weakly unbound resonances are still
pens atv~63 keV. strongly correlated although new features related to small
The energy dependence of the amplitudes complicates thmaginary components appear, and the usual level repulsion
trajectories of the eigenvalues in the complex plane. Unlikeon the real energy axis is present only up to a spacing of the
in a stable system or a system with energy-independent parder of the width of the resonanf#6]. For states deeply in
rameters, here the solutions f6r and£_ involve a diago- the continuum, however, the correlation must rely on the

U= A1A2
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structure ofW(E) that represents features and symmetries of 500(3)
the continuum. 1 - - --v=200 keV
400 - v=180 keV
C. Cross sections near threshold NE 300+
E )
Here we consider the scattering cross section for the case ‘b’ 200+
of two intrinsic states coupled to one open channel. Although 100

two neutron scattering is not a feasible reaction from an
exprimental point of view, the result of this study is relevant OF—F———T———T1——7—
for the excitation processes of a Borromean system. The 0 80 100 150 200

elastic cross section in trewave for a relative momentum E (keV)
kee VE i 10§(0)
10°4
T 9 43
o(E)==|S(E)-1[%, (32) < 10
k g 10°4
= E
_ o _ _ 5 104
where the scattering matrix is defined by E@b.and(5) in 10"
terms of the effective HamiltoniaH. In our casdEq. (12)], 10°4
neglecting the potential scatterirsy the propagator can be 10+
easily found, and we obtain 0 100 200 300 400 500
E (keV)
E(y,+ — y1€2— V61— 20A1A
T(E)= (114 72) = n1€2— v260 1 (33 FIG. 2. The near-threshold scattering cross section is shown for

(E-&)(E—-¢E) , loosely bound systems with =180 and 200 keV in solid and

. . . dashed lines, respectively. Due to similarity between the curves, the
W't_h the polesc.. = Et__('/z)ri given by E_q.(13), or by a dashed curve is not shown in parib). Other selected parameters
pair of coupled equation&@1). One can notice that the rela- 50 =15 (keV)2 and B=0.05 (keV) 2. Phases aré\;A,>0

tive sign of the matrix elements for the direct internal inter-gnga; A,<0 for panels(a and (b), respectively.

action between the mixed states, and for their continuum

mediated interactiom;,A,, may considerably change the re- When the interaction is overcriticah,>> €;¢,, and at low

sulting cross section. energiesE<|E_| [Eq. (22)], we obtain
In the special case of a pair of degenerate intrinsic levels
with no direct interaction, Eq(16), the general resul33) ael\/E
reduces to the single Breit-Wigner resonance on a Dicke co- T(E)~ E(E-E_) (37)

herent state accumulating the total width,
Therefore the cross sectiof82) has a constant value at
Y1t v2 (34 threshold and behaves at low energies Bs-[E_|) 2, re-
E—e+(i/12)(y1+7y2) vealing “attraction” to the subthreshold regig7,45. The
cross sections shown in Fig(& for two overcritical values
The second root]'=0, of Eqg. (16) is decoupled from the of the interaction strength display a threshold behavior char-
continuum and does not influence the scattering process. Watteristic for loosely bound systems that can be mistaken for
have to stress again that the “widthg/; , in general depend resonances. The caggA,>0 produces only a very broad

T(BE)=

on running energy. peak[not shown on Fig. @] corresponding to the upper

At the bifurcation point(15), the scattering amplitude be- quasistationary stateé, . Figure Zb) shows that in the case
comes of A1A,<0 the interference of the internal and external in-
teractions results in a narrow resonance with a very high

E(y1+ 7o) — (Aper+ Asver)? cross section & =E, =340 keV, along with the maximum
T(E)= E(E-&,) , (39 at zero energyof course, all numerical values characterize

only the model parameters

where the higher rodf ., is defined by Eqs(23) and(27). At
low energy E—0), the behavior of the scattering cross sec- V. TWO-LEVEL MODEL WITH PAIRING INTERACTION
tion, as well as photonuclear processes, is determined by the
actual energy dependence of decay amplitudes.

At the critical value ofv, Eq.(15), and in the low energy
region where approximatiof80) can be valid, the scattering
amplitude(33) is singular,~E~*?,

Here we make the next step to realistic manybody physics
working with a system of two orbitals that can accommodate
0,=0Q,=10 particles each; both levels can decay to a final
state at fixed energlf;=0. The decay widthg, andvy, are
different but have the same; »(E) = alyz\/E, energy depen-
dence near threshold. It should be noted that synchronous
. (36) decay withy,;= vy, would not affect the internal dynamics
\/E{elJr e;—(i12)aley/(e1+ 62)]\/E} sinceW in that case would be proportional to a unit matrix.

o€

T(E)~
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12] ,=0.1 =1
1 a1=0.1 (12=2 L
(1)2 a=020,=2]

0.0 0.1 0.2 0.3 0.4 0.5
G

FIG. 3. The level scheme a&f=0 states in the two-level, eight-
particle system as a function of pairing strength. Solid lines corre-
spond to the system embedded in the continuum with the fixed ’ ! ! ;
width valuesa;=0.1 anda,=5. These curves are compared with ’ G '

a nondecaying situationr;=a,=0 of the usual shell model,

dashed lines. The dotted line &=0 indicates the threshold FIG. 4. The upper panel shows the shift in ground state energy

location. between decaying and nondecayifigsual shell-modglsystems,
AE=E(V¥)—-E(Vy,, as a function of pairing strength under vari-

The single-particle energies are takeneas=1 ande,=3. ous assumptions for the decay rates. In the lower panel the width of

Intrinsic dynamics in this model are generated by the conthe ground state is plotted.

stant pairingV{'_,=G. In Fig. 3 the spectrum of states with sponding single-particle energies 3.164, —3.948, and

seniority s=0 in a system of eight particles is shown as a . . o
function of the pairing strength. The attractive pairing inter- =647 MeV. The residual interaction in the most general form

action pushes down low-lying levels, forcing some of them'S defined with a set of 63 reduced two-body matrix elements

to become bound. The ground state becomes bound pair channels with angular momentuimand isospint,
G~0.2 ' j373,j4T4)Lt|V|(j1Tl,j27'2)|_t>, Wh|Ch Scale W|th nUClear

Comparison of spectra with and without continuum cou-Mass asA/18) . .
pling (solid and dashed lines, respectivelshows generic Although the full shell-model treatment is possible for
features. The bound states are not affected by the continuuﬁ’tjch light syStemS'. here we truncate the shell-model space to
coupling. The low-lying levels, as compared to highly ex-'clude only senioritis=0 ands=1 states for even and odd
cited states, are less influenced by the presence of corﬁ' respectively. This method, “exact pairing monopple,
tinuum. In contrast to the usual perturbation theory, we sed& known[30] to work well for S_hell-model systems involv-
that the ground state and even the first excited state ondgY only one type of ”“0'90”9’? the case of the oxygen
embedded in the continuum become attracted to the bulk dP°°P® chain only neutrons are involye@ihe two important

other states that increases their energy. Such a situation ugﬂgreme:nts of nuclear f_orces are treated exactly by this
ally leads to an increase of the dec@yvalue that in turn method. thg monopole !ntgractlon that governs the mean
further increases the decay width field evolution and the binding energy behavior throughout

The following figure, Fig. 4a), demonstrates the shiftE the mass region, and pairing that is responsible for the emer-

of the ground state energy as a result of decay for variougence of the pair condensate, renormalization of single-

choices of continuum coupling given by parametessand particle properties, and col!ective pair vibrations. In our ex-
a,. Clearly, AE=0 if there is no configuration mixing at ploratory study, the truncation of the large space to the most

0. or once e sate becomes bound. The compiex b7 0" Sale s a eesonable sppoach snce cerany e
havior of the decay width for the ground state is shown in. y P y

; ) " . .. intense.
er?.inﬁ(igﬁea;lt:;e?lt\l/%ﬂ strength the width goes to zero with In the resulting shell-model description, the set of the

original 30 two-body matrix elements in the isospis 1
channel is reduced to 12 most important linear combinations,
V1. REALISTIC PAIRING MODEL six two-body matrix elements for pair scattering in the

As a demonstration of a realistic self-consistent shell-=0 channel describing pairing, and the other six correspond-
model calculation, we consider oxygen isotopes in the mas&d to the monopole force in the particle-hole channel,
region A=16-28. In this study we use a universal -
sd-shell-model description with the semiempirical effective V= > (2L+ L((j,i"HLLVI(j,j" L1y, (39
interaction (USD) [46]. The model space includes three L#0
single-particle orbitals 4;,, 0ds;,, and s, with corre-  wherej andj’ refer to one of the three single-particle levels.
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TABLE |. States of senioritys=0 ands=1 in oxygen isotopes. Energies and neutron decay widths are
shown. Results are compared to the full shell-model calculations and to the known experimental data. Ground
state energies relative to tHéO core are given in bold. The rest of the energies are excitation energies in a
given nucleus.

E r Esm Eexpt l_‘expt
A J (MeV) (keV) (MeV) (MeV) (keV)
16 0 0.00 0 0.00 0.00 0
17 5/2 —-3.95 0 —-3.95 —-4.14 0
17 1/2 0.78 0 0.78 0.87 0
17 3/2 5.59 96 5.59 5.08 96
18 0 —12.17 0 —12.17 —12.19 0
19 5/2 —15.75 0 —16.06 —-16.14 0
19 1/2 1.33 0 1.47 1.47 0
19 3/2 5.22 101 5.53 6.12 110
20 0 —-23.41 0 —23.83 —23.75 0
21 5/2 —26.67 0 —27.47 —27.55 0
21 1/2 1.38 0 1.33
21 3/2 4.60 63 4.83
22 0 —33.94 0 —34.62 —34.40 0
23 1/2 —35.78 0 —37.07 —37.15 0
23 5/2 2.12 0 2.72
23 3/2 2.57 13 3.28
24 0 —40.54 0 —41.05 —40.85 0
25 3/2 —39.82 14 —40.28
25 1/2 2.37 0 2.36
25 5/2 4.98 0 3.96
26 0 —42.04 0 —42.04
27 3/2 —40.29 339 —40.29
27 1/2 3.42 59 3.42
27 5/2 6.45 223 6.45
28 0 —41.26 121 -41.26

We assume that the orbitatig), belongs to the continuum particle orbitals can be clearly identified as the'Stground
and therefore its energy has an imaginary part. In this modeitate, and 1/2 and 3/2" excited states ift’O. Their energies
we account for two possible decay channels for each initiatelative to 0 exactly correspond to the single-particle
state|®), a one-body channeté& 1) and a two-body chan- energies in the USD model. Experimental evidence indi-
nel (c=2). The one-body decay changes the seniority of thecates that the 3/2 state decays via neutron emission
0ds, orbital by one, from 1 to 0 in the decay of an odd- with the width I'(*’0)=96 keV. This information allows
nucleus and from 0 to 1 for an evénnucleus. The two- us to determine our parametets,=I"(*'0)/(ezy)%?
body decay removes two paired particles and thus does net0.028 (MeV) 2 Other two states are particle bound,
change the seniority. The two channels lead to the lowesy,,,= y5,=0. Using the complex single-particle energies,
energy state of allowed seniority in the daughter nucleus, i.ethe effective non-Hermitian Hamiltonian for the manybody
the possibility of transition to excited pair-vibrational statessystem is constructed in a regular way.
is ignored. This results in We treat the chain of isotopes one by one starting from
180. Therefore for eactA the properties of the possible
daughter system&8—1 andA—2 are known. Since the ef-
fective Hamiltonian depends on energy and threshold ener-
gies have to be determined self-consistently, we solve this
—iag(Eg—E®)%2, (39 extremely nonlinear problem iteratively. We start from the
shell-model energie&,, corresponding to a nondecaying
where we assumed that one- and two-body decay parametesgstem with the Hamiltoniahl. Then the diagonalization of
Y9 are related ag/§3=y{3/2=ys;,, and the particles are #(E,) allows us to determine the next approximation to the
emltted in thed wave with€=2. energies. The cycle is repeated until convergence, which is
With a simplifying assumption of the single-particle struc- usually achieved in less than ten iterations.
ture of W, one- and two-body decays can be incorporated The results of the calculations and comparison with full
into the complex single-particle energies. The three singleshell-model results with no seniority truncation and with

i
€3 P) = €3/~ > azy(Eq—EW)3?
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known data for the chain of oxygen isotopes are shown inTherefore the formalism that would allow for a unified de-
Table I. Some words of caution are appropriate for the interscription of inter-related structure and reaction aspects is es-
pretation of this table. The seniority truncation generally bepecially needed, and extensive search in this direction made
comes unreliable for the states with excitation energy aboveuring recent years clearly reveals this need.
twice the pairing gap, i.e;-2—4 MeV. This can make the Within the discussion presented in this work, we demon-
identification of the states of the pairing model in the full strated some of the features appearing in the loosely bound
shell-model diagonalization difficult. The same problem cannuclear systems that undergo one- and two-body decays, and
emerge in the comparison of theory with experiment. On theve outlined the path for solving the corresponding many-
other hand, the standard shell model does not include thieody problems. The residual interaction we used was limited
continuum coupling, and for the stable states our continuuniy the pairing and monopole part. The pairing approximation
shell model automatically reduces to the standard version. As known to work well within the traditional shell modgg0]
seen from Table |, for the bound states our seniority refor nuclei with one kind of valence nucleons. The restriction
stricted calculation is in a good agreement with exact diagoto pairing leads to significant simplifications, both for struc-
nalization. The fact that the pairing-based variational calcuture and reactions parts of the problem, revealing the generic
lation is a good approximation for neutron-rich isotopes istrends. The inclusion of all interactions is technically pos-
not new and has been discussed eafl&)]. One has to sible and should be done in the future. We stressed the im-
mention also that the seniority truncation introduces an adportance of the correct account for threshold singularities of
ditional quasispin symmetry that prohibits certain decaysthe amplitudes at low energies and associated with that be-
and thus sets the corresponding widths to zero. havior of the cross sections. The requirements of self-
Despite numerous oversimplifications related to the seeonsistency are crucial ifn) regular solution for the complex
niority truncation, limitations on the configuration mixing, energies of quasistationary states governed by the energy-
and restrictions on possible decay channels and final statedependent Hamiltonian ar(d) determination of bound state
the overall agreement observed in Table | is quite good. Thenergies, open channels, and reaction thresholds for a chain
results where experimental data are not available can be conf nuclides connected by those channels. We have shown
sidered as predictions. The seniority truncation can béhat all these features can be satisfied in practical calcula-
avoided by a full diagonalization that is possible for such ations. The continuum treatment almost certainly requires new
small system. For heavier nuclei one has no possibility of theomputational efforts and the employed here hybrid of the
full diagonalization even within the standard shell model forexact solution for the pairing interaction, with the interaction
the discrete spectrum. Then the method of treating only pairthrough the continuum seems to be a promising instrument
ing and continuum becomes a valuable starting point. Manyor future development.
physical questions, such as validity of the single-particle as- The main theoretical problem that was not discussed
sumption for the operatoW, possibility of correlated two- above is related to the residual interaction necessary for the
nucleon emission, or sharp changes in nuclear shape or strueery formulation of the shell-model problem in the presence
ture in the reactions, were left outside the scope of thiof the continuum. In principle, the effective interaction
discussion. In the case of spherical oxygen isotopes witlshould be energy dependent and complex; it has to be con-
only one particle-unstable orbital, the present approacksistent with the rest of the shell-model input, including the
seems to be reasonable. Furthermore, in our view the maiamplitudes of the coupling to closed and open channels. This
merit of this calculation is in demonstrating the fully self- is a serious challenge for the future, which requires a new
consistent solution and the power of the method. insight into the whole physics on the borderline between
structure and reactions.

VIl. CONCLUSIONS
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