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Non-Hermitian effective Hamiltonian and continuum shell model
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The intrinsic dynamics of a system with open decay channels is described by a non-Hermitian effective
Hamiltonian which at the same time allows one to find the external dynamics—reaction cross sections. We
discuss ways of incorporating this approach into the shell model context. The approach is capable of describing
a multitude of phenomena in a unified way combining physics of structure and reactions. Self-consistency of
calculations for a chain of nuclides and threshold energy dependence of the continuum coupling are crucial for
the description of loosely bound states. Schematic and realistic examples of open many-body systems where
internal configuration mixing is generated by pairing are presented.
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I. INTRODUCTION

The center of interest in nuclear physics has rece
moved toward nuclei far from the region of stability. Weak
bound nuclei cannot be fully described in the limited fram
work of the shell model with a discrete energy spectru
Even the properties of their bound states reflect the proxim
of the continuum. Loosely bound nucleons create an
tended spatial structure that determines the results of
sible reactions so that nearly all excitation mechanisms br
up the nucleus. The standard approaches to many-b
theory, such as the Hartree-Fock-Bogoliubov mean field
random phase approximation, necessarily include virtual
real excitations to the continuum. The Borromean case
6He, 9Be, and11Li, when the system can be considered
be made of three clusters with all two-body subsystems
ing unbound, are very sensitive to the continuum phys
This is the area where the conventional division of nucl
physics into ‘‘structure’’ and ‘‘reactions’’ becomes inappr
priate, and the two views of the process, from the ins
~structure and properties of bound states! and from the out-
side ~cross sections of reactions!, should be recombined.

The broad success of the nuclear shell model with eff
tive interactions urges one to look for ways to incorporate
rich experience accumulated in the shell model into a m
general context that would properly include the continu
part. The description with the aid of an effective no
Hermitian Hamiltonian is well known going back to the cla
sical Weisskopf-Wigner damping theory@1#, works in atomic
physics by Rice@2# and Fano@3#, and projection formalism
by Feshbach@4#. The consistent formulation of the approa
was given in the book by Mahaux and Weidenmu¨ller @5# in
application to processes with one particle in the continuu
This gave rise to the shell model embedded in the continu
@6,7# recently revived@8–10# for the description of loosely
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bound nuclei. Another direction of development was rela
to the shell model description of nuclear reactions@11–13#.

The key challenges associated with the continuum s
model approach are similar to the case of the traditional s
model and can be identified as construction of the effec
interaction and practical solution. In the continuum sh
model the effective Hamiltonian becomes non-Hermitian a
energy dependent. In this work we will not discuss the m
complicated task in this treatment, namely, the problem
the effective interaction. It is virtually unknown what shou
be an effective interaction of quasiparticles in the restric
shell model space which includes the continuum. For
limited purpose below we assume that the Hermitian par
the effective interaction of the traditional shell model@14#
can be simply readjusted to the new problem. The new n
Hermitian and energy-dependent terms associated with
coupling to continuum at this stage can be determined p
nomenologically assuming the energy dependence appro
ate to the relevant kinematics and adjusting the remain
parameters to the experimental data. Our goal here is to
dress the second part of the problem, namely, to deve
methods for a consistent and reliable treatment of o
many-body systems assuming a given effective Hamilton

Perhaps it is worth identifying the main new features th
emerge in the continuum shell model in contrast to its tra
tional analog. The non-Hermiticity of the effective Hami
tonian was extensively studied in various branches of ph
ics during past several decades. At certain strength of
continuum coupling, the system undergoes restructuring
vealing new collective phenomena~‘‘super-radiance’’@15#!,
associated with the coherence of manybody states in the
cess of decay or radiation@16–18#, with bright manifesta-
tions in nuclear physics of low@19,20# and intermediate
@21,22# energies, atomic physics@23,24#, molecular physics
@25#, quantum chemistry@26#, and condensed matter physic
@27–29#. The energy dependence of the manybody effect
Hamiltonian is a poorly explored area, although simple a
lytical models have been discussed. In the present work
©2003 The American Physical Society22-1
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incorporate the realistic energy-dependent and n
Hermitian Hamiltonian into the shell model context.

The continuum shell model is expected to naturally co
bine the physics of structure and reactions. Therefore
impossible to consider each nucleus separately, as it is d
traditionally for spectroscopic studies. The true solution,
we show below, treats together all nuclear systems within
selected valence space. The nuclear reactions are the lin
mechanisms for a chain of nuclides. Properties such as o
channels,Q values, threshold behavior, symmetries, a
spectroscopic factors for all allowed reactions and vari
intrinsic eigenstates must enter the overall scheme so tha
resulting solution creates a fully consistent picture unit
nuclear structure with reaction mechanisms.

Having set these goals, we conduct the discussion as
lows. In Sec. II we briefly recall the underlying theory th
leads to the energy-dependent and non-Hermitian effec
Hamiltonian, with an emphasis on the points particularly r
evant to this work. In Sec. IV we present a two-state mo
that elucidates the generic features of the problem includ
coupling of states to common decay channels, near-thres
behavior, dynamics of resonances in the complex plane,
reaction-structure relations. Sections V and VI are devote
realistic systems, including the chain of oxygen isotop
where, in general, a large number of states is involved
the self-consistency requirements appear as inalienable
gredients of the approach. The summary and conclusions
presented in Sec. VII.

II. EFFECTIVE HAMILTONIAN

We will not repeat here the derivation of the no
Hermitian effective Hamiltonian that can be achieved
separating the Hilbert space into the intrinsic part and
continua and eliminating the continuum part with the aid
projection operators. This procedure was reviewed by m
authors; see, for example, Refs.@7,31#. We label intrinsic
states by 1,2, . . . , and the continuum channels by
a,b,c, . . . . The matrix elements of the effective intrinsi
Hamiltonian can be written as

H125H121D122
i

2
W12, ~1!

whereH is an internal, for example, a standard shell-mo
part, and the last two terms~which in general are functions o
running total energyE) are generated by the exclusion of th
continuum.

The imaginary partW(E) originates from the real pro
cesses of decay to channels that are open at a given ener
is represented by the residues of the on-shell terms co
sponding to thed functions coming from the energy conse
vation and causality requirement imposed on the energy
nominators, E→E(1)5E1 i0. The quantity W has a
factorized form,

W125 (
c;open

A1
cA2

c* , ~2!
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where the decay amplitudesA1
c(E) are the matrix elements

of the original total Hermitian Hamiltonian between th
statesu1& anduc;E& of different subspaces; the normalizatio
coefficients are included in the definition ofA1

c . The second
term of Eq.~1!, D12(E), originates from the principal value
of the same expression and corresponds to the virtual
shell processes taking place via the continuum. Therefor
includes contributions from all, open and closed, chann
For the system invariant under time reversal, one can u
basis, where the matrix elementsH12, D12, andA1

c can be
taken as real.

The same effective Hamiltonian~1! determines the scat
tering amplitude and the reaction cross sections. The rela
between the inside and outside views was studied in R
@5,16,17,19,20,32#. The scattering matrix in the channe
space describing theb→a process is given by

Sab5~sa!1/2~dab2Tab!~sb!1/2, ~3!

Tab5(
12

A1
a* S 1

E2HD
12

A2
b . ~4!

Here sa5exp(2ida) stands for the smooth scattering pha
coming from remote resonances not accounted for explic
The propagator (E2H)21 in the scattering amplitudeTab

does not depend on a specific reaction and contains the
effective Hamiltonian~1! with the same amplitudesA1

c as
those determining the entrance and exit channels in Eq.~4!.
This guarantees the unitarity of theSmatrix since the virtual
processes of evolution of the open system to and from
continuum channels are included in all orders in the pro
gator.

The diagonalization of the non-Hermitian Hamiltonian~1!
produces the complex eigenvalues

Ea~E!5Ẽa~E!2
i

2
Ga~E!, ~5!

where the real (Ẽa) and imaginary (Ga) parts are functions
of running real energyE. Without explicit energy depen
dence of the effective Hamiltonian, these eigenvalues wo
provide the unstable states with a pure exponential decay
exp(2Gat). The presence of energy dependence violates
exponential decay, and the actual quasistationary states
found at real energiesEa determined by the self-consistenc
condition

Ẽa~Ea!5Ea . ~6!

The line shape is not of Breit-Wigner type, but we still ca
Ga(Ea) the width of the resonancea. In what follows, we
omit the tilde sign forEa if it does not lead to a confusion

In the region of interest for loosely bound systems, t
main energy dependence comes from the proximity
thresholds as was stressed in Refs.@17,33#. The channelc is
open only if the total energyE is above threshold energyE(c)

for this channel. The decay amplitudes associated with
channelc contain therefore the step factorQ(E2E(c)) and
can be written as
2-2
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A1
c5a1

c~E!Q~E2E(c)!, ~7!

wherea1
c(E) is a smooth function of energy that falls off t

zero when energy decreases to the threshold value. F
single-particle decay channel, it can be parametrized@17,33#
as proportional to the square root of the penetrability in t
channel.

The real partD of the effective potential can be written a
the principal value integral,

D12~E!5
P
p (

c
E

E(c)

dE8

E2E8
a1

c~E8!a2
c* ~E8!. ~8!

Under the same assumption of a nonsingular characte
a1

c , matrix elements~8! also have a smooth energy depe
dence with no singularities near threshold and usually
be approximated by energy-independent quantities as
Refs.@17,33#.

One formal conclusion concerning the existence of bou
and unbound states can be reached just from the way
theory is constructed. If the conventional shell model with
purely discrete spectrum~no coupling to the continuum! pre-
dicts a state with energy below all decay thresholds, this s
will remain bound in the full calculation with the decay am
plitudes included. Indeed, all widths depend on the total
ergy and vanish below thresholds so that the old solutio
still valid. However, this statement is formal since it assum
that the reaction thresholds are known beforehand. In f
they have to be determined consistently for the chain of
clides relevant to the reactions under consideration.

Certainly, there are limitations in the applicability of th
method in the form outlined in the present paper. As ene
increases, a rapid growth of a number of interfering op
channels makes this approach impractical. We also deli
ately limit ourselves here by taking into account only t
energy dependence associated with threshold and reson
phenomena although the smooth ‘‘potential’’ scattering p
could be included without significant difficulties via the e
trance and exit scattering phases hidden in the factorssa and
sb of Eq. ~3!. The full energy dependence was discussed
particular, in Refs.@34,35#. The main physical assumptio
made here is that the states under consideration are clo
threshold and, at relatively low energy, only few open ch
nels are really essential. For the purpose of this pa
namely, for the development of shell-model methods
tended for the description of low-lying states near the bor
of stability, the presumed conditions are typically fulfilled
within a sufficient accuracy.

III. SHELL-MODEL APPROXIMATION

We view Hamiltonian~1! as a sum of three terms,

H5H01V2
i

2
W, ~9!

where we assume that the intrinsic Hermitian partH01V
consists of independent particle energies,
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H05( enan
†an , ~10!

and the effective Hermitian interactionV. As a renormaliza-
tion of the standard shell-model interaction, the Hermiti
matrix elementsD12, Eq. ~8!, generated by the virtual cou
pling through continuum, can be incorporated into the ope
tor V. The approximation of energy independence of the
erator D and, as a result, energy independence ofV ~also
used in previous works@17,33#! can be easily removed.

For an open system defined by Hamiltonian~9! there are
two types of states that can be selected as a starting poin
the diagonalization. In the spirit of the conventional sh
model, it is convenient to start from the basis statesuF&, the
eigenstates ofH0, that are Slater determinants of them
scheme or their linear combinations projected onto corr
values of total spinJ and isospinT. The coupling to con-
tinuum makes the choice of doorway states, the eigenst
of W, another good possibility. As analyzed in detail in Re
@17#, the doorway states correspond to simplest configu
tions participating directly in reactions. Because the num
of channels may be limited, the associated reactions ge
ally cannot explore the full complexity of internal structur
Being related to the factorizable nature of the operatorW and
degeneracy of its spectrum, this leaves some freedom in
selection of basis states.

Although in general the two choices are different, the
are cases where the operatorsH0 andW commute, and one
can identify the doorway states with specific intrinsic co
figurations. The most common and transparent example
this is single-particle decay into continuum. For an isola
single-particle levelun) embedded in the continuum, the un
perturbed real energy isEcore1en . If the only open channel
c⇒n, is associated with the emission of the particlen, the
imaginary partW leads to the width

gn5uAn
nu2 ~11!

for any configuration that consists of the particle on the le
un) and an arbitrary state of the stable core~no interaction
between them at this stage!. Threshold energy is determine
by the core configuration. This extends directly to the case
several different single-particle levels embedded in the c
tinuum.

If there are several single-particle configurations with t
same exact quantum numbers, the situation is more com
cated, and in generalH0 and W cannot be simultaneousl
diagonalized. This implies that, apart from the particle em
sion from a given single-particle state, we now also have
interaction of close intrinsic states through continuum giv
by the off-diagonal elements ofW12. Similarly, interaction
via the continuum is almost certainly present in cases wh
two-particle emission is possible from different initial co
figurations. In the case of pairing, for example, a zero-s
Cooper pair can be emitted from a fewj levels leading to the
same final state, and therefore into the same decay cha
Here the coupling through the continuum may be very i
portant; this situation is discussed in Sec. IV.
2-3
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The presence of continuum couplingW distorts the inter-
nal states. Depending on the strength ofW, one observes
different regimes. In the weak coupling regime,W can be
treated perturbatively. Within the single-particle decay p
ture, this leads to the shell model, where spectroscopic
tors are usually used to determine widths of the resonan
Once the decay widths of manybody states start to over
the standard shell model fails and one enters the domain
crossover behavior@18#, where the alignment of states alon
doorway configurations competes with the intrinsic config
ration mixing. At strong continuum coupling the termW
dominates, and the eigenstates reorient along doorway
figurations. This limit can be juxtaposed to the collecti
effect of super-radiance@15# where the internal states ar
coherently coupled through the common decay chan
@16,36#. The limits of this paper do not allow us to full
illustrate the richness and nontrivial character of the com
cated interplay of internal and external dynamics, and
refer the reader to Refs.@16,36,7,18,37# for subjects such as
the phase transition to super-radiance, role of symmet
redistribution of the widths, segregation of direct and co
pound nucleus processes, interference between the intr
residual interaction and the interaction mediated by the
cursion into open decay channels, dynamics of the pole
the complex energy plane with unusual crossings and a
crossings.

Finally, the energy dependence of the amplitudesA1
c

makes the problem highly nonlinear since the positions
the quasistationary eigenstates ofH in the complex plane
should be determined consistently with special care take
avoid false solutions that can appear due to the poss
nonanalytic energy dependence at thresholds. Another
feature is that threshold energies are not knowna priori.
They are to be calculated self-consistently comparing t
energies of the parent and daughter nuclei found in the s
approximation. The treatment of these consistency issue
presented in Secs. V and VI.

IV. DYNAMICS OF TWO STATES COUPLED
TO A COMMON DECAY CHANNEL

Here we consider a model that shows how the attrac
pairing-type interaction generates the binding of origina
unstable states competing with the coupling through c
tinuum. We consider two single-particle levels in the co
tinuum; their unperturbed energies are positive if the c
tinuum threshold is put at zero energy.~A special case with
only one initial nonzero decay amplitude was discussed
Ref. @33#.! This is a prototype of the three-body Borrome
model for 11Li with the inert core of 9Li and particle-
unstable10Li. The two active orbitalss1/2 andp1/2 are those
for a pair of halo neutrons,e152e(p),e252e(s). They are
quasistationary, and their decay amplitudesA1,2 characterize
the only open channel with the core nucleus in the grou
state and the neutron pair in the stateJp501 in the con-
tinuum. At this point the exact form of the energy depe
dence is not fixed, except for the fact that when the to
energy approaches zero, the decay becomes forbidde
that, as in Eq.~7!, the amplitudesA1,2 contain the step func
tion Q(E). Because of the Cooper pair in the continuum,
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non-Hermitian operatorW is not of a single-particle nature
and the model is more complicated than that of two Gam
resonances. The novel aspects here include interference
tween internal and external interactions, violation of wid
sum rules, and possible appearance of bound state in
continuum. Here we also show the calculation of the react
cross section, a necessary step to the unified descriptio
structure and reactions. The problem of two-body decay,
pecially relevant for Borromean systems, was recently
proached with the use of different shell-model formalisms
Refs. @9,10#. Two-proton radioactivity@38# is another ex-
ample requiring a similar consideration. Many features
two-level unstable systems with other physical applicatio
were discussed in Refs.@39,40#.

A. General features of the model

According to Sec. II, the effective non-Hermitian Ham
tonian in the 232 space is

H5S e12
i

2
g1 v2

i

2
A1A2

v2
i

2
A1A2 e22

i

2
g2

D . ~12!

Here V12[v is the real mixing matrix element,g1,25A1,2
2 ,

and the amplitudesA1,2 are also real. One should be caref
with the phases. For a pure internal interaction, the sign
the mixing matrix elementV12 is irrelevant, it always can be
changed by the redefinition of the phase of one of the sta
1 or 2. But, with the coupling to continuum present, th
change must be accompanied by the corresponding p
change in the decay amplitude; therefore we cannot sim
put A1,25Ag1,2.

A formal diagonalization of the effective Hamiltonia
gives the complex energies of the quasistationary states

E65
1

2 Fe11e22
i

2
~g11g2!G6

1

2 H ~e12e2!214v2

2
1

4
~g11g2!22 i @~e12e2!~g12g2!14vA1A2#J 1/2

.

~13!

For the case of stable states,A1,250, we come to the
standard two-level repulsion,

E65E65
1

2
@e11e26A~e12e2!214v2#. ~14!

The lower level reaches zero energy under the condition

v25e1e2 . ~15!

In the case of degenerate resonances (e15e2[e) with dif-
ferent widthsg1 andg2, in the absence of intrinsic mixing
(v50) we obtain
2-4
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E65e2
i

4
~g11g2!6

i

4
~g11g2!

⇒H E5e, G50

E5e2
i

2
G, G5g11g2 .

~16!

In this case the Hamiltonian consists of the unit matrixe and
the matrix W of a factorized type~rank r 51) so that the
correct linear combinations are the eigenvectors ofW; one of
them, the analog of the Dicke coherent state@15,16#, accu-
mulates the total width, whereas the second one is stabl

The crossing and anticrossing of unstable levels were c
sidered in Refs.@23,31,40–42# and experimentally studied
with microwave cavities@43#. In contrast to the avoided
crossing~14! of stable levels, the coincidence of two com
plex eigenvalues is possible, see Ref.@44# and references
therein. In our case it requires that two conditions should
fulfilled,

~e12e2!25g1g2 ~17!

and

~g12g2!2516v2. ~18!

The coinciding complex energiesE6 , Eq. ~13!, evenly di-
vide the trace of the Hamiltonian. There is a difference
tween our case and the energy-independent two-level Ha
tonian discussed in Ref.@41#, where the crossing condition

~e12e2!~g12g2!14vA1A250 ~19!

leads to crossing of either real energies,E15E2 , or widths,
G15G2 , for the negative or positive sign of

X5~e12e2!214v22
1

4
~g11g2!2, ~20!

respectively. In the energy-dependent case the same co
tion remains true for the crossing of energies, however,
for the crossing of the widths because generallyH(E1)
ÞH(E2).

The secular equation for the eigenvalues can be also w
ten in a form explicitly separating the real,Ẽ, and imaginary,
G̃, parts of complex roots~here we again restore the tild
sign in order to distinguish the roots from the running ene
valueE). The real part of this equation gives

Ẽ22Ẽ~e11e2!2
G̃

4
~ G̃2g12g2!1e1e22v250,

~21a!

while from the imaginary part we obtain

G̃5
Ẽ~g11g2!2g1e22g2e112vA1A2

2Ẽ2e12e2

. ~21b!
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The coupled equations~21a! and ~21b! determineẼ and G̃.
For an arbitrary energy dependence of the amplitu
A1,2(E) that are to be taken in these equations atE5Ẽ, this
is still an implicit solution; even the number of roots ca
change.

For a sufficiently strong interactionv, the repulsion of
real energies can bring the lower eigenvalueE2 to zero ~a
threshold value!. Then both amplitudesA1,2 disappear to-
gether with the eigenwidthG2 , Eq. ~21b!. This means that
the lowest quasistationary state becomes bound under
same condition~15!. If the mixing increases further, th
binding energy of the lower state is going down,

E2'2
v22e1e2

e11e2
. ~22!

As was mentioned in Ref.@33# for a similar model with only
one nonvanishingg, this is a prototype of the dynamics lead
ing to the binding of nuclei as11Li, where the residual in-
teraction among the valence neutrons is of pairing type. T
higher level, in the point of bifurcation~15!, has the energy

E15
1

2
@e11e21A~e11e2!21G1~G12g12g2!#,

~23!

whereg1,2 are to be taken at energyE5E1 .
The violation of Wigner sum rules@13# associated with

the widths of resonances is a critical feature of the phys
near driplines. If the effective Hamiltonian were energy i
dependent, both the real and imaginary parts of its tr
would be separately preserved by the complex orthogo
transformation to the eigenvectors. This means that
would always have

G11G25trW5g11g2 ~24!

and

E11E25tre5e11e2 . ~25!

At the bifurcation point,E25G250, we would have

G15g11g2 , E15e11e2 , ~26!

while it follows from Eqs.~15! and ~21b! that

G1~E1!5
@A1~E1!Ae11A2~E1!Ae2#2

e11e2
~27!

and

G1~E1!2g1~E1!2g2~E1!

52
@A1~E1!Ae22A2~E1!Ae1#2

e11e2
,0, ~28!

in contradiction to the first part of Eq.~26!. The trace viola-
tion occurs because the imaginary parts have their own
ergy behavior with compulsory zero-energy threshol
2-5
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When the levels are repelled by the mixing interaction, th
widths are changed by the dynamics outside the 232 matrix.
But the trace is preserved and Eq.~26! is fulfilled if

A1~E!

A2~E!
5Ae1

e2
, ~29!

so that in the entire energy range of interest the two pa
widths grow proportionally, an interesting exceptional cas

B. Solutions with energy-dependent widths

To illustrate the dynamics of two states coupled to a co
mon continuum with energy-dependent widths, we show
numerical example. For all figures below we takee1
5100 keV ande15200 keV for the particle pair inp ands
states, respectively. For these parameters the ground
reaches zero energy, and thus becomes bound, av
'141 keV by virtue of Eq.~15!.

The picture with energy-independent widths is not cons
tent with the definition of thresholds. As seen from Fig. 1~a!,
the residual interaction pushes the levels apart, and the lo
state crosses zero energy. However, the widthG2 of this
state, dashed lines in Figs. 1~b! and 1~c!, is still positive. For
the calculations shown by solid lines in Figs. 1~b! and 1~c!,
similar to Ref.@33#, we assume in the low energy region th
square root energy dependence for thes wave, and;E3/2 for
the p wave,

g2~E!5aAE, g1~E!5bE3/2. ~30!

This makes the evolution of complex energies as a func
of the residual interaction strengthv consistent with the ex-
istence of thresholds: atv25e1e2 the lower state become
stationary,E25G250. The near-threshold behavior of th
width is governed by thes-wave component with the infinite
slope,G;AE2E(c). However, asa becomes smaller, Fig
1~c!, the singularity is getting confined to a narrow vicini
of threshold, to the limit that at an observable scale the
havior is dominated by thep wave.

Besides the trivial situation, when the width of a partic
lar state vanishes due to energy conservation, blocking o
decay via dynamical mixing at a single point correspond
to a certain strengthv is also possible. This effect of th
bound state in the continuum is seen in Fig. 1~b!, where a
conspiracy of the parameters leads to the vanishing widthG2

of the lower state at energyE2 still in the continuum, Fig.
1~a!. Equations~21a! and ~21b! with G250 show that this
happens at the interaction strength

v5A1A2

e12e2

g12g2
. ~31!

Here A1,2 and g1,25A1,2
2 are to be taken at the energyE2

found from Eq.~21a!. For the model in Fig. 1~b!, this hap-
pens atv'63 keV.

The energy dependence of the amplitudes complicates
trajectories of the eigenvalues in the complex plane. Un
in a stable system or a system with energy-independent
rameters, here the solutions forE1 andE2 involve a diago-
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nalization of different matrices. The Hamiltonian matric
differ in their imaginary partW(E). The ‘‘interaction’’ be-
tween the levels occurs via the common Hermitian partH0

1V. Thus, for a general system it can be expected t
bound states and weakly unbound resonances are
strongly correlated although new features related to sm
imaginary components appear, and the usual level repul
on the real energy axis is present only up to a spacing of
order of the width of the resonance@16#. For states deeply in
the continuum, however, the correlation must rely on

FIG. 1. Panels~b! and~c! show the behavior of the widthG2 of
a lower resonance as a function ofv for energy-dependent~solid
lines! and energy-independent~dashed lines! decay amplitudes. Se
lected parameters areA158.1 (keV)1/2 and A2512.8 (keV)1/2 in
the energy-independent case, anda515 (keV)1/2 and b
50.05 (keV)21/2 in the energy-dependent case@panel ~b!#; A1

57.1 (keV)1/2 and A253.1 (keV)1/2, dashed line, and a
51 (keV)1/2 andb50.05 (keV)21/2 @panel~c!#. Parameters are se
lected in such a way that atv50 the two solid and dashed line
agree. The relative phases are such thatv>0 and A1A2.0. In
panel~a! energies of the two states are shown, solid lines, for
case relevant to panel~b! with the energy-dependent amplitude
Eq. ~30!, and compared to the energies of a nondecaying sys
dashed lines. The dotted line in all three plots corresponds to
zero value of the width or energy.
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structure ofW(E) that represents features and symmetries
the continuum.

C. Cross sections near threshold

Here we consider the scattering cross section for the c
of two intrinsic states coupled to one open channel. Althou
two neutron scattering is not a feasible reaction from
exprimental point of view, the result of this study is releva
for the excitation processes of a Borromean system.
elastic cross section in thes wave for a relative momentum
k}AE is

s~E!5
p

k2
uS~E!21u2, ~32!

where the scattering matrix is defined by Eqs.~4! and~5! in
terms of the effective HamiltonianH. In our case@Eq. ~12!#,
neglecting the potential scatteringŝ, the propagator can b
easily found, and we obtain

T~E!5
E~g11g2!2g1e22g2e122vA1A2

~E2E1!~E2E2!
, ~33!

with the polesE65E62( i /2)G6 given by Eq.~13!, or by a
pair of coupled equations~21!. One can notice that the rela
tive sign of the matrix elements for the direct internal inte
action between the mixed states,v, and for their continuum
mediated interaction,A1A2, may considerably change the r
sulting cross section.

In the special case of a pair of degenerate intrinsic lev
with no direct interaction, Eq.~16!, the general result~33!
reduces to the single Breit-Wigner resonance on a Dicke
herent state accumulating the total width,

T~E!5
g11g2

E2e1~ i /2!~g11g2!
. ~34!

The second root,G50, of Eq. ~16! is decoupled from the
continuum and does not influence the scattering process
have to stress again that the ‘‘widths’’g1,2 in general depend
on running energyE.

At the bifurcation point~15!, the scattering amplitude be
comes

T~E!5
E~g11g2!2~A1Ae21A2Ae1!2

E~E2E1!
, ~35!

where the higher rootE1 is defined by Eqs.~23! and~27!. At
low energy (E→0), the behavior of the scattering cross se
tion, as well as photonuclear processes, is determined by
actual energy dependence of decay amplitudes.

At the critical value ofv, Eq. ~15!, and in the low energy
region where approximation~30! can be valid, the scatterin
amplitude~33! is singular,;E21/2,

T~E!'
ae1

AE$e11e22~ i /2!a@e2 /~e11e2!#AE%
. ~36!
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When the interaction is overcritical,v2.e1e2, and at low
energies,E<uE2u @Eq. ~22!#, we obtain

T~E!'
ae1AE

E1~E2E2!
. ~37!

Therefore the cross section~32! has a constant value a
threshold and behaves at low energies as (E1uE2u)22, re-
vealing ‘‘attraction’’ to the subthreshold region@17,45#. The
cross sections shown in Fig. 2~a! for two overcritical values
of the interaction strength display a threshold behavior ch
acteristic for loosely bound systems that can be mistaken
resonances. The caseA1A2.0 produces only a very broa
peak @not shown on Fig. 2~a!# corresponding to the uppe
quasistationary stateE1 . Figure 2~b! shows that in the case
of A1A2,0 the interference of the internal and external
teractions results in a narrow resonance with a very h
cross section atE5E15340 keV, along with the maximum
at zero energy~of course, all numerical values characteri
only the model parameters!.

V. TWO-LEVEL MODEL WITH PAIRING INTERACTION

Here we make the next step to realistic manybody phys
working with a system of two orbitals that can accommod
V15V2510 particles each; both levels can decay to a fi
state at fixed energyEf50. The decay widthsg1 andg2 are
different but have the same,g1,2(E)5a1,2AE, energy depen-
dence near threshold. It should be noted that synchron
decay withg15g2 would not affect the internal dynamic
sinceW in that case would be proportional to a unit matri

FIG. 2. The near-threshold scattering cross section is shown
loosely bound systems withv5180 and 200 keV in solid and
dashed lines, respectively. Due to similarity between the curves
dashed curve is not shown in panel~b!. Other selected parameter
are a515 (keV)1/2 and b50.05 (keV)21/2. Phases areA1A2.0
andA1A2,0 for panels~a! and ~b!, respectively.
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The single-particle energies are taken ase151 ande253.
Intrinsic dynamics in this model are generated by the c

stant pairingVL50
j j 8 [G. In Fig. 3 the spectrum of states wit

seniority s50 in a system of eight particles is shown as
function of the pairing strength. The attractive pairing int
action pushes down low-lying levels, forcing some of the
to become bound. The ground state becomes boun
G'0.2.

Comparison of spectra with and without continuum co
pling ~solid and dashed lines, respectively! shows generic
features. The bound states are not affected by the contin
coupling. The low-lying levels, as compared to highly e
cited states, are less influenced by the presence of
tinuum. In contrast to the usual perturbation theory, we
that the ground state and even the first excited state o
embedded in the continuum become attracted to the bul
other states that increases their energy. Such a situation
ally leads to an increase of the decayQ value that in turn
further increases the decay width.

The following figure, Fig. 4~a!, demonstrates the shiftDE
of the ground state energy as a result of decay for vari
choices of continuum coupling given by parametersa1 and
a2. Clearly, DE50 if there is no configuration mixing a
G50, or once the state becomes bound. The complex
havior of the decay width for the ground state is shown
Fig. 4~b!; at the critical strength the width goes to zero w
an infinite slope,;AE.

VI. REALISTIC PAIRING MODEL

As a demonstration of a realistic self-consistent sh
model calculation, we consider oxygen isotopes in the m
region A516–28. In this study we use a univers
sd-shell-model description with the semiempirical effecti
interaction ~USD! @46#. The model space includes thre
single-particle orbitals 1s1/2, 0d5/2, and 0d3/2 with corre-

FIG. 3. The level scheme ofs50 states in the two-level, eight
particle system as a function of pairing strength. Solid lines co
spond to the system embedded in the continuum with the fi
width valuesa150.1 anda255. These curves are compared wi
a nondecaying situationa15a250 of the usual shell model
dashed lines. The dotted line atE50 indicates the threshold
location.
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sponding single-particle energies23.164, 23.948 , and
1.647 MeV. The residual interaction in the most general fo
is defined with a set of 63 reduced two-body matrix eleme
in pair channels with angular momentumL and isospint,
^( j 3t3 , j 4t4)LtuVu( j 1t1 , j 2t2)Lt&, which scale with nuclear
mass as (A/18)20.3.

Although the full shell-model treatment is possible f
such light systems, here we truncate the shell-model spac
include only senioritys50 ands51 states for even and od
A, respectively. This method, ‘‘exact pairing1 monopole,’’
is known @30# to work well for shell-model systems involv
ing only one type of nucleons~in the case of the oxygen
isotope chain only neutrons are involved!. The two important
ingredients of nuclear forces are treated exactly by t
method: the monopole interaction that governs the m
field evolution and the binding energy behavior througho
the mass region, and pairing that is responsible for the em
gence of the pair condensate, renormalization of sing
particle properties, and collective pair vibrations. In our e
ploratory study, the truncation of the large space to the m
important states is a reasonable approach since certainly
inclusion of decay makes the computations numerically m
intense.

In the resulting shell-model description, the set of t
original 30 two-body matrix elements in the isospint51
channel is reduced to 12 most important linear combinatio
six two-body matrix elements for pair scattering in theL
50 channel describing pairing, and the other six correspo
ing to the monopole force in the particle-hole channel,

V̄j , j 8[ (
LÞ0

~2L11!^~ j , j 8!L1uVu~ j , j 8!L1&, ~38!

wherej and j 8 refer to one of the three single-particle leve

-
d

FIG. 4. The upper panel shows the shift in ground state ene
between decaying and nondecaying~usual shell-model! systems,
DE5E(C)2E(Csm), as a function of pairing strength under var
ous assumptions for the decay rates. In the lower panel the widt
the ground state is plotted.
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TABLE I. States of senioritys50 ands51 in oxygen isotopes. Energies and neutron decay widths
shown. Results are compared to the full shell-model calculations and to the known experimental data.
state energies relative to the16O core are given in bold. The rest of the energies are excitation energies
given nucleus.

E G Esm Eexpt Gexpt

A J ~MeV! ~keV! ~MeV! ~MeV! ~keV!

16 0 0.00 0 0.00 0.00 0
17 5/2 23.95 0 23.95 24.14 0
17 1/2 0.78 0 0.78 0.87 0
17 3/2 5.59 96 5.59 5.08 96
18 0 212.17 0 212.17 212.19 0
19 5/2 215.75 0 216.06 216.14 0
19 1/2 1.33 0 1.47 1.47 0
19 3/2 5.22 101 5.53 6.12 110
20 0 223.41 0 223.83 223.75 0
21 5/2 226.67 0 227.47 227.55 0
21 1/2 1.38 0 1.33
21 3/2 4.60 63 4.83
22 0 233.94 0 234.62 234.40 0
23 1/2 235.78 0 237.07 237.15 0
23 5/2 2.12 0 2.72
23 3/2 2.57 13 3.28
24 0 240.54 0 241.05 240.85 0
25 3/2 239.82 14 240.28
25 1/2 2.37 0 2.36
25 5/2 4.98 0 3.96
26 0 242.04 0 242.04
27 3/2 240.29 339 240.29
27 1/2 3.42 59 3.42
27 5/2 6.45 223 6.45
28 0 241.26 121 241.26
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We assume that the orbital 0d3/2 belongs to the continuum
and therefore its energy has an imaginary part. In this mo
we account for two possible decay channels for each in
stateuF&, a one-body channel (c51) and a two-body chan
nel (c52). The one-body decay changes the seniority of
0d3/2 orbital by one, from 1 to 0 in the decay of an odd-A
nucleus and from 0 to 1 for an even-A nucleus. The two-
body decay removes two paired particles and thus does
change the seniority. The two channels lead to the low
energy state of allowed seniority in the daughter nucleus,
the possibility of transition to excited pair-vibrational stat
is ignored. This results in

e3/2~F!5e3/22
i

2
a3/2~EF2E(1)!5/2

2 ia3/2~EF2E(2)!5/2, ~39!

where we assumed that one- and two-body decay param
g j

(c) are related asg3/2
(1)5g3/2

(2)/2[g3/2, and the particles are
emitted in thed wave with,52.

With a simplifying assumption of the single-particle stru
ture of W, one- and two-body decays can be incorpora
into the complex single-particle energies. The three sing
05432
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particle orbitals can be clearly identified as the 5/21 ground
state, and 1/21 and 3/21 excited states in17O. Their energies
relative to 16O exactly correspond to the single-partic
energies in the USD model. Experimental evidence in
cates that the 3/21 state decays via neutron emissio
with the width G(17O)596 keV. This information allows
us to determine our parametera3/25G(17O)/(e3/2)

5/2

50.028 (MeV)23/2. Other two states are particle boun
g1/25g5/250. Using the complex single-particle energie
the effective non-Hermitian Hamiltonian for the manybo
system is constructed in a regular way.

We treat the chain of isotopes one by one starting fr
16O. Therefore for eachA the properties of the possibl
daughter systemsA21 andA22 are known. Since the ef
fective Hamiltonian depends on energy and threshold e
gies have to be determined self-consistently, we solve
extremely nonlinear problem iteratively. We start from t
shell-model energiesEsm corresponding to a nondecayin
system with the HamiltonianH. Then the diagonalization o
H(Esm) allows us to determine the next approximation to t
energies. The cycle is repeated until convergence, whic
usually achieved in less than ten iterations.

The results of the calculations and comparison with f
shell-model results with no seniority truncation and w
2-9
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known data for the chain of oxygen isotopes are shown
Table I. Some words of caution are appropriate for the in
pretation of this table. The seniority truncation generally b
comes unreliable for the states with excitation energy ab
twice the pairing gap, i.e.,;2 – 4 MeV. This can make the
identification of the states of the pairing model in the f
shell-model diagonalization difficult. The same problem c
emerge in the comparison of theory with experiment. On
other hand, the standard shell model does not include
continuum coupling, and for the stable states our continu
shell model automatically reduces to the standard version
seen from Table I, for the bound states our seniority
stricted calculation is in a good agreement with exact dia
nalization. The fact that the pairing-based variational cal
lation is a good approximation for neutron-rich isotopes
not new and has been discussed earlier@30#. One has to
mention also that the seniority truncation introduces an
ditional quasispin symmetry that prohibits certain deca
and thus sets the corresponding widths to zero.

Despite numerous oversimplifications related to the
niority truncation, limitations on the configuration mixing
and restrictions on possible decay channels and final st
the overall agreement observed in Table I is quite good.
results where experimental data are not available can be
sidered as predictions. The seniority truncation can
avoided by a full diagonalization that is possible for such
small system. For heavier nuclei one has no possibility of
full diagonalization even within the standard shell model
the discrete spectrum. Then the method of treating only p
ing and continuum becomes a valuable starting point. M
physical questions, such as validity of the single-particle
sumption for the operatorW, possibility of correlated two-
nucleon emission, or sharp changes in nuclear shape or s
ture in the reactions, were left outside the scope of t
discussion. In the case of spherical oxygen isotopes w
only one particle-unstable orbital, the present appro
seems to be reasonable. Furthermore, in our view the m
merit of this calculation is in demonstrating the fully se
consistent solution and the power of the method.

VII. CONCLUSIONS

We made an attempt to advance in the developmen
methods related to the continuum shell model. Although
main ideas of the approach are known for a long time, ri
now it seems to be an appropriate moment to revive th
and convert into a working tool for the solution of numero
practical problems of nuclear, and supposedly more gen
manybody, theory. In all cases where a quantum system
strongly interacting particles is loosely bound, the interp
of the continuum and intrinsic structure is getting cruci
05432
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Therefore the formalism that would allow for a unified d
scription of inter-related structure and reaction aspects is
pecially needed, and extensive search in this direction m
during recent years clearly reveals this need.

Within the discussion presented in this work, we demo
strated some of the features appearing in the loosely bo
nuclear systems that undergo one- and two-body decays,
we outlined the path for solving the corresponding man
body problems. The residual interaction we used was limi
by the pairing and monopole part. The pairing approximat
is known to work well within the traditional shell model@30#
for nuclei with one kind of valence nucleons. The restricti
to pairing leads to significant simplifications, both for stru
ture and reactions parts of the problem, revealing the gen
trends. The inclusion of all interactions is technically po
sible and should be done in the future. We stressed the
portance of the correct account for threshold singularities
the amplitudes at low energies and associated with that
havior of the cross sections. The requirements of s
consistency are crucial in~i! regular solution for the complex
energies of quasistationary states governed by the ene
dependent Hamiltonian and~ii ! determination of bound stat
energies, open channels, and reaction thresholds for a c
of nuclides connected by those channels. We have sh
that all these features can be satisfied in practical calc
tions. The continuum treatment almost certainly requires n
computational efforts and the employed here hybrid of
exact solution for the pairing interaction, with the interacti
through the continuum seems to be a promising instrum
for future development.

The main theoretical problem that was not discuss
above is related to the residual interaction necessary for
very formulation of the shell-model problem in the presen
of the continuum. In principle, the effective interactio
should be energy dependent and complex; it has to be
sistent with the rest of the shell-model input, including t
amplitudes of the coupling to closed and open channels. T
is a serious challenge for the future, which requires a n
insight into the whole physics on the borderline betwe
structure and reactions.
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