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Nuclear collective tunneling between Hartree states
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We formulate the nuclear collective tunneling transition from one Hartree state to another, consistently with
the Hartree states. A Hamiltonian effective for the collective tunneling as well as for Hartree states is obtained
with the parameters determined by the Hartree calculations. A real-time description for the tunneling is pro-
posed. It is shown that a nuclear system governed by the Hamiltonian symmetric between two Hartree states
collectively tunnels back and forth between the two states owing to the residual interaction, so that the system
makes harmonic tunneling oscillations. While a crowd of quantum fluctuations coherently shifts back and forth
in phase with the tunneling oscillations of the center of mass of two wave packets, the symmetric nuclear
system retains the energy for the harmonic tunneling oscillations. The collective tunneling transitions are
analyzed in an adiabatic approximation.
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I. INTRODUCTION

A finite quantum mechanical system provides an infin
number of Hartree states with various symmetries a
boundary conditions. The order formation in such a syst
must proceed through a series of collective transitions fr
one metastable state to another. Expressing metastable
in the Hartree approximation, we describe the collective t
neling transition from one Hartree state to another. The tr
sition is induced by a residual interaction between nucle
in the present theory beyond the Hartree approximation.

In atomic and molecular physics, it has been observed
atoms coherently tunnel back and forth between two regi
of classically stable motion@1#. The tunneling oscillations
are stable and periodic, if the tunneling Hamiltonian is sy
metric between the two regions. The mechanism of
atomic harmonic tunneling oscillations is applied to t
products of atomic clocks. We will investigate the harmon
collective tunneling oscillations of nuclei.

In the previous papers, we performed the relativistic H
tree calculations@2# and the nonrelativistic meson mean-fie
calculations@3# to obtain the Hartree states of nuclei a
developed the steering field theory for the nuclear collec
tunneling transition from one Hartree state to another@4,5#.

In the present paper we analyze the collective tunne
between the Hartree states, especially harmonic collec
tunneling oscillations. We reform the field theoretical Ham
tonian used in the Hartree calculations into a Hamilton
effective for the Hartree states and for the collective tunn
ing between the Hartree states. The Hamiltonian in
present theory beyond the Hartree approximation invol
the residual interaction between nucleons. In the case of
collective tunneling from an oblate Hartree state to a pro
Hartree state, the residual interaction is a quadrup
quadrupole interaction, which is expressed in terms of
0556-2813/2003/67~5!/054316~13!/$20.00 67 0543
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operators that constitute SU~5! algebra.
We formulate the collective tunneling transitions in a re

time description. The collective tunneling is expressed
terms of the motion of the center of mass of two wave pa
ets, one on the side of the oblate Hartree state and the o
on the side of the prolate Hartree state. The Hamiltonian
is symmetric in the particle-hole number space allows h
monic collective tunneling oscillations of nuclei. While
crowd of quantum fluctuations coherently shifts back a
forth in phase with the tunneling oscillations of the center
mass of wave packets, the nucleus retains the energy fo
harmonic tunneling oscillations. This is the mechanism
the symmetric nuclear system to maintain the harmonic t
neling oscillations.

In Sec. II, we present a Hamiltonian effective for the Ha
tree states and for the collective tunneling between the H
tree states. In Sec. III, the adiabatic collective tunneling
proximation is developed. In Sec. IV, we analyze t
harmonic collective tunneling oscillations in terms of th
motion of the center of mass of two wave packets. Disc
sions and conclusion are given in Sec. V.

II. HAMILTONIAN EFFECTIVE FOR HARTREE STATES
AND FOR COLLECTIVE TUNNELING

We have analyzed the nuclear Hartree states in the r
tivistic Hartree calculations@2# and in the nonrelativistic me
son mean-field calculations@3#. In a theory beyond the Har
tree approximation the Hartree states are affected b
residual interaction, which gives rise to the collective tunn
ing of the system from one Hartree state to another. In
paper we analyze the collective tunneling between Har
states. It is aimed to formulate the collective tunneling tra
sitions between the Hartree states in a real-time descrip
and to derive a Hamiltonian effective for the collective tu
©2003 The American Physical Society16-1
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neling as well as for the Hartree states. The parameters in
effective Hamiltonian are determined by the Hartree calcu
tions.

Prolate and oblate Hartree states are one of the featur
the nuclei that have valence nucleons in thes and d major
shell, (sd2d22d1d21d0)4, where the subscriptsm of dm
stand for thez component of orbital angular momentuml
52 and the superscript 4 indicates the spin and isospin
grees of freedom for nucleons. We treat the collective t
neling transition ofs- andd-shell nuclei from the oblate Har
tree state to the prolate Hartree state. A typical example
the nuclei that exhibit both an oblate and a prolate Hart
state is 28Si @6#. While a configuration of nucleons in th
nonsphericald states deforms the Hartree potential, t
nuclear residual interaction that is rotationally symmetric
duces a collective tunneling transition between the two
formed Hartree states.

We formulate the collective tunneling in the descripti
@4,5# based on the nonrelativistic meson mean-field calcu
tions for the Hartree states. The description adopts one
of meson field in place ofs andv mesons and endorses th
nuclear saturation by the truncation of the meson space.
nonrelativistic nuclear field Hamiltonian is written as

Hnucl5E Fc†~rW !S 2
¹2

2M Dc~rW !1
1

2
$p2~rW !

1f~rW !~2¹21m2!f~rW !%2gf~rW !c†~rW !c~rW !Gd3r ,

~1!

wherec is nucleon field,f andp are meson fields, andM,
m, andg are nucleon mass, meson mass, and meson-nuc
coupling constant, respectively.

Let us consider a nuclear system that has two Har
statesC i andC f . The Hartree statesC i andC f are specified
by the meson mean fieldsw i andw f, respectively. Using the
meson mean fieldsw i andw f in the two Hartree states dete
mined in the mean-field calculations, we formulate the c
lective tunneling between the two Hartree states. The me
mean fieldw, which varies fromw i to w f, determines a re-
sidual interaction to steer the nuclear collective tunnel
from C i to C f .

Here we briefly show how to derive a Hamiltonian effe
tive for the Hartree states and for the collective tunnel
between the Hartree states@4,5#. In terms of the meson mea
fields in the two Hartree states, we define the tunneling st
ing field to be

ws~rW !5
1

2
$w f~rW !2w i~rW !%, ~2!

and the principal mean field to be

wp~rW !5
1

2
$w i~rW !1w f~rW !%. ~3!

Suppose that the nucleus of28Si is polarized alongz axis
in the two deformed Hartree states. The two Hartree sta
05431
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oblate and prolate, are symmetric to each other with resp
to deformation parameter@3#, i.e., the principal mean field is
spherically symmetric,

wp~rW !5wp~r !Y00~u,w!, ~4!

and the tunneling steering field is of quadrupole symmet

ws~rW !5ws~r !Y20~u,w!. ~5!

When we quantize the meson fieldf(rW), we truncate the
meson field space by taking into account only the princi
mean fieldwp(rW), the tunneling steering field of quadrupo
symmetry,

w̄20~rW !5N2ws~r !Y20~u,w!, ~6!

and the other components of quadrupole symmetry,

w̄2m~rW !5N2ws~r !Y2m~u,w!, ~7!

with the normalization factorN2,

f~rW !5wp~rW !1f̂~rW !, ~8!

p~rW !50, ~9!

where the quantum quadrupole field is quantized as

f̂~rW !5(
m

1

A2v2

$a2mw̄2m~rW !1a2m
† w̄2m* ~rW !% ~10!

and

v2
25^w̄2mu2¹21m2uw̄2m&. ~11!

The spherical principal mean fieldwp(rW) is assumed to con
tribute only to the nuclear single-particle energies, but no
the residual interaction energies. The set of quadrupole fi
w̄2m makes the meson field rotationally invariant. The co
ponents of quadrupole withmÞ0 are necessary to take int
account any orientation of the deformed Hartree states in
initial and final states of the tunneling process.

The truncated meson fieldf is related to the nucleon field
c by the field equation,

~2¹21m2!f~rW !5gc†~rW !c~rW !. ~12!

Projecting the above equation onto the quadrupole field,
express the quantum quadrupole fieldf̂ in terms of the
nucleon field:

f̂~rW !5
1

v2
2 (

m
w̄2m~rW !E w̄2m* ~rW8!~2¹821m2!f~rW8!d3r 8

5
g

v2
2 (

m
w̄2m~rW !E w̄2m* ~rW8!c†~rW8!c~rW8!d3r 8. ~13!
6-2
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Substituting these expressions for the meson field into
field Hamiltonian in Eq.~1!, we obtain

Hnucl5E c†~rW !S 2
¹2

2M
2gwp~rW ! Dc~rW !d3r 1H, ~14!

H52
g2

2v2
2E E (

m
c†~rW !w̄2m~rW !c~rW !c†~rW8!

3w̄2m* ~rW8!c~rW8!d3rd3r 8. ~15!

The nuclear quadrupole-quadrupole interactionH is re-
sponsible for the two deformed Hartree states and for
collective tunneling transition between them.

The derived Hamiltonian is expressed in terms of the c
ation and annihilation operators fors nucleons (csi) and for
dm nucleons (cm i) in the basis states determined in t
single-particle potential for the spherical principal me
field:

Hnucl5Hshell1H, ~16!

where the shell-model Hamiltonian for nucleons in thes and
d shells is

Hshell5(
i

S «scsi
† csi1(

m
«dcm i

† cm i D . ~17!

When the valence nucleon configurations are truncated in
s and d shells, the quadrupole-quadrupole interaction
tween thed-shell nucleons, responsible for the deform
Hartree states and for the collective tunneling, is expres
as

H52kQ†Q52k (
m522

2

Qm
† Qm5H01HI ~18!

with

H052kQ0
†Q0 , ~19!

HI52k~Q2
†Q21Q1

†Q11Q21
† Q211Q22

† Q22!. ~20!

In the numerical calculations below, the single-particle en
gies «s and «d in the spherical shell-model Hamiltonia
Hshell are assumed to be degenerate («s5«d) and the spin-
orbit splitting for thed states is ignored. The quadrupol
quadrupole interaction, which is rotationally symmetr
yields the restoring force for the oblate state to tunnel to
prolate state. The quadrupole operators in the residual in
action HamiltonianH are defined to be

Qm5A10(
m i

~2m2m2mu2m!~21!m2mcm i
† cm2mi ~21!

and i stands for spin and isospin of nucleons. The expl
expressions for the quadrupole operators are the followin
05431
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Q05Q0
†5A5

7(i
~2c2i

† c2i2c1i
† c1i22c0i

† c0i2c21i
† c21i

12c22i
† c22i !, ~22!

Q152Q21
† 5A5

7(i
~2A6c2i

† c1i2c1i
† c0i1c0i

† c21i

1A6c21i
† c22i !, ~23!

Q25Q22
† 5A5

7(i
~2c2i

† c0i1A6c1i
† c21i12c0i

† c22i !.

~24!

The coupling constantk of the quadrupole-quadrupole inte
action is determined by the meson mean-field overlap
with the nucleon densities:

k5
g2

20v2
2 (

m
E E c2m2m* ~rW !w̄2m* ~rW !c2m~rW !

3c22m1m* ~rW8!w̄2m~rW8!c22m~rW8!d3rd3r 8. ~25!

The value ofk that is determined in the Hartree calculatio
is of the order of 0.1 MeV for thed-shell nucleons@3#. The
s-shell nucleons are assumed to be free from the resid
interactionH in Eq. ~18!, but a weak residual interaction i
assumed to act betweens and d nucleons, when it is indi-
cated.

The residual quadrupole-quadrupole interaction forms
deformed Hartree potential for the oblate Hartree state
that for the prolate Hartree state. The residual interact
concurrently induces a nuclear collective tunneling transit
between the two deformed Hartree states in the pre
theory beyond the Hartree approximation. For simplicity, t
present calculations do not include the pairing interacti
although it may play a role in the collective tunneling b
tween the deformed Hartree states.

The orbital angular momentum operators are also
pressed as

Lm5A10 (
m i

~2m2m2mu1m!~21!m2mcm i
† cm2mi

~26!

and their explicit expressions are

L05(
i

~2c2i
† c2i1c1i

† c1i2c21i
† c21i22c22i

† c22i !,

~27!

L152(
i

~A2c2i
† c1i1A3c1i

† c0i1A3c0i
† c21i

1A2c21i
† c22i !, ~28!
6-3



,

s

en

-

or
to

the
m-
ay

into

ble
e

ged

e

e

n
-

pre-
mo-

T. KOHMURA, M. MARUYAMA, AND Y. HASHIMOTO PHYSICAL REVIEW C 67, 054316 ~2003!
L215(
i

~A2c1i
† c2i1A3c0i

† c1i1A3c21i
† c0i1A2c22i

† c21i !.

~29!

The operatorsQm andLm8 satisfy the commutation relation

@Qm ,Lm8#52A6~2m1m8u2m1m8!Qm1m8 , ~30!

which is identical to that for SU~3! by Elliott @7#. The com-
mutation relation betweenQm and Qm8 involves not only
Lm1m8 as in the case of SU~3! but also octupole operator
Sm1m8 . Thus, the algebra of the 24 operatorscm i

† cm8 i that
appear in the present HamiltonianH is extended to SU~5!
@8#, which employs, in addition toLm andQm , the octupole
and hexadecapole operators,

Sm5A10 (
m i

~2m2m2mu3m!~21!m2mcm i
† cm2mi , ~31!

Rm5A10 (
m i

~2m2m2mu4m!~21!m2mcm i
† cm2mi . ~32!

The commutation relations of these operators for SU~5! al-
gebra are expressed in terms of 6j symbols. If we express
these operators as

Olm55
Lm , l 51

Qm , l 52

Sm , l 53

Rm , l 54,

~33!

the commutation relations are

@Ol 1m1
,Ol 2m2

#5 (
l (5 l 11 l 21odd)

~21! l2A10~2l 111!~2l 211!

3H 2 2 l

l 1 l 2 2J ~ l 1m1l 2m2u lm11m2!

3Olm11m2
. ~34!

The Casimir operator for SU~5! is defined as

C5L†L1Q†Q1S†S1R†R. ~35!

The present interaction HamiltonianH52kQ†Q in Eq. ~18!
commutes with the Casimir operatorC,

@H,C#50. ~36!

Therefore, eigenstates of the HamiltonianH are simulta-
neously eigenstates of the Casimir operatorC. Eigenstates
with the same eigenvalue as the Casimir operatorC consti-
tute a representation of SU~5!. Any states of a nuclear system
of nucleons in thed states can be classified by the repres
tations of the Casimir operatorC. Since the interaction
HamiltonianH52kQ†Q is rotationally symmetric, we ob
tain
05431
-

@H,L0#50, @H,L61#50, @H,LW 2#50. ~37!

The eigenstates of the HamiltonianH are also simulta-
neously eigenstatesuL,M & of the orbital angular momentum
operatorsLW 2 andL0. The eigenvalues of the HamiltonianH
depend on the representation of SU~5! and on the angular
momentumL, but not onM.

Now we demonstrate that the present SU~5! Hamiltonian
H52kQ†Q in Eq. ~18! has many appropriate aspects f
realistic systems. To this end, we apply the Hamiltonian
two- and four-nucleon systems for the moment. Although
Hamiltonian does not include the pairing interaction for si
plicity, the qualitative features of the present discussion m
be persistent even when the pairing interaction is taken
account.

First we consider a system of two nucleons in thed states.
We solve the eigenequations forH andC,

HCk5EkCk , ~38!

CCk5lk
2Ck . ~39!

The eigenvaluesEk of the HamiltonianH52kQ†Q for a
two-nucleon system are listed in Table I. We see in the ta
that the eigenvalueEk of the Hamiltonian increases with th
compound angular momentumL of the two nucleons, con-
sistently with the nuclear spectroscopy due to short-ran
nucleon-nucleon interactions, except for the energyEk for
L54 state that is lower than the energy forL52. The

TABLE I. The eigenvalues Ek of the Hamiltonian
H52kQ†Q for a two-nucleon system are listed in units of th
coupling constantk. Nuclear states with angular momentumL are
classified by the dimensions of SU~5! representations and by th
eigenvalueslk

2 of the Casimir operatorC.

L Dimension lk
2 Ek

0 15 112.0 240.0
1 10 72.0 230.0
2 15 112.0 215.7
3 10 72.0 28.6
4 15 112.0 225.7

TABLE II. The nuclear states of four nucleons in thed states are
classified by the dimensions of SU~5! representations. The colum
headed as ‘‘Multiplicity’’ shows the multiplicity of the representa
tions with a same dimension for four-nucleon systems. Each re
sentation contains the nuclear states specified by their angular
mentaL.

Dimension Multiplicity L

105 3 7,6,5,5,4,4,3,3,3,2,2,1,1
70 1 8,6,5,4,4,2,2,0
50 2 6,4,4,3,2,2,0,0
45 3 5,4,3,3,2,1,1
5 1 2
6-4
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TABLE III. The eigenvaluesEk of the HamiltonianH52kQ†Q in units of the coupling constantk and
the expansion coefficientscl 12l 340

of the eigenstatesCk5(cl 12l 340
u l 12l 340& are listed for the four-nucleon

states withL50 that are classified by the dimensions of SU~5! representations and by the eigenvalueslk
2 of

the Casimir operatorC.

L Dimension lk
2 Ek c110 c330 c000 c220 c440

0 50 168.0 293.978 0.962 0.274 0.000 0.000 0.000
0 50 168.0 214.593 20.274 0.962 0.000 0.000 0.000
0 50 168.0 293.978 0.000 0.000 20.552 20.216 0.805
0 50 168.0 214.593 0.000 0.000 20.478 0.873 20.094
0 70 288.0 2102.857 0.000 0.000 0.683 0.436 0.586
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nuclear states of the two-nucleon system are classified by
15 and 10 dimensional representations of SU~5!.

Second, we apply the present HamiltonianH52kQ†Q
in Eq. ~18! to a system of four nucleons in thed states. Table
II shows that 625 nuclear states of four nucleons in thd
states are classified by the 105, 70, 50, 45, and 5 dimens
representations of SU~5! as 5353535510533170150
321453315. Taking into account the spin and isospin
nucleons, we consider below the case of a four-nucleon
tem in which nucleons 1 and 2 among the four nucleons h
a unique combination of spin and isospin and nucleons 3
4 also have another unique combination of spin and isos
Therefore, the orbital wave functions for the nucleons 1 a
2 are antisymmetrized and those for the nucleons 3 and 4
also antisymmetrized. While the orbital wave functions
each pair of nucleons are antisymmetrized with the co
pound angular momentuml 51 or 3, the orbital wave func-
r

b
al
l
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tion for the whole four-nucleon system is the antisymm
trized wave function for the nucleons 1 and 2 multiplied
that for the nucleons 3 and 4. We see below that the nuc
states in the present system comprise one 50 dimensio
one 45 dimensional, and the singlet 5 dimensional repres
tation of SU~5!.

Expressing the compound orbital angular momentum
the nucleons 1 and 2 asl 12 and that of the nucleons 3 and
as l 34, we denote the orbital state of the whole four-nucle
system with angular momentumL as u l 12l 34,L&. To start
the demonstration of four-nucleon states, we first consi
all the nuclear states withL50, including the states
with even quantum numbers forl 12 andl 34. The Hamiltonian
H52kQ†Q and the Casimir operatorC are expressed by
the matrices with the numerically calculated matrix eleme
on the basis of the fiveL50 nuclear states, i.e.,u11,0&,
u33,0&, u00,0&, u22,0&, andu44,0&:
H5kS 288.000 220.949 0.000 0.000 0.000

220.949 220.571 0.000 0.000 0.000

0.000 0.000 280.000 235.777 0.000

0.000 0.000 235.777 235.102 28.762

0.000 0.000 0.000 28.762 296.327

D ~40!

and

C5S 168.000 0.000 0.000 0.000 0.000

0.000 168.000 0.000 0.000 0.000

0.000 0.000 224.000 35.777 48.000

0.000 0.000 35.777 190.857 30.666

0.000 0.000 48.000 30.666 209.143

D . ~41!
50
The simultaneous eigenstates of the Casimir operatoC
and of the HamiltonianH52kQ†Q for L50 are listed in
Table III. Four states among fiveL50 states belong to the
two-fold 50 dimensional representations, while one state
longs to the 70 dimensional representation. The eigenv
lk

2 of the Casimir operatorC for the two 50 dimensiona
e-
ue

representations is uniquely 168.0. Each of the twofold
dimensional representations contains twoL50 states. Note
that the twoL50 states in one 50 dimensional SU~5! repre-
sentation are split in their energies asEk5293.978k and
Ek5214.593k. The eigenstates of the HamiltonianH that
have the same eigenvalueEk , but which belong to different
6-5
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50 dimensional representations, have a same structure o
wave functions, while the wave functions are composed
different orders of combinations of the angular momentl
52 of the four nucleons. In the present case that the nu
ons 1 and 2 have a unique combination of spin and isos
and the nucleons 3 and 4 have also another unique comb
tion of spin and isospin, only the two basis statesu11,0& and
u33,0& are allowed among the fiveL50 basis states, i.e.
u11,0&, u33,0&, u00,0&, u22,0&, and u44,0&: Only one of the
twofold 50 dimensional representations is allowed for
present nuclear orbital states. TheL50 eigenstate of the
Hamiltonian with eigenvalueEk5293.978k belonging to
the allowed 50 dimensional representation is the ground s
of the present nuclear system.

Next we consider nuclear states withLÞ0 in the case tha
the nucleons 1 and 2 among the four nucleons have a un
combination of spin and isospin and the nucleons 3 an
have another unique combination of spin and isosp
The eigenvalues of the CasimirC and of the Hamiltonian
H52kQ†Q are listed in Table IV. Their simultaneou
eigenstates in the present case are classified into the
representations, i.e., the 50, 45, and 5 dimensional repre
tations of SU~5!.

We show in Fig. 1 the energy levels of the present fo
nucleon system. The energy levels belonging to the 50
mensional representation form a ground band, while th
belonging to the 45 and 5 dimensional representations f
sidebands. The set of lowest-lying energy levels withL
50, 2, 4, and 6 in the ground band features a rotatio
band structure. Note that this structure of energy levels
propriate for realistic systems is obtained from the Ham

TABLE IV. The eigenvalues Ek of the Hamiltonian H
52kQ†Q in units of the coupling constantk and the expansion
coefficients cl 12l 34L

of the eigenstatesCk5(cl 12l 34L
u l 12l 34L& are

listed for theLÞ0 nuclear states of the present four-nucleon s
tem. The nuclear states are classified by the dimensions of S~5!
representations and by the eigenvalueslk

2 of the Casimir operator
C. It is assumed that in the present four-nucleon system the nu
ons 1 and 2 have a unique combination of spin and isospin and
nucleons 3 and 4 have another unique combination of spin
isospin.

L Dimension lk
2 Ek c11L c13L c31L c33L

1 45 128.0 254.428 0.897 0.000 0.000 0.44
1 45 128.0 211.286 20.442 0.000 0.000 0.897
2 50 168.0 278.571 0.864 20.346 20.346 0.115
2 50 168.0 227.143 0.306 0.490 0.490 0.65
2 45 128.0 232.857 0.000 0.707 20.707 0.000
2 5 48.0 210.000 20.400 20.374 20.374 0.748
3 50 168.0 240.000 0.000 0.707 20.707 0.000
3 45 128.0 250.528 0.000 0.693 0.693 0.19
3 45 128.0 215.187 0.000 20.140 20.140 0.980
4 50 168.0 251.863 0.000 0.692 0.692 0.20
4 50 168.0 213.851 0.000 20.144 20.144 0.979
4 45 128.0 222.857 0.000 0.707 20.707 0.000
5 45 128.0 215.714 0.000 0.000 0.000 1.00
6 50 168.0 218.571 0.000 0.000 0.000 1.00
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tonian in Eq.~18! that takes into account the quadrupol
quadrupole interaction, although the present Hamilton
does not include the pairing interaction.

III. ADIABATIC COLLECTIVE TUNNELING
APPROXIMATION

Now we analyze the nuclear collective tunneling tran
tion from one Hartree minimum state to another. A typic
example of the collective tunneling transitions between t
Hartree states is of28Si nucleus@6#, which has 12 valence
nucleons in thes andd major shells. A nuclear system wit
12 valence nucleons in thes and d major shells has two
Hartree minimum states, i.e., an oblate and a prolate
formed state.

We analyze a collective tunneling transition from the o
late state to the prolate state of a 12-nucleon system in
adiabatic approximation to the effective Hamiltonian in E
~16!. The Hamiltonian takes into account the quadrupo
quadrupole residual interaction. The residual interaction t
is rotationally symmetric gives rise to the restoring force
the oblate state to tunnel to the prolate state. It is assu
that the nucleus is polarized along thez axis in the two de-
formed Hartree states.

The Hartree states are eigenstates of the Hartree Ha
tonian forH0 in Eq. ~19!,

HHartree52k^Q0&Q0 . ~42!

According to the variation of nuclear quadrupole mome
^2Q0& during the tunneling transition from the oblate sta
to the prolate state, the single-particle energies«m for thedm
states vary, while the single-particle energy levels cross e
other. Therefore, in the oblate Hartree state with a nega
nuclear quadrupole moment,̂2Q0&,0, eight nucleons
among the 12 valence nucleons in thes and d major shells
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50 45 5
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1 2

E

FIG. 1. The energy levels for a four-nucleon system are sho
In the present system, it is assumed that one pair of nucleons
a unique combination of spin and isospin and the other pair
nucleons also have another unique combination of spin and isos
The nuclear states of the present four-nucleon system are clas
by the 50, 45, and 5 dimensional representations of SU~5!. The
integral number shown aside each energy level represents the a
lar momentumL for the nuclear state. The nuclear energiesE are
shown in units of57 k.
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NUCLEAR COLLECTIVE TUNNELING BETWEEN . . . PHYSICAL REVIEW C67, 054316 ~2003!
fill the single-particle statesd2 andd22, while in the prolate
state with^2Q0&.0, eight nucleons fill the statesd1 and
d21 on the other hand. The other four nucleons vary
occupying states in the space of thes andd0 states during the
tunneling transition.

We define ‘‘particles’’ for thed1 and d21 single-particle
states and ‘‘holes’’ for thed2 andd22 states. In the presen
adiabatic approximation, we assume that the nucleus mak
transition from the oblate zero-particle–zero-hole Hart
stateu0& to the prolate eight-particle–eight-hole Hartree st
u8&, taking the transitional states of nucleon configuratio
(d2d22)42n(d1d21)n with n51, 2, and 3 in four steps dur
ing the tunneling transition. The transitional nuclear state
the nucleon configurations (d2d22)42n(d1d21)n in interme-
diate states during the transition are denoted as 2n-particle–
2n-hole statesu2n&. This model is called the adiabatic co
lective tunneling model.

The configurations of nucleons in thes and d0 states in
the adiabatic 2n-particle–2n-hole statesu2n& are determined
by minimizing the adiabatic nuclear energies for the Hart
Hamiltonian in Eq.~42!. Expressing the 2n-particle–2n-hole
states as

u2n,u2n&5)
i

~21!n~cosu2ncsi
† 1sinu2nc0i

† !

3~c2
†c22

† !42n~c1
†c21

† !nu0& ~43!

and minimizing the energies

e2n~u2n!5^2n,u2nuHHartreeu2n,u2n&

52
5k

7
$~1626n!2

216~1526n!sin2u2n148 sin4u2n%, ~44!

we obtain the parametersu2n for single-particle state mixing
of s andd0 nucleons and the adiabatic nuclear energiese2n
for the 2n-particle–2n-hole statesu2n&.

The above variation for the adiabatic nuclear energiese2n
determines the single-particle states of the nucleons in ts

TABLE V. The nuclear quadrupole moments^2Q0&, the adia-
batic nuclear energiese2n , and the single-particle energies«m in the
adiabatic 2n-particle–2n-hole statesu2n&, u4,u450&, and u4,u4

5p/2& are listed. The values of the energies are shown in unit
5
7 k and the values of the nuclear quadrupole moments are in u

of A 5
7 .

«m

u2n& ^2Q0& e2n d62 s d61 d0

u0& 216.0 2256.0 232.0 0.0 16.0 32.0
u2& 210.0 2100.0 220.0 0.0 10.0 20.0
u4,u450& 24.0 216.0 28.0 0.0 4.0 8.0
u4,u45p/2 & 4.0 216.0 8.0 0.0 24.0 28.0
u6& 10.0 2100.0 20.0 0.0 210.0 220.0
u8& 16.0 2256.0 32.0 0.0 216.0 232.0
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andd0 states to be thes state foru2n50 when the nucleus is
at the phase of the zero-particle–zero-hole and two-partic
two-hole configurations with the nuclear quadrupole mom
^2Q0&,0 and the single-particle states to be thed0 state for
u2n5p/2 when the nucleus is at the phase of the s
particle–six-hole and eight-particle–eight-hole configu
tions with ^2Q0&.0. When the nucleus is at the phase
the four-particle–four-hole configuration, the two adiaba
states, u4,u450& with ^2Q0&,0 and u4,u45p/2& with
^2Q0&.0, are degenerate in their energies. The adiab
nuclear energiese2n for n51, 2, and 3 provide a potentia
energy barrier between the two Hartree states, i.e., the z
particle–zero-hole stateu0& and the eight-particle–eight-hol
state u8&, that have the minimum adiabatic energiese0
5e8. There also exists a potential energy barrier between
two states,u4,u450& andu4,u45p/2&. These two degenerat
states are coupled to each other by a coupling between
nucleons in thes andd0 states. The coupling gives rise to
minor tunneling transition of the nuclear system fromu4,u4
50& to u4,u45p/2&, even when the coupling is weak. Usin
the configurations of thes andd0 nucleons determined by th
adiabatic energy variation for Eq.~44!, we define the adia-
batic 2n-particle–2n-hole statesu2n&. The four-particle–
four-hole state is adiabatically determined to be

u4&5
1

A2
~ u4,u450&1u4,u45p/2&) ~45!

by taking into account a weak coupling between thes andd0
nucleons.

The calculated adiabatic energiese2n of the 2n-particle–
2n-hole statesu2n&, u4,u450&, and u4,u45p/2&, are listed
in Table V. The energies of the two Hartree statesu0& andu8&
are degenerate with the minimum adiabatic energiese05e8

52 5
7 256k. While the adiabatic energiese2n are symmetric

with respect to 2n,4 and 2n.4, the energye4 of the four-
particle–four-hole state is at the top of the potential ene
barrier between the two Hartree statesu0& and u8&. The
nucleus in either one of the two adiabatic four-particle–fo
hole statesu4,u450& and u4,u45p/2& with the degenerate
adiabatic energiese452 5

7 16k is not spherical, but is de
formed with the nuclear quadrupole moment indicated
Table V, respectively. Note that the nucleus does not proc
through a spherical state during the collective tunneling tr
sition from the oblate state to the prolate state. Thus, we
that the quantum mechanical view of collective tunneli
transition is different from the classical view. The latter a
sumes that the nuclear system makes a transition from
oblate state to the prolate state through a spherical state a
top of the potential energy barrier, if it proceeds on a shor
way. The energy at the top of the potential energy barrie
the quantum mechanical view is lower than the energye
50 in the spherical nuclear state at the top of the poten
energy barrier in the classical view.

Now we analyze the collective tunneling transition of t
present nuclear system from the oblate zero-particle–z

f
its
6-7
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TABLE VI. The eigenvaluesEk of Hadi in unit of 5
7 k and the

expansion coefficientsc2n
k of the eigenstatesuCk&5(nc2n

k u2n& in
terms of the adiabatic 2n-particle–2n-hole statesu2n& are listed.
The upper and lower signs in the double signs of the coefficie
c2n

k stand for the smaller and larger of the two values of 2n in the
coefficientsc2n

k , respectively.

k Ek c0,8
k c2,6

k c4
k

0 2271.3 0.671 0.213 0.085
1 2269.6 70.680 70.193 0.000
2 2128.2 20.213 0.567 0.515
3 286.4 60.193 70.680 0.000
4 27.4 0.062 20.364 0.853

0
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0.4

0.6

0.8

1
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8(t)

t
0

π2
E E-1

P

(a)

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

P0(t)

t
0

π2
E E-1

(b)

FIG. 2. The probabilities~a! P8(t) of the nuclear collective
tunneling transition starting with the Hartree stateu0& to the coun-
terpart Hartree stateu8& and ~b! P0(t) of the return tunneling tran-
sition to the initial Hartree stateu0& calculated in the whole spac
~dotted line! and in the two-state approximation~solid line! are
shown as a function of timet in units of the periodt52p/(E1

2E0) of the harmonic tunneling oscillations. The parts cover th
cycles of the collective tunneling oscillations. The initial value
P0(t) in the two-state approximation isP0(0)5u(k50

1 ^0uCk&
3^Cku0&u250.834.
05431
hole Hartree stateu0& to the prolate eight-particle–eight-hol
Hartree stateu8& through the adiabatic 2n-particle–2n-hole
statesu2n& with n51, 2, and 3 in four steps. The Hami
tonianH52kQ†Q in Eq. ~18! is adiabatically expressed b
the 535 tridiagonal matrix on the basis of the 2n-particle–
2n-hole statesu2n&,

Hadi52
5k

7 S 256 48 0

48 100 36A2

36A2 16 36A2

36A2 100 48

0 48 256

D ,

~46!

with the matrix elements

Hadi nn85^2nuHu2n8&. ~47!

The calculated eigenvaluesEk and eigenstatesCk of the
HamiltonianHadi are listed in Table VI. The energies of tw
ground states are nearly degenerate withE152 5

7 269.6k and
E052 5

7 271.3k. These two nearly degenerate eigenstates
mainly composed of an odd and an even linear combinat
respectively, of the zero-particle–zero-hole stateu0& and the
eight-particle–eight-hole stateu8&.

The time evolution of the nuclear state during a tunnel
transition starting with the oblate zero-particle–zero-h
Hartree stateu0& is expressed in a real-time description as

C~ t !5e2 iH aditu0&5(
k

e2 iEktuCk&^Cku0&. ~48!

The probability of the nuclear transition to 2n-particle–
2n-hole stateu2n& is

P2n~ t !5u^2nue2 iH aditu0&u2

5u(
k

^2nuCk&e
2 iEkt^Cku0&u2

5(
kk8

^0uCk&^Cku2n&^2nuCk8&^Ck8u0&

3cos$~Ek2Ek8!t%

5dn022(
kk8

^0uCk&^Cku2n&^2nuCk8&

3^Ck8u0&sin2S Ek2Ek8
2

t D . ~49!

We demonstrate the calculated probabilityP8(t) of the tran-
sition to the prolate eight-particle–eight-hole Hartree st
u8& and the probabilityP0(t) of the return transition to the
initial zero-particle–zero-hole Hartree stateu0& in Fig. 2,
which shows that the transition probabilitiesP0(t) andP8(t)
grossly oscillate with a long period oft52p/(E12E0),
fluctuating with short periods of quantum fluctuations. No
that the frequency of the tunneling oscillations is prop

ts

e
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tional to the energy splitting of the two nearly degener
ground states. Since the energy splitting is an exponent
small quantity, it takes a long time for the oblate state
tunnel to the prolate state.

If we take only the contribution of the two nearly dege
erate ground statesCk with k50 and 1 in the above expres
sion for P2n(t) ~two-state approximation!, the transition
probabilitiesP0(t) and P8(t) feature only one mode of os
cillations ~ground state oscillations! with the unique period
t52p/(E12E0), removing the quantum fluctuations. W
show in Fig. 2 the transition probabilitiesP0(t) and P8(t)
smoothed by the two-state approximation.
in
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In the case that the HamiltonianH is symmetric with re-
spect to the particle-hole number 2n, the even and odd over
lapping of the Hartree states with the eigenstatesCk ,

^C0u0&5^C0u8&52^C1u0&5^C1u8&, ~50!

^C2u0&5^C2u8&52^C3u0&5^C3u8&, ~51!

leads to matching and mismatching relations of the ma
elements in a good approximation. The overlapping relati
simplify the probability of the collective tunneling from th
Hartree stateu0& to the counterpart Hartree stateu8& as
P8~ t !54u^0uC1&^C0u0&u2sin2S E12E0

2
t D

18^0uC2&^C0u0&u2sinS E12E0

2
t D sinS E32E2

2
t D cosH ~E31E2!2~E11E0

2
tJ 1•••. ~52!
is
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On the right hand side of the above equation the first l
represents the tunneling oscillations sin2@(E12E0)/2t# be-
tween the two ground statesCk with k50 and 1 and the
second line represents the quantum fluctuations cos$@(E3
2E2)2(E12E0)#/2t%. Thus, the transition probabilitiesP8(t)
and P0(t) are composed of collective tunneling oscillatio
between the two ground states with the long periodt
52p/(E12E0) and of quantum fluctuations with a rela
tively short period. The tunneling probabilities featu
ground state oscillations plus quantum fluctuations.

The quantum fluctuations are dominated by two mode
beat with frequencies (E12E0)/2p and (E32E2)/2p. Ow-
ing to the beat with the frequency (E12E0)/2p, we in fact
see in Fig. 2 that the quantum fluctuations inP8(t) are most
evident at a timet5(n1 1

2 )t, i.e.,

~E12E0!t5~2n11!p, ~53!

when the transition probabilityP8(t) is the maximum, while
the quantum fluctuations almost completely vanish at a t
t5nt, i.e.,

~E12E0!t52np, ~54!

when the transition probabilityP8(t) is the minimum. The
probabilityP0(t) has a similar feature that the quantum flu
tuations almost completely vanish at a timet5(n1 1

2 )t
when the transition probabilityP0(t) is the minimum. Thus,
a crowd of quantum fluctuations coherently shifts back a
forth in phase with the collective tunneling oscillations.

The period of the collective tunneling oscillations is e
ponentially long, while the periods of other nuclear oscil
tions are relatively short: Nonadiabatic transitions may ta
place a short while after the system starts tunneling. Thus
system retains the energy for collective tunneling osci
tions. This is the mechanism for the symmetric nuclear s
e

f

e

d

-
e
he
-
s-

tem to maintain the collective tunneling oscillations. Th
fact must be persistent even when we take into accou
larger space of adiabatic particle-hole states or the effect
nonadiabatic transition.

IV. HARMONIC COLLECTIVE TUNNELING
OSCILLATIONS

In the preceding section we analyzed the nuclear col
tive tunneling transition from the oblate Hartree state to
prolate Hartree state, using the adiabatic collective tunne
approximation. The adiabatic approximation provides a tri
agonal expression for the Hamiltonian for collective tunn
ing. When the nuclear system completes one tunneling t
sition from one Hartree state to another, it starts to mak
return tunneling transition to the initial Hartree state. In fa
the calculated result for the transition probabilities in t
preceding section suggests that the nuclear system gove
by the HamiltonianHadi in Eq. ~46! makes harmonic collec
tive tunneling oscillations with the periodt52p/(E1
2E0). In this section we argue that the tridiagonal Ham
tonian symmetric with respect to the particle-hole numbern
allows harmonic collective tunneling oscillations of the sy
tem. We express the harmonic collective tunneling in ter
of the motion of the center of mass of wave packets.

The tridiagonal Hamiltonian is, in general, expressed
the basis of adiabatic 2n-particle–2n-hole statesu2n&:

H5H01HI , ~55!

H05 (
n50

N

enu2n&^2nu, ~56!
6-9
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HI5 (
n50

N21

$hnn11u2n&^2~n11!u1hn11nu2~n11!&^2nu%,

~57!

where the maximum number of particles and holes is
noted as 2N. We assume the symmetry with respect ton
,N and 2n.N, i.e., en5eN2n and hnn615hN2nN2n71.
The adiabatic 2n-particle–2n-hole energiesen provide a po-
tential energy barrier between the zero-particle–zero-h
Hartree stateu0& and the 2N-particle–2N-hole Hartree state
u2N&.

In order to analyze the harmonic oscillations of the c
lective tunneling transition starting with the Hartree sta
u0&, we formulate the time evolution of the number of pa
ticles and holes in the nuclear system. The nuclear w
function expressed in terms of the adiabatic 2n-particle–
2n-hole statesu2n&,

C~ t !5e2 iHt u0&5(
n

u2n&^2nue2 iHt u0&, ~58!

is split into two wave packets by the potential energy barr
one on the side of the zero-particle–zero-hole stateu0& and
the other on the side of the 2N-particle–2N-hole stateu2N&.
Although no wave packets can traverse the potential ene
barrier, the current flows from one wave packet to anot
through the barrier, varying the balance of the two wa
packets. Defining the density matrix

Pn5u2n&^2nu ~59!

and the current for the nuclear system to vary the state f
an adiabatic stateu2n& to u2(n11)& @4#,

j n11n52 i $hn11nu2~n11!&^2nu2hnn11u2n&^2~n11!u%,
~60!

in fact, we can prove the continuity relation,

2
]

]t
Pn52 i @H,Pn#5 j n11n2 j nn21 . ~61!

The time evolution of the number of particles and holes
formulated as the motion of the center of mass of the t
wave packets in the particle-hole number space. The coo
nate of the center of mass of the two wave packets at timt
is expressed in terms of the eigenstatesCk and the eigenen
ergiesEk of the HamiltonianH as

n~ t !5^C~ t !un̂uC~ t !&

5(
n

^0ueiHt u2n&2n^2nue2 iHt u0&

5 (
kk8n

^0uCk&^Cku2n&2n^2nuCk8&^Ck8u0&ei (Ek2Ek8)t,

~62!

where the operator for the coordinate of the center of mas
wave packets is defined as
05431
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n̂5 (
n50

N

2nu2n&^2nu. ~63!

The velocity operator for the center of mass of wa
packets is defined by the Heisenberg equation of motion

ṅ̂5 i @H,n̂ #

52i (
n50

N

$hnn11u2n&^2~n11!u2hn11nu2~n11!&^2nu%.

~64!

The acceleration operator for the center of mass is also
fined by the equation of motion,

n̈̂5 i @H, ṅ̂ #

52(
n50

N

@~en112en!$hnn11u2n&^2~n11!u

1hn11nu2~n11!&^2nu%

12~hnn11hn11n2hnn21hn21n!u2n&^2nu#. ~65!

We now analyze the harmonic tunneling oscillations, e
pressing the HamiltonianH in Eq. ~55! in terms of the eigen-
statesCk of H as

H5(
k

EkuCk&^Cku ~66!

and using the operator for the coordinate of the center
mass of wave packets relative to the centeru2n&5uN& of the
oscillation region,

n̂ r5 (
n50

N

(2n2N)u2n&^2nu. ~67!

The equation of motion of the center of mass is written a

n̈̂ r52†H,@H,n̂ r #‡

52H(
kk8

Ek
2(uCk&^Ckun̂ruCk8&^Ck8u1uCk8&^Ck8un̂ruCk&^Cku)

22(
kk8

EkEk8uCk&^Ckun̂ r uCk8&^Ck8uJ
52 (

k,k8
~Ek2Ek8!

2~ uCk&^Ckun̂ r uCk8&

3^Ck8u1uCk8&^Ck8un̂ r uCk&^Cku!. ~68!

The two-state approximation, which takes into accou
only the two nearly degenerate ground statesCk with k50
and 1, leads to
6-10
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NUCLEAR COLLECTIVE TUNNELING BETWEEN . . . PHYSICAL REVIEW C67, 054316 ~2003!
n̈̂ r52~E12E0!2~ uC1&^C1un̂ r uC0&^C0u1uC0&

3^C0un̂ r uC1&^C1u!

52~E12E0!2 (
kk850

1

uCk&^Ckun̂ r uCk8&^Ck8u

52~E12E0!2n̂ r . ~69!

This relation implies that the center of mass of wave pack
makes harmonic oscillations around the centeru2n&5uN& of
the oscillation region with angular velocityv5E12E0, re-
peating the tunneling back and forth between the two Har
statesu0& andu2N&. In the above transformation of the equ
tion we use the completeness

(
k50

1

uCk&^Cku51 ~70!

of the eigenstatesCk in the two-eigenstate space and t
relations^Ckun̂ r uCk&50, which are satisfied by the eigen
statesCk that are either symmetric or antisymmetric wi
respect to 2n,N and 2n.N. The amplitude of the har
monic tunneling oscillations is determined by the init
value of the coordinate of the center of mass of wave pa
ets, n r(0)5^C(0)un̂ r uC(0)&, in the two-state approxima
tion.

The evolutions of the velocity,ṅ(t)5^C(t)u ṅ̂uC(t)&, and

of the acceleration,n̈(t)5^C(t)u n̈̂uC(t)&, of the center of
mass of the two wave packets involve the differences of
energy eigenvaluesEk , since the velocity and the acceler

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1

ν(t)

t
0

π2
E E-1

FIG. 3. The values of the coordinaten(t)5n r(t)14 of the cen-
ter of mass of the two wave packets in the 12-nucleon system
erned by the adiabatic HamiltonianHadi in Eq. ~46!, calculated in
the whole space~solid line! and in the two-state approximatio
~dashed line!, are shown as a function of timet in units of the
periodt52p/(E12E0) of the harmonic tunneling oscillations. Th
motion of the center of mass features harmonic oscillations in
two-state approximation calculation.
05431
ts

e
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tion are defined by the commutation relations of the coor
nate n̂ of the center of mass with the HamiltonianH as
above. Some of the eigenenergy differences are so large
the velocity ṅ(t) and the accelerationn̈(t) of the center of
mass, extremely affected by quantum fluctuations, oscil
quite violently. The wave function in the two-state approx
mation,

C~ t !5e2 iHt u0&5 (
k50

1

uCk&^Ckue2 iEktu0&, ~71!

however, yields the velocity and acceleration to be smo
functions of timet of the order of the small energy differ
encesE12E0 and (E12E0)2, respectively.

We have calculated the wave functionC(t), the coordi-
naten(t), the velocityṅ(t), and the accelerationn̈(t) of the
center of mass of wave packets for the system governed
the adiabatic HamiltonianHadi in Eq. ~46!. Figure 3 demon-
strates the calculated coordinaten(t) of the center of mass o
wave packets. Because of the quantum fluctuations the
locity ṅ(t) and the accelerationn̈(t) of the center of mass
oscillate so violently that it is not meaningful to demonstra
their values. Only the values of the accelerationn̈(t)
smoothed by the two-state approximation are listed in Ta
VII. Figure 3 and Table VII show that the motion of th
center of mass of wave packets calculated in the two-s
approximation clearly features harmonic collective tunnel
oscillations. The amplitudea5un(0)24u53.49 of the har-
monic tunneling oscillations is determined by the initi
value of the coordinate of the center of mass of wave pa
ets,n(0)50.51, in the two-state approximation.

v-

e

TABLE VII. The values of the accelerationn̈(t) of the center of
mass of the two wave packets in the 12-nucleon system gove
by the adiabatic HamiltonianHadi in Eq. ~46! are calculated in the
two-state approximation as a function of timet in units of the period
t52p/(E12E0) of the harmonic collective tunneling oscillations
Dividing the acceleration expressed on the right hand side of
~65! into two terms, i.e., the potential energy term and the resid
interaction term, we show the values of the two terms and the s
of the two.

t Potential Residual Sum
interaction

0.00 27769.5 7779.3 9.8
0.05 27389.2 7398.5 9.3
0.10 26285.6 6293.6 7.9
0.15 24566.8 4572.6 5.8
0.20 22400.9 2403.9 3.0
0.25 0.0 0.0 0.0
0.30 2400.9 22403.9 23.0
0.35 4566.8 24572.6 25.8
0.40 6285.6 26293.6 27.9
0.45 7389.2 27398.6 29.3
0.50 7769.5 27779.3 29.8
6-11
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The accelerationn̈(t) of the center of mass of two wav
packets that should be proportional to the force acting on
tunneling oscillator is divided into the two terms on the rig
hand side of Eq.~65!, i.e., the potential energy term withen
and the residual interaction term withhnn61hn61n . The first
term representing the potential energiesen can be shown to
act on the center of mass of wave packets as a repulsive f
as follows. The energy differencesen112en in the potential
energy term in Eq.~65! are positive for 2n,N and negative
for 2n.N. The factorshnn61 are negative. From Table V
that lists the eigenstatesCk of Hadi, we see that the expec
tation values ofu2n&^2(n11)u and u2(n11)&^2nu in the
nuclear wave functionC(t) which is split into the two wave
packets are positive at any timet. Therefore the force due to
the potential energy term in Eq.~65! acts as a repulsive forc
to repel the center of mass of wave packets from the ce
u2n&5uN& of the oscillation region. The force due to th
second term in Eq.~65! representing the residual interactio
hnn61, however, acts as an attractive force to make the c
ter of mass oscillate through the repulsive potential ene
barrier. In fact, using the relation forCk with k50 and 1,

^2uCk&5
h10

Ek2e1
^0uCk&, ~72!

which is obtained in a perturbation theory, we can gener
prove that the second term in Eq.~65! representing the re
sidual interaction overcomes the first term from the poten
energiesen , concluding that the center of mass of wa
packets oscillates through the potential energy barrier. N
that, if the nondiagonal matrix elementshnn11 andhn11n are
constant independently ofn, i.e., if the mass in the kinetic
energy in the Schro¨dinger difference equation for a Hamilto
niain H, which is equivalent to the inverse of twice the m
trix elementshnn61 @4,9#, is constant independently ofn, the
attractive force due to the residual interaction vanishes in
the region of the tunneling oscillation motion. Only at th
edgesu0& and u2N& of the region of motion, the attractiv
force is brought about by the second term in Eq.~65! to steer
the tunneling of the center of mass of wave packets thro
the potential energy barrier.

Here we briefly discuss the case of the HamiltonianH
5kQ†Q with the sign opposite to the present case of
Hamiltonian H52kQ†Q. The Hamiltonian H5kQ†Q
yields an attractive adiabatic potential energy well. T
Hamiltonian, however, does not make much difference fr
the present HamiltonianH52kQ†Q. The new Hamiltonian
has the same set of eigenstates asH52kQ†Q, while the
eigenenergiesEk are of opposite signs and the order of t
energy levels is reversed. The wave functionC(t)
5e2 iHt u0& for the nuclear evolution, if it starts with a de
formed stateu0&, is split into two wave packets separated
the two sides of the prolate and oblate states, and no w
packets can traverse the attractive potential energy well.
current, however, flows from one wave packet to anothe
05431
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that the center of mass of the two wave packets can trav
the well. In a same way as the case of a potential ene
barrier, the potential energy term with the energy differen
en112en multiplied by positive nondiagonal matrix ele
mentshnn61 on the right hand side of Eq.~65! for the accel-

erationn̈̂ acts to repel the center of mass to stay at an edg
the potential energy well, while the residual interaction te
in Eq. ~65! acts as an attractive force on the center of mas
oscillate over the potential energy well. Even in the case
the attractive potential energy well, if the initial stateu0& is
not coupled with the eigenstatesCk of H that have probabil-
ity distribution in the central region of the well, no wav
packets at an edge of the region can, in general, traverse
potential energy well. Therefore, it is concluded that a qu
tum mechanical system expressed by a tridiagonal Ha
tonian makes collective motions contradictory to classi
mechanics even in an attractive potential energy well.

V. DISCUSSIONS AND CONCLUSION

We have formulated the nuclear collective tunneling tra
sitions from one Hartree minimum state to another. We
formed the field Hamiltonian used for the Hartree calcu
tions into the HamiltonianH effective for the Hartree state
and for the collective tunneling in Eq.~16!, which employs
the quadrupole-quadrupole interaction for the residual in
action. The Hamiltonian does not include the pairing int
action, which may play a role in the collective tunnelin
from the oblate state to the prolate state. The qualitative
tures of the present discussion might be persistent even w
we take into account the pairing interaction.

We developed a real-time description for the collecti
tunneling. We showed that an adiabatic approximation p
vides a tridiagonal expression for the HamiltonianH on the
basis of adiabatic 2n-particle–2n-hole statesu2n&. Owing to
the residual interaction, the nuclear system, governed by
tridiagonal Hamiltonian symmetric between two Hartr
states, coherently tunnels back and forth between the
Hartree states to make harmonic tunneling oscillations.
investigated the mechanism of the system to make the
monic oscillations of quantum mechanical collective tunn
ing. While a crowd of quantum fluctuations coherently shi
back and forth in phase with the harmonic tunneling osci
tions of the center of mass of wave packets, the symme
nuclear system retains the energy for the harmonic tunne
oscillations.

The tables of isotopes show that the two lowest-lying1

energy levels of28Si are split by 5.0 MeV@10#. This may
suggest that the nuclear system is not precisely symme
between the oblate state and the prolate state. If so, a m
detailed description may be necessary for the investigatio
the collective tunneling oscillations of the nuclear syste
We will investigate the tunneling oscillation phenomena
nuclear physics in the case in which the asymmetry of
system arises.
6-12
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