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We formulate the nuclear collective tunneling transition from one Hartree state to another, consistently with
the Hartree states. A Hamiltonian effective for the collective tunneling as well as for Hartree states is obtained
with the parameters determined by the Hartree calculations. A real-time description for the tunneling is pro-
posed. It is shown that a nuclear system governed by the Hamiltonian symmetric between two Hartree states
collectively tunnels back and forth between the two states owing to the residual interaction, so that the system
makes harmonic tunneling oscillations. While a crowd of quantum fluctuations coherently shifts back and forth
in phase with the tunneling oscillations of the center of mass of two wave packets, the symmetric nuclear
system retains the energy for the harmonic tunneling oscillations. The collective tunneling transitions are
analyzed in an adiabatic approximation.
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I. INTRODUCTION operators that constitute $&) algebra.
We formulate the collective tunneling transitions in a real-

A finite quantum mechanical system provides an infinitetime description. The collective tunneling is expressed in
number of Hartree states with various symmetries anderms of the motion of the center of mass of two wave pack-
boundary conditions. The order formation in such a systengts, one on the side of the oblate Hartree state and the other
must proceed through a series of collective transitions fron®n the side of the prolate Hartree state. The Hamiltonian that
one metastable state to another. Expressing metastable state$ymmetric in the particle-hole number space allows har-
in the Hartree approximation, we describe the collective tunMonic collective tunneling oscillations of nuclei. While a
neling transition from one Hartree state to another. The tran¢roWd of quantum fluctuations coherently shifts back and
sition is induced by a residual interaction between nucleonorth in phase with the tunneling oscillations of the center of
in the present theory beyond the Hartree approximation. Mass of wave packets, the nucleus retains the energy for the

In atomic and molecular physics, it has been observed th&tarmonic tur_mellng oscillations. Th|s_ is _the mechamsm for
atoms coherently tunnel back and forth between two regiond'€ Symmetric nuclear system to maintain the harmonic tun-
of classically stable motiofil]. The tunneling oscillations Neling oscillations.

are stable and periodic, if the tunneling Hamiltonian is sym- N Sec. I, we present a Hamiltonian effective for the Har-
metric between the two regions. The mechanism of thdree states and for the collective tunneling between the Har-

atomic harmonic tunneling oscillations is applied to thelree states. In Sec. il the adiabatic collective tunneling ap-

products of atomic clocks. We will investigate the harmonicProximation is developed. In Sec. IV, we analyze the
collective tunneling oscillations of nuclei. harmonic collective tunneling oscillations in terms of the

In the previous papers, we performed the relativistic Harmotion of the center of mass of two wave packets. Discus-
tree calculation§?] and the nonrelativistic meson mean-field Sions and conclusion are given in Sec. V.
calculations[3] to obtain the Hartree states of nuclei and

developed the steering field theory for the nuclear collect|ve”_ HAMILTONIAN EEFECTIVE FOR HARTREE STATES

tunneling transition from one Hartree state to anofdeh]. AND FOR COLLECTIVE TUNNELING
In the present paper we analyze the collective tunneling

between the Hartree states, especially harmonic collective We have analyzed the nuclear Hartree states in the rela-
tunneling oscillations. We reform the field theoretical Hamil- tivistic Hartree calculationg2] and in the nonrelativistic me-
tonian used in the Hartree calculations into a Hamiltonianson mean-field calculatiod8§]. In a theory beyond the Har-
effective for the Hartree states and for the collective tunneliree approximation the Hartree states are affected by a
ing between the Hartree states. The Hamiltonian in theesidual interaction, which gives rise to the collective tunnel-
present theory beyond the Hartree approximation involveing of the system from one Hartree state to another. In this
the residual interaction between nucleons. In the case of theaper we analyze the collective tunneling between Hartree
collective tunneling from an oblate Hartree state to a prolatestates. It is aimed to formulate the collective tunneling tran-
Hartree state, the residual interaction is a quadrupolesitions between the Hartree states in a real-time description
qguadrupole interaction, which is expressed in terms of thend to derive a Hamiltonian effective for the collective tun-
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neling as well as for the Hartree states. The parameters in theblate and prolate, are symmetric to each other with respect
effective Hamiltonian are determined by the Hartree calculato deformation paramet¢8], i.e., the principal mean field is

tions. spherically symmetric,
Prolate and oblate Hartree states are one of the features of
the nuclei that have valence nucleons in thand d major ep(r)=ey(r) Yoo 6, ¢), (4)

shell, (sd,d_,d;d_;dy)* where the subscriptg. of d,
stand for thez component of orbital angular momentum and the tunneling steering field is of quadrupole symmetry,
=2 and the superscript 4 indicates the spin and isospin de- R
grees of freedom for nucleons. We treat the collective tun- N =AY 6,0). 5)
neling transition os- andd-shell nuclei from the oblate Har-
tree state to the prolate Hartree state. A typical example of When we quantize the meson fief(r), we truncate the
the nU_C|288i that exhibit both an oblate and a prolate Hartreeneson field space by taking into account only the principal
state is “Si [6]. While a configuration of nucleons in the a5, fieldp,(r), the tunneling steering field of quadrupole
nonsphericald states deforms the Hartree potential, thesymmetry
nuclear residual interaction that is rotationally symmetric in-
duces a collective tunneling transition between the two de- — O\—
r)=N NYo(6,¢), 6
formed Hartree states. @201 =No@d1)Y2ol 0, ¢) ©
We formulate the collective tunneling in the description gng the other components of quadrupole symmetry

[4,5] based on the nonrelativistic meson mean-field calcula-
tions for the Hartree states. The description adopts one sort A

e r=N NYom(6,0), 7
of meson field in place of- andw mesons and endorses the @2n(1)=N2ed1)¥on(6,¢) @
nuclear saturation by the truncation of the meson space. Thgjth the normalization factoN,,
nonrelativistic nuclear field Hamiltonian is written as

vy L1 B(1) =)+ (D), ®)
Hnuclzf lﬂT(r)(—m)l/f(f)sz{Wz(r) A
m(r)=0, 9
+p(N)(=V2+m?) (1)} =g () (r) |dr, where the quantum quadrupole field is quantized as
1 . 1 T
, , , D)=, ———={am@on(l) T alnedn(N}  (10)
where is nucleon field,¢ and 7 are meson fields, anll, m 2wy
m, andg are nucleon mass, meson mass, and meson-nucleon
coupling constant, respectively. and
Let us consider a nuclear system that has two Hartree . o
states¥; andW;. The Hartree stated; and ¥, are specified 05=(@am| = VM2 o). (13)

by the meson mean fields and ¢', respectively. Using the

meson mean fielde' and ¢’ in the two Hartree states deter- The spherical principal mean fietpip(F) is assumed to con-
mined in the mean-field calculations, we formulate the col-tribute only to the nuclear single-particle energies, but not to
lective tunneling between the two Hartree states. The mesatne residual interaction energies. The set of quadrupole fields

i i i i f - — . , I

mean fielde, which varies frome' to ¢', determines are- ) ‘makes the meson field rotationally invariant. The com-
sidual interaction to steer the nuclear collective tunnelln%onemS of quadrupole witm+0 are necessary to take into
from W to Wy . o account any orientation of the deformed Hartree states in the

Here we briefly show how to derive a Hamiltonian effec- jnitia| and final states of the tunneling process.
tive for the Hartree states and for the collective tunneling  The truncated meson field is related to the nucleon field
between the Hartree stateg5]. In terms of the meson mean & by the field equation
fields in the two Hartree states, we define the tunneling steer-

ing field o be (= V24+m?) (1) =gy (1) (). (12
edr)= %{qof(F)_ o'(N)}, 2 Projecting the above equation onto th? quadrupole field, we
express the quantum quadrupole fieldin terms of the
and the principal mean field to be nucleon field:
N 1 . N TN 1 —_ Tk oSN 2 2 FIN A3t
ep(N) =511+ (N} @ =2 <P2m<”f eam(F)(ZV M S(r)dr
Suppose that the nucleus #Si is polarized along axis _9 oo (0 | o (ruta e rd3’. (13
in the two deformed Hartree states. The two Hartree states, Z% % e2n(r) | @an(r )Y (r)¢(r?) 13
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Substituting these expressions for the meson field into the 5
field Hamiltonian in Eq(1), we obtain Qo=Ql= 72 (2chcoi—clicyi—2ckicoi—cl oy
1
[ V2 AT oo
Hnuc|=f wr)(—m—g¢p<r>)¢<r>d3r+H, (19 20 a0-a), 2
¢ o Q=01 = 23 (- Beheuelcache
H:—ﬂf f% WD) @an(D () (1) NS e
2
- .. +6cl e p), 23
X @k (F ) p(r')d3rd3r . (15 Voelye-a) @3
The nuclear quadrupole-quadrupole interacttéris re- —of = \ﬁ 2ctcn+6elc . +2cic .
sponsible for the two deformed Hartree states and for the Q=0 7Ei (2¢5co+ VBelic-y+2050-2).
collective tunneling transition between them. (24

The derived Hamiltonian is expressed in terms of the cre-
ation and annihilation operators femucleons ¢g;) and for  The coupling constant of the quadrupole-quadrupole inter-
d, nucleons ¢,;) in the basis states determined in the action is determined by the meson mean-field overlapped
single-particle potential for the spherical principal meanwith the nucleon densities:
field:

92 * N ko g
H o= HsherH, (16) K= 20&)% % f f wZ,u—m(r)(PZm(r)lWZM(r)

where the shell-model Hamiltonian for nucleons in gend . I N
d shells is Xz (1) @om(r ) ho— ,(r")drd>r’. (25

Hooe S foat S + 1 The value ofx that is determined in the Hartree calculations
shel™ 24 | &CsiCsi m €dCpiCui | - (17 s of the order of 0.1 MeV for the-shell nucleong3]. The
s-shell nucleons are assumed to be free from the residual

When the valence nucleon configurations are truncated in th@teractionH in Eq. (18), but a weak residual interaction is
s and d shells, the quadrupole-quadrupole interaction be2ssumed to act betweenand d nucleons, when it is indi-
tween thed-shell nucleons, responsible for the deformedcated.

Hartree states and for the collective tunneling, is expressed The residual quadrupole-quadrupole interaction forms the
as deformed Hartree potential for the oblate Hartree state and

that for the prolate Hartree state. The residual interaction
2 concurrently induces a nuclear collective tunneling transition
H=-xQ'Q=—x > QIQm=Ho+H, (18)  between the two deformed Hartree states in the present
m=-2 theory beyond the Hartree approximation. For simplicity, the
_ present calculations do not include the pairing interaction,
with although it may play a role in the collective tunneling be-
tween the deformed Hartree states.
Ho=—xQ{Qo. (19 The orbital angular momentum operators are also ex-
pressed as

Hi=—x(Q3Q,+QlQ;+Q",Q_1+Q7,Q_,). (20)

— _ _ —maT
In the numerical calculations below, the single-particle ener-  Lm= V10 % (2p2m=p|1m)(=1)*"Mc ic,m
gies ¢5 and g4 in the spherical shell-model Hamiltonian (26)
Hgney @re assumed to be degeneratg=e,) and the spin-
orbit splitting for thed states is ignored. The quadrupole-
qguadrupole interaction, which is rotationally symmetric,
yields the restoring force for the oblate state to tunnel to the
prolate state. The quadrupole operators in the residual inter- | = (2c].c,+clc;—cl e —2cl e ),
action HamiltoniarH are defined to be [

and their explicit expressions are

(27)
Q=110 (2u2m—u|2m)(=1)*~"clic, m (21)
. Li=- Z (V2chcyi+ /3¢ coi+ V3ehic_y;
andi stands for spin and isospin of nucleons. The explicit .
expressions for the quadrupole operators are the following: +y2c! jey), (28
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TABLE

(29

The operator®),, andL,, satisfy the commutation relation,

PHYSICAL REVIEW C 67, 054316 (2003

. The eigenvalues E, of the Hamiltonian
L71=2 (\/Ecliczrl- \/§C$icli+ \/§Ci1i00i+ \/ECiZiqu)- H=—«Q'Q for a two-nucleon system are listed in units of the
I

coupling constanik. Nuclear states with angular momentulurare
classified by the dimensions of $&) representations and by the
eigenvalues\? of the Casimir operato€.

[Qm.Lm]=—V6(2mim’[2m+m")Qmim,  (30)

which is identical to that for S(B) by Elliott [7]. The com-
mutation relation betwee®,, and Q,, involves not only
Ln.m as in the case of S@) but also octupole operators
Shi+m - Thus, the algebra of the 24 operat@fgcﬂli that
appear in the present Hamiltoniah is extended to S(&)

[8], which employs, in addition tb,, andQ,,, the octupole
and hexadecapole operators,

L Dimension A\ Ex

0 15 112.0 —40.0

1 10 72.0 -30.0

2 15 112.0 —15.7

3 10 72.0 —8.6

4 15 112.0 —25.7
[H,Lo]=0, [H,L.;]=0, [H,[2]=0. (37

Sm:\/l—oz (2/~L2m_1“|3m)(_1)M7mCLiC,u7mi! (31) The eigenstates of the Hamiltoniad are also simulta-
i neously eigenstatg&,M) of the orbital angular momentum

operatorsf2 andL,. The eigenvalues of the Hamiltoniadh
Rn= \/1_02 (2M2m—M|4m)(—1)”7mCLiCM7mi- (32)  depend on the representation of (SJand on the angular
i

momentumL, but not onM.

Now we demonstrate that the present(SUHamiltonian

The commutation relations of these operators fo8Wl- H=-«xQ'Q in Eq. (18) has many appropriate aspects for
gebra are expressed in terms df §ymbols. If we express realistic systems. To this end, we apply the Hamiltonian to
these operators as two- and four-nucleon systems for the moment. Although the

Hamiltonian does not include the pairing interaction for sim-

Ly, =1
Qm, =2

On= S.. 1-3 (33  account.
Ry, 1=4,

the commutation relations are

[O1ym O] = 2. dd)(—1)'2¢10(2|1+1><2|2+1>
=l1+1r+0

I, 1, 2
><OIm1+m2- (34)

2 2 |
X (11mylomy[Imy +my)

plicity, the qualitative features of the present discussion may
be persistent even when the pairing interaction is taken into

First we consider a system of two nucleons in dhstates.
We solve the eigenequations fArandC,

H‘I’k= Ek\I’k' (38)
C\I’k:)\ﬁ\l’k. (39)

The eigenvalue&, of the HamiltonianH=— xQ'Q for a
two-nucleon system are listed in Table I. We see in the table
that the eigenvalug, of the Hamiltonian increases with the
compound angular momentumof the two nucleons, con-
sistently with the nuclear spectroscopy due to short-ranged

nucleon-nucleon interactions, except for the enefgyfor

The Casimir operator for S8) is defined as
C=L"L+Q'Q+S'S+R'R. (35)

The present interaction Hamiltoni&h= — «Q'Q in Eq. (18)
commutes with the Casimir operatGy

[H,C]=0. (36)

L=4 state that is lower than the energy for=2. The

TABLE II. The nuclear states of four nucleons in tthstates are
classified by the dimensions of $&) representations. The column
headed as “Multiplicity” shows the multiplicity of the representa-
tions with a same dimension for four-nucleon systems. Each repre-
sentation contains the nuclear states specified by their angular mo-

mental.
Therefore,_ eigenstates of the Ha_miltoni&h are simulta- Dimension Multiplicity L
neously eigenstates of the Casimir operaforEigenstates
with the same eigenvalue as the Casimir oper&aonsti- 105 3 7,6,5,5,4,4,3,3,3,2,2,1,1
tute a representation of $8). Any states of a nuclear system 70 1 8,6,5,4,4,2,2,0
of nucleons in thal states can be classified by the represenso 2 6,4,4,3,2,2,0,0
tations of the Casimir operato€. Since the interaction 45 3 5,4,3,3,2,1,1
HamiltonianH = — «Q'Q is rotationally symmetric, we ob- 5 1 2

tain
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TABLE IlI. The eigenvalueE, of the HamiltonianH = — «QQ in units of the coupling constamt and
the expansion coefficienta12|34o of the eigenstatesiszic,12,34o|l12| 240) are listed for the four-nucleon
states withL =0 that are classified by the dimensions of(SJUtepresentations and by the eigenvaluésof
the Casimir operato€.

L Dimension N Ex Ci10 C330 Cooo C220 Ca40

0 50 168.0 —93.978 0.962 0.274 0.000 0.000 0.000
0 50 168.0 —14.593 —0.274 0.962 0.000 0.000 0.000
0 50 168.0 —93.978 0.000 0.000 —0.552 —0.216 0.805

0 50 168.0 —14.593 0.000 0.000 -0.478 0.873 —0.094
0 70 288.0 —102.857 0.000 0.000 0.683 0.436 0.586

nuclear states of the two-nucleon system are classified by then for the whole four-nucleon system is the antisymme-
15 and 10 dimensional representations of(QU trized wave function for the nucleons 1 and 2 multiplied by
Second, we apply the present Hamiltonidr — «QQ  that for the nucleons 3 and 4. We see below that the nuclear
in Eq. (18) to a system of four nucleons in tliestates. Table states in the present system comprise one 50 dimensional,
Il shows that 625 nuclear states of four nucleons in dhe one 45 dimensional, and the singlet 5 dimensional represen-
states are classified by the 105, 70, 50, 45, and 5 dimensiontdtion of SU5).
representations of §8) as 5X5X5X5=105x3+70+50 Expressing the compound orbital angular momentum of
X 2+45x 3+5. Taking into account the spin and isospin of the nucleons 1 and 2 ag, and that of the nucleons 3 and 4
nucleons, we consider below the case of a four-nucleon sysisls,, we denote the orbital state of the whole four-nucleon
tem in which nucleons 1 and 2 among the four nucleons haveystem with angular momentutn as |l1l34,L). To start
a unigue combination of spin and isospin and nucleons 3 anthe demonstration of four-nucleon states, we first consider
4 also have another unique combination of spin and isospirall the nuclear states with.=0, including the states
Therefore, the orbital wave functions for the nucleons 1 andvith even quantum numbers fby, andl ;4. The Hamiltonian
2 are antisymmetrized and those for the nucleons 3 and 4 até=— «Q'Q and the Casimir operatd® are expressed by
also antisymmetrized. While the orbital wave functions ofthe matrices with the numerically calculated matrix elements
each pair of nucleons are antisymmetrized with the comen the basis of the fivd.=0 nuclear states, i.e|11,0,
pound angular momentuir=1 or 3, the orbital wave func- |33,0, |00,0, |22,0, and|44,0:

—88.000 —20.949 0.000 0.000 0.000
—20.949 —20.571 0.000 0.000 0.000
H=x| 0.000 0.000 —80.000 —35.777 0.000 (40)
0.000 0.000 —35.777 —35.102 —8.762
0.000 0.000 0.000 —8.762 —96.327

and

168.000 0.000 0.000 0.000 0.000
0.000 168.000 0.000 0.000 0.000

C= 0.000 0.000 224.000 35.777 48.000 (41
0.000 0.000 35.777 190.857 30.6p6
0.000 0.000 48.000 30.666 209.143

The simultaneous eigenstates of the Casimir oper@tor representations is uniquely 168.0. Each of the twofold 50
and of the HamiltoniarH = — kQ'Q for L=0 are listed in  dimensional representations contains twe 0 states. Note
Table Ill. Four states among file=0 states belong to the that the twoL =0 states in one 50 dimensional @) repre-
two-fold 50 dimensional representations, while one state besentation are split in their energies Bg=—93.978¢ and
longs to the 70 dimensional representation. The eigenvalug,= —14.593¢. The eigenstates of the Hamiltoni&h that
A2 of the Casimir operato€ for the two 50 dimensional have the same eigenvaliig, but which belong to different

054316-5



T. KOHMURA, M. MARUYAMA, AND Y. HASHIMOTO PHYSICAL REVIEW C 67, 054316 (2003

TABLE IV. The eigenvaluesk, of the Hamiltonian H 0

=—xQ'Q in units of the coupling constant and the expansion 0, 4 5,
coefficientsc, ,, of the eigenstatesl’k:20|12|34L|l 1dall) are I 0 2
listed for theL+# 0 nuclear states of the present four-nucleon sys- -20 g 4
tem. The nuclear states are classified by the dimensions )SU 2
representations and by the eigenvalwésof the Casimir operator 400 3
C. It is assumed that in the present four-nucleon system the nucle-
ons 1 and 2 have a unique combination of spin and isospin and the E 4 i
nucleons 3 and 4 have another unique combination of spin and -60[
isospin.

i ; 2 -80[ 2
L Dimension \j Ey Ciu Ci3 Cay Cz3
1 45 128.0 —54.428 0.897 0.000 0.000 0.442 100 °
1 45 128.0 —11.286 —0.442 0.000 0.000 0.897
2 50 168.0 —78.571 0.864 —0.346 —0.346 0.115 FIG. 1. The energy levels for a four-nucleon system are shown.
2 50 168.0 —27.143 0.306 0.490 0.490 0.653 Inthe present system, it is assumed that one pair of nucleons have
2 45 128.0 —32.857 0.000 0.707 —0.707 0.000 a unique combination of spin and isospin and the other pair of
2 5 48.0 —10.000 —0.400 —0.374 —0.374 0.748 hucleons also have another unique combination of spin and isospin.
3 50 168.0 —40.000 0.000 0.707 —0.707 0.000 The nuclear states of thg presz_ent four-nucleon ;ystem are classified
3 45 128.0 —50.528 0.000 0.693 0.693 0.198 py the 50, 45, and 5 dlmenS|onaI representations of55Urhe
3 45 198.0 —15.187 0.000 —0.140 —0.140 0.980 integral number shown aside each energy level represents the angu-

lar momentumL for the nuclear state. The nuclear enerdieare

4 50 168.0 —51.863 0.000 0.692 0.692 0.204 shown in units ofgx.
4 50 168.0 —13.851 0.000 —0.144 —0.144 0.979
4 45 128.0-22.857 0.000 0.707 —0.707 0.000 topjan in Eq.(18) that takes into account the quadrupole-
5 45 128.0-15714 0.000 0.000 0.000 1.000 guadrupole interaction, although the present Hamiltonian
6 50 168.0 —18.571 0.000 0.000  0.000 1.000 dopes not include the pairing interaction.
50 dimensional representations, have a same structure of the  [ll. ADIABATIC COLLECTIVE TUNNELING
wave functions, while the wave functions are composed by APPROXIMATION

different orders of combinations of the angular momenta
:nz cif t?}% f;t;]r ?IUCIGOP“S' In thempt))riﬁs%n;cafse tirr:at rtEiei nuc'?ﬁon from one Hartree minimum state to another. A typical
ons . a ave a unique co ation of spin and ISosp gxample of the collective tunneling transitions between two
a_md the n_ucleonfs 3 ar_1d 4 have also anot_her unique COmbmgl'artree states is of®Si nucleus[6], which has 12 valence
lt'é); of spin ?lnd |sc?sp|n, onli/hth?c_tv‘;/clt(;azls Stdﬂiht() aqd nucleons in thes andd major shells. A nuclear system with
11’O> agesa OVS% am202ng N dlv44_ ] Oaslls saesf, tlﬁe., 12 valence nucleons in the and d major shells has two
11,0, | 'Q’. | Q 22,0, and| !0>' nly one of € ' artree minimum states, i.e., an oblate and a prolate de-
twofold 50 dimensional representations is allowed for th

{ nuclear orbital states. The-0 eigenstate of the CTmed State
prese;ln nuc e?“hor. nal s Ia es._ 323 9 eé?egsl ate ortne We analyze a collective tunneling transition from the ob-
Hamiltonian with eigenvalude, = —93.978¢ belonging 10 |46 giate to the prolate state of a 12-nucleon system in an

diabatic approximation to the effective Hamiltonian in Eq.
(16). The Hamiltonian takes into account the quadrupole-

uadrupole residual interaction. The residual interaction that

the nucleons 1f and 2 among the four nl;]cleonsi have a unique (qtationally symmetric gives rise to the restoring force for
ﬁomblnatloE ot spin and lsog_pln _and tfe huc eor:js 3 and_ the oblate state to tunnel to the prolate state. It is assumed

ave another unique combination of spin and 1S0SpiNy 4t the nucleus is polarized along thexis in the two de-
The eigenvalues of the Casim@ and of the Hamiltonian  ¢).naq Hartree states

=—«kQ' listed in Table IV. Their simultaneous ' - -
H=-«xQ'Q are : rsim The Hartree states are eigenstates of the Hartree Hamil-
eigenstates in the present case are classified into the thr?@nian forH, in Eq. (19)

: ' : : 0 qg. )

representations, i.e., the 50, 45, and 5 dimensional represen-
tations of SLQ,S)' . Hhartres= = #{Q0) Qo- (42

We show in Fig. 1 the energy levels of the present four-
nucleon system. The energy levels belonging to the 50 diAccording to the variation of nuclear quadrupole moment
mensional representation form a ground band, while thosé—Q,) during the tunneling transition from the oblate state
belonging to the 45 and 5 dimensional representations forrto the prolate state, the single-particle energigdor thed,,
sidebands. The set of lowest-lying energy levels with states vary, while the single-particle energy levels cross each
=0, 2, 4, and 6 in the ground band features a rotationabther. Therefore, in the oblate Hartree state with a negative
band structure. Note that this structure of energy levels apauclear quadrupole moment,—Qq)<<0, eight nucleons
propriate for realistic systems is obtained from the Hamil-among the 12 valence nucleons in thand d major shells

Now we analyze the nuclear collective tunneling transi-

of the present nuclear system.
Next we consider nuclear states witk= 0 in the case that
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TABLE V. The nuclear quadrupole momerits Qo), the adia-  andd, states to be thestate ford,,=0 when the nucleus is
bafic nuclear energies;, , and the single-particle energieginthe ¢ tho Hhase of the zero-particle—zero-hole and two-particle—
adiabatic 2-particle—a-hole states|2n), [4,0,=0), and |40, gvo—hole configurations with the nuclear quadrupole moment

- m/2) are listed. The values of the energies are shown in units of _ Qo) <0 and the single-particle states to be thestate for
Zk and the values of the nuclear quadrupole moments are in unity = . .
Ln=m/2 when the nucleus is at the phase of the six-

of \/g particle—six-hole and eight-particle—eight-hole configura-
tions with (—Qg)>0. When the nucleus is at the phase of
Cp the four-particle—four-hole configuration, the two adiabatic
|2n) (-Q0) € d.y s duy do states, |4,0,=0) with (—Qg)<0 and |4,0,=m/2) with
(—Qp)>0, are degenerate in their energies. The adiabatic
|0) —-16.0 —256.0 —-32.0 00 16.0 320 pyclear energies,, for n=1, 2, and 3 provide a potential
12) —-100 -100.0 —-200 00 100 20.0 energy barrier between the two Hartree states, i.e., the zero-
|4,04=0) -40 -160 -80 00 40 8.0 particle—zero-hole stat@) and the eight-particle—eight-hole
|4.6,=m/2) 40 —-160 80 00 -40 -80 state |8), that have the minimum adiabatic energies
|6) 10.0 —-100.0 20.0 0.0 -10.0 —20.0 = eg. There also exists a potential energy barrier between the
[8) 16.0 —-256.0 320 0.0 —16.0 —320 two states|4,0,=0) and|4,0,= w/2). These two degenerate

states are coupled to each other by a coupling between the
nucleons in thes andd, states. The coupling gives rise to a
fill the single-particle stated, andd_,, while in the prolate  minor tunneling transition of the nuclear system frog,,

state with(—Qo)>0, eight nucleons fill the state$y and =) to|4,6,= =/2), even when the coupling is weak. Using
d_; on the other hand. The other four nucleons vary thene configurations of theandd, nucleons determined by the
occupying states in the space of 8i@ndd, states during the - adiabatic energy variation for E¢44), we define the adia-
tunneling transition. batic 2n-particle—2-hole states|2n). The four-particle—

We define “particles” for thed; andd_; single-particle  four-hole state is adiabatically determined to be
states and “holes” for thel, andd_, states. In the present

adiabatic approximation, we assume that the nucleus makes a

transition from the oblate zero-particle—zero-hole Hartree 1
state|0) to the prolate eight-particle—eight-hole Hartree state |4)=—(|4,0,=0)+|4,0,= m/2)) (45
|8), taking the transitional states of nucleon configurations V2

(dyd_,)* "(dyd_;)" with n=1, 2, and 3 in four steps dur-
ing the tunneling transition. The transitional nuclear states i
the nucleon configurationslgd_,)* "(d,d_;)" in interme-
diate states during the transition are denotedrap&rticle—
2n-hole stateg2n). This model is called the adiabatic col-
lective tunneling model.

%y taking into account a weak coupling betweendtandd,
nucleons.

The calculated adiabatic energies, of the 2n-particle—
2n-hole stateg2n), |4,0,=0), and|4,0,= m/2), are listed
The configurations of nucleons in tiseand d, states in in Table V. The energies of the two Hartree stdtjsand|8)

the adiabatic B-particle—2-hole state$2n) are determined are degenerate with the minimum adiabatic energieses

by minimizing the adiabatic nuclear energies for the Hartree= — 7256x. While the adiabatic energies, are symmetric
Hamiltonian in Eq(42). Expressing the @-particle—a-hole  With respect to <4 and 21>4, the energy;, of the four-
states as particle—four-hole state is at the top of the potential energy
barrier between the two Hartree stat€y and |8). The
nucleus in either one of the two adiabatic four-particle—four-
hole stateg§4,6,=0) and |4,0,=w/2) with the degenerate
adiabatic energies,=— 216« is not spherical, but is de-

12N, 0p0) = H (—1)"(cosbynCli+sinb,ch)
I

x(cie ) (clc! "oy (43)  formed with the nuclear quadrupole moment indicated in
L . Table V, respectively. Note that the nucleus does not proceed
and minimizing the energies through a spherical state during the collective tunneling tran-

sition from the oblate state to the prolate state. Thus, we see
that the quantum mechanical view of collective tunneling
5k transition is different from the classical view. The latter as-
== 7{(16—6n)2 sumes that the nuclear system makes a transition from the
oblate state to the prolate state through a spherical state at the
—16(15—6n)sir’6,,+ 48 sirf‘QZn}, (44) top of the potential energy barrier, if it proceeds on a shortest
way. The energy at the top of the potential energy barrier in
we obtain the parametets,, for single-particle state mixing the quantum mechanical view is lower than the enetgy

€2n(02n) = (2n, 02n| H Hartreelznv 02n>

of sanddy nucleons and the adiabatic nuclear energigs =0 in the spherical nuclear state at the top of the potential
for the 2n-particle—2-hole stateg2n). energy barrier in the classical view.
The above variation for the adiabatic nuclear energigs Now we analyze the collective tunneling transition of the

determines the single-particle states of the nucleons irs the present nuclear system from the oblate zero-particle—zero-
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TABLE VI. The eigenvalue€, of H,q in unit of §K and the
expansion coefficients’, of the eigenstatef¥,)=3,c5./2n) in
terms of the adiabatic i2particle—2-hole stateg2n) are listed.
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hole Hartree statf0) to the prolate eight-particle—eight-hole
Hartree stateé8) through the adiabaticr2particle—2-hole
states|2n) with n=1, 2, and 3 in four steps. The Hamil-

The upper and lower signs in the double signs of the coefficientggnjanH = — KQTQ in Eq. (18) is adiabatically expressed by

c,, stand for the smaller and larger of the two values ofi@ the
coefficientsck,,, respectively.

k k

k Ex CS,B C26 Ca
0 —-271.3 0.671 0.213 0.085
1 —269.6 +0.680 ¥0.193 0.000
2 —128.2 —-0.213 0.567 0.515
3 —86.4 +0.193 +0.680 0.000
4 27.4 0.062 —0.364 0.853
Py(t)
T @ il i ;"
il i"."u'ilwl HHi
{085 1 fh i Ml"\ ‘i :‘
0.8[ b 4 It “i g f
gy gy i
o T (- g
o6[ b oy i %
i "\ ih i f L
S L) by
04f f A i b i !
' ] ‘ ‘ A\ / N
4 \"} ‘i d ! “ ‘1 A
0.2 | L4 i \,“\‘ / Y
\ i \ ‘
%% 05 1 15 2 25 3
t/ am
E;— E,
R(t)
1 T

FIG. 2. The probabilitiesa) Pg(t) of the nuclear collective
tunneling transition starting with the Hartree stf@ to the coun-
terpart Hartree statg) and(b) Py(t) of the return tunneling tran-
sition to the initial Hartree statf0) calculated in the whole space
(dotted ling and in the two-state approximatigsolid line) are
shown as a function of timé in units of the periodr=2mx/(E,

the 5X5 tridiagonal matrix on the basis of thenzarticle—
2n-hole stateg2n),

256 48 0
48 100 36\2
Hog= — 57K 362 16 362 ,
36/2 100 48
0 48 25
(46)
with the matrix elements
Hadinn =(2n|H|2Nn"). 47

The calculated eigenvalués, and eigenstate¥, of the
HamiltonianH .4 are listed in Table VI. The energies of two
ground states are nearly degenerate &tk — 2269.6«< and
Eo=— 2271.%. These two nearly degenerate eigenstates are
mainly composed of an odd and an even linear combination,
respectively, of the zero-particle—zero-hole st@eand the
eight-particle—eight-hole stat®).

The time evolution of the nuclear state during a tunneling
transition starting with the oblate zero-particle—zero-hole
Hartree stat¢0) is expressed in a real-time description as

qf(t)=e—iHadi‘|o>:2k e Bd|w (¥, |0). (49

The probability of the nuclear transition tonzarticle—
2n-hole statg2n) is

P2n(t) =[(2n|e~Madt|0)[?

:|2k (2n|® e (W, ]0)]?

Z% (O W N (W|2n)(2n| ¥ ) (P |0)
X coq (Ex—E)t}
= 5n0_2§ (O] W ) (Wy[2n)(2n| W)

Ek_ Ek'
it |
We demonstrate the calculated probabifty(t) of the tran-
sition to the prolate eight-particle—eight-hole Hartree state

|8) and the probabilityPy(t) of the return transition to the
initial zero-particle—zero-hole Hartree sta@) in Fig. 2,

><<«1fk,|o>sin2( (49)

—E,) of the harmonic tunneling oscillations. The parts cover threewhich shows that the transition probabilitieg(t) andPg(t)
cycles of the collective tunneling oscillations. The initial value of grossly oscillate with a long period of=27/(E;—E,),

Po(t) in the two-state approximation i®y(0)=|Z¢_(0|¥)
X(W¥,|0)|?=0.834.

fluctuating with short periods of quantum fluctuations. Note
that the frequency of the tunneling oscillations is propor-
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tional to the energy splitting of the two nearly degenerate In the case that the Hamiltonidth is symmetric with re-
ground states. Since the energy splitting is an exponentiallgpect to the particle-hole numben 2the even and odd over-
small quantity, it takes a long time for the oblate state tolapping of the Hartree states with the eigenstaligs

tunnel to the prolate state.

If we take only the contribution of the two nearly degen- (W|0)=(W|8)=—(W,|0)y=(V,|8), (50)
erate ground statel, with k=0 and 1 in the above expres-
sion for P,,(t) (two-state approximation the transition (W,]0)=(W,|8)=—(W;|0)=(WV,8), (52)

probabilitiesPy(t) and Pg(t) feature only one mode of os-

cillations (ground state oscillationsvith the unique period leads to matching and mismatching relations of the matrix
7=2m/(E;—Ey), removing the quantum fluctuations. We elements in a good approximation. The overlapping relations
show in Fig. 2 the transition probabilitie®,(t) and Pg(t) simplify the probability of the collective tunneling from the
smoothed by the two-state approximation. Hartree staté0) to the counterpart Hartree std®&) as

Ps(t) :4|(0|‘I’1><‘I’o|0>|25m2( E1; EOt)

Ei—Eo | . [Es—E; (Es+Ey)—(E;+Eg
> t|sin > t|co > tp+---

+8<O|\If2><‘lf0|0>|2$in( (52

On the right hand side of the above equation the first lindem to maintain the collective tunneling oscillations. This
represents the tunneling oscillations %{B,—Eg)/2t] be-  fact must be persistent even when we take into account a
tween the two ground stateB, with k=0 and 1 and the larger space of adiabatic particle-hole states or the effects of
second line represents the quantum fluctuationg[@@®s nonadiabatic transition.

—E»)—(E;—Ep)]/2t}. Thus, the transition probabilitieRg(t)

and Py(t) are composed of collective tunneling oscillations

between the two ground states with the long period IV. HARMONIC COLLECTIVE TUNNELING
=27/(E;—Ep) and of quantum fluctuations with a rela- OSCILLATIONS

tively short period. The tunneling probabilities feature ] .

ground state oscillations plus quantum fluctuations. In the preceding section we analyzed the nuclear collec-

The quantum fluctuations are dominated by two modes ofiVe tunneling transition from the oblate Hartree state to the
beat with frequenciesH; — Eo)/27 and Es— E,)/27. Ow- prolate Hartree state, using the adiabatic collective tunneling
ing to the beat with the frequencE(— E,)/2m, we in fact approximation. The adiabatic approximation provides a tridi-

see in Fig. 2 that the quantum fluctuationsFig(t) are most agonal expression for the Hamiltonian for collective tunnel-
evident at a time=(n+12)7, i.e. ing. When the nuclear system completes one tunneling tran-

sition from one Hartree state to another, it starts to make a
(E;—Eg)t=(2n+1), (53 return tunneling transition to the initial Hartree state. In fact,
the calculated result for the transition probabilities in the
when the transition probabilitPg(t) is the maximum, while preceding section suggests that the nuclear system governed
the quantum fluctuations almost completely vanish at a timéy the HamiltoniarH .4 in Eq. (46) makes harmonic collec-
t=nr, i.e, tive tunneling oscillations with the period=27/(E,
—Eg). In this section we argue that the tridiagonal Hamil-
(E1—Ep)t=2nm, (54 tonian symmetric with respect to the particle-hole number 2
N - ) o allows harmonic collective tunneling oscillations of the sys-
when the transition probabilitfg(t) is the minimum. The  tem_ We express the harmonic collective tunneling in terms
probability Po(t) has a similar feature that the quantum fluc- of the motion of the center of mass of wave packets.
tuations almost completely vanish at a tine (n+3)7 The tridiagonal Hamiltonian is, in general, expressed on

when the transition probabilitio(t) is the minimum. Thus,  the basis of adiabaticr2particle—-hole stateg2n):
a crowd of quantum fluctuations coherently shifts back and

forth in phase with the collective tunneling oscillations.

The period of the collective tunneling oscillations is ex- H=Hy+H,, (55)
ponentially long, while the periods of other nuclear oscilla-
tions are relatively short: Nonadiabatic transitions may take

place a short while after the system starts tunneling. Thus the N
system retains the energy for collective tunnelmg oscilla- Ho= E €n|2n)(2n), (56)
tions. This is the mechanism for the symmetric nuclear sys- n=0
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N-1 N
H|:n§::0 {Pnn+a]2n)(2(n+ 1)+ hyyq0l2(n+1))(2n]}, V:nzo 2n[2n)(2n|. (63
(57)

where the maximum number of particles and holes is de
noted as A. We assume the symmetry with respect to 2
<N and 21>N, i.e., €En=€EN-n and hnntlth—nN—nil-

The velocity operator for the center of mass of wave
packets is defined by the Heisenberg equation of motion as

The adiabatic 2-particle—2-hole energieg,, provide a po- v=i[H,v]
tential energy barrier between the zero-particle—zero-hole N
Hartree staté0) and the N-particle—2N-hole Hartree state =2i > {Pans112n)(2(n+1)| —hy 10l 2(n+1))(2nN]}.
[2N). n=0
In order to analyze the harmonic oscillations of the col- (64)

lective tunneling transition starting with the Hartree state
|0), we formulate the time evolution of the number of par- The acceleration operator for the center of mass is also de-
ticles and holes in the nuclear system. The nuclear wavgneq by the equation of motion,
function expressed in terms of the adiabatic-2article—
2n-hole states2n), T
§2n) v=i[H,v]
N

V(t)=e M0)= 2n)(2n|e~ "0}, 58
(h=e7"0y=2, Izni(znle™(0). (58 =23 [(er-1= e al20)(2(n+ 1)

is split into two wave packets by the potential energy batrrier,
one on the side of the zero-particle—zero-hole st@jeand s 102(n+1))(2n[}

the other on the side of theN2particle—2N-hole statg 2N). +2(Nnns 1Pt 10— Nan-1n—1n)|20%(2N[].  (65)
Although no wave packets can traverse the potential energy

barrier, the current flows from one wave packet to another \ne now analyze the harmonic tunneling oscillations, ex-

through the barrier, varying the balance of the two wavepressing the HamiltoniaH in Eq. (55) in terms of the eigen-
packets. Defining the density matrix states¥, of H as

Pr=12n)(2n| (59

and the current for the nuclear system to vary the state from H= ; BdWi (Vi (66)

an adiabatic statfn) to [2(n+1)) [4],
. ) and using the operator for the coordinate of the center of
Jn+10= — {10200+ 1))N(2n[ = hypig[2n)(2(n+ D)}, mass of wave packets relative to the cefar)=|N) of the
(60) oscillation region,

in fact, we can prove the continuity relation,

N
d _ _ _ v= >, (2n—N)|2n)(2n|. (67)
_Epn:_l[HaPn]:Jn+1n_Jnn—1- (61) n=0

The time evolution of the number of particles and holes isThe equation of motion of the center of mass is written as

formulated as the motion of the center of mass of the two R
wave packets in the particle-hole number space. The coordi-v,=—[H,[H,v,]]
nate of the center of mass of the two wave packets at time

is expressed in terms of the eigenstaigsand the eigenen- - E Eﬁ(|\l}k><\lik|;}rlxlik,><\lfk,|+|\Irk,><\lfk,|'1}r|\lfk><\llk|)
ergiesk, of the HamiltonianH as KK/

() =(W ()] VW (1)) =2 ExE [ W N 2| W WP |

kK’
= > (0]e''|2n)2n(2n|e "] 0)
n ~
== S (B B 2TV 31|V
; k<k’
= > (0| ¥ (¥, |2n)2n(2n| ¥, (¥, |0)e! BBt
kk'n X(\[rk,

(62

TN W o [ T (T ). (68)

The two-state approximation, which takes into account
where the operator for the coordinate of the center of mass afnly the two nearly degenerate ground statgswith k=0
wave packets is defined as and 1, leads to
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TABLE VII. The values of the acceleratior(t) of the center of
mass of the two wave packets in the 12-nucleon system governed
by the adiabatic Hamiltoniahl .4 in Eq. (46) are calculated in the
two-state approximation as a function of timie units of the period
7=27/(E;—Ep) of the harmonic collective tunneling oscillations.
Dividing the acceleration expressed on the right hand side of Eq.
(65) into two terms, i.e., the potential energy term and the residual
interaction term, we show the values of the two terms and the sum

of the two.
t Potential Residual Sum
interaction

, 0.00 —7769.5 7779.3 9.8

0, 0'2 0'4 0.6 0.8 1 0.05 —7389.2 7398.5 9.3

‘ ’ ) i : o 0.10 —6285.6 6293.6 7.9

Ty 0.15 —4566.8 4572.6 5.8

0.20 —2400.9 2403.9 3.0

FIG. 3. The values of the coordinat€t) = »,(t) + 4 of the cen- 0.25 0.0 0.0 0.0
ter of mass of the two wave packets in the 12-nucleon system gov- 0.30 2400.9 —2403.9 -3.0
erned by the adiabatic Hamiltonidt,q; in Eq. (46), calculated in 0.35 4566.8 —4572.6 -5.8
the whole spaceésolid line) and in the two-state approximation 0.40 6285.6 —6293.6 -79
(dashed ling are shown as a function of timein units of the 0.45 7389.2 —7398.6 ~93
period7=2m/(E,— E,) of the harmonic tunneling oscillations. The 0.50 7769.5 —~7779.3 —98

motion of the center of mass features harmonic oscillations in the
two-state approximation calculation.

R i R tion are defined by the commutation relations of the coordi-
vr=—(E1—Eo) (| W (Wl v [ W (Wo| +| Vo) nate v of the center of mass with the Hamiltoniath as
N above. Some of the eigenenergy differences are so large that
X(Wolw | W1)(W4])

the velocity »(t) and the acceleration(t) of the center of
L mass, extremely affected by quantum fluctuations, oscillate

=—(E1—Ep)? X, W (W0 |W (] quite violently. The wave function in the two-state approxi-
kk'=0 mation,
=—(E;—Ep)?y,. (69) .
This relation implies that the center of mass of wave packets ‘If(t)ze‘”“|0>=k20 [P )W leF0), (7D

makes harmonic oscillations around the cef@er)=|N) of
the oscillation region with angular velocity=E; —E,, re-
peating the tunneling back and forth between the two Hartrebowever, yields the velocity and acceleration to be smooth
stateg0) and|2N). In the above transformation of the equa- functions of timet of the order of the small energy differ-
tion we use the completeness encesE,—E, and E,—Ey)?, respectively.
We have calculated the wave functidn(t), the coordi-
é W) (W =1 70 nater(t), the velocityr(t), and the acceleration(t) of the
“o (Wil = (70 center of mass of wave packets for the system governed by
the adiabatic Hamiltoniahl .4 in Eq. (46). Figure 3 demon-
of the eigenstate®’, in the two-eigenstate space and the Strates the calculated coordinaft) of the center of mass of
relations(W,| 3, ,) =0, which are satisfied by the eigen- wave packets. Because of thg_ quantum fluctuations the ve-
statesW, that are either symmetric or antisymmetric with [0City »(t) and the acceleration(t) of the center of mass
respect to 2<N and 20>N. The amplitude of the har- oscillate so violently that it is not meaningful to dem9nstrate
monic tunneling oscillations is determined by the initial their values. Only the values of the acceleratioft)
value of the coordinate of the center of mass of wave packsmoothed by the two-state approximation are listed in Table

ets, Vr(0)=<‘1’(0)|;r|‘l’(0)>, in the two-state approxima— VII. Figure 3 and Table VII show that the motion of the
tion. center of mass of wave packets calculated in the two-state

. e A approximation clearly features harmonic collective tunneling
The evolutions of the velocnyi(t)=(‘lf(t)| VW(t), and  gscillations. The amplituda=|v(0)—4|=3.49 of the har-
of the accelerationy(t)=(W¥(t)|v|¥(t)), of the center of monic tunneling oscillations is determined by the initial
mass of the two wave packets involve the differences of thealue of the coordinate of the center of mass of wave pack-
energy eigenvalueg,, since the velocity and the accelera- ets,»(0)=0.51, in the two-state approximation.
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The acceleration(t) of the center of mass of two wave that the center of mass of the two wave packets can traverse

packets that should be proportional to the force acting on théhe well. In a same way as the case of a potential energy
tunneling oscillator is divided into the two terms on the right barrier, the potential energy term with the energy differences
hand side of Eq(65), i.e., the potential energy term withy, ~ €n+1— € Multiplied by positive nondiagonal matrix ele-
and the residual interaction term ity 1h,-1,. The first ~Mentshy,.., on the right hand side of EG65) for the accel-

term representing the potential energigscan be shown to erationy acts to repel the center of mass to stay at an edge of
act on the center of mass of wave packets as a repulsive for¢ge potential energy well, while the residual interaction term
as follows. The energy differences. ;— €, in the potential  in Eq.(65) acts as an attractive force on the center of mass to
energy term in Eq(65) are positive for 2<<N and negative oscillate over the potential energy well. Even in the case of
for 2n>N. The factorsh,,..; are negative. From Table VI the attractive potential energy well, if the initial std@® is
that lists the eigenstateB, of H,q4, we see that the expec- not coupled with the eigenstatds, of H that have probabil-
tation values of|2n)(2(n+1)| and |2(n+1))(2n| in the ity distribution in the central region of the well, no wave
nuclear wave functio (t) which is split into the two wave packets at an edge of the region can, in general, traverse the
packets are positive at any timeTherefore the force due to potential energy well. Therefore, it is concluded that a quan-
the potential energy term in E¢65) acts as a repulsive force tum mechanical system expressed by a tridiagonal Hamil-
to repel the center of mass of wave packets from the centgbnian makes collective motions contradictory to classical
[2n)=|N) of the oscillation region. The force due to the mechanics even in an attractive potential energy well.
second term in Eq65) representing the residual interactions
hnn+1, however, acts as an attractive force to make the cen- V. DISCUSSIONS AND CONCLUSION
ter of mass oscillate through the repulsive potential energy
barrier. In fact, using the relation fob', with k=0 and 1, We have formulated the nuclear collective tunneling tran-
sitions from one Hartree minimum state to another. We re-
hio formed the field Hamiltonian used for the Hartree calcula-
E.— €l<0|\lfk), (72 tions into the HamiltoniaH effective for the Hartree states
and for the collective tunneling in Eq16), which employs
which is obtained in a perturbation theory, we can generallythe quadrupole-quadrupole interaction for the residual inter-
prove that the second term in E@5) representing the re- action. The Hamiltonian does not include the pairing inter-
sidual interaction overcomes the first term from the potentiahction, which may play a role in the collective tunneling
energiese,, concluding that the center of mass of wavefrom the oblate state to the prolate state. The qualitative fea-
packets oscillates through the potential energy barrier. Noteures of the present discussion might be persistent even when
that, if the nondiagonal matrix elemerts,.; andh, .1, are  we take into account the pairing interaction.
constant independently af, i.e., if the mass in the kinetic We developed a real-time description for the collective
energy in the Schidinger difference equation for a Hamilto- tunneling. We showed that an adiabatic approximation pro-
niain H, which is equivalent to the inverse of twice the ma- vides a tridiagonal expression for the Hamiltonidron the
trix elementsh,, .., [4,9], is constant independently of the  basis of adiabatic 2-particle—-hole state$2n). Owing to
attractive force due to the residual interaction vanishes insidehe residual interaction, the nuclear system, governed by the
the region of the tunneling oscillation motion. Only at the tridiagonal Hamiltonian symmetric between two Hartree
edges|0) and|2N) of the region of motion, the attractive states, coherently tunnels back and forth between the two
force is brought about by the second term in E6§) to steer  Hartree states to make harmonic tunneling oscillations. We
the tunneling of the center of mass of wave packets througnvestigated the mechanism of the system to make the har-
the potential energy barrier. monic oscillations of quantum mechanical collective tunnel-
Here we briefly discuss the case of the Hamiltonidn ing. While a crowd of quantum fluctuations coherently shifts
=kQ'Q with the sign opposite to the present case of theback and forth in phase with the harmonic tunneling oscilla-
Hamiltonian H=—«Q'Q. The Hamiltonian H=xQ'Q tions of the center of mass of wave packets, the symmetric
yields an attractive adiabatic potential energy well. Thisnuclear system retains the energy for the harmonic tunneling
Hamiltonian, however, does not make much difference fronoscillations.
the present HamiltoniaH = — kQ'Q. The new Hamiltonian The tables of isotopes show that the two lowest-lyirfg 0
has the same set of eigenstatesHas — kQ'Q, while the  energy levels of*®Si are split by 5.0 Me\[10]. This may
eigenenergie&, are of opposite signs and the order of thesuggest that the nuclear system is not precisely symmetric
energy levels is reversed. The wave functiob(t) between the oblate state and the prolate state. If so, a more
=e 'MY0) for the nuclear evolution, if it starts with a de- detailed description may be necessary for the investigation of
formed statd0), is split into two wave packets separated atthe collective tunneling oscillations of the nuclear system.
the two sides of the prolate and oblate states, and no wawd/e will investigate the tunneling oscillation phenomena in
packets can traverse the attractive potential energy well. Theuclear physics in the case in which the asymmetry of the
current, however, flows from one wave packet to another ssystem arises.

(2|¥)=
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