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We present a study of weakly bound, neutron-rich nuclei using the nuclear shell model employing the
complex Berggren ensemble representing bound single-particle states, unbound Gamow states, and the non-
resonant continuum. In the proposed Gamow shell model, the Hamiltonian consists of a one-body finite depth
(Woods-Saxohpotential and a residual two-body interaction. We discuss the basic ingredients of the Gamow
shell model. The formalism is illustrated by calculations involvieyeralvalence neutrons outside the double-
magic core*~*He and!®-20.
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I. INTRODUCTION related matters had been swept under the rug. An example of
an impact of the continuum that goes beyond the standard
The major theoretical challenge in the microscopic de-SM physics is the so-called Thomas-Ehrman shif8] ap-
scription of weakly bound nuclei is the rigorous treatment ofpearing in, e.g., the mirror nucléfC and **N, which is a
both the many-body correlations and the continuum ofsalient effect of a coupling to the continuum depending on
positive-energy states and decay channels. A fully symmetrithe position of the respective particle emission thresholds.
description of the interplay between scattering states, resdfFhe mathematical formulation of the problem of nuclear
nances, and bound states in the many-body wave functiostates embedded in the continuum of decay channels goes
requires a close interplay between methods of nuclear strudack to Feshback9], who introduced the two subspaces
ture and nuclear reactions. This mutual cross-fertilizationcontaining the discrete and scattering states. Feshbach suc-
which cannot be accomplished without overcoming a tradiceeded in formulating a unified description of nuclear reac-
tional separation between nuclear structure and nuclear reattens for both direct processes in the short-time scale and
tion methods, is a splendid opportunity for opening a new era&ompound nucleus processes in the long-time scale. As far as
in the nuclear theory of loosely bound systems. nuclear structure is concerned, the treatment of excited states
In many respects, weakly bound nuclei are much moranear or above the decay threshold has been a playground of
difficult to treat theoretically than well-bound systeifs. the continuum shell modéCSM) [10—15. Unfortunately, a
The major theoretical difficulty and challenge is the treat-unified description of nuclear structure and nuclear reaction
ment of the particle continuum. For weakly bound nu¢tei  aspects is iuch more complicated and became possible in
for nuclear states above the particle thresholtie con- realistic situations only at the end of the last cent(sge
tinuum of positive-energy states and resulting decay charRef.[16] for a recent review
nels must be taken into account explicitly. As a result, many In the CSM, including the recently developed shell model
cherished approaches of nuclear theory such as the conveembedded in the continuutSMEC) [17-19, the scattering
tional shell modelbased on a single-particle basis of boundstates and bound states are treated on an equal footing. So
stateg and the pairing theory must be modified. far, most applications of the CSM, including the SMEC,
There are many factors which make the coupling to thehave been used to describe limiting situations in which there
particle continuum important. First, even for a boundis coupling toone-nucleon decay channeaisily. However,
nucleus, there appears a virtual scattering into the phaday allowing only one particle to be present in the continuum,
space of unbound states. Although this process involves int is impossible to apply the CSM to “Borromean systems”
termediate scattering states, the correlated bound states méist which A and (A-2) nucleon systems are particle-stable
be particle stable, i.e., they must have zero width. Secondyut the intermediate A-1) system is not. Various ap-
the properties of unbound states, i.e., above the paiticle proaches, including the hyperspherical harmonic method or
clustey threshold, directly reflect the continuum structure. Inthe coupled-channel approach, have been developed to study
addition, continuum coupling directly affects the effective structure and reaction aspects of three-body weakly bound
nucleon-nucleon interaction. nuclei [20-22. However, most of these models utilize the
The impact of the particle continuum was discussed in thearticle-core coupling which does not allow for the exact
early days of the multiconfigurational shell mod&M) in  treatment of core excitations and the antisymmetrization be-
the middle of the last century. However, thanks to the tretween the core nucleons and the valence particles.
mendous success of the large-scale SM in terms of interact- The reason for limiting oneself to only one patrticle in the
ing nucleons assumed to perfectly isolatedrom anexter-  continuum in the CSM has been twofold. First, the number
nal environmentof scattering statef2—6], the continuum-  of scattering states needed to properly describe the underly-
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ing dynamics can easily go beyond the limit of what presentvave asymptotics, i.e., the radial part behaves'dsat large
computers can handle. Second, treating the continuundistances. In the case of the spherical one-body potential, the
continuum coupling, which is always present when two ofresonant wave functiowp,;, carrying the s.p. angular mo-
more particles are scattered to unbound levels, is difficultmentum¢j can be written as a product of the usual angular

There have been only a few attempts to treat the multipamart and the radial wave functian,;(r)/r. It is customary
ticle casd 23,24 and, unfortunately, the proposed numericaltg introduce the notation

schemes, due to their complexity, have never been adopted in

microscopic calculations involving multiconfiguration mix- Tnje(r)=Uupje(r)*, ()
ing. Consequently, an entirely different approach is called
for nj= bnje(U—T). @

Recently, we formulated and tested the multiconfigura-
tional shell model in the complete Berggren bd€§], the  For bound states, one can always introduce a phase conven-
so-called Gamow shell modélGSM). (For application to  tion which makes the radial wave function real. That is, for
two-particle resonant states, also see RE#6,27).) In this g state&njgz ¢nj¢ - The following discussion concerns
paper, the GSM is applied to systems containing several vape gpecific properties of the radial Gamow wave functions
lence neutrons. The single-parti¢kep) basis of the GSM is Unj¢(r). Of course, one should always remember that the
given by the Berggren ensemble, which contains Gamowyngjar part is always present, but its treatment is standard.

states and 'the nonreson_ant continuum. The Gamow Stat?,%nsequently, in the GSM, only radial matrix elements re-
[28] (sometimes called Siegdi29] or resonant statgsvere quire special attention.

introduced for the first time in 1928 to study thereso-
nances. Gamow defined complex-energy eigenstatekg,
—iT'/2 in order to describe the particle emission in the quasi-
stationary formalism. Indeed, if one looks at the temporal
part of such a state, which &Fo/"e~T(2%) "one notices that The normN; of a resonant state,
the squared modulus of the wave function has the time- .
dependepcexe It and one can identifyi/(I" log 2) with NiZZJ uiz(r)dr, 3
the half-life of the system.

Formally, the resonant states are generalized eigenstates
of the time-independent Schiimger equation with purely and the radial matrix elements calculated in the Berggren
outgoing boundary conditions. They correspond to the polebasis,
of the S matrix in the complex energy plane lying on or +oo
below the positive real axis; they are regular in origin and Oif:f ug(r)O(r)u;(r)dr, (4)
satisfy purely outgoing asymptotics. In the quasistationary 0
app_roach W'th. Gan];lor\:v states, elach otl)servrfibiebcompl_ex. bare diverging, but this difficulty can be avoided by means of
An interpretation of these complex values has been given regularization procedur§31—36. Zel'dovich proposed

Berggren[3|0]: theh_rleatlhpa.rt of .the matrltx elementt g't\r/]es the multiplying the integrand of a radial matrix element by a
average value, while the imaginary part represents the uncegs | ,scian convergence facf@d];

tainty of the mean value. This is due to the finite lifetime of
the Gamow state which implies that none of the measure-

A. Normalization of Gamow states and one-body matrix
elements

+ oo
ments in this state can have a well-defined probability. (us|OJu;) = lim J e’“zuf(r)O(r)ui(r)dr
In the previous pilot wor25] we showed first applica- -0

tions of the GSM. In this work, we give the details of calcu-
lations and demonstrate first applications of the GSM to par-

ticle dlstrlbutlo_ns and transition matrix elemgnts. . In this expression/u;) and |u;) stand for single-particle
The paper is organized as follows. Section I dlscusse§tates O(r) is a radial part of a one-body operator, and
how to calculate the matrix elements in the Berggren baSiﬁqegp--, stands for the regularized matrix elem@. Usir,19
The completenes; relatiops valiq for the single-particle reSOmhe Zlclel’dovich regularization method, Berggren has shown
nant states are brlefly reviewed in Sec. lll, and some numer 34] that the Gamow states, together with scattering states,
cal ex"?‘mp'es involving the Berggren set of th(_a Woods-Saxo rm a complete basis. In particular, using definiti&hwith
pOtem'al. are pres_ented. Section IV desc_:rlbes the GSI\4)(r)= 1, one can demonstrate that all Gamow states can be
Hamiltonian us_ed in our work. The extension of the COM- 4 thonormalized, and such orthonormalized functions can be
pleteness re!atlons to the many—b.ody case IS descn_bed Used to calculate matrix elements. Unfortunately, the method
%?2-?0\’- Segﬁ'fqzs VI and VI contain the GCM anaIyS|§ Of of Zel'dovich, even though important on formal grounds,
gnd €, respectively. Finally, Sec. VIl contains cannot be used in numerical applications due to the difficulty
the main conclusions of the paper. in approaching the limit in Eq5) for diverging integrals.

An equivalent and more practical procedure, justified by
the apparatus of the analytical continuation, was proposed by
Gamow functions are solutions of the Sctfimger equa- Gyarmati and Vertsg€35]. For that, let us define the follow-

tion which are regular at the origin and have the outgoingng functional on o; Vi) [37]:

=Red;s. (5

1. MATRIX ELEMENTS IN THE BERGGREN BASIS
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fmi] Oj= JORuf(r)O(r)ui(r)dH f0+m[uf(R+x~ei0)

X O(R+x-e'%) Xu;(R+x-€e'?)e'’dx]. (10)

If us andu; are bound- or decaying-state wave functions,
one can writek;=|k;|e”'* and k;=|ki|e”'*. As u;(z)
~as(2)e’*? and u;~a;(z)e’*? when Réz]—+o, with a;
anda; the algebraic increasing functions, the integrals defin-
Relr] ing F converge if one takes

0> af+ aj . (11)
FIG. 1. The path in the complex coordinate space correspondin? . . . . .

to the complex rotation by anglé R is the point from which the I @ddition, the expression fdf is analytical because is a

exterior complex rotation start® is large as compared to the function of converging integrals of analytical functions.

nuclear radius; hence it is assumed that the nuclear potential i§quare roots in Eq(9) cause no problems becausié¢ and

negligible forr>R. Nf2 have always a positive real part. Consequently, following

the theorem of analytic continuation, E@) also defined=

Ojj for V>V, . In this way, one may calculate the radial matrix
F(Vo)= NN (6) elements of resonance states whicpriori are not normal-
iNf ;
izable.

whereV, is the depth of the potential generating s.p. wave
functionsu; and u;, V;, is the depth of the potential for
which one of these functions is bound and the other one is at Scattering states represent the nonresonant continuum and
zero energy, an®(r) is some analytical operator. This func- explicitly enter the completeness relations discussed in Sec
tional is defined in such a way because the integral convergdl. Their asymptotic behavior at— + is

in the domain (-o0; V). It represents the radial matrix () o)

element (ug|O|u;)/||ugl/|lui]| between two not necessarily u(r)~C Hy (kr)+CHy (kr), (12
normalized wave functions. Sinag andu; are bound, one (+) )
can make them realj* =u;, u* =u;. In Ref.[37], the ana- where Hm_ denote _Hankel(or Qoulomb _fun_ctlons. As
lytical continuation ofF is made using the Padepproxi- usual,u(r) is normalized to the Diraé distribution:
mants. In the present work we shall refer to the technique of e

the complex rotatiorj35] which allows a calculation oF j T(k,ru(k’,rdr=8(k—k’), (13
with V,>Vji,,. To see that, let us cafi(r) one of three 0

integrandsu(r)O(r)u;(r), u?(r), or u?(r) and let us take

B. Scattering states

V,<V,n. Sincef is analytical onC (see Fig. 1 then, fol-  Which gives
lowing the Cauchy theorem, one has 1
C'C =—. (14
2
Jle(z)dva fczf(z)dz+ fcsf(z)dz= 0. ™ Knowingu(r), H{"), H{7), and their derivatives at poilR,

one may determine coefficien®" andC~ up to a normal-

Sincef decreases exponentially for R&>0, the integral ization factor by solving the set of linear equations:
fczf(z)dz—>0 if R— +o. For the same reason, the inte-

grals [ ¢, f(z)dz and [ c_f(z)dz converge ifR— +. Con-
sequently, folR;— +o one obtains

u(R)=C"H{")(kR)+C H{ )(kR),
(15

(+)
oy

dz

dHy )
+kC[ d“
z=kR 4

Finally, the scattering state is normalized to satisfy condition
(14).

u'(R)=kC"

+ o0 + o . . Z=kR.
f f(r)dr=J0 f(R+x-e'%e'%dx. 8

R

Hence, on the interval-{»; V},), one can definé& by

Eq. (6), with norm(3) given by C. Matrix elements involving scattering states

R o The calculation of matrix elements involving the scatter-
N;= \/f uiz(r)dr+f uiZ(R+x- e'felfdx, (9) ing states is based on the complex rotati®ri0. However,
0

0 the analytical continuation should be introduced differently
than for resonant states. The one-body matrix element can be
and with the matrix elemen®) of the form written as
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R
F(kf):f Uf(r)V(r)Ui(r)dr+AfAiF++(kf) Im(k)l g'
0 g
=]
o
+ABF . _(ke) +BAF _ 1 (kp) +B¢BiF _ _(ky), @
1)
(16 L LR
o K
where 5 k3 o
(i) up=Agu{ +Biug ; ® o .t Re(k)
(i) ui=Aju;" +Bju; , wherek; in F is fixed and, in gen- © & g L,
eral, u; can be either a bound, resonant or scattering state; ® §-' k, °
and o E o
(i) Fss (k)= “Uf'(R+X)O(R+X)uf'(R+x)dx with o) A °
St, Sie(+,-). ) oy o
This separation is necessary because the presence of in- capturing states & decaying states

coming and outgoing waves in the same integral does not

allow one to find a unique path in the complex plane along F|G. 2. Representation of the compléxplane, showing the
which the integrand decreases exponentially. Consequentlipsitions of bound states, resonances, antiresonances, and the anti-
for eaChFSfSi one has to consider the domain of the complexbound statesL , is the contour representing the nonresonant con-
plane where it converges, and then one performs an analytinuum. The Berggren completeness relation involves the bound

cal continuation with the appropriate anglg; . states, decaying states lying betwden and realk axis, and the
=i scattering states dn, . The contoul , has to be chosen in such a

Certain integrals cannot be regularized in the above sensg, . ; . )
. . Way that all the poles in the discrete sum in E2B) are contained

Those includé= . _ andF_ . with u;j=u. ForO(r)zl, the in the domain betweeh , and the real energy axis.
integrand tends toward a constant value-+ab, indepen-
dently of the valued, _. This can be immediately seen for real energy continuum becomes cumbersome. The complex-
neutrons, because with= R+x-€'? and with|z|— +, the  energy formalism of Gamow states offers a simple remedy to
product u*(z)-u~(z)—conste¥*xe *=const, and the this difficulty.
corresponding integral diverges. In this case, however, it is |n order to derive the completeness relation with Gamow
easy to see that the integral is in factalistribution, and it states, one has to deform the integration contour into the
can be calculated by using a discrete representation of theomplexk plane, as shown in Fig. 2. Following the residuum

Dirac 6 function, theorem, one obtains
kg ~ [l [ luaaclak
S(k—ko)— 41~ 17 0 L,
with Ak being the discretization step k =2i WKE Res(|u) (U Di=k,» (19
n
lIl. COMPLETENESS RELATION INVOLVING SINGLE- wherek, are the poles dffu)(Uy| lying between the real axis
PARTICLE GAMOW STATES and the complex contour.

. o _ In general, the scattering wave functiopcan be written
There exist several completeness relations involving resogs

nant states. As shown by Lif&8], they all can be derived

from Mittag-Leffler theory. In the following, we briefly dis- =T\, ~J (k) \ 2
cuss the Berggren completeness relafid4] which is used U(r)= 2r7 (k)| UK (r)+ 2rg (k)| Uk (r).
in our paper. The following discussion will concern the s.p. (20)
radial wave functions corresponding to a given partial wave
G, ©). In the above expressiony* stands for thejost function
We begin from the completeness relation of Newfag]:  [40]:
. - 0y du du* o1
; |un>(un|+fO lu(udk=1, (18 J(k=u ar Ydr @D

where u™~H;", (kr) when r—+, and u=Au’+Bu".
where|u,) are the normalized bound states dogh are the  For bound and decaying stateg, (k) #0 (7 (k)=0 only
scattering states along the real energy axis normalized ader capturing states with the incoming wave asymptotics
cording to Eq.(13). In basis(18), one can expand any bound Consequently, the pole ofi (r) corresponds to zero of
state or scattering state witeal energy Unfortunately, in 7+ (k). Whenk—k,, i.e., whenu, approaches the resonant
the presence of narrow resonances, the discretization of thstate, then:
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~ J (ky) .~ (uilth)=4,;, (30
|u (Ui |~ — m|ukn><ukn|' (22)

The derivative of the Jost function &k, is and thediscretizedBerggren relatior(28) takes the form

+ o0 2 Nd
i ned [ a3 ST TR

dk 0

k=k,

As this derivative is nonzero, we have las>k,, ) o ) )
This relation is formally identical to the standard complete-

ds+ ness relation in a discrete basis and, in the same way, leads to
dk (24)  the eigenvalue proble|¥)=E|¥). However, as the for-
k=ky malism of Gamow states is non-hermitian, the matixs
complex symmetric.
Up to this point, the choice of the contour in Eg) has
1 been completely arbitrary. In practice, however, one wants to
lu Uy | ~ — 5= |un)(Unl, (259  minimize the number of discretization poirli alonglL . .
2ri(k—kp) This can be achieved if the scattering functions on the con-
tour (or, rather, their phase shiftchange smoothly from
point to point. This condition can be met if the contour does
oo —12 not lie in the vicinity of a pole, especially the narrow reso-
f u;nz(r)dr})

j+(k)~(k_kn)

hence

where the normalized resonant state is

(26) nant state. If this condition is met, the states appearing in
basis(31) can be naturally divided into the following.
(i) Bound states-lying on the imaginaryk axis (or nega-
tive real energy axjs
(i) Narrow decaying stateslying close to and below the

un(r)zu;n(r)<Reg{

0

Finally, the residuum at=k, is

1
Res|u) (U k=i, = — 2.—|un>(iTn|, (270 real k axis (or below the positive real energy axisThose
tm states can be interpreted pkysical resonances of the sys-
tem

and the completeness relation follows immediately: (iii) Nonresonant continuumrepresented by the scatter-

ing states alondy , . Physically, those are the building blocks
> |un><u~n|+f [u ) (Uy |dk=1. (28)  of the nonresonant background.
n L+ These definitions can be extended to many-body states in
the complex energyor momentum plane. In the following,
ave shall clearly distinguish between resonant, resonance, and
nonresonant states.
The completeness relations derived above hold in every

%S €) channel. Consequently, in practical calculations, one

with complexk inside the zone between relakxis and the has to take different contours for different partial waves. As

pomplex contour. Ong may nptlce again that the resonanceas ussed below, the choice of the contour depends on the
in Eq. (26) are normalized using the squared wave function

and not the modulus of the squared wave function. This is gistribution of resonant states in the compleglane.

S . 1 S In a number of paperee, e.g., Ref$44-44), resonant
consequence of the analytical continuation which is used tg . . . . .
. N States were applied to problems involving continuum in the
introduce the normalization of Gamow states.

Figure 2 illustrates the ingredients entering E2). The so-calledpole expansionneglecting the contour integral in

resonant states, the poles of thenatrix, are represented by Eq. (28). The importance of the contour contribution was
the dots. They are divided into the bound, decaying, captur'—nves’[IgateOI In Refg.47,48,25-2] where it was concluded

. . that if one is aiming at a detailed description, the nonreso-
Ing, and a_mtlbound statdsee, e.g., Refs{34,41,38). Rela- nant contribution must be accounted for. This point will be
tion (28) involves the bound and decaying states and the

contourL, lying in the fourth quadrant of the compléx- Clearly seen in several examples discussed below.

In the above equatioju,,) are the Gamow statéboth bound
states and the decaying resonant states between th& re
axis and the complex contguiRelation(28) is the Berggren
completeness relation which allows one to expand the stat

plane.
In practical applications, one has to discretize the integral Completeness of the one-body Berggren basis:
in Eq. (28) [42,43: illustrative examples
Ng In this section, we shall discuss examples of the Berggren
f lu) (T dk= >, |u\(T], (290  completeness relation in the one-body case. The s.p. basis is
Ly i=1 generated by the spherical Woods-Sax@rt) potential:
whereu;(r)= \/Akiuki(r) amdAki is the discretization step. It _ . _1.df(r)
follows from the definition ofu;(r) that V()= =Vof (N =Vsf - S =7 (323
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T T T T T T

V=58 MeV, 2p,, : 0.25-i0.20 MeV | 1 08} V=64 MeV, 2p;,: -0.91 MeV| ]
Vg=59 MeV, 2p;, : 0.16-10.09 MeV 0.6F VER62 MeV, 2p,,: 0.3 MeV | 1
; 1 ~ 0.4 [- 3
2 &
”:; : . o 02F AN 1
\f/—- real part 0.0 =
0.5} "‘. ,/" """"" imaginary part b 0.2k 3 :"' — real part
’ ’ Yoo e imaginary part
10 0.1 0.2 0.3 0.4 02 00 02 04 06 08
Re(k) Re(k)
FIG. 3. Distribution of the squared amplitude¥ k) of the s.p. FIG. 4. Similar as in Fig. 3 but for the boungg; s.p. state of

the WS potential with/,=64 MeV expended in the basis generated
by another WS potentiaM{®) =62 MeV). The height of the arrow
gives the squared amplitude of the bouruh2 state at the value of
Im[K] (the corresponding value is purely imaginagy

state D3, of one WS potential ¥o=59 MeV) in the s.p. basis
generated by another WS potentiat{p)=58 MeV). The ampli-
tudes of both reafsolid line) and imaginary(dashed ling parts of
the wave function are plotted as a function off ReThe height of
the arrow gives the squared amplitude of th®;2 resonance con-

tained in the basis. amplitudes is shown in Fig. 3. One can see that the contri-
bution from the nonresonant continuum is essential even

r—Ro\ ]! though the »3, basis state is a resonance. In this example,

f(r)y=|1+ exp{ d ” (32D  as one might expect, the contribution from the resonance

state in the basis is dominant.

In all examples of this section, the WS potential has the The second example shown in Fig. 4 deals with the case
radius Ry=5.3 fm, diffusenessi=0.65fm, and the spin- ©Of @ 2p3p, state that is bound in both potentials. Herg
orbit strengthV,=5.0 MeV. The depth of the central partis =64 MeV andV{¥=62MeV, and the Py, state lies at
varied to simulate different situations. —0.91 and—0.33 MeV, respectively. As in the previous case,
The complex contour corresponds to three straight Seg.he contribution from the resonaftiere: boungstate in the
ments in the complek plane, joining the pointsk,=0.0  Berggren basis dominates and the contribution of the non-
—i0.0,k;=0.2-i0.2,k,=0.5-i0.0, anck;=2.0—i0.0. The  resonant continuum is small although nonnegligible. In this
contour is discretized with a different number of points: figure, one can notice the small cusp at[lge0.2, even
—60, 80, 100, 120, 160, and final results are obtained usingough the densitg?(k) is an analytic function ok. This
the Richardson extrapolation method. In the examples corapparent paradox is due to the fact th4tk) is plotted as a
sidered in this section, we shall expand thpy2 state, function of R¢k](Im[k]=0). Moreover, the path in the com-
|uWS>v either weakly bound or resonant, in the basisplex plane is continuous but not derivablekat 0.2—i0.2.
luwss(k)) generated by the WS potential of a different These two aspects contribute to the appearance of the “dis-

depth: continuous feature,” which of course has no physical mean-
ing.
|Uws>:2i Cki|uWSB(ki)>+jL oK) |uwes(K))dk An interesting situation is presented in Fig. 5. Here the
N
(33 " " . ' . !
3t o | Vom59 MeV, 2p,: 0.16-10.09 MeV | §
cf. Eq. (28). In the above equation, the first term in the ex- ok VER62 MeV, 2p,,: -0.33 MeV
pansion represents contributions from the resonant states i
while the second term is the nonresonant continuum contri- 1 1
bution. Since the basis is properly normalized, the expansion 0 | ~~~~~
amplitudes meet the condition g ] v F
No =r
> c2+ f c2(k)dk=1. (34) 2
i : L. -3F 3
real part
In all cases considered, the¥), and 1Ipg, orbitals are well Il S | R —— imaginary part
bound(by ~40 and~18 MeV, respectivelyand do not play 5t 3
any role in the expansion studied. . . " . . .

In the first example, we shall expand thps2 s.p. reso-
nance (0.2510.20 MeV) of a WS potential of the depth
V(=58 MeV in the basis generated by the WS potential of F|G. 5. Similar as in Fig. 3 except for thepz,, resonance of the
the depthV§=59 MeV (here the D3, s.p. resonance has an WS potential withVy=59 MeV expended in the basis generated by
energy of 0.16-i0.09 MeV). The density of the expansion another WS potential\((®’ =62 MeV).
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T T T TABLE |I. Parameters of the GSM Hamiltonian used in the cal-

2 - E culations for the oxygen isotopgé 1’0" parameter sétand the
3f V‘l’;MMev' 2p3: -0.91 MeV 3 helium iostopeg* ®He” parameter sét WS radiusR, WS diffuse-
E {3 V=59 MeV, 2y, : 0.16-10.09 MeV| nessd, WS strengttV,, spin-orbit strengtfy,, and strength of the
2t | ] residual SDI interactiolVgp, .
o4t Variant R (fm) d (fm) V, (MeV) Vg, (MeV) Vgp, (MeVfm?)
o | ] h g ] "o 3.05 065 55.8 6.06 700
oki S He 200 065  47.0 7.50 1670
-1 - i';aipiin at act result as a function of the number of discretization points
""""" ginary p 3 along the contour. While the wave functions converge fairly
0 83 57 35 38 quickly, the convergence of complex gnergies is slightly
Re(k) slower; hence, one has to employ the Richardson extrapola-
tion method to get an energy precision of the order of a keV.
FIG. 6. Similar as in Fig. 3 except for thepg, bound state of
the WS potential withV,=64 MeV expended in the basis generated IV. GAMOW SHELL MODEL HAMILTONIAN
by another WS potential\,(gB)ZSQ MeV) containing a resonance. . . L i .
The GSM Hamiltonian applied in this work consists of a

_ ) one-body term and a zero-range two-body interaction. The
unbound g, state V=59 MeV) is expanded in a WS gpperical one-body potential was taken in a WS fde.
basis containing the boundpg, level (V§¥=62MeV).  (323]. In our study, resonant states are determined using the
Consequently, the nonresonant continuum has to supply thgeneralized shooting method for bound states which requires
imaginary part of the resonance’s wave function. The lastin exterior complex scaling. The numerical algorithm for
example (Fig. 6) corresponds toVy=64 MeV and VBB) finding Gamow states for any finite-depth potential has been
=59 MeV. This is the most intriguing case since one ex-tested on the example of the sahl-Teller-GinocchidPTG)
presses a boun@eal) state in the basis which contains only potential[49], for which the resonance energies and wave
complex wave functiongthe contribution from well bound functions are known analytically. Energies of all PTG reso-
Ops, and Ips, s.p. states is negligible In this case, the nances with a width of up to 90 MeV are reproduced with a
nonresonant continuum annihilates the imaginary componengrecision of at least I MeV.
of the 2p5,, S.p. resonance contained in the basis. Indeed, in Contrary to the traditional shell model, the effective inter-
this example, the contribution from the contour is dominant.action of CSM cannot be represented as a single matrix cal-
To see the convergence of the wave function obtained by theulated for all nuclei in a given region. The GSM Hamil-
expansion method, in Fig. 7 we show the root-mean-squartnian contains a real effective two-body force expressed in

deviation of the calculatedf, wave function from the ex- terms of space, spin, and isospin coordinates. The matrix
elements involving continuum states are strongly system de-

pendent, and they have to be determined for each case sepa-
rately. This creates an additional difficulty, but there is also a
payoff. Namely, the resulting two-body matrix elements fully
2p3 /2 take into account the spatial extension of s.p. wave functions.
103 1 In this work, as a residual interaction we took the surface

delta interactionSDI) [50]

V(1,2 =—Vgpd(F1—T)8(r;—R), (35

. , with the same value oR as in the WS potential. In our
S exploratory GSM calculations, we consider two caggshe

chain of oxygen isotopes with the in€éfiO core and active

neutrons in thesd shell, and(ii) the helium chain with the

inert “He core and active neutrons in theshell. The param-

0 % 0 100 130 1% eters of the GSM Hamiltonian are summarized in Table I.

Number of non-resonant continuum points The WS potentials have been adjusted to s.p. states in one-

neutron nuclet’O and®He. For!’O, the resulting WS 05/,

FIG. 7. The root-mean-square deviation of thg;2wave func-  and 1s,,, states are bound, with s.p. energies—¢f.142 and

tion of the WS potential \(,=64 MeV) obtained by a diagonaliza- —3.272 MeV, respectively, anddd, is a resonance with the
tion in a basis generated by another WS potentigf{59 MeV)  s.p. energy 0.898i0.485 MeV. The agreement with experi-

expt __

RMS Deviation

from the exact wave functiofobtained by a direct integration of hantal data éexpf=_4.143 MeV. e>P' = _3 273 MeV. and

the Schdinger equation The rms deviation is shown as a function ~_ 52 oot Tz ’

of the number of discretization points along thp;2 contour. e3/2p+=0.942 MeV, y3/§+=96 keV) is excellent. The strength
1 1
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of the SDI has been adjusted for a given configuration spacand not to the squares of their absolute values.

to the experimental two-neutron separation energy°ef. In the particular case of two-particle states, the complete-
Since only @, is a s.p. resonance, we shall include only aness relation reads

d5, nonresonant continuum. In fact, the completeness rela-

tion requires taking the nonresonant continua corresponding

to all partial waves(¢, j). However, if for a given partial igz |¢i1¢iz>33<¢i1¢i2|21'
wave no resonances are included in the basis, the corre-

sponding nonresonant continua can be chosen along the reglis rejation can be used to calculate the two-body matrix
momentum axis. Since, to the first order, the inclusion ofyements.

these continua should only result in the renormalization of
the effective interaction, they can be ignored in most cases,
except for Sec. VB.

The nucleus’He with one neutron in the shell, is un- Before discussing completeness relations in the many-
stable with respect to the neutron emission. IndeedJthe body case, let us describe the method of selecting many-
=3/2; ground state oPHe lies 890 keV above the neutron body resonances. In a standard shell model, one often uses
emission threshold and its neutron width is largeé, the Lanczos method to find the low-energy eigenstates
=648 keV. The first excited state, 1/2 is a very broad (bound statesin very large configuration spaces. This popu-
resonance I[[=5.57 MeV) that lies 2.16 MeV above the lar method is unfortunately useless for the determination of
threshold. Our WS potential yields single-neutron resonance®any-body resonances because of a huge nuniten-

Pa, and py, at E=0.745-i0.32MeV and E=2.130 tinuum) of surrounding many-body scattering states, many of
—i2.936 MeV, respectively. In our model space we takethem having lower energy than the resonances. A practical
resonances [,, 0pi», and the two associated complex §olution to this problem is the two-step procedure proposed
continuapy, and py;,. The strength of the SDI has been in Ref.[25]. o

adjusted for a given configuration space to the experimental (i) In the first step, one performs the pole approximation,
two-neutron separation energy ¢e. i.e., the Hamiltonian is diagonalized in a smaller b_aS|s con-

For theN-body problem, the Hamiltonian matrix contains Sisting of s.p. resonant states only. Here, some variant of the
one- and two-body matrix elements. The one-body part cor-anczos method can be applied. The diagonalization yields
responds to s.p. energies of basis states and contributes orﬁl}f‘ first-order approximation to many-body resonances
to diagonal matrix elements. In general, the calculation of ¥i)(®, where index (i=1,...,N) enumerates all eigenvec-
two-body matrix elements is performed by splitting the ra-tors in the restricted space. These eigenvectors serve as start-
dial integral into 16 terms corresponding to all different pos-ing vectors(pivots) for the second step of the procedure.
sible asymptotic conditions of s.p. wave functions. Then, (ii) In the second step, one includes couplings to non-
each term is regularized separately by an appropriate choid@sonant continuum states in the Lanczos subspace generated
of angle of the external complex scaling; cf. Sec. Il. by [¥;)©® (j e[1,...,N]).

(ii) Finally, one searches among the solutions|¥;.,)
(k=1,...M) for the eigenvector which has the largest over-
lap with [W;)(©).

This procedure is a variant of the Davidson method. Ob-

The discretized basi€1) can be a starting point for es- viously, in the search for bound states, both Lanczos and
tablishing the completeness relation in the many-body casd&)avidson methods can be used. In the following, we shall
in a full analogy with the standard shell-model in a completeshow that the procedure outlined above allows for an effi-
discrete basis, e.g., the harmonic oscillator basis. In this caggent determination of physical states within the set of all
one has eigenvectors of a given Lanczos subspace.

As a representative example, let us consider the cases of
180 and?°0 with the core oft®0, i.e., two- and four-particle
; W (Tal=1, (36)  systems, respectively. Here we employ the complgxcon-

tour corresponding to two segments defined by the points:
k;=0+i0, k,=0.2—i0.05, andkszo.gf?;)io.o. 21(')he contour
. is discretized with 17 and 9 points f and“"O, respec-
|¢1+ dn), where] ) are resonancébound and decaying tively. From all the possible pmany—body configuratiopns, we
_and scatter_mgcontogb S.p. states. The approximate equallt_y only keep the Slater determinants with an energy less than 5
in Eq. (36) is an obvious consequence of the continuum dIS-MeV and with a width smaller than 1.7 MeV.

cretization, similarly as in E.Q('3.1)' Like in the case of s.p. . The results of calculations for the'Ostates in®0 are
Gamow states, the normalization of the Gamow vectors 'Q:iisplayed in Fig. 8. In this case, one obtains two bound

tmhg dgtljgﬂrr?ulzflut:aloens space is given by the squares of She"étates. An eigenstate lying just close to the real energy axis
P ' just above the two-neutron threshold is a candidate for a
resonance. Even though the width of this state is very small,

2 c2=1, 3 only the overlap with the states calculated in the pole ap-

non proximation can give the answer. Figure 9 shows the overlap

(38)

A. Determination of many-body bound and resonance states

V. MANY-BODY COMPLETENESS RELATION
WITH GAMOW STATES

where theN-body Slater determinantsl’,) have the form

054311-8



GAMOW SHELL MODEL DESCRIPTION OF WEAKLY . ..

PHYSICAL REVIEW (7, 054311 (2003

0.0 |- -Bheeeeeee L BN fremeenee i A . 10%} ]
%3
i 1 R
02 ] [ s . 10 ] "’.. *o ]
. 3. -2 °
‘,. 2y =7 ff%}
@ oaf 3 3 i S ] 2‘:10'3r . PN
£ £ g B-.:‘ d 210 O
06 L = ‘S g:‘:.,‘ z ¢ *e,
Voos 105} : 1
0* states . 6 .
08 | s ] 107} : 1
180 4 -7t Ofstate in 180 ¢
10 r 3 1
-10 5 Re® 0 5 10 -10 -5 0 5

Energy of | W) (MeV)

FIG. 8. Complex energies of the'Gstates in‘0 resulting from
the diagonalization of the GSM Hamiltonian. Onenjland two- FIG. 10. Similar to Fig. 9 except for the;Ostate wave function
neutron () emission thresholds are indicated. The physical boundPf 0, v;.

and narrow resonance states are marked by squares. The remaining ] . ) .
eigenstates represent the nonresonant continuum. information can be dlrectly used to Identlfy the resonance

states.

Figure 11 shows the results of calculations for the 0
states in?°0. As compared to thé®O case, the number of
many-body states is much larger and the regular pattern of
nonresonant states reflecting the structure of the contour is
gone (the figure represents the projection of four-
dimensional trajectories onto two dimensional spadé¢hile

of the ground-state wave functiok, of 180, calculated in
the pole approximation, with all the 0eigenstates of the
GSM Hamiltonian resulting from the full diagonalization.
One can see that only one stétiee GSM ground stajéhas a
significant overlap with¥y; hence, the identification of the

ground state wave function is unambiguous. Figure 10 illus . . o
trates a more challenging case of the thigd€ate of'%0. In f[he two Iowest(bound states can be_s!mply |Qentlf|_ed by
inspection, for the higher-lying states it is practically impos-

spite of the fact that this state is embedded in the nonreso-.
. . e . . Sible to separate the resonances from the nonresonant con-
nant 0" continuum, its identification is straightforward. It is

interesting to notice that those GSM states in Fig. 8 thaprc]):girgl'e '18\’\?3\;;’”;%n‘;ﬁg‘?dﬁéﬁslomt"hneedngoygo(;nal:gzo'_t
represent the nonresonant background tend to align alorid g y Y y

: . ) ? Nance states. On the other hand, the method proposed in
regular trajectories. As discussed in R¢R6,27), the shapes Refs.[26,27] cannot be easily applied.

of these trajectories directly reflect the geometry of the con- .
: . : The many-body resonances should be stable with respect
tour in the complexk plane. In the two-particle case, this 4 .
to small deformations of the contogas the physical solu-
tions should not be dependent on the deformation of the

10° basig. This observation offers an independent criterion for
104 ] 00 pf23---- ‘1@' SRET e
R Lo sl ie ot "o e .
— ' 0 ) .* . '
-~ [ oo wgh : .‘o -
551074 ] 02 b i A e S AL N
-° 0*states| | e L % es e o”
2 vl 1"..‘,. m:'a..;";‘: e
~ 10 f ; S oaf |20 || ignEy b iy
: E It
. = 3 LR S
108} 06 | é: R ORI R
i . 18 7 ; U e o Bamethe e s
0] state in 0o gi gi Tty . ’. ...c'..c'. *
g, %l . oof o o .: - -
- - . , 08 | I AP A S
-10 -5 0 5 CH - A,
Energy of |‘~I’n) MeV) T B
1o 20 -15 -10 -5 0
FIG. 9. Absolute value of the overlap between the ground state Re(E)

wave function®, of 80 calculated without the coupling to the
nonresonant continuurgpole approximatiopnand the different )
eigenstatesl , of the GSM Hamiltonian(calculated with the cou-
plings to thed;,, nonresonant continuugnas a function of the total
energy.

FIG. 11. Similar to Fig. 8 except for the'Ostates in?°0. The
small negative widths of several unbound states are due to the fact
that the number of discretization points along the contour is fairly
small (5) in this case.
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: 23] E
~ LA RN 0 _
> i : :
é) -0.05} 1 . ]
= . ! 08 P2 s12 ds2 daz fip ]
=) : )
£ ool : RS ) Number of (£,j) continua
. : FIG. 13. Ground-state energy &0 (top) and ®He (bottom) as
v a function of the number of differertt, j) nonresonant continua in
: . : : the valence space. FGfO we employ the complexiy, contour
-0.15 ) ) 7 3 consisting of three straight segments connecting the pokys:
RC(E) (MCV) =0.0-1i0.0, k1=0.3—i0.2, k2=0.5—i0, and k3=l.3—i0 (aII in

fm™Y).
FIG. 12. The effect of small changes in the contour on the . . . . . . )
stability of resonant and nonresonant Gtates in2°0. Top: the calculations contained in this section, the configuration space
contour in the complek- plane corresponding to thedg, con- consists of all the Slater determinants of energy less than 35
tinuum. The direction of the contour’s deformation is indicated by MeV.
an arrow. The calculations were performed for four contours, each As a first example, we shall consider the convergence of
divided into nine segmentée., ten discretization pointsonly the  the ground-state energy &fO with the increasing size of the
first and maximally deformed contours are shown. Bottom: the renonresonant phase space. The GSM s.p. space consists of the
sulting shifts in positions of many-body states corresponding to théds,, 1s,,, orbitals and the 65, Gamow resonance. This
complex energy region of Fig. 11 marked by a dotted line. It is seertliscrete basis is supplemented by adding successive con-
that the states identified as resonant are very stable with respect thua: s,/,, P12, Pap...., in thedecreasing order of their
small changes of the contour, while the states representing the Nofmportance. Sinced), is a resonance, @/, contour should
resonant continuum move significantly in the direction indicated bype complex, and we take it according to Sec. VA. Other
an arrow. nonresonant continua are real and for their path we choose a
. . T . o

identifying resonance states. Figure 12 shows the effect of gtralght segment with 9k<1.3 fmi". The dls'creuzanon'of

: Y each continuum, whether real or complex, is made with 10
sTaII deforrrlz%ltlon of the contour on the stability Of.seleCtedpoints.
0 gtates In"0. .AS e_x'pected, only the states which have As one can see in Fig. 1&op), the convergence is
previously been identified as resonances are stable with re-

spect to small changes of the contour; the states belonging gehieved with thels,, 72, dsjz, Sy, andfs, contours; the

. P . contributions from all the remaining partial waves with
the nonresonant continuum “walk” in the complex energy _ . -
plane following contour’s motion. >3 and_{?—l are pracUcaIIy negligible. As a ru_Ie of thumb,
the continua which contribute most to the binding energy are
those which are associated either with s.p. resonances in the
basis or with weakly bound s.p. states. This is the case with
the Odgpp, 1S40, and @5, orbitals, and also with thefQ,,

In this section, we shall discuss the completeness of thetate which has an energy #7.43 MeV and a width of 3.04
many-body basis spanned by Gamow states. Since the nurivteV. Even though this wide resonance is absent in the basis,
ber of configurations is growing extremely fast with the it has nevertheless an indirect influence throughfthecon-
number of valence nucleons, and this is enhanced by includeur which “keeps memory” of its presence. One may notice
ing the nonresonant continuum, we shall restrict our discusthat the presence of thieomplex ds, contour affects not
sion to the case of two-valence particles. By analyzing theonly the real part of the ground-state energy but also its
behavior of the wave function as the number of basis stateisnaginary part; the ground-state energy has a spurious width
grows, one can assess the impact of various truncations iof ~—130 keV in the pole approximation, and this width is
the valence space. This is especially important for calculareduced to~—2 keV when theds, (10-poiny contour is
tions with zero-range forces, such as the SDI interaction emadded. The spurious width of the ground state remains stable
ployed in this work, which require an energy cutoff. In the when other(real) contours are added.

B. Completeness of the many-body Gamow basis: example
of two interacting particles
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TABLE Il. Squared amplitudes of different configurations inthe ~ TABLE lll. Same as in Table Il but only including thds,
ground states of two-neutron systef® and ®He. The sum of  contour.
squared amplitudes of all Slater determinants, includinmarticles

in the nonresonant continuum, is denotestSS) . See the text for Configuration c?
details. 2 . ,
0dZ, 0.935+i1.836x 10
Nucleus Configuration c? 1si, 0.040-i1.560<10"°
- ; : » 0d3,, 0.021-i4.973x10°®
°0 0dz), 0.872+i1.146<10 L® 3.913< 10 °+i4.412¢ 103
185, 0.044-i5.973<10"° L@ —1.002<10°4+13.939< 104
0d3, 0.028-16.624x10°°
L® 0.042+i4.709< 10 °
. '-(é) 0.015+i1.795<10 " cussed in the context of a one-body problem, can be found in
He 0p3, 0.891-i0.811 Sec. Il A (Fig. 6).
0p3, 0.004-i0.079 The structure of the ground-state wave function®sife
L@ 0.255+i0.861 including all the(¢, j) continua shown in Fig. 13, is shown in
L® —0.150+i0.029 Table Il. One can see that the configuration with two neu-

trons in the (3, shell dominates, though the imaginary part

of the corresponding squared amplitude is almost equal in
The structure of the ground-state wave function'®®  magnitude to the real part. The amplitude of tmﬁ,g con-

calculated with the full nonresonant continuum discussed iffiguration is small, whereas the contributions from one and

the context of Fig. 13 is given in Table Il. One can see thatwo particles in the nonresonant continuui{? and L?,

the configuration with two neutrons in thelg), shell domi-  are almost equally important.

nates; the remaining configurations, including those with one

and two neutrons in the nonresonant continuum, contribute VI. GSM STUDY OF OXYGEN ISOTOPES

~15% to the wave function. Imaginary parts of squared am-

plitudes are generally very small. This is due to the small In this section we shall discuss the GSM results for a

width of the @i, resonance included in the basis. chain of oxygen isotopes with several valence neutrons
As a second example, we shall investigate the energy cofNva™2). In the calculations, we assume the coré®d. As

Vergence for the Weak'y bound ground Statél-ﬁé We Sha” dISCUSSGd in Sec. |\/, the Valence neutrons are d|Str|buted

assume that the structure e can be described in the full over the 5, and Qds;, bound shells, the @, Gamow reso-

Op shell with two valence neutrons. Since the GSM s.p.nance, and the discretizet};, nonresonant continuum. The

space consists of thepg,, Op,;, Gamow resonances, the COMPplexds, contour corresponds to two segments defined

associategs, andp,/, nonresonant continua should be com-by the points: k;=0+i0, k,=0.2-i0.05, and k;=0.4

plex. Here, thep,, contour consists of three straight seg- —i0.0. It is discretized with nine points. Consequently, the

ments connected at point&,=0.0—i0.0, k;=0.3—i0.35,  discretized s.p. GSM spad@1) consists of a total of 12
k,=0.5-i0, andks=0.7—i0. In thep,, nonresonant chan- subshells on which valence neutrons are distributed. Let us

nel, straight lines join the pointsk,=0.0—i0.0, k,=0.4  reiterate that we also introduce the cutoff in the configuration
—i0.5,k,=0.5-i0, andks=0.7—i0. For all other contours SPace of the GSM. In this study, we shall include all Slater
we take a segmen0:0.7] fm~? of the realk axis. Thepa, determinants with an energwidth) smaller than 5 Me\(l_.?
contour is discretized with 20 points. All other contours, in- MeV). Moreover, we shall take only Slater determinants
cluding the complexpy, contour, are discretized with ten with, at most, two neutrons in the nonresonant continuum.
points. We have qhecked that conflguratlc_)ns with a Iarger_ nun_1ber of
As seen in Fig. 13bottom, the full energy convergence neutro_ns in the n_onresonantzcontlnuum are of minor impor-
is attained withpay, andpy, contours; other scattering waves t&nce in all nuclei from® to 220, and their contribution is
with ¢>1 are negligible. Coupling to the nonresongnt, ~ <0-01% in all cases studied. Our aim is not to give the
and py, continua changes not only the ground-state energPreC's,e Qescrlpyon 'of actual nucléor thls_, one _Would need
but also its(spurious width. In the pole approximation, the @ realistic Hamiltonian and a larger configuration spabat
calculated ground state has a huge width~of2 MeV, rathe_r to illustrate the method, its basic ingredients, and un-
which is reduced to~—650 keV when theps;, contour is ~ derlying features.
added, and it reachd3~ —10 keV when bothps, andpq,
nonresonant continua are included. Contrary to the case of
180, the pole approximation is totally unreliable, and it does ) )
not even give a rough approximation to the energy and wave According to our calculationtsee, e.g., Table 1l fot%0),
function of the ground state GHe. The main reason is that the ground-state wave functions 6t >0 are dominated by
in this case one attempts to describe the bound state using tHee single shell model configuratiordQ%" having a weight
basis which does not contain any bound state and, thereforef 80—95 %; the nonresonant continuum contribution is rela-
the nonresonant continuum is essential for compensating faively small. A one-neutron continuum provides between
the resonance contribution. The analogous situation, di®3.1% and 1% of the wave function, whereas a two-neutron

A. Ground states of oxygen isotopes
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FIG. 14. Calculatedcrosses connected by a solid lirend ex- M 4 %+ - 2:
perimental(circles with error bansone-neutron separation energies 4 = 2+
in the 8-20 chain. .

2 2 2*
continuum yields a contribution which varies fro0.01%
to ~0.1% in these nuclei. This means that the main effect of . .
the nonresonant continuum in these states is to cancel a spu- 0 —0 — 0
rious width induced by the @, resonance included in the GSM EXP

basis, and th(_eir_influenpe on the real part of the energy can be FIG. 15. The GSM level scheme 8O calculated in the fulsd
negllgectgd. It is interesting to compare t_he squared amplltudei)ace of Gamow states and employing the discreti point3
for ,O in Tables _“ and Ill. The values in Table Il have been ds, nonresonant continuum. The dashed lines indicate experimental
obtained by taking all the contours from,, 10 N1,  and calculated one-neutron emission thresholds. Experimental data
whereas the results in Table Ill have been calculated withye taken from Ref51].
only ads, contour. Increasing the nonresonant space gives
rise to the depletion of the occupation of bound shells. ten-point discretization, the spurious width remains-5

The predicted one-neutron separation ener§ig®or oxy-  keV for all bound states ot®0 and we consider this a rea-
gen isotopes are displayed in Fig. 14 and compared with thgonable precision. Similarly, for resonances lying very close
data. The calculations reproduce experimental separation efy the lowest particle emission threshold, hence having nar-
ergies, including the magnitude of the odd-even staggeringow widths, it may happen that their width results from the
The difference between the GSM and the data are in thealculations as negative if the many-body completeness rela-

worst case~500 keV. tion is numerically not well satisfietsee Fig. 11 and related
discussion
B. Level schemes of oxygen isotopes The calculated level scheme 810 (see Fig. 15 repro-

Shown in Figs. 1517 are calculated and experimentaﬁjuces’ the main experimental features. The ground state is
. + . . ~+
spectra oft8-20. Let us stress that the main purpose of this®/2 » @ observed, but the higher-lying states, 34hd 1Z

comparison is to demonstrate the internal coherence of GSK® given in the reversed order. Nevertheless, the next four
results and the numerical feasibility of the GSM in realistic

applications. Nevertheless, in spite of the simplicity of the 9F 172
Hamiltonian, the overall agreement between the GSM and . 19
experimental spectra is quite reasonable. 8 E g;%* O

Figure 15 illustrates the case 800. One can see that the 3
first three lowest states are relatively well described. More- 9
over, the one-neutron emission threshold is reproduced. In § 6 E
the GSM, this threshold is obtained from the difference of T +
calculated ground-state energies'®® and*’O. It is impor- BF 5/2
tant to note that all states above the one-neutron emission E Y 20 0 P 29 FRRe T T
thresholdare predicted to be resonangese., their widths 63 3/2+ 5/2F
are positive, whereas all states below this threshold are cal- 3 —— %% = 312,
culated to have small spurious negative widths. This feature B — 9/2* _—_— g;%
is certainly not imposed on the model and it proves both an 12"
internal consistency of the GSM as well as a correct numeri- 1E 32"
cal account of the completeness for many-body Gamow 7 1/2* 3/2*
states. One should notice that in the calculations with a dis- GSM 5/2F T 5/2*

cretized continuum, it is impossible to assure that the bound
states have a widtexactlyequal to zero. Instead, one ex-  FIG. 16. Same as in Fig. 15 except f50. As the number of
pects that this numerical artifact of continuum discretizationstates becomes large above the one-neutron emission threshold,
becomes numerically unimportant with an increasing numbeénly selected resonances are shown. The electromagnetic transitions
of points on the contousee Table 1 of Refl25]). With a listed in Table V are indicated by arrows.
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FIG. 17. Same as in Fig. 15, except f90.

states are rather well reproduced, in spite of the inversion of
the 5/2 and 3/2 levels. Finally, the GSM prediction for
200 is shown in Fig. 17. Here, the overall agreement between
calculations and experiment is best for all the isotopes
studied.

C. Distribution of valence particles

Radial features of the density distribution of valence
nucleons are always of great theoretical interest. They deter- FIG. 18. Monopole form factor of valence neutrdis. (39)] in
mine the nuclear size, electromagnetic transition rates, polafg gro'und. statétop) and the 2 resonancebotton of 1éo. Real

ization F:harges, and many Othe,r nu_clgar pmpertie,s' To_ assezig imaginary parts of the density are shown with solid and dotted
the radial extent of the nucleonic distribution obtained in the1ines, respectively. According to definitio@0), the form factor is

GSM, we investigate the monopole form factor definedgypressed in units of fiit.
through the normalized radial Gamow wave function@)

[Edq. (26)]:
p(r)=2 n-|u-(r)><TJ-(r)| (39) D. Electromagnetic transition probabilities

In the shell-model calculations with Gamow states, only
radial matrix elements are treated differently as compared to
the standard shell model. This means that the electromag-
netic (EM) transition selection rules and the angular momen-
Reg fx p(r1)dr=Nyy. (40) :um gnd isospin algebra do not change. To calculate the EM

r=0 ransitions, one can no longer use the long wavelength ap-

Figure 18 shows the neutron form factors for the grounoproximation because of the presence of the nonresonant con-

state and the highly excited resonance stgt@®f0. Asfor ~ tinuum. Indeed, for the diagonal EM matrix elements
all observables associated with bound states, the neutrdfilijikilOInd¢jke) (ki=Kk) between the scattering states,
form factor in the ground state 8O is real even though the the complex scaling cannot be carried fage the discussion
0d, resonant state is included in the basis. The imaginarfround Eq(17)]. Furthermore, since in the long wavelength
part of p(r) is very small; its value is less tharxdL0 > for approximation the EM operators behave like one has to

all values ofr. On the other hand, for the/2resonance, deal with derivatives of delta functions, which is difficult to
having a width of~150 keV, the form factor is always com- handle. Without the long wavelength approximation, how-
plex. This feature is not an artifact of the discretization pro-ever, these matrix elements become finite, because it is al-
cedure. In fact, the imaginary part of the form factor has arivays possible to carry out a complex scaling with the Bessel
interesting physical interpretation. Namely, it is associatedunction of the photorj, (qr), asq+0. Moreover, as they
with the uncertainty in the determination of the mean valuerepresent a set of measure zero, the diagonal nonresonant
(given by the real par{30,34,52-54 In other words, in the EM matrix elements can be put to zero in the discretized
decaying state the particle distribution cannot be given wittcalculation. As all the other matrix elements can be regular-
an unlimited precision. ized, the EM matrix elements are all well defined.

wheren;=(a, a,) is the GSM occupation coefficient of the
s.p. Gamow orbital. By definition, the form factor is nor-
malized to the number of valence particles:
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TABLE IV. Electromagnetic GSM rateg¢all in W.u.) for the
selected transitions iffO calculated(i) in the pole approximation
without the complex-energy contour afid) with the d;;, contour
representing the nonresonant continuum. Experimentall8afare

PHYSICAL REVIEW C67, 054311 (2003

TABLE VI. Discretizedps, andp4, contours in the complek-
plane(in fm™%) representing the nonresonant continuum in the He
calculation.

shown in the last column. Point No. P32 P12
Transition Without contour With contour Expt. 1 0.01-i0.01 0.05-i0.05
2 0.10-i0.06 0.20-i0.43
LE2 2.75-i10.001 2.68-10.011 3.32 3 0.20-i10.095 0.40-10.45
21 -0y _ _ 4 0.30-i0.06 0.60-i0.43
E2 1.99+10.015 1.94-i0.003 1.19 5 0.40-i0.01 0.75-i0.05
41_)21» . . . .
+Ez . 1.66+i0.007 1.48-10.006 17
0; =2, ) . only ten points on thel;, contour decreases the imaginary
2+sz+ 0.04-10.000 0.04-10.000 0.14 part by one to two orders of magnitude, depending on the
2" . . transition. The real part of the transition probabilities
22+E_2>0+ 0.19+10.004 0.18-10.001 L3 changes by up to~10% when the contribution from the
1

Tables IV and V display the selected EM transition rates
in %0 and*°0 calculated in the GSM with and without the

contribution from the nonresonads,, continuum. In all cal-
culations, we have taken the effective neutron chajgg

contour is considered. This is nevertheless an important
change if one notices that the configurations with one and
two neutrons in the nonresonant continuum amount to
~0.1% of bound wave functions in these nuclei. For most
transitions, the experimental values are reproduced within a
factor of 3 by the GSM, and we find this agreement satisfac-
tory in light of a very simple Hamiltonian employed.

;e(t)é?errl\i\r/]\ggl?rfgesrt? nggmgffanifr:od'i‘l:gsgegrgosrgﬂ tﬁ; E Table V displays transition rates M0, indicated in Fig.

e ; pole op - '\/16 by arrows. The three lowest transitions are between bound
probabilities probe the off-diagonal matrix elements; hencestates and the GSM calculations with contour predict a very
the continuum coupling manifests itself differently. As seen_ imaginary partless than 0.001 W.u. The next four
in Tables IV and V, the nonresonant continuum plays Nransitions in Table V involve the unbound 7/21/2; , and

important role both for transitions involving bound states__ levels Ivi h hreshol h
only and for transitions involving an unbound state or states®% €Vels lying above the one-neutron threshold, and the

In all cases, the real part of the transition rate is reasonabl§Or™esponding transition rates are, in general, complex. The

approximated in the pole approximation. _ _ E2 .
Similarly as in the problem of spurious negative widths of fféCt is particularly pronounced for the 1/2:5/2; transi-

bound states, the imaginary part of EM transitions betweefOn between unbound states. As mentioned in Sec. VIC, the
bound states must disappear in the limit of the nondiscretizefif@ginary part gives the uncertainty of the average value
continuum. Indeed, in our calculations the imaginary part of30:53,54. In all cases, the real part of the matrix element is

such a transition rate tends to zero when the coupling to thalightly influenced by the interference with the nonresonant

nonresonant continuum is added. In the cases studied, takifggckground.

TABLE V. Same as in Table IV except for electromagnetic tran- VIl. GSM STUDY OF HELIUM ISOTOPES

ABRE s o , o .
sitions in O shown in Fig. 16. A description of the neutron-rich helium isotopes, includ-

ing Borromean nuclei®He, is a challenge for the GSMHe

Transition Without contour  With contour EXpt.is"a well-bound system with the one-neutron emission
M1 0.01-i0.002 0.0=i0.0 0.088 threshold at 20.58 MeV. On the contrary, as discussed in Sec.
3127 —512f IV, the nucleus®He is a broad resonance. The two-neutron
M1 0.02-i0.003 0.02-i0.0 0.0093 system®He, on the contrary, is bound with the two-neutron
1/2) —3/2) emission threshold at 0.98 MeV and one-neutron emission
LB 3.07+i0.010 3.0%i0.003 0.58 threshold at 1.87 MeV. The first excited statg &t 1.8 MeV
12 —5/2) _ _ in ®He is neutron unstable with a widlh=113 keV.
= 1.78+10.000 1.74-10.006 <1 The s.p. configuration space used includes both reso-
9/2f —5/2; .
0.12-10.062 0.13-10.037 nances @5, and @4, and the two associated complex con-
it st e 1 10 tinua ps, and py,, which are discretized with five points
8 8 . . each. The fact that the resonances in the basis are so broad
E2 4.57+10.430 4.5810.373 . . . . .
1/2; —5/2} requires particular attention when selectl_ng points along the
£ 0.12+10.038 0.13-10.054 contour. They are given in Table VI. In this case, we cannot
Y ' ' ' ' significantly increase the density of points along the contour
7125 —312; g y y ofp g
2 0.82—0.034 0.85i0.012 because the calculation for the heavier heI_ium isotopes with
1/25 —312; more valence neutrons would not be feasible. On the other

hand, we do not introduce any restriction on energies and
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5 +.p. basis: SHe TABLE VII. Squared amplitudes of different configurations in
4 Py 075403MeV yuponnar Vo = SDI-force the ground states df°He. The s.p. space consists of both,Q,
3 Pyjp 313-i2.9 MeV o res 0p1>, Gamow resonances and the two associated complex continua
%‘ 2 . . 7 i ps;» andpq, which are discretized with five points each.
2 on T ,
of .. - + ] i 2
) 1 e Y R I Nucleus Configuration c
2 — 2 p > :
© j Helium isotopes s " He Opg’2 0.870-10.736
0p3, 0.007-i0.076
: L® 0.271+i0.752
He "He 8He He L® —0.147+i0.060
3 .

FIG. 19. ExperimentalEXP) and predictedGSM) binding en- "He (2)p3,2 1'110_?0'879
ergies of®*He as well as energies df=2" states in®%He. The 0p3,20p%,2 0.006—?0.029
resonance widths are indicated by shading. The energies are given 0p30p1,2 0.022-10.042
with respect to the core dHe. L 0.050+i0.951

L@ —0.185+i0.008
widths of Slater determinants included. Also, no restriction L® —0.002-i0.009
on the number of neutrons in the nonresonant continuum is 8He 0p3; 0.296-i1.323
imposed, with the only exception beifigle, where we allow 0p3,0p%, —0.060-i0.158
for at most four neutrons to occupy “contour shells.” Con- LD 1.596+i11.066
trary to the discussion in Sec. V B, we neglect all remaining L® —0.728+i0.630
real continua in the present calculation. We shall see that this L® —0.125-10.204
v_V|II ha_ve an impact on the rgla‘uve weight of different con- L® 0.020-i0.012
figurations in the wave function. e 0P%,0P15 0.180-11.328

LY 1.596+i0.734

A. Spectra of helium isotopes L(f) —0.584+i0.801

The energies of the lowest GSM states of helium isotopes L —-0.217-i0.193

are shown In Fig. 19, and the structure of their ground state L& 0.025-i0.034

wave functions is given in Table VII. As seen in Table VII,
the nonresonant continuum contributido® are always es-

sential, and, in some casés.g., **He), they dominate the creaseof one-neutron separation energy when going from
structure of the ground-state wave function. Moreover, asye 084e) is reproduced. One can see thide is predicted

can be seen in the example‘bfe, configurations with many 1, pe petter bound thafie, though, contrary to the data, the

neutrons in the nonresonant continuum are essential for fuk’wo—neutron separation energy #fe is smaller than that of

filling the completeness relation. In this particular case, thegHe Also, the energies of excited Ztates are in fair agree-

L) contribution is even more important than the contribu- " e data

tipn from the resonant states, an_d evenliffd configuration The present calculations for helium isotopes have a sys-

g|v(e)s a non-negligible contribution of the order of 1_Z%'tematic tendency to underbind. The spurious width of the
n . . . .

(LY amplltud_es seem to decrease with W|Fhout the con- ground state ofHe is ~100 keV, largely due to the i,

toudr, ;he predpted g(rjorl]md-ﬁtatﬁe_en_e;gﬂdl\éﬂ 'S\/+§_'r?8 .MeIV resonance. For that reason, the removal of the spurious width

an the spurious wi th Is huge,= —4. -0 MeV. The inclu- (which reflects the accuracy of our calculatipresnnot be

sion of scattering states Iowe.rs the bmdmg .energyht.bﬁ . _done here as precisely as in the oxygen case. In order to

MeV. Clearly, the pole approximation fails miserably in this check the stability of the results fd®He, we carried out

case. o : . X .
It is instructive to compare the wave function decomposi_addltlonal calculations increasing the number of points along

tion in Tables VlI(only ps, andp,,, contours are included the complex contour. We have found _that the valge of the
and Il (all contours up tdf,, are includedl As expected, the two—neeutron separation energy differenceS,,("He)
spread of the ground-state wave function over nonresonarit Szn("He), which is negative with 5 states in each nonreso-
continuum states is larger in the latter case, but this effect i§ant continuum, depends sensitively on the number of dis-
relatively less important than in the casel®d (cf. Fig. 13.  Ccretization points. This is becaus,(°He) increases fast
Our calculations reproduce the most important feature ofvith the size of the nonresonant phase space. While with our
®He and®He: the ground state is particle bound, despite theschematic Hamiltonian we were unable to find a fully satis-
fact that all the basis states lie in the continuuim spite of ~ factory result for the ground-state energy®fe just by in-
a very crude Hamiltonian, rather limited configuration spacegreasing the number of discretization points, we can see that
etc., the calculated ground state energies shown in Fig. 1®ere is a systematic improvement when the number of non-
reproduce surprisingly well the experimental data. Theresonant shells increases. Therefore, one would be tempted
odd- isotopes of"*He are calculated to be neutron reso-to associate the so-called “helium anomaly” in the position
nances. The neutron separation energy anortay thein- of two-neutron emission threshold when going fréhte to
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In this work, we succeeded in overcoming several ob-

ost 0* ground state of SHe ] stacles which traditionally plagued previous continuum shell
model applications. In addition to the successful inclusion of
0.4} real part ] the continuum-continuum coupling by means of the complex

"""" tmaginary part rotation techniqueexterior complex scaling we incorpo-

rated the nonresonant part of the continuum. This has been
achieved by discretizing the contour in the compkeglane

for each partial wave. Another problem which has been
solved in our study is the isolation of resonance states. As a
result of the GSM diagonalization, one obtains a multitude of
O states corresponding to the many-body continuum, some be-
ing resonances and some representing the nonresonant back-

03F

0.2F

0.1¢

p() (fm")

0.5 PR ground. Our work offers a simple prescription on how to
04f 2+ resonance of SHe 1 identify the resonance states from the multitude of complex-
energy eigenstates of the GSM Hamiltonian.
03¢l ] The GSM Hamiltonian is composed of a one-body term
and a two-body residual interaction which is directly written
02} 1 in terms of space, spin, and isospin coordinates. The two-
\ body matrix elements have to be determined separately for
0.1} ] each case by means of radial integration. As a result, the
0.0} T resulting Hamiltonian matrix fully takes into account the
g continuum coupling, in particular the spatial extension of s.p.
0.1} , ] wave functions, determining the physics of halo nuclei.
e’ We demonstrated that the contribution from the nonreso-
0 S B —— 10 nant continuum is essential, especially for unbound and near-

threshold states. In some casgesy.,®°He) nonresonant con-
tinuum components dominate the structure of the ground
FIG. 20. Monopole form factor of valence neutrons for the state wave function. The so-called “pole approximation”
ground statétop) and for the lowest 2 resonancébottom of ®He.  (resonant state expansidoreaks down in such cases. In ad-
dition, the inclusion of the nonresonant continuum also im-
8e with the strong enhancement in the occupation of nonPacts results for bound states. . _
resonant continuum states. The results of our first calculations for binding energies,
spectra, electromagnetic matrix elements, and nucleonic dis-
tributions are very encouraging. In particular, pairing corre-
lations due to the continuum-continuum scattering can bind
Form factors of valence neutrof&q. (39)]in 0; and 2 the ground states di®He with a completely unbound basis
states of®He are shown in Fig. 20. In this calculation, we provided by the s.p. resonances &fle. The “helium
have taken discretizeg,,, and ps, continua with 20 points anomaly” (an increasein one- and two-neutron separation
each. Even with this very high number of continuum statesenergy when going frorfiHe to ®He) is explained in terms of
the imaginary part of the form factor in the ground state ofthe neutron scattering to the nonresonant background. In all
®He is still ~2x 102 fm~ 1. It is interesting to see that the cases considered, our calculations yield neutron resonances
radial distribution of neutrons in this case extends well aboveabove the calculated neutron threshold—a property that is
the range of the one-body potential, as expected for a weaklyot guaranteed priori by the formalism.
bound system. In the case of the first excitegbonance2, Other applications of the GSM, including the case of open
state,p(r) is complex; real and imaginary parts of the den-protonand neutron shells, also employing more realistic ef-
sity are of a comparable size, which is obviously related tdective interactions, are in progress. We are also working on

4 6
r (fm)

B. Distribution of valence neutrons in ®He

the large width(~500 keV) of this state. the optimization of the nonresonant part of calculations
(choice of the contours, distribution of discretization points,
VII. SUMMARY etc). We are convinced that the Gamow shell model will

) ) ) o become a very useful theoretical tool unifying structure and
This paper contains a detailed description of the Gamoweaction aspects of weakly bound nuclei.

shell model, which can be viewed as a straightforward ex-
tension of the standard diagonalization shell model that al-
lows for a consistent treatment of bound states and the par-
ticle continuum, including both resonances and the
nonresonant background. Our first application, based on a This work was supported in part by the U.S. Department
realistic, albeit simple, two-body SDI force, concerns many-of Energy under Contract Nos. DE-FG02-96ER40968i-
neutron systems, including states and nuclei near theersity of Tennessg¢eand DE-AC05-000R22725 with UT-
neutron-emission threshold. Battelle, LLC (Oak Ridge National Laboratoyy
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