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Gamow shell model description of weakly bound nuclei and unbound nuclear states

N. Michel,1 W. Nazarewicz,2,3,4 M. Płoszajczak,1 and J. Okołowicz5
1GANIL, CEA/DSM-CNRS/IN2P3, BP 5027, F-14076 Caen Cedex 05, France

2Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996
3Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831

4Institute of Theoretical Physics, Warsaw University, ul. Hoz˙a 69, PL-00681, Warsaw, Poland
5Institute of Nuclear Physics, PL-31342 Krako´w, Poland
~Received 20 February 2003; published 22 May 2003!

We present a study of weakly bound, neutron-rich nuclei using the nuclear shell model employing the
complex Berggren ensemble representing bound single-particle states, unbound Gamow states, and the non-
resonant continuum. In the proposed Gamow shell model, the Hamiltonian consists of a one-body finite depth
~Woods-Saxon! potential and a residual two-body interaction. We discuss the basic ingredients of the Gamow
shell model. The formalism is illustrated by calculations involvingseveralvalence neutrons outside the double-
magic core:6–10He and18–22O.
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I. INTRODUCTION

The major theoretical challenge in the microscopic d
scription of weakly bound nuclei is the rigorous treatment
both the many-body correlations and the continuum
positive-energy states and decay channels. A fully symme
description of the interplay between scattering states, re
nances, and bound states in the many-body wave func
requires a close interplay between methods of nuclear st
ture and nuclear reactions. This mutual cross-fertilizati
which cannot be accomplished without overcoming a tra
tional separation between nuclear structure and nuclear r
tion methods, is a splendid opportunity for opening a new
in the nuclear theory of loosely bound systems.

In many respects, weakly bound nuclei are much m
difficult to treat theoretically than well-bound systems@1#.
The major theoretical difficulty and challenge is the tre
ment of the particle continuum. For weakly bound nuclei~or
for nuclear states above the particle threshold!, the con-
tinuum of positive-energy states and resulting decay ch
nels must be taken into account explicitly. As a result, ma
cherished approaches of nuclear theory such as the con
tional shell model~based on a single-particle basis of bou
states! and the pairing theory must be modified.

There are many factors which make the coupling to
particle continuum important. First, even for a bou
nucleus, there appears a virtual scattering into the ph
space of unbound states. Although this process involves
termediate scattering states, the correlated bound states
be particle stable, i.e., they must have zero width. Seco
the properties of unbound states, i.e., above the particle~or
cluster! threshold, directly reflect the continuum structure.
addition, continuum coupling directly affects the effecti
nucleon-nucleon interaction.

The impact of the particle continuum was discussed in
early days of the multiconfigurational shell model~SM! in
the middle of the last century. However, thanks to the t
mendous success of the large-scale SM in terms of inter
ing nucleons assumed to beperfectly isolatedfrom anexter-
nal environmentof scattering states@2–6#, the continuum-
0556-2813/2003/67~5!/054311~17!/$20.00 67 0543
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related matters had been swept under the rug. An examp
an impact of the continuum that goes beyond the stand
SM physics is the so-called Thomas-Ehrman shift@7,8# ap-
pearing in, e.g., the mirror nuclei13C and 13N, which is a
salient effect of a coupling to the continuum depending
the position of the respective particle emission thresho
The mathematical formulation of the problem of nucle
states embedded in the continuum of decay channels
back to Feshbach@9#, who introduced the two subspace
containing the discrete and scattering states. Feshbach
ceeded in formulating a unified description of nuclear re
tions for both direct processes in the short-time scale
compound nucleus processes in the long-time scale. As fa
nuclear structure is concerned, the treatment of excited st
near or above the decay threshold has been a playgroun
the continuum shell model~CSM! @10–15#. Unfortunately, a
unified description of nuclear structure and nuclear reac
aspects is Íuch more complicated and became possibl
realistic situations only at the end of the last century~see
Ref. @16# for a recent review!.

In the CSM, including the recently developed shell mod
embedded in the continuum~SMEC! @17–19#, the scattering
states and bound states are treated on an equal footing
far, most applications of the CSM, including the SME
have been used to describe limiting situations in which th
is coupling toone-nucleon decay channelsonly. However,
by allowing only one particle to be present in the continuu
it is impossible to apply the CSM to ‘‘Borromean system
for which A and (A-2) nucleon systems are particle-stab
but the intermediate (A-1) system is not. Various ap
proaches, including the hyperspherical harmonic method
the coupled-channel approach, have been developed to s
structure and reaction aspects of three-body weakly bo
nuclei @20–22#. However, most of these models utilize th
particle-core coupling which does not allow for the exa
treatment of core excitations and the antisymmetrization
tween the core nucleons and the valence particles.

The reason for limiting oneself to only one particle in th
continuum in the CSM has been twofold. First, the numb
of scattering states needed to properly describe the und
©2003 The American Physical Society11-1
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ing dynamics can easily go beyond the limit of what pres
computers can handle. Second, treating the continu
continuum coupling, which is always present when two
more particles are scattered to unbound levels, is diffic
There have been only a few attempts to treat the multip
ticle case@23,24# and, unfortunately, the proposed numeric
schemes, due to their complexity, have never been adopte
microscopic calculations involving multiconfiguration mix
ing. Consequently, an entirely different approach is cal
for.

Recently, we formulated and tested the multiconfigu
tional shell model in the complete Berggren basis@25#, the
so-called Gamow shell model~GSM!. ~For application to
two-particle resonant states, also see Refs.@26,27#.! In this
paper, the GSM is applied to systems containing several
lence neutrons. The single-particle~s.p.! basis of the GSM is
given by the Berggren ensemble, which contains Gam
states and the nonresonant continuum. The Gamow s
@28# ~sometimes called Siegert@29# or resonant states! were
introduced for the first time in 1928 to study thea reso-
nances. Gamow defined complex-energy eigenstatesE5E0
2 iG/2 in order to describe the particle emission in the qua
stationary formalism. Indeed, if one looks at the tempo
part of such a state, which iseiE0t/\e2Gt/(2\), one notices that
the squared modulus of the wave function has the tim
dependence}e2Gt, and one can identify\/(G log 2) with
the half-life of the system.

Formally, the resonant states are generalized eigens
of the time-independent Schro¨dinger equation with purely
outgoing boundary conditions. They correspond to the po
of the S matrix in the complex energy plane lying on o
below the positive real axis; they are regular in origin a
satisfy purely outgoing asymptotics. In the quasistation
approach with Gamow states, each observableO is complex.
An interpretation of these complex values has been given
Berggren@30#: the real part of the matrix element gives th
average value, while the imaginary part represents the un
tainty of the mean value. This is due to the finite lifetime
the Gamow state which implies that none of the measu
ments in this state can have a well-defined probability.

In the previous pilot work@25# we showed first applica
tions of the GSM. In this work, we give the details of calc
lations and demonstrate first applications of the GSM to p
ticle distributions and transition matrix elements.

The paper is organized as follows. Section II discus
how to calculate the matrix elements in the Berggren ba
The completeness relations valid for the single-particle re
nant states are briefly reviewed in Sec. III, and some num
cal examples involving the Berggren set of the Woods-Sa
potential are presented. Section IV describes the G
Hamiltonian used in our work. The extension of the co
pleteness relations to the many-body case is describe
Sec. V. Sections VI and VII contain the GCM analysis
18–22O and 6–10He, respectively. Finally, Sec. VIII contain
the main conclusions of the paper.

II. MATRIX ELEMENTS IN THE BERGGREN BASIS

Gamow functions are solutions of the Schro¨dinger equa-
tion which are regular at the origin and have the outgo
05431
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wave asymptotics, i.e., the radial part behaves aseikr at large
distances. In the case of the spherical one-body potential
resonant wave functionfn j, carrying the s.p. angular mo
mentum,j can be written as a product of the usual angu
part and the radial wave functionun jl(r )/r . It is customary
to introduce the notation

ũn j,~r !5un j,~r !* , ~1!

f̃n j,5fn j,~u→ũ!. ~2!

For bound states, one can always introduce a phase con
tion which makes the radial wave function real. That is,
bound statesf̃n j,5fn j, . The following discussion concern
the specific properties of the radial Gamow wave functio
un j,(r ). Of course, one should always remember that
angular part is always present, but its treatment is stand
Consequently, in the GSM, only radial matrix elements
quire special attention.

A. Normalization of Gamow states and one-body matrix
elements

The normNi of a resonant state,

Ni
25E

0

1`

ui
2~r !dr, ~3!

and the radial matrix elements calculated in the Bergg
basis,

Oi f 5E
0

1`

uf~r !O~r !ui~r !dr, ~4!

are diverging, but this difficulty can be avoided by means
a regularization procedure@31–36#. Zel’dovich proposed
multiplying the integrand of a radial matrix element by
Gaussian convergence factor@31#:

^uf uOuui&5 lim
e→0

E
0

1`

e2er 2
uf~r !O~r !ui~r !dr

5RegOi f . ~5!

In this expression,uuf& and uui& stand for single-particle
states,O(r ) is a radial part of a one-body operator, an
RegOi j stands for the regularized matrix elementOi j . Using
the Zel’dovich regularization method, Berggren has sho
@34# that the Gamow states, together with scattering sta
form a complete basis. In particular, using definition~5! with
O(r )51, one can demonstrate that all Gamow states can
orthonormalized, and such orthonormalized functions can
used to calculate matrix elements. Unfortunately, the met
of Zel’dovich, even though important on formal ground
cannot be used in numerical applications due to the difficu
in approaching the limit in Eq.~5! for diverging integrals.

An equivalent and more practical procedure, justified
the apparatus of the analytical continuation, was propose
Gyarmati and Vertse@35#. For that, let us define the follow
ing functional on (2`; Vlim) @37#:
1-2
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F~Vo!5
Oi j

NiNf
, ~6!

whereVo is the depth of the potential generating s.p. wa
functions uf and ui , Vlim is the depth of the potential fo
which one of these functions is bound and the other one
zero energy, andO(r ) is some analytical operator. This func
tional is defined in such a way because the integral conve
in the domain (2`; Vlim). It represents the radial matri
element ^uf uOuui&/iufi/iuii between two not necessaril
normalized wave functions. Sinceuf andui are bound, one
can make them real,uf* 5uf , ui* 5ui . In Ref. @37#, the ana-
lytical continuation ofF is made using the Pade´ approxi-
mants. In the present work we shall refer to the technique
the complex rotation@35# which allows a calculation ofF
with Vo.Vlim . To see that, let us callf (r ) one of three
integrandsuf(r )O(r )ui(r ), uf

2(r ), or ui
2(r ) and let us take

Vo,Vlim . Sincef is analytical onC ~see Fig. 1!, then, fol-
lowing the Cauchy theorem, one has

E
C1

f ~z!dz1E
C2

f ~z!dz1E
C3

f ~z!dz50. ~7!

Sincef decreases exponentially for Re@z#.0, the integral
*C2

f (z)dz→0 if Rf→1`. For the same reason, the int

grals*C1
f (z)dz and*C3

f (z)dz converge ifRf→1`. Con-

sequently, forRf→1` one obtains

E
R

1`

f ~r !dr5E
0

1`

f ~R1x•eiu!eiudx. ~8!

Hence, on the interval (2`; Vlim), one can defineF by
Eq. ~6!, with norm ~3! given by

Ni5AE
0

R

ui
2~r !dr1E

0

1`

ui
2~R1x•eiu!eiudx, ~9!

and with the matrix element~4! of the form

FIG. 1. The path in the complex coordinate space correspon
to the complex rotation by angleu. R is the point from which the
exterior complex rotation starts.R is large as compared to th
nuclear radius; hence it is assumed that the nuclear potenti
negligible for r .R.
05431
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Oi f 5E
0

R

uf~r !O~r !ui~r !dr1E
0

1`

@uf~R1x•eiu!

3O~R1x•eiu!3ui~R1x•eiu!eiudx#. ~10!

If uf andui are bound- or decaying-state wave function
one can writekf5ukf ue2 ia f and ki5uki ue2 ia i. As uf(z)
;af(z)eik fz and ui;ai(z)eik fz when Re@z#→1`, with af
andai the algebraic increasing functions, the integrals de
ing F converge if one takes

u.a f1a i . ~11!

In addition, the expression forF is analytical becauseF is a
function of converging integrals of analytical function
Square roots in Eq.~9! cause no problems becauseNi

2 and
Nf

2 have always a positive real part. Consequently, follow
the theorem of analytic continuation, Eq.~6! also definesF
for V.Vlim . In this way, one may calculate the radial matr
elements of resonance states whicha priori are not normal-
izable.

B. Scattering states

Scattering states represent the nonresonant continuum
explicitly enter the completeness relations discussed in
III. Their asymptotic behavior atr→1` is

u~r !;C1H,,n
~1 !~kr !1C2H,,h

~2 !~kr !, ~12!

where H,,h
(6) denote Hankel~or Coulomb! functions. As

usual,u(r ) is normalized to the Diracd distribution:

E
0

1`

ũ~k,r !u~k8,r !dr5d~k2k8!, ~13!

which gives

C1C25
1

2p
. ~14!

Knowing u(r ), H,,h
(1) , H,,h

(2) , and their derivatives at pointR,
one may determine coefficientsC1 andC2 up to a normal-
ization factor by solving the set of linear equations:

u~R!5C1H,,h
~1 !~kR!1C2H,,h

~2 !~kR!,
~15!

u8~R!5kC1FdH,,h
~1 !

dz G
z5kR

1kC2FdH,,h
~2 !

dz G
z5kR

.

Finally, the scattering state is normalized to satisfy condit
~14!.

C. Matrix elements involving scattering states

The calculation of matrix elements involving the scatte
ing states is based on the complex rotation~9,10!. However,
the analytical continuation should be introduced differen
than for resonant states. The one-body matrix element ca
written as

g

is
1-3



at

f
n
n
n
le
ly

ns

r

it

t

s

-

.p
v

a
d

f t

lex-
y to

ow
the
m

s
f
nt

anti-
on-
und

a

MICHEL, NAZAREWICZ, PŁOSZAJCZAK, AND OKOŁOWICZ PHYSICAL REVIEW C67, 054311 ~2003!
F~kf !5E
0

R

uf~r !V~r !ui~r !dr1AfAiF11~kf !

1AfBiF12~kf !1BfAiF21~kf !1BfBiF22~kf !,

~16!

where
~i! uf5Afuf

11Bfuf
2 ;

~ii ! ui5Aiui
11Biui

2 , whereki in F is fixed and, in gen-
eral, ui can be either a bound, resonant or scattering st
and

~iii ! Fsfsi
(kf)5*0

1`uf
sf(R1x)O(R1x)ui

si(R1x)dx with

sf , siP(1,2).
This separation is necessary because the presence o

coming and outgoing waves in the same integral does
allow one to find a unique path in the complex plane alo
which the integrand decreases exponentially. Conseque
for eachFsfsi

one has to consider the domain of the comp
plane where it converges, and then one performs an ana
cal continuation with the appropriate angleusfsi

.
Certain integrals cannot be regularized in the above se

Those includeF12 andF21 with ui5uf . For O(r )51, the
integrand tends toward a constant value at1`, indepen-
dently of the valueu12 . This can be immediately seen fo
neutrons, because withz5R1x•eiu and with uzu→1`, the
product u1(z)•u2(z)→const3eikz3e2ikz5const, and the
corresponding integral diverges. In this case, however,
easy to see that the integral is in fact ad distribution, and it
can be calculated by using a discrete representation of
Dirac d function,

d~k2k0!→
dk,k0

Dk
, ~17!

with Dk being the discretization step ink.

III. COMPLETENESS RELATION INVOLVING SINGLE-
PARTICLE GAMOW STATES

There exist several completeness relations involving re
nant states. As shown by Lind@38#, they all can be derived
from Mittag-Leffler theory. In the following, we briefly dis
cuss the Berggren completeness relation@34# which is used
in our paper. The following discussion will concern the s
radial wave functions corresponding to a given partial wa
~j, ,!.

We begin from the completeness relation of Newton@39#:

(
n

uun&^unu1E
0

1`

uuk&^ukudk51, ~18!

whereuun& are the normalized bound states anduuk& are the
scattering states along the real energy axis normalized
cording to Eq.~13!. In basis~18!, one can expand any boun
state or scattering state withreal energy. Unfortunately, in
the presence of narrow resonances, the discretization o
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energy formalism of Gamow states offers a simple remed
this difficulty.

In order to derive the completeness relation with Gam
states, one has to deform the integration contour into
complexk plane, as shown in Fig. 2. Following the residuu
theorem, one obtains

2E
0

1`

uuk&^ukudk1E
L1

uuk&^uk̃ udk

52ip(
kn

Res~ uuk&^uk̃ u!k5kn
, ~19!

wherekn are the poles ofuuk&^uk̃u lying between the real axis
and the complex contour.

In general, the scattering wave functionuk can be written
as

uk~r !5S 2J 2~k!

2pJ 1~k! D
1/2

uk
1~r !1S 2J 1~k!

2pJ 2~k! D
1/2

uk
2~r !.

~20!

In the above expression,J 6 stands for theJost function
@40#:

J 6~k!5u6
du

dr
2u

du6

dr
, ~21!

where u6;Hl ,h
6 (kr) when r→1`, and u[Au11Bu2.

For bound and decaying states,J 2(k)Þ0 (J 2(k)50 only
for capturing states with the incoming wave asymptotic!.
Consequently, the pole ofuk(r ) corresponds to zero o
I1(k). Whenk→kn , i.e., whenuk approaches the resona
state, then:

FIG. 2. Representation of the complexk plane, showing the
positions of bound states, resonances, antiresonances, and the
bound states.L1 is the contour representing the nonresonant c
tinuum. The Berggren completeness relation involves the bo
states, decaying states lying betweenL1 and realk axis, and the
scattering states onL1 . The contourL1 has to be chosen in such
way that all the poles in the discrete sum in Eq.~28! are contained
in the domain betweenL1 and the real energy axis.
1-4
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uuk&^uk̃ u;2
J 2~kn!

2pJ 1~k!
uukn

1 &^ukn

1̃ u. ~22!

The derivative of the Jost function atk5kn is

FdJ
dkG

k5kn

5 iJ 2~kn!RegF E
0

1`

ukn

12
~r !drG . ~23!

As this derivative is nonzero, we have ask→kn ,

J 1~k!;~k2kn!FdJ 1

dk G
k5kn

, ~24!

hence

uuk&^uk̃ u;2
1

2p i ~k2kn!
uun&^uñ u, ~25!

where the normalized resonant state is

un~r !5ukn

1 ~r !S RegF E
0

1`

ukn

12
~r !drG D 21/2

. ~26!

Finally, the residuum atk5kn is

Res~ uuk&^uk̃u!k5kn
52

1

2ip
uun&^uñu, ~27!

and the completeness relation follows immediately:

(
n

uun&^uñu1E
L1

uuk&^uk̃ udk51. ~28!

In the above equationuun& are the Gamow states~both bound
states and the decaying resonant states between the rk
axis and the complex contour!. Relation~28! is the Berggren
completeness relation which allows one to expand the st
with complexk inside the zone between realk axis and the
complex contour. One may notice again that the resonan
in Eq. ~26! are normalized using the squared wave funct
and not the modulus of the squared wave function. This
consequence of the analytical continuation which is use
introduce the normalization of Gamow states.

Figure 2 illustrates the ingredients entering Eq.~28!. The
resonant states, the poles of theS matrix, are represented b
the dots. They are divided into the bound, decaying, cap
ing, and antibound states~see, e.g., Refs.@34,41,38# !. Rela-
tion ~28! involves the bound and decaying states and
contour L1 lying in the fourth quadrant of the complex-k
plane.

In practical applications, one has to discretize the integ
in Eq. ~28! @42,43#:

E
L1

uuk&^uk̃udk.(
i 51

Nd

uui&^uĩ u, ~29!

whereui(r )5ADki
uki

(r ) andDki
is the discretization step. I

follows from the definition ofui(r ) that
05431
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^ui uuj̃&5d i , j , ~30!

and thediscretizedBerggren relation~28! takes the form

(
n

uun&^uñu1(
i 51

Nd

uui&^uĩ u.1. ~31!

This relation is formally identical to the standard comple
ness relation in a discrete basis and, in the same way, lea
the eigenvalue problemHuC&5EuC&. However, as the for-
malism of Gamow states is non-hermitian, the matrixH is
complex symmetric.

Up to this point, the choice of the contour in Eq.~2! has
been completely arbitrary. In practice, however, one want
minimize the number of discretization pointsNd alongL1 .
This can be achieved if the scattering functions on the c
tour ~or, rather, their phase shifts! change smoothly from
point to point. This condition can be met if the contour do
not lie in the vicinity of a pole, especially the narrow res
nant state. If this condition is met, the states appearing
basis~31! can be naturally divided into the following.

~i! Bound states—lying on the imaginaryk axis ~or nega-
tive real energy axis!.

~ii ! Narrow decaying states—lying close to and below the
real k axis ~or below the positive real energy axis!. Those
states can be interpreted asphysical resonances of the sy
tem.

~iii ! Nonresonant continuum—represented by the scatte
ing states alongL1 . Physically, those are the building block
of the nonresonant background.

These definitions can be extended to many-body state
the complex energy~or momentum! plane. In the following,
we shall clearly distinguish between resonant, resonance,
nonresonant states.

The completeness relations derived above hold in ev
~j, ,! channel. Consequently, in practical calculations, o
has to take different contours for different partial waves.
discussed below, the choice of the contour depends on
distribution of resonant states in the complexk-plane.

In a number of papers~see, e.g., Refs.@44–46#!, resonant
states were applied to problems involving continuum in
so-calledpole expansion, neglecting the contour integral in
Eq. ~28!. The importance of the contour contribution wa
investigated in Refs.@47,48,25–27# where it was concluded
that if one is aiming at a detailed description, the nonre
nant contribution must be accounted for. This point will
clearly seen in several examples discussed below.

Completeness of the one-body Berggren basis:
illustrative examples

In this section, we shall discuss examples of the Bergg
completeness relation in the one-body case. The s.p. bas
generated by the spherical Woods-Saxon~WS! potential:

V~r !52V0f ~r !2Vso4 lW•sW
1

r

d f~r !

dr
, ~32a!
1-5
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f ~r !5F11expS r 2R0

d D G21

. ~32b!

In all examples of this section, the WS potential has
radius R055.3 fm, diffusenessd50.65 fm, and the spin-
orbit strengthVso55.0 MeV. The depth of the central part
varied to simulate different situations.

The complex contour corresponds to three straight s
ments in the complexk plane, joining the points:k050.0
2 i0.0,k150.22 i0.2,k250.52 i0.0, andk352.02 i0.0. The
contour is discretized with a different number of points:n
560, 80, 100, 120, 160, and final results are obtained us
the Richardson extrapolation method. In the examples c
sidered in this section, we shall expand the 2p3/2 state,
uuWS&, either weakly bound or resonant, in the ba
uuWSB(k)& generated by the WS potential of a differe
depth:

uuWS&5(
i

cki
uuWSB~ki !&1E

L1

c~k!uuWSB~k!&dk;

~33!

cf. Eq. ~28!. In the above equation, the first term in the e
pansion represents contributions from the resonant st
while the second term is the nonresonant continuum con
bution. Since the basis is properly normalized, the expan
amplitudes meet the condition

(
i

cki

2 1E
L1

c2~k!dk51. ~34!

In all cases considered, the 0p3/2 and 1p3/2 orbitals are well
bound~by ;40 and;18 MeV, respectively! and do not play
any role in the expansion studied.

In the first example, we shall expand the 2p3/2 s.p. reso-
nance (0.252 i0.20 MeV) of a WS potential of the dept
V0558 MeV in the basis generated by the WS potential
the depthV0

B559 MeV ~here the 2p3/2 s.p. resonance has a
energy of 0.162 i0.09 MeV). The density of the expansio

FIG. 3. Distribution of the squared amplitudesc2(k) of the s.p.
state 2p3/2 of one WS potential (V0559 MeV) in the s.p. basis
generated by another WS potential (V0

(B)558 MeV). The ampli-
tudes of both real~solid line! and imaginary~dashed line! parts of
the wave function are plotted as a function of Re@k#. The height of
the arrow gives the squared amplitude of the 2p3/2 resonance con-
tained in the basis.
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amplitudes is shown in Fig. 3. One can see that the con
bution from the nonresonant continuum is essential e
though the 2p3/2 basis state is a resonance. In this examp
as one might expect, the contribution from the resona
state in the basis is dominant.

The second example shown in Fig. 4 deals with the c
of a 2p3/2 state that is bound in both potentials. HereV0

564 MeV and V0
(B)562 MeV, and the 2p3/2 state lies at

20.91 and20.33 MeV, respectively. As in the previous cas
the contribution from the resonant~here: bound! state in the
Berggren basis dominates and the contribution of the n
resonant continuum is small although nonnegligible. In t
figure, one can notice the small cusp at Re@k#50.2, even
though the densityc2(k) is an analytic function ofk. This
apparent paradox is due to the fact thatc2(k) is plotted as a
function of Re@k#(Im@k#50). Moreover, the path in the com
plex plane is continuous but not derivable atk50.22 i0.2.
These two aspects contribute to the appearance of the ‘
continuous feature,’’ which of course has no physical me
ing.

An interesting situation is presented in Fig. 5. Here t

FIG. 4. Similar as in Fig. 3 but for the bound 2p3/2 s.p. state of
the WS potential withV0564 MeV expended in the basis generat
by another WS potential (V0

(B)562 MeV). The height of the arrow
gives the squared amplitude of the bound 2p3/2 state at the value of
Im@k# ~the correspondingk value is purely imaginary!.

FIG. 5. Similar as in Fig. 3 except for the 2p3/2 resonance of the
WS potential withV0559 MeV expended in the basis generated
another WS potential (V0

(B)562 MeV).
1-6
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GAMOW SHELL MODEL DESCRIPTION OF WEAKLY . . . PHYSICAL REVIEW C67, 054311 ~2003!
unbound 2p3/2 state (V0559 MeV) is expanded in a WS
basis containing the bound 2p3/2 level (V0

(B)562 MeV).
Consequently, the nonresonant continuum has to supply
imaginary part of the resonance’s wave function. The l
example ~Fig. 6! corresponds toV0564 MeV and V0

(B)

559 MeV. This is the most intriguing case since one e
presses a bound~real! state in the basis which contains on
complex wave functions~the contribution from well bound
0p3/2 and 1p3/2 s.p. states is negligible!. In this case, the
nonresonant continuum annihilates the imaginary compon
of the 2p3/2 s.p. resonance contained in the basis. Indeed
this example, the contribution from the contour is domina
To see the convergence of the wave function obtained by
expansion method, in Fig. 7 we show the root-mean-squ
deviation of the calculated 2p3/2 wave function from the ex-

FIG. 6. Similar as in Fig. 3 except for the 2p3/2 bound state of
the WS potential withV0564 MeV expended in the basis generat
by another WS potential (V0

(B)559 MeV) containing a resonance

FIG. 7. The root-mean-square deviation of the 2p3/2 wave func-
tion of the WS potential (V0564 MeV) obtained by a diagonaliza
tion in a basis generated by another WS potential (V0

B559 MeV)
from the exact wave function~obtained by a direct integration o
the Schro¨dinger equation!. The rms deviation is shown as a functio
of the number of discretization points along the 2p3/2 contour.
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act result as a function of the number of discretization poi
along the contour. While the wave functions converge fai
quickly, the convergence of complex energies is sligh
slower; hence, one has to employ the Richardson extrap
tion method to get an energy precision of the order of a k

IV. GAMOW SHELL MODEL HAMILTONIAN

The GSM Hamiltonian applied in this work consists of
one-body term and a zero-range two-body interaction. T
spherical one-body potential was taken in a WS form@Eq.
~32a!#. In our study, resonant states are determined using
generalized shooting method for bound states which requ
an exterior complex scaling. The numerical algorithm f
finding Gamow states for any finite-depth potential has b
tested on the example of the Po¨schl-Teller-Ginocchio~PTG!
potential @49#, for which the resonance energies and wa
functions are known analytically. Energies of all PTG res
nances with a width of up to 90 MeV are reproduced with
precision of at least 1026 MeV.

Contrary to the traditional shell model, the effective inte
action of CSM cannot be represented as a single matrix
culated for all nuclei in a given region. The GSM Ham
tonian contains a real effective two-body force expressed
terms of space, spin, and isospin coordinates. The ma
elements involving continuum states are strongly system
pendent, and they have to be determined for each case s
rately. This creates an additional difficulty, but there is als
payoff. Namely, the resulting two-body matrix elements fu
take into account the spatial extension of s.p. wave functio

In this work, as a residual interaction we took the surfa
delta interaction~SDI! @50#

V~1,2!52VSDId~rW12rW2!d~r 12R!, ~35!

with the same value ofR as in the WS potential. In ou
exploratory GSM calculations, we consider two cases:~i! the
chain of oxygen isotopes with the inert16O core and active
neutrons in thesd shell, and~ii ! the helium chain with the
inert 4He core and active neutrons in thep shell. The param-
eters of the GSM Hamiltonian are summarized in Table
The WS potentials have been adjusted to s.p. states in
neutron nuclei17O and5He. For17O, the resulting WS 0d5/2
and 1s1/2 states are bound, with s.p. energies of24.142 and
23.272 MeV, respectively, and 0d3/2 is a resonance with the
s.p. energy 0.8982 i0.485 MeV. The agreement with exper
mental data (e5/2

1
1

expt
524.143 MeV,e1/2

1
1

expt
523.273 MeV, and

e3/21
expt

50.942 MeV,g3/21
expt

596 keV) is excellent. The strengt

TABLE I. Parameters of the GSM Hamiltonian used in the c
culations for the oxygen isotopes~‘‘ 17O’’ parameter set! and the
helium iostopes~‘‘ 5He’’ parameter set!: WS radiusR, WS diffuse-
nessd, WS strengthV0 , spin-orbit strengthVso, and strength of the
residual SDI interactionVSDI .

Variant R ~fm! d ~fm! V0 ~MeV! Vso ~MeV! VSDI ~MeV fm3!

17O 3.05 0.65 55.8 6.06 700
5He 2.00 0.65 47.0 7.50 1670
1 1

1-7
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MICHEL, NAZAREWICZ, PŁOSZAJCZAK, AND OKOŁOWICZ PHYSICAL REVIEW C67, 054311 ~2003!
of the SDI has been adjusted for a given configuration sp
to the experimental two-neutron separation energy of18O.
Since only 0d3/2 is a s.p. resonance, we shall include only
d3/2 nonresonant continuum. In fact, the completeness r
tion requires taking the nonresonant continua correspon
to all partial waves~,, j!. However, if for a given partial
wave no resonances are included in the basis, the co
sponding nonresonant continua can be chosen along the
momentum axis. Since, to the first order, the inclusion
these continua should only result in the renormalization
the effective interaction, they can be ignored in most ca
except for Sec. V B.

The nucleus5He with one neutron in thep shell, is un-
stable with respect to the neutron emission. Indeed, theJp

53/21
2 ground state of5He lies 890 keV above the neutro

emission threshold and its neutron width is large,G
5648 keV. The first excited state, 1/21

2 , is a very broad
resonance (G55.57 MeV) that lies 2.16 MeV above th
threshold. Our WS potential yields single-neutron resonan
p3/2 and p1/2 at E50.7452 i0.32 MeV and E52.130
2 i2.936 MeV, respectively. In our model space we ta
resonances 0p3/2, 0p1/2, and the two associated comple
continua p3/2 and p1/2. The strength of the SDI has bee
adjusted for a given configuration space to the experime
two-neutron separation energy of6He.

For theN-body problem, the Hamiltonian matrix contain
one- and two-body matrix elements. The one-body part c
responds to s.p. energies of basis states and contributes
to diagonal matrix elements. In general, the calculation
two-body matrix elements is performed by splitting the
dial integral into 16 terms corresponding to all different po
sible asymptotic conditions of s.p. wave functions. Th
each term is regularized separately by an appropriate ch
of angle of the external complex scaling; cf. Sec. II.

V. MANY-BODY COMPLETENESS RELATION
WITH GAMOW STATES

The discretized basis~31! can be a starting point for es
tablishing the completeness relation in the many-body c
in a full analogy with the standard shell-model in a compl
discrete basis, e.g., the harmonic oscillator basis. In this c
one has

(
n

uCn&^C ñu.1, ~36!

where theN-body Slater determinantsuCn& have the form
uf1 •••fN&, whereufk& are resonance~bound and decaying!
and scattering~contour! s.p. states. The approximate equal
in Eq. ~36! is an obvious consequence of the continuum d
cretization, similarly as in Eq.~31!. Like in the case of s.p
Gamow states, the normalization of the Gamow vectors
the configuration space is given by the squares of sh
model amplitudes,

(
n

cn
251, ~37!
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and not to the squares of their absolute values.
In the particular case of two-particle states, the comple

ness relation reads

(
i 1 ,i 2

uf i 1
f i 2

&JJ^f i 1
f i 2

u.1. ~38!

This relation can be used to calculate the two-body ma
elements.

A. Determination of many-body bound and resonance states

Before discussing completeness relations in the ma
body case, let us describe the method of selecting ma
body resonances. In a standard shell model, one often
the Lanczos method to find the low-energy eigensta
~bound states! in very large configuration spaces. This pop
lar method is unfortunately useless for the determination
many-body resonances because of a huge number~con-
tinuum! of surrounding many-body scattering states, many
them having lower energy than the resonances. A pract
solution to this problem is the two-step procedure propo
in Ref. @25#.

~i! In the first step, one performs the pole approximatio
i.e., the Hamiltonian is diagonalized in a smaller basis c
sisting of s.p. resonant states only. Here, some variant of
Lanczos method can be applied. The diagonalization yie
the first-order approximation to many-body resonan
uC i&

(0), where indexi ( i 51,...,N) enumerates all eigenvec
tors in the restricted space. These eigenvectors serve as
ing vectors~pivots! for the second step of the procedure.

~ii ! In the second step, one includes couplings to n
resonant continuum states in the Lanczos subspace gene
by uC j&

(0) ( j P@1,...,N#).
~iii ! Finally, one searches among theM solutionsuC j ;k&

(k51,...,M ) for the eigenvector which has the largest ove
lap with uC j&

(0).
This procedure is a variant of the Davidson method. O

viously, in the search for bound states, both Lanczos
Davidson methods can be used. In the following, we sh
show that the procedure outlined above allows for an e
cient determination of physical states within the set of
eigenvectors of a given Lanczos subspace.

As a representative example, let us consider the case
18O and20O with the core of16O, i.e., two- and four-particle
systems, respectively. Here we employ the complexd3/2 con-
tour corresponding to two segments defined by the poi
k1501 i0, k250.22 i0.05, andk350.42 i0.0. The contour
is discretized with 17 and 9 points for18O and20O, respec-
tively. From all the possible many-body configurations, w
only keep the Slater determinants with an energy less tha
MeV and with a width smaller than 1.7 MeV.

The results of calculations for the 01 states in18O are
displayed in Fig. 8. In this case, one obtains two bou
states. An eigenstate lying just close to the real energy
just above the two-neutron threshold is a candidate fo
resonance. Even though the width of this state is very sm
only the overlap with the states calculated in the pole
proximation can give the answer. Figure 9 shows the ove
1-8
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GAMOW SHELL MODEL DESCRIPTION OF WEAKLY . . . PHYSICAL REVIEW C67, 054311 ~2003!
of the ground-state wave functionC0 of 18O, calculated in
the pole approximation, with all the 01 eigenstates of the
GSM Hamiltonian resulting from the full diagonalization
One can see that only one state~the GSM ground state! has a
significant overlap withC0 ; hence, the identification of the
ground state wave function is unambiguous. Figure 10 ill
trates a more challenging case of the third 03

1 state of18O. In
spite of the fact that this state is embedded in the nonre
nant 01 continuum, its identification is straightforward. It
interesting to notice that those GSM states in Fig. 8 t
represent the nonresonant background tend to align a
regular trajectories. As discussed in Refs.@26,27#, the shapes
of these trajectories directly reflect the geometry of the c
tour in the complexk plane. In the two-particle case, th

FIG. 8. Complex energies of the 01 states in18O resulting from
the diagonalization of the GSM Hamiltonian. One- (1n) and two-
neutron (2n) emission thresholds are indicated. The physical bou
and narrow resonance states are marked by squares. The rem
eigenstates represent the nonresonant continuum.

FIG. 9. Absolute value of the overlap between the ground s
wave functionC0 of 18O calculated without the coupling to th
nonresonant continuum~pole approximation! and the different 0n

1

eigenstatesCn of the GSM Hamiltonian~calculated with the cou-
plings to thed3/2 nonresonant continuum!, as a function of the tota
energy.
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information can be directly used to identify the resonan
states.

Figure 11 shows the results of calculations for the1

states in20O. As compared to the18O case, the number o
many-body states is much larger and the regular patter
nonresonant states reflecting the structure of the contou
gone ~the figure represents the projection of fou
dimensional trajectories onto two dimensional space!. While
the two lowest~bound! states can be simply identified b
inspection, for the higher-lying states it is practically impo
sible to separate the resonances from the nonresonant
tinuum. However, the procedure outlined above makes
possible to identify unambiguously the many-body res
nance states. On the other hand, the method propose
Refs.@26,27# cannot be easily applied.

The many-body resonances should be stable with res
to small deformations of the contour~as the physical solu-
tions should not be dependent on the deformation of
basis!. This observation offers an independent criterion

d
ing

te

FIG. 10. Similar to Fig. 9 except for the 03
1 state wave function

of 18O, C3 .

FIG. 11. Similar to Fig. 8 except for the 01 states in20O. The
small negative widths of several unbound states are due to the
that the number of discretization points along the contour is fa
small ~5! in this case.
1-9
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MICHEL, NAZAREWICZ, PŁOSZAJCZAK, AND OKOŁOWICZ PHYSICAL REVIEW C67, 054311 ~2003!
identifying resonance states. Figure 12 shows the effect
small deformation of the contour on the stability of selec
01 states in20O. As expected, only the states which ha
previously been identified as resonances are stable with
spect to small changes of the contour; the states belongin
the nonresonant continuum ‘‘walk’’ in the complex ener
plane following contour’s motion.

B. Completeness of the many-body Gamow basis: example
of two interacting particles

In this section, we shall discuss the completeness of
many-body basis spanned by Gamow states. Since the n
ber of configurations is growing extremely fast with th
number of valence nucleons, and this is enhanced by inc
ing the nonresonant continuum, we shall restrict our disc
sion to the case of two-valence particles. By analyzing
behavior of the wave function as the number of basis st
grows, one can assess the impact of various truncation
the valence space. This is especially important for calcu
tions with zero-range forces, such as the SDI interaction
ployed in this work, which require an energy cutoff. In th

FIG. 12. The effect of small changes in the contour on
stability of resonant and nonresonant 01 states in20O. Top: the
contour in the complex-k plane corresponding to the 0d3/2 con-
tinuum. The direction of the contour’s deformation is indicated
an arrow. The calculations were performed for four contours, e
divided into nine segments~i.e., ten discretization points!; only the
first and maximally deformed contours are shown. Bottom: the
sulting shifts in positions of many-body states corresponding to
complex energy region of Fig. 11 marked by a dotted line. It is s
that the states identified as resonant are very stable with respe
small changes of the contour, while the states representing the
resonant continuum move significantly in the direction indicated
an arrow.
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calculations contained in this section, the configuration sp
consists of all the Slater determinants of energy less than
MeV.

As a first example, we shall consider the convergence
the ground-state energy of18O with the increasing size of the
nonresonant phase space. The GSM s.p. space consists
0d5/2, 1s1/2 orbitals and the 0d3/2 Gamow resonance. Thi
discrete basis is supplemented by adding successive
tinua: s1/2, p1/2, p3/2,..., in the decreasing order of thei
importance. Since 0d3/2 is a resonance, ad3/2 contour should
be complex, and we take it according to Sec. V A. Oth
nonresonant continua are real and for their path we choo
straight segment with 0,k,1.3 fm21. The discretization of
each continuum, whether real or complex, is made with
points.

As one can see in Fig. 13~top!, the convergence is
achieved with thed3/2, f 7/2, d5/2, s1/2, andf 5/2 contours; the
contributions from all the remaining partial waves with,
.3 and,51 are practically negligible. As a rule of thumb
the continua which contribute most to the binding energy
those which are associated either with s.p. resonances in
basis or with weakly bound s.p. states. This is the case w
the 0d5/2, 1s1/2, and 0d3/2 orbitals, and also with the 0f 7/2
state which has an energy of17.43 MeV and a width of 3.04
MeV. Even though this wide resonance is absent in the ba
it has nevertheless an indirect influence through thef 7/2 con-
tour which ‘‘keeps memory’’ of its presence. One may noti
that the presence of the~complex! d3/2 contour affects not
only the real part of the ground-state energy but also
imaginary part; the ground-state energy has a spurious w
of ;2130 keV in the pole approximation, and this width
reduced to;22 keV when thed3/2 ~10-point! contour is
added. The spurious width of the ground state remains st
when other~real! contours are added.

e

h

-
e
n
t to
n-

y

FIG. 13. Ground-state energy of18O ~top! and 6He ~bottom! as
a function of the number of different~,, j! nonresonant continua in
the valence space. For18O we employ the complexd3/2 contour
consisting of three straight segments connecting the pointsk0

50.02 i0.0, k150.32 i0.2, k250.52 i0, and k351.32 i0 ~all in
fm21!.
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GAMOW SHELL MODEL DESCRIPTION OF WEAKLY . . . PHYSICAL REVIEW C67, 054311 ~2003!
The structure of the ground-state wave function of18O
calculated with the full nonresonant continuum discussed
the context of Fig. 13 is given in Table II. One can see t
the configuration with two neutrons in the 0d5/2 shell domi-
nates; the remaining configurations, including those with o
and two neutrons in the nonresonant continuum, contrib
;15% to the wave function. Imaginary parts of squared a
plitudes are generally very small. This is due to the sm
width of the 0d3/2 resonance included in the basis.

As a second example, we shall investigate the energy c
vergence for the weakly bound ground state of6He. We shall
assume that the structure of6He can be described in the fu
0p shell with two valence neutrons. Since the GSM s
space consists of the 0p3/2, 0p1/2 Gamow resonances, th
associatedp3/2 andp1/2 nonresonant continua should be com
plex. Here, thep3/2 contour consists of three straight se
ments connected at points:k050.02 i0.0, k150.32 i0.35,
k250.52 i0, andk350.72 i0. In thep1/2 nonresonant chan
nel, straight lines join the points:k050.02 i0.0, k150.4
2 i0.5, k250.52 i0, andk350.72 i0. For all other contours
we take a segment@0:0.7# fm21 of the realk axis. Thep3/2
contour is discretized with 20 points. All other contours,
cluding the complexp1/2 contour, are discretized with te
points.

As seen in Fig. 13~bottom!, the full energy convergenc
is attained withp3/2 andp1/2 contours; other scattering wave
with ,.1 are negligible. Coupling to the nonresonantp3/2
and p1/2 continua changes not only the ground-state ene
but also its~spurious! width. In the pole approximation, th
calculated ground state has a huge width of;22 MeV,
which is reduced to;2650 keV when thep3/2 contour is
added, and it reachesG;210 keV when bothp3/2 and p1/2
nonresonant continua are included. Contrary to the cas
18O, the pole approximation is totally unreliable, and it do
not even give a rough approximation to the energy and w
function of the ground state of6He. The main reason is tha
in this case one attempts to describe the bound state usin
basis which does not contain any bound state and, there
the nonresonant continuum is essential for compensating
the resonance contribution. The analogous situation,

TABLE II. Squared amplitudes of different configurations in th
ground states of two-neutron systems18O and 6He. The sum of
squared amplitudes of all Slater determinants, includingn particles
in the nonresonant continuum, is denoted byL1

(n) . See the text for
details.

Nucleus Configuration c2

18O 0d5/2
2 0.8721 i1.14631024

1s1/2
2 0.0442 i5.97331026

0d3/2
2 0.0282 i6.62431023

L1
(1) 0.0421 i4.70931023

L1
(2) 0.0151 i1.79531023

6He 0p3/2
2 0.8912 i0.811

0p1/2
2 0.0042 i0.079

L1
(1) 0.2551 i0.861

L1
(2) 20.1501 i0.029
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cussed in the context of a one-body problem, can be foun
Sec. III A ~Fig. 6!.

The structure of the ground-state wave function of6He
including all the~,, j! continua shown in Fig. 13, is shown i
Table II. One can see that the configuration with two ne
trons in the 0p3/2 shell dominates, though the imaginary pa
of the corresponding squared amplitude is almost equa
magnitude to the real part. The amplitude of the 0p1/2

2 con-
figuration is small, whereas the contributions from one a
two particles in the nonresonant continuum,L1

(1) and L1
(2) ,

are almost equally important.

VI. GSM STUDY OF OXYGEN ISOTOPES

In this section we shall discuss the GSM results for
chain of oxygen isotopes with several valence neutr
(Nval>2). In the calculations, we assume the core of16O. As
discussed in Sec. IV, the valence neutrons are distribu
over the 1s1/2 and 0d5/2 bound shells, the 0d3/2 Gamow reso-
nance, and the discretizedd3/2 nonresonant continuum. Th
complexd3/2 contour corresponds to two segments defin
by the points: k1501 i0, k250.22 i0.05, and k350.4
2 i0.0. It is discretized with nine points. Consequently, t
discretized s.p. GSM space~31! consists of a total of 12
subshells on which valence neutrons are distributed. Le
reiterate that we also introduce the cutoff in the configurat
space of the GSM. In this study, we shall include all Sla
determinants with an energy~width! smaller than 5 MeV~1.7
MeV!. Moreover, we shall take only Slater determinan
with, at most, two neutrons in the nonresonant continuu
We have checked that configurations with a larger numbe
neutrons in the nonresonant continuum are of minor imp
tance in all nuclei from18O to 22O, and their contribution is
,0.01% in all cases studied. Our aim is not to give t
precise description of actual nuclei~for this, one would need
a realistic Hamiltonian and a larger configuration space!, but
rather to illustrate the method, its basic ingredients, and
derlying features.

A. Ground states of oxygen isotopes

According to our calculations~see, e.g., Table III for18O),
the ground-state wave functions of18–22O are dominated by
the single shell model configuration 0d5/2

Nval having a weight
of 80–95 %; the nonresonant continuum contribution is re
tively small. A one-neutron continuum provides betwe
0.1% and 1% of the wave function, whereas a two-neut

TABLE III. Same as in Table II but only including thed3/2

contour.

Configuration c2

0d5/2
2 0.9351 i1.83631024

1s1/2
2 0.0402 i1.56031025

0d3/2
2 0.0212 i4.97331023

L1
(1) 3.913310231 i4.41231023

L1
(2) 21.002310241 i3.93931024
1-11
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continuum yields a contribution which varies from;0.01%
to ;0.1% in these nuclei. This means that the main effec
the nonresonant continuum in these states is to cancel a
rious width induced by the 0d3/2 resonance included in th
basis, and their influence on the real part of the energy ca
neglected. It is interesting to compare the squared amplitu
for 18O in Tables II and III. The values in Table II have bee
obtained by taking all the contours froms1/2 to h11/2,
whereas the results in Table III have been calculated w
only a d3/2 contour. Increasing the nonresonant space gi
rise to the depletion of the occupation of bound shells.

The predicted one-neutron separation energiesSn for oxy-
gen isotopes are displayed in Fig. 14 and compared with
data. The calculations reproduce experimental separation
ergies, including the magnitude of the odd-even stagger
The difference between the GSM and the data are in
worst case;500 keV.

B. Level schemes of oxygen isotopes

Shown in Figs. 15–17 are calculated and experime
spectra of18–20O. Let us stress that the main purpose of t
comparison is to demonstrate the internal coherence of G
results and the numerical feasibility of the GSM in realis
applications. Nevertheless, in spite of the simplicity of t
Hamiltonian, the overall agreement between the GSM
experimental spectra is quite reasonable.

Figure 15 illustrates the case of18O. One can see that th
first three lowest states are relatively well described. Mo
over, the one-neutron emission threshold is reproduced
the GSM, this threshold is obtained from the difference
calculated ground-state energies of18O and17O. It is impor-
tant to note that all states above the one-neutron emis
thresholdare predicted to be resonances, i.e., their widths
are positive, whereas all states below this threshold are
culated to have small spurious negative widths. This fea
is certainly not imposed on the model and it proves both
internal consistency of the GSM as well as a correct num
cal account of the completeness for many-body Gam
states. One should notice that in the calculations with a
cretized continuum, it is impossible to assure that the bo
states have a widthexactlyequal to zero. Instead, one e
pects that this numerical artifact of continuum discretizat
becomes numerically unimportant with an increasing num
of points on the contour~see Table 1 of Ref.@25#!. With a

FIG. 14. Calculated~crosses connected by a solid line! and ex-
perimental~circles with error bars! one-neutron separation energi
in the 18–22O chain.
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ten-point discretization, the spurious width remains;25
keV for all bound states of18O and we consider this a rea
sonable precision. Similarly, for resonances lying very clo
to the lowest particle emission threshold, hence having n
row widths, it may happen that their width results from t
calculations as negative if the many-body completeness r
tion is numerically not well satisfied~see Fig. 11 and related
discussion!.

The calculated level scheme of19O ~see Fig. 16! repro-
duces the main experimental features. The ground stat
5/21, as observed, but the higher-lying states 3/21

1 and 1/21
1

are given in the reversed order. Nevertheless, the next

FIG. 15. The GSM level scheme of18O calculated in the fullsd
space of Gamow states and employing the discretized~ten points!
d3/2 nonresonant continuum. The dashed lines indicate experime
and calculated one-neutron emission thresholds. Experimental
are taken from Ref.@51#.

FIG. 16. Same as in Fig. 15 except for19O. As the number of
states becomes large above the one-neutron emission thres
only selected resonances are shown. The electromagnetic trans
listed in Table V are indicated by arrows.
1-12



n
r
ee
e

ce
te
la
s

th
ed

e

n

tr

a

-
ro
a
te
lu

it

ly
d to
ag-
n-
EM
ap-
con-
ts
s,

th

o
w-

al-
sel

nant
ed
lar-

tted
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states are rather well reproduced, in spite of the inversio
the 5/22

1 and 3/22
1 levels. Finally, the GSM prediction fo

20O is shown in Fig. 17. Here, the overall agreement betw
calculations and experiment is best for all the isotop
studied.

C. Distribution of valence particles

Radial features of the density distribution of valen
nucleons are always of great theoretical interest. They de
mine the nuclear size, electromagnetic transition rates, po
ization charges, and many other nuclear properties. To as
the radial extent of the nucleonic distribution obtained in
GSM, we investigate the monopole form factor defin
through the normalized radial Gamow wave functionsui(r )
@Eq. ~26!#:

r~r !5(
i

ni uui~r !&^ũi~r !u, ~39!

whereni[^an
1an& is the GSM occupation coefficient of th

s.p. Gamow orbitali. By definition, the form factor is nor-
malized to the number of valence particles:

RegE
r 50

`

r~r !dr5Nval . ~40!

Figure 18 shows the neutron form factors for the grou
state and the highly excited resonance state 25

1 of 18O. As for
all observables associated with bound states, the neu
form factor in the ground state of18O is real even though the
0d3/2 resonant state is included in the basis. The imagin
part of r(r ) is very small; its value is less than 331025 for
all values of r. On the other hand, for the 25

1 resonance,
having a width of;150 keV, the form factor is always com
plex. This feature is not an artifact of the discretization p
cedure. In fact, the imaginary part of the form factor has
interesting physical interpretation. Namely, it is associa
with the uncertainty in the determination of the mean va
~given by the real part! @30,34,52–54#. In other words, in the
decaying state the particle distribution cannot be given w
an unlimited precision.

FIG. 17. Same as in Fig. 15, except for20O.
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D. Electromagnetic transition probabilities

In the shell-model calculations with Gamow states, on
radial matrix elements are treated differently as compare
the standard shell model. This means that the electrom
netic ~EM! transition selection rules and the angular mome
tum and isospin algebra do not change. To calculate the
transitions, one can no longer use the long wavelength
proximation because of the presence of the nonresonant
tinuum. Indeed, for the diagonal EM matrix elemen
^ni l i j iki uOunf l f j fkf& (ki5kf) between the scattering state
the complex scaling cannot be carried out@see the discussion
around Eq.~17!#. Furthermore, since in the long waveleng
approximation the EM operators behave liker l, one has to
deal with derivatives of delta functions, which is difficult t
handle. Without the long wavelength approximation, ho
ever, these matrix elements become finite, because it is
ways possible to carry out a complex scaling with the Bes
function of the photonj L(qr), as qÞ0. Moreover, as they
represent a set of measure zero, the diagonal nonreso
EM matrix elements can be put to zero in the discretiz
calculation. As all the other matrix elements can be regu
ized, the EM matrix elements are all well defined.

FIG. 18. Monopole form factor of valence neutrons@Eq. ~39!# in
the ground state~top! and the 25

1 resonance~bottom! of 18O. Real
and imaginary parts of the density are shown with solid and do
lines, respectively. According to definition~40!, the form factor is
expressed in units of fm21.
1-13
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Tables IV and V display the selected EM transition ra
in 18O and19O calculated in the GSM with and without th
contribution from the nonresonantd3/2 continuum. In all cal-
culations, we have taken the effective neutron chargeden
50.5e. While the radial form factor discussed in Sec.~VI C!
determines the structure of monopole operators, the
probabilities probe the off-diagonal matrix elements; hen
the continuum coupling manifests itself differently. As se
in Tables IV and V, the nonresonant continuum plays
important role both for transitions involving bound stat
only and for transitions involving an unbound state or sta
In all cases, the real part of the transition rate is reasona
approximated in the pole approximation.

Similarly as in the problem of spurious negative widths
bound states, the imaginary part of EM transitions betw
bound states must disappear in the limit of the nondiscret
continuum. Indeed, in our calculations the imaginary part
such a transition rate tends to zero when the coupling to
nonresonant continuum is added. In the cases studied, ta

TABLE IV. Electromagnetic GSM rates~all in W.u.! for the
selected transitions in18O calculated~i! in the pole approximation
without the complex-energy contour and~ii ! with the d3/2 contour
representing the nonresonant continuum. Experimental data@51# are
shown in the last column.

Transition Without contour With contour Expt.

21
1→

E2

01
1

2.752 i0.001 2.682 i0.011 3.32

41
1→

E2

21
1

1.991 i0.015 1.942 i0.003 1.19

02
1→

E2

21
1

1.661 i0.007 1.481 i0.006 17

22
1→

M1

21
1

0.042 i0.000 0.042 i0.000 0.14

22
1→

E2

01
1

0.191 i0.004 0.182 i0.001 1.3

TABLE V. Same as in Table IV except for electromagnetic tra
sitions in 19O shown in Fig. 16.

Transition Without contour With contour Expt.

3/21
1→

M1

5/21
1

0.012 i0.002 0.012 i0.0 0.088

1/21
1→

M1

3/21
1

0.022 i0.003 0.021 i0.0 0.0093

1/21
1→

E2

5/21
1

3.071 i0.010 3.071 i0.003 0.58

9/21
1→

E2

5/21
1

1.781 i0.000 1.742 i0.006 ,1

7/23
1→

E2

5/23
1

0.122 i0.062 0.132 i0.037

1/23
1→

E2

5/23
1

4.571 i0.430 4.581 i0.373

7/23
1→

E2

3/22
1

0.121 i0.038 0.131 i0.054

1/23
1→

E2

3/22
1

0.8220.034 0.852 i0.012
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only ten points on thed3/2 contour decreases the imagina
part by one to two orders of magnitude, depending on
transition. The real part of the transition probabilitie
changes by up to;10% when the contribution from the
contour is considered. This is nevertheless an impor
change if one notices that the configurations with one a
two neutrons in the nonresonant continuum amount
;0.1% of bound wave functions in these nuclei. For m
transitions, the experimental values are reproduced with
factor of 3 by the GSM, and we find this agreement satisf
tory in light of a very simple Hamiltonian employed.

Table V displays transition rates in19O, indicated in Fig.
16 by arrows. The three lowest transitions are between bo
states and the GSM calculations with contour predict a v
small imaginary part~less than 0.001 W.u.!. The next four
transitions in Table V involve the unbound 7/22

1 , 1/22
1 , and

5/23
1 levels lying above the one-neutron threshold, and

corresponding transition rates are, in general, complex.

effect is particularly pronounced for the 1/22
1→

E2

5/23
1 transi-

tion between unbound states. As mentioned in Sec. VI C,
imaginary part gives the uncertainty of the average va
@30,53,54#. In all cases, the real part of the matrix element
slightly influenced by the interference with the nonreson
background.

VII. GSM STUDY OF HELIUM ISOTOPES

A description of the neutron-rich helium isotopes, inclu
ing Borromean nuclei6,8He, is a challenge for the GSM.4He
is a well-bound system with the one-neutron emiss
threshold at 20.58 MeV. On the contrary, as discussed in S
IV, the nucleus5He is a broad resonance. The two-neutr
system6He, on the contrary, is bound with the two-neutro
emission threshold at 0.98 MeV and one-neutron emiss
threshold at 1.87 MeV. The first excited state 21

1 at 1.8 MeV
in 6He is neutron unstable with a widthG5113 keV.

The s.p. configuration space used includes both re
nances 0p3/2, and 0p1/2 and the two associated complex co
tinua p3/2 and p1/2, which are discretized with five point
each. The fact that the resonances in the basis are so b
requires particular attention when selecting points along
contour. They are given in Table VI. In this case, we can
significantly increase the density of points along the cont
because the calculation for the heavier helium isotopes w
more valence neutrons would not be feasible. On the o
hand, we do not introduce any restriction on energies

-

TABLE VI. Discretizedp3/2 andp1/2 contours in the complex-k
plane~in fm21! representing the nonresonant continuum in the
calculation.

Point No. p3/2 p1/2

1 0.012 i0.01 0.052 i0.05
2 0.102 i0.06 0.202 i0.43
3 0.202 i0.095 0.402 i0.45
4 0.302 i0.06 0.602 i0.43
5 0.402 i0.01 0.752 i0.05
1-14
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widths of Slater determinants included. Also, no restrict
on the number of neutrons in the nonresonant continuum
imposed, with the only exception being9He, where we allow
for at most four neutrons to occupy ‘‘contour shells.’’ Co
trary to the discussion in Sec. V B, we neglect all remain
real continua in the present calculation. We shall see that
will have an impact on the relative weight of different co
figurations in the wave function.

A. Spectra of helium isotopes

The energies of the lowest GSM states of helium isoto
are shown In Fig. 19, and the structure of their ground s
wave functions is given in Table VII. As seen in Table V
the nonresonant continuum contributionsL1

(n) are always es-
sential, and, in some cases~e.g., 8,9He), they dominate the
structure of the ground-state wave function. Moreover,
can be seen in the example of8He, configurations with many
neutrons in the nonresonant continuum are essential for
filling the completeness relation. In this particular case,
L1

(1) contribution is even more important than the contrib
tion from the resonant states, and even theL1

(4) configuration
gives a non-negligible contribution of the order of 1–2 %
(L1

(n) amplitudes seem to decrease withn.! Without the con-
tour, the predicted ground-state energy of8He is12.08 MeV
and the spurious width is huge,G524.16 MeV. The inclu-
sion of scattering states lowers the binding energy to21.6
MeV. Clearly, the pole approximation fails miserably in th
case.

It is instructive to compare the wave function decompo
tion in Tables VII ~only p3/2 andp1/2 contours are included!
and II ~all contours up tof 7/2 are included!. As expected, the
spread of the ground-state wave function over nonreso
continuum states is larger in the latter case, but this effec
relatively less important than in the case of18O ~cf. Fig. 13!.

Our calculations reproduce the most important feature
6He and8He: the ground state is particle bound, despite t
fact that all the basis states lie in the continuum. In spite of
a very crude Hamiltonian, rather limited configuration spa
etc., the calculated ground state energies shown in Fig
reproduce surprisingly well the experimental data. T
odd-N isotopes of7,9He are calculated to be neutron res
nances. The neutron separation energy anomaly~i.e., thein-

FIG. 19. Experimental~EXP! and predicted~GSM! binding en-
ergies of6–9He as well as energies ofJp521 states in6,8He. The
resonance widths are indicated by shading. The energies are
with respect to the core of4He.
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creaseof one-neutron separation energy when going fro
6He to 8He) is reproduced. One can see that8He is predicted
to be better bound than6He, though, contrary to the data, th
two-neutron separation energy of8He is smaller than that o
6He. Also, the energies of excited 21

1 states are in fair agree
ment with the data.

The present calculations for helium isotopes have a s
tematic tendency to underbind. The spurious width of
ground state of8He is ;100 keV, largely due to the 0p3/2

resonance. For that reason, the removal of the spurious w
~which reflects the accuracy of our calculations! cannot be
done here as precisely as in the oxygen case. In orde
check the stability of the results for6,8He, we carried out
additional calculations increasing the number of points alo
the complex contour. We have found that the value of
two-neutron separation energy difference,S2n(8He)
2S2n(6He), which is negative with 5 states in each nonre
nant continuum, depends sensitively on the number of
cretization points. This is becauseS2n(8He) increases fas
with the size of the nonresonant phase space. While with
schematic Hamiltonian we were unable to find a fully sat
factory result for the ground-state energy of8He just by in-
creasing the number of discretization points, we can see
there is a systematic improvement when the number of n
resonant shells increases. Therefore, one would be tem
to associate the so-called ‘‘helium anomaly’’ in the positi
of two-neutron emission threshold when going from6He to

en

TABLE VII. Squared amplitudes of different configurations
the ground states of6–9He. The s.p. space consists of both 0p3/2,
0p1/2 Gamow resonances and the two associated complex con
p3/2 andp1/2 which are discretized with five points each.

Nucleus Configuration c2

6He 0p3/2
2 0.8702 i0.736

0p3/2
2 0.0072 i0.076

L1
(1) 0.2711 i0.752

L1
(2) 20.1471 i0.060

7He 0p3/2
3 1.1102 i0.879

0p3/2
2 0p1/2 0.0062 i0.029

0p3/20p1/2
2 0.0222 i0.042

L1
(1) 0.0501 i0.951

L1
(2) 20.1851 i0.008

L1
(3) 20.0022 i0.009

8He 0p3/2
4 0.2962 i1.323

0p3/2
2 0p1/2

2 20.0602 i0.158

L1
(1) 1.5961 i1.066

L1
(2) 20.7281 i0.630

L1
(3) 20.1252 i0.204

L1
(4) 0.0202 i0.012

9He 0p3/2
4 0p1/2 0.1802 i1.328

L1
(1) 1.5961 i0.734

L1
(2) 20.5841 i0.801

L1
(3) 20.2172 i0.193

L1
(4) 0.0252 i0.034
1-15
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8He with the strong enhancement in the occupation of n
resonant continuum states.

B. Distribution of valence neutrons in 6He

Form factors of valence neutrons@Eq. ~39!# in 01
1 and 21

1

states of6He are shown in Fig. 20. In this calculation, w
have taken discretizedp1/2 and p3/2 continua with 20 points
each. Even with this very high number of continuum stat
the imaginary part of the form factor in the ground state
6He is still ;231023 fm21. It is interesting to see that th
radial distribution of neutrons in this case extends well ab
the range of the one-body potential, as expected for a we
bound system. In the case of the first excited~resonance! 21

1

state,r(r ) is complex; real and imaginary parts of the de
sity are of a comparable size, which is obviously related
the large width~;500 keV! of this state.

VIII. SUMMARY

This paper contains a detailed description of the Gam
shell model, which can be viewed as a straightforward
tension of the standard diagonalization shell model that
lows for a consistent treatment of bound states and the
ticle continuum, including both resonances and
nonresonant background. Our first application, based o
realistic, albeit simple, two-body SDI force, concerns man
neutron systems, including states and nuclei near
neutron-emission threshold.

FIG. 20. Monopole form factor of valence neutrons for t
ground state~top! and for the lowest 21

1 resonance~bottom! of 6He.
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In this work, we succeeded in overcoming several o
stacles which traditionally plagued previous continuum sh
model applications. In addition to the successful inclusion
the continuum-continuum coupling by means of the comp
rotation technique~exterior complex scaling!, we incorpo-
rated the nonresonant part of the continuum. This has b
achieved by discretizing the contour in the complexk plane
for each partial wave. Another problem which has be
solved in our study is the isolation of resonance states. A
result of the GSM diagonalization, one obtains a multitude
states corresponding to the many-body continuum, some
ing resonances and some representing the nonresonant
ground. Our work offers a simple prescription on how
identify the resonance states from the multitude of compl
energy eigenstates of the GSM Hamiltonian.

The GSM Hamiltonian is composed of a one-body te
and a two-body residual interaction which is directly writte
in terms of space, spin, and isospin coordinates. The t
body matrix elements have to be determined separately
each case by means of radial integration. As a result,
resulting Hamiltonian matrix fully takes into account th
continuum coupling, in particular the spatial extension of s
wave functions, determining the physics of halo nuclei.

We demonstrated that the contribution from the nonre
nant continuum is essential, especially for unbound and n
threshold states. In some cases~e.g.,8,9He) nonresonant con
tinuum components dominate the structure of the grou
state wave function. The so-called ‘‘pole approximatio
~resonant state expansion! breaks down in such cases. In a
dition, the inclusion of the nonresonant continuum also i
pacts results for bound states.

The results of our first calculations for binding energie
spectra, electromagnetic matrix elements, and nucleonic
tributions are very encouraging. In particular, pairing cor
lations due to the continuum-continuum scattering can b
the ground states of6,8He with a completely unbound bas
provided by the s.p. resonances of5He. The ‘‘helium
anomaly’’ ~an increasein one- and two-neutron separatio
energy when going from6He to 8He) is explained in terms o
the neutron scattering to the nonresonant background. In
cases considered, our calculations yield neutron resona
above the calculated neutron threshold—a property tha
not guaranteeda priori by the formalism.

Other applications of the GSM, including the case of op
protonand neutron shells, also employing more realistic e
fective interactions, are in progress. We are also working
the optimization of the nonresonant part of calculatio
~choice of the contours, distribution of discretization poin
etc.!. We are convinced that the Gamow shell model w
become a very useful theoretical tool unifying structure a
reaction aspects of weakly bound nuclei.
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