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The knowledge of the nuclear spin- and parity-dependent level dengities, =) is important for under-
standing statistical properties of nuclei and reaction rates. We show that the earlier suggested method of
exponential extrapolation, which allows one to find the yrast energy with high accuracy even for very large
shell model Hamiltonian matrices, can be combined with the formalism of statistical spectroscopy in order to
obtain the reliable level density.
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The knowledge of the level density is an important ele-body quantum chaos. Two-body interactions of the fermions
ment of the description of highly excited many-body sys-in the region of high level density are effectively strong and
tems. In application to nuclei, as well as other finite systems$ct essentially at random, as follows from the general analy-
such as atomic clusters, the many-body level density detegis[18,19 and from detailed calculations for complex atoms
mines all statistical properties, both for the discrete spectrurh?0] and nuclei[21]. The standard partitioning of Hilbert
and for reactions. This was recognized more than sixty-fivépace according to the particle configurations, which is a
years ago, see Refgl,z:l and historic references therein, usual tool in the construction of the shell model baSiS, is very
when the statistical approach based on thermodynamigéonvenient here as well since it facilitates the calculation of
analogies and the Fermi-gas model of the nucleus was devdpe traces. The traces can be found for few-particle states and
oped[3]. The importance of the level densities is obvious,then extended by a combinatorial “propagation” to many-
especially in connection to neutron resonances in heavy nirody states. Unfortunately, the propagation procedure for the
clei and related applications, nuclear reactions in general aniiaces including the projection operators for additional quan-
advances far from stability in particular, and the astrophysifum numbers is much more complicatf2P]. Meanwhile,
cal prob|em of nuc|eosynthesisl reliable information on the level density(E,J’T,T) as a

The most common semiphenomenological approaches fbinction of excitation energy, total spih parity, and isospin
the problem of the nuclear level density use basically thds highly desirable.
noninteracting Fermi-gas model of a nucleus with correc- Taking into account only the first two scalar moments of
tions that are needed to take into account the average effed@tal density seems to be insufficient in cases where the in-
of the shell structure, pairing correlations, and collective exclusion of many major shells and other shell effects distort
citations associated mainly with the static or dynamical dethe shape of the level density. Recently, Zuk2g] showed
formation of the mean fielfiL,4—8. The residual interaction that small asymmetries of the level density can be addressed
is fully taken into account in modern large-scale shell modebY including the third or/and the fourth static momientin
calculations based on a direct diagonalization or, for excases where the fluctuations are more pronounced, it was
ample, with the use of the Monte Carlo techniqi@s11; a  recently showr{24] that after decomposing the shell model
comparative analysis of these methods was performed ifiPace in partitions according to the arrangement of nucleons
Ref. [12] One can hope that at not very h|gh excitation en_in Single-particle orbits, the total denSity of states can be
ergy the finiteness of model space is not crucial because offgund as a sum of the Gaussia@g on the set of partitions
relatively low statistical weight of intruder configurations. P=1,2,... P of A valence particles ins single-particle
Furthermore, one can try to smoothly match the exact shebtates(e.g.,[n1(p).nx(p), - .. .ns(P)1, A==7_1ni(p)),
model results to the improved Fermi-gas predictions at
higher energies. _

As the dimensions of the shell model Hamiltonian matri- p(E)= Z DpGp(E+Eo—Ep,0p), (1)
ces grow beyond the directly tractable limits, the approach Pt
using the methods of statistical spectroscpp§—17 is still
possible. Moreover, the statistical approach is the most ad2
propriate for answering the questions formulated in statistical
terms. Here one needs to build the Hamiltonian matrix an
calculate the traces of its moments without an explicit diago .
nalization. According to the central limit theorem,pthe distgr]i- Sec. 3. of Ref.[2§]_. In Eq. (1), Dy 1S t_he total num_ber of
butions of level densities, strength functions, and relatedt@tes In the partitiop, E is tﬂe excitation energy, is the
quantities are converging to the Gaussian so that the lowe§found state energ¥;, and o, are the first(centroid and
moments are expected to provide sufficient informafiori. ~ secondwidth) moments, respectively, for each partition. The
The underlying physics can be understood in terms of manypartition momentsg, and o, can be calculated using a

P

rovided that the ground state energy can be accurately
alculated, for example, with the aid of the exponential con-
ergence methodi25]. Previously, similar procedures were
used to describe the shape of the density, see, e.g., the title of

0556-2813/2003/6%)/0543097)/$20.00 67 054309-1 ©2003 The American Physical Society



MIHAI HOROI, JOSHUA KAISER, AND VLADIMIR ZELEVINSKY PHYSICAL REVIEW C 67, 054309 (2003

30000 T T T

S:Jm of Gaussians' Eq(1)
shell model %

25000

20000 [ 1

FIG. 1. Shell model density of states com-
15000 | 7 pared with the sum of Gaussians approach, Eq.
(1), based on partition averages according to sta-
tistical spectroscopy.

P(E) (Mev'?)

10000 1

5000 [ 1

0 1 1 1 1
0 20 40 60 80 100 120

E (MeV)

straightforward method introduced in Ré¢fl4], see below. ods of statistical spectroscopy with information based on the
The precise knowledge of the ground state enétgys cru-  generic properties of complicate¢ichaotic”) many-body
cial for the application of the partition summation. Figure 1 wave functions found in the analysis of the exact shell model
compares the results of E@L) with full shell model calcu- diagonalizatior{21] for the cases of smaller dimensions.
lations available for the case @f=12 valence particles in The classical derivation of the level density for given spin
thesd shell. Partitions have an important advantage of form{2,3] is based on the idea of random coupling of individual
ing an invariant subspace with respect to rotational symmeparticle spins into the total spin of the many-body system.
try and parity. All the results shown in Figs. 1-5 are obtainedThis “geometric chaoticity” originates from the presence of
using the USD interaction of Ref27]. In all cases the num- many possible coupling schemes described by the compli-
ber of protons equals the number of neutrons and states of athted 31j symbols rather than from specific features of
isospins are included. nuclear forces. The random-walk process of spin coupling
Previous work on level density mostly stressed only theresults in the Gaussian level density as a function of the total
description of the shape of the density, leaving aside the rolspin projection,= M,
of the starting energy. Papers based on Monte Carlo tech-
niques[9-11] use (without emphasizingthe ground state P(E) 1202
energy, however, they can only include very limited interac- pm(E)= NPk ; 2
tions to avoid the sign problem that induces high errors in the T
value of ground state energ8]. Kota and Majumbaf29]  \yherep(E) is the total density of states at excitation energy
recognize the importance o_f kn0W|'ng the location of th_eE’ and o2 is the average valuéM?) in the shell model
ground state energy. In practice, their approach uses, bes'd§|§ace. Assuming Eq2), the level density(E,J) for spinJ

theoretical results related to the shape of the densitig)SEt  can be obtained with no further approximations in a conven-
experimental data, when available. tional way.

The total density of states(E) is normally calculated as

the first step in many other approaches, inclgding the F_ermi- p(E,))=pm=3(E)—pm=3+1(E), 3

gas model and Monte Carlo method. To obtain the density of _

levels p(E,J) for a given spinJ, one usually employs a Wwhich leads to the standard expression

rescaling procedure based on the statistical distribution of

spins, which we describe below. However, we show that this ~ p(E)

procedure is not sufficiently accurate, especially for the low- p(EJ)= V8ol
. . mTo

est and highest spins.

The approach developed by Jacqueratral. [22,26,30  The next steps usually taken are the Fermi-gas approxima-
allows one to calculate exactly shell model centroiid) tion for the total density of stateg E), the backward shift of
and widthso(J) for the level densities at fixed spih In the excitation energfs—U=E— A, whereA(Z,N) reflects
principle, the knowledge of the cumulative level numberthe pairing threshold for two-quasiparticle excitatiotis
ME,J)=[E_dE' p(E’,J) makes it possible to reproduce even-even nuclgi and the expression af in terms of the
the positions of the discrete level44]. However, in the statistical(rigid body) moment of inertia.
lowest part of the spectra this procedure would not work One can notice that the random walk approximati@yx-
because even the corrected Gaussian approximation does ridf works much better for the total number of states, dimen-
describe the lowest part of the spectrum that is very far fronsiond(J) in Hilbert space, the quantity of a pure geometrical
the centroid. In this situation it is natural to enrich the meth-nature, than for the energy-dependent deng(i,J) that is

(2J+l)e—(J+1/2)2/202_ (4
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FIG. 2. Spin-dependent level densitipéE,J) from shell model calculationtimes 2J+ 1) (crossep and rescaled densitigbroken

lineg) for 12 particles in thesd-shell.
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FIG. 3. Shell model scalar centroids and widths of the partial level depéiyJ) as a function of total spid for 12 particles in the

sd-shell. Broken horizontal lines show the same quantities for the total demd).

determined by the interaction dynamics. If one tries to resThe physical reason for this discrepancy is that the centroids
and widths found according to the recipes of statistical spec-
density p(E) of Eq. (1) with the aid of the scaling factors troscopy[22,26 depend on spin, Fig. 3. Similar results for
A;=d(J)/dy, the deviations turn out to be much more pro- the J dependence of centroids and widths were reported in
nounced(see Fig. 2, even for the most important low spins. Refs.[31,32. ForJ=5 and 6, theJ-dependent scalar cen-
troids and widths coincide with those of the total density
(Fig. 3), and the rescaling scheme describes reasonably well
the J-dependent level density, see Fig. 2. In fact, as a rule,

cale the partial level densitigs(E,J) from the total level
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FIG. 4. J=0 shell model level density for 12 particles in the
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the variances(J) of the centroid distributions makes the Ref. [21], the widths o, are nearly COI’lStanTak%;. The
main contribution to the total widtlr(J) larger than the  mechanism of this equilibration is provided by the above
average width of individual partitions weighted with their mentioned geometric chaoticity that is inevitably growing in
dimensiong 22]. the process of constructini’ T-projected statef21,36]. As

As a practical solution for the problem of calculation of discussed earlier, the same chaoticity of almost random cou-
shell-model level densities without full diagonalization we p||ng of individual Spins into total Sp|[] is in the core of the
can suggest the following. For each shell model partifion standard derivatiofil—3] of the spin-dependent level den-
=1,... P, the fixedd centroidE,(J) is calculated in ac- sity. The fact of constancy of the widths, is essential for
cordance with the prescriptions of statistical spectroscopystablishing a practical boundary for the shell model trunca-
[22,17, together with the fixed- width o,(J). Since the tion[35] on the level of (3—4¢. This truncation gives a first
results for the level density obtained from the spectral moapproximation to the energy eigenvalues.
ments are sensitive to the positigg of the ground state, we The further precise definition of energies of low-lying
apply the method of exponential extrapolation to find thestates can be achieved using the exponential extrapolation
ground state energy. This method, based on the generic bg25,37. It was establishe@i34] that the remote tails of the
havior of small admixtures of remote basis states to the wavgeneric strength function are exponential. This can be trans-
functions of low-lying states, was suggested, tested, and judated into exponentially small admixtures of highly excited
tified by shell-model examples, random matrix theory, andstates, located beyond threshold of (3e4ffom the cen-
exactly solvable modelf25]. It was later successfully used troid, to the exact wave functions of low-lying states. The
for ground state energies op nuclei[37] and the superde- exponential convergence was rigorously proved in some
formed state in°®Ni as well as for single-particle occupan- models and tested by the full matrix diagonalization when
cies[33]. possible. A practical algorithm was worked ¢8%] to estab-

We remind the reader the main justification of the expo-lish the onset of the exponential regime by several progres-
nential extrapolation. The typical properties of complicatedsive truncations keeping the partitions in their entirety. Using
many-body states are revealed, for example, by a detailetthis algorithm, it is usually possible to locate the ground and
analysis in the framework of the nuclear shell mofizl].  low-lying states very closébetter than 200—300 keMo the
Very similar results for complex atonji0] show that these exact energy value using shell model spaces of dimensions
properties are indeed generic for many-body quantum chaothat are less than 1% of the full dimensif#v,33.

It is practically important that the determination of the rel-  With the knowledge of the ground state position we de-
evant global parameters does not require the diagonalizatidermine the set of the Gaussians,

of the huge Hamiltonian matrix. The distribution of the com-

ponents C; of a many-body statda) in the basis of G,(E,J)=G[E+ EO_Ep(\]),gp(‘])], (8)
J™T-projected independent particle configuration sttgss

close to the Gaussian predicted by the random matrix theoryhere E is the excitation energy from the ground state of

[1,18,19. The same is valid for the strength functions energyE,. The superposition of the contributions of the par-
titions weighted with their dimensiort,(J) leads to the full
F(E)=2> |CH25(E-E,) (5)  level density
P
of the shell model basis statgle) for the realistic residual p(E,\])ZE dy(J)Gp(E,J). 9
P

interaction strength34]. The centroid<, of these distribu-

tions are given by the diagonal matrix elements of the full i - o
HamiltonianH, In this approach each partition has a definite number of

. particles and parity; no special effort for conserving number
Ex=> |CE|PE,=Hyx. (6)  of particles and parity is required, as in the case of a model
@ that cannot select subspaces with correct symmetries, such as
The widtho of the strength functioK) is also known prior shell model Monte Carl¢38,39. The generallz_atmn to the
to the diagonalization as the sum of the off-diagonal matrixfixed-isospin level density is straightforward,(J) and
elements squared, a,(J) are calculated using techniques similar to those de-
scribed in Ref[22].
9 w2, =2 = 2 A part of the present approach was sometimes mentioned
Uk:; |Ck|2(Ea_Ek):|(¢k) Hi - ()i the literature as a method to determine the shape, but not
the J-dependent level densip(E,J). A novel feature here is
An illustration of these distributions for the case BfT  the opportunity of estimating the position of the ground state
=070 states ofA= 12 particles in thesd-shell model, where with very good accuracy25,37; the method works if the
the USD interactiorf27] was used, can be found in Figs. 1 ground state energy is known with an accuracy not worse
and 2 of Ref[35]. The results are qualitatively the same for than 100—200 keV. But this is the precision one can achieve
different effective interactions; thep-shell model provides with the aid of the exponential convergeri&]. The expo-
also quite similar results. We need to stress that no diagonahential convergence method was recently proven to work for
ization is required here. As was shown for the first time inmany major shells, and mariyw excitations[40]. Figure 4
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shows the results for this approach applied to the case of 12 4
valence particles in thed-shell model using the USD inter-
action of Ref[27].

Recently, a method proposed by Zukég], which uses 60 T
four scalar moments, was generalized by Johnson and col-
laborators to the sum of configuratiof®l—43. Due to the 50 | i

complexity of the calculations, they could not obtain all
J-dependent moments, as in H®). Therefore, they relied ~

—

on a rescaling procedure based on Ej, but using an en- % 40 1
ergy dependent spin-cutoff facter. This approach attempts 3

to calculate more accurately the shape of the total density ofg 30k |
states, but introduces two new approximations, @&g.and g

the approximate calculation ¢§2)(E), that could affect the

overall accuracy. Figs. 2—4 of R¢#3] do not prove that the 20 | ]
inclusion of the third and fourth moments improves the ac-

curacy of the results. 10 b 4

One can understand why our sum using only the first and
second moments, Ed9), turns out to be so reliable. Al-
though the higher moments describing skewness and excess 60
are significant, in adding contributions from many configu-
rations, the asymmetries have a tendency to average out. As
Fig. 1 of Ref.[35] suggests, the only configurations for
which the asymmetry may survive are those with the cen-
troids close to the edges of the spectrum. In addition, the 4,
ranges of those distributions are finftgpically, the ranges
of the spectrum are about (12—-14) To take into account
these effects, we replaced the Gaussians in(Bgby the
finite range GaussiangRG9 that span over a range of at
most =30, and do not extend lower than the energy of the
yrast state for each spin, 20

30 |

P(E) (MeVv'™)

10 E
where
\F et
if t_<t<t,, and O otherwise. Here E (MeV)
E+E.—E. J) FIG. 6. J=0 shell model level density for 6 particles psd
t= #, (12 model spacehistogramg compared with the fixed-sum of finite

V20

range Gaussians, E¢l1); upper panel shows the density of posi-
tive parity states, while lower panel shows the negative parity

t_ corresponds to either thgp(J)—30' or the yrast state
energy (whichever is higher and, similarly, t, =Ep(J)

+30. The choice ofx 3¢ for the FRGs is based on the

observation of Ref[35] (see, e.g., Fig. 3 of Ref35]) that,

for the low-lying states, the configurations located within
+ 30 to the centroid provide more than 90% of the overlap

states.

In conclusion, we proposed a new practical method of
calculating the total density of states using the procedure of
statistical spectroscopy for the centroids and widths for each
partition in a given shell model space. We show that the
rescaling scheme based on E4) for the total density of

with the exact wave function. An accurate calculation of thestates, sometimes used with the Fermi-gas and Monte Carlo

yrast state energy can be obtained using the exponential CORhethods[28]

is not accurate enough in describing shell

vergence method with the same effort as for the ground Sta‘i%odel\]—dependent densities, especially for low spinat

energy[25,37].

are of special interest in applications. However, a sum of

The results obtained with the use of this procedure arg;,ssjans over partitions with tiedependent centroids and

shown in Fig. 5 for the lowest part of spectrum in the case

of J=0 andJ=3. Figure 6 shows the density of Gand 0

states for six particles ipsd model space using the PSDMK

Svidths, Egs.(8)—(12), can successfully describe spin- and

parity-dependent partial level densities; the essential ingredi-
ent is an accurate estimate of the ground state energy of the

interaction[44] (no attempt was made to remove the Center'system, which is possible with the aid of the exponential
of-mass spurious components; the effect of the Cemer'OfConvergence method.

mass spurious motion on the nuclear level density is still

under investigation[43,48). The comparison with exact

shell model calculations proves to be very good.

We acknowledge support from the National Science
Foundation, Grant Nos. PHY-0070911 and DMR-9977582.
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