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Spin- and parity-dependent nuclear level densities and the exponential convergence method
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The knowledge of the nuclear spin- and parity-dependent level densitiesr(E,J,p) is important for under-
standing statistical properties of nuclei and reaction rates. We show that the earlier suggested method of
exponential extrapolation, which allows one to find the yrast energy with high accuracy even for very large
shell model Hamiltonian matrices, can be combined with the formalism of statistical spectroscopy in order to
obtain the reliable level density.
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The knowledge of the level density is an important e
ment of the description of highly excited many-body sy
tems. In application to nuclei, as well as other finite syste
such as atomic clusters, the many-body level density de
mines all statistical properties, both for the discrete spect
and for reactions. This was recognized more than sixty-
years ago, see Refs.@1,2# and historic references therein
when the statistical approach based on thermodyna
analogies and the Fermi-gas model of the nucleus was de
oped @3#. The importance of the level densities is obviou
especially in connection to neutron resonances in heavy
clei and related applications, nuclear reactions in general
advances far from stability in particular, and the astrophy
cal problem of nucleosynthesis.

The most common semiphenomenological approache
the problem of the nuclear level density use basically
noninteracting Fermi-gas model of a nucleus with corr
tions that are needed to take into account the average ef
of the shell structure, pairing correlations, and collective
citations associated mainly with the static or dynamical
formation of the mean field@1,4–8#. The residual interaction
is fully taken into account in modern large-scale shell mo
calculations based on a direct diagonalization or, for
ample, with the use of the Monte Carlo techniques@9–11#; a
comparative analysis of these methods was performed
Ref. @12#. One can hope that at not very high excitation e
ergy the finiteness of model space is not crucial because
relatively low statistical weight of intruder configuration
Furthermore, one can try to smoothly match the exact s
model results to the improved Fermi-gas predictions
higher energies.

As the dimensions of the shell model Hamiltonian ma
ces grow beyond the directly tractable limits, the approa
using the methods of statistical spectroscopy@13–17# is still
possible. Moreover, the statistical approach is the most
propriate for answering the questions formulated in statist
terms. Here one needs to build the Hamiltonian matrix a
calculate the traces of its moments without an explicit dia
nalization. According to the central limit theorem, the dist
butions of level densities, strength functions, and rela
quantities are converging to the Gaussian so that the low
moments are expected to provide sufficient information@17#.
The underlying physics can be understood in terms of ma
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body quantum chaos. Two-body interactions of the fermio
in the region of high level density are effectively strong a
act essentially at random, as follows from the general an
sis @18,19# and from detailed calculations for complex atom
@20# and nuclei@21#. The standard partitioning of Hilber
space according to the particle configurations, which i
usual tool in the construction of the shell model basis, is v
convenient here as well since it facilitates the calculation
the traces. The traces can be found for few-particle states
then extended by a combinatorial ‘‘propagation’’ to man
body states. Unfortunately, the propagation procedure for
traces including the projection operators for additional qu
tum numbers is much more complicated@22#. Meanwhile,
reliable information on the level densityr(E,Jp,T) as a
function of excitation energy, total spinJ, parity, and isospin
is highly desirable.

Taking into account only the first two scalar moments
total density seems to be insufficient in cases where the
clusion of many major shells and other shell effects dist
the shape of the level density. Recently, Zuker@23# showed
that small asymmetries of the level density can be addres
by including the third or/and the fourth static moment~s!. In
cases where the fluctuations are more pronounced, it
recently shown@24# that after decomposing the shell mod
space in partitions according to the arrangement of nucle
in single-particle orbits, the total density of states can
found as a sum of the GaussiansGp on the set of partitions
p51,2, . . . ,P of A valence particles ins single-particle
states„e.g.,@n1(p),n2(p), . . . ,ns(p)#, A5( i 51

s ni(p)…,

r~E!5 (
p51

P

DpGp~E1E02Ēp ,s̄p!, ~1!

provided that the ground state energyE0 can be accurately
calculated, for example, with the aid of the exponential co
vergence method@25#. Previously, similar procedures wer
used to describe the shape of the density, see, e.g., the ti
Sec. 3 of Ref.@26#. In Eq. ~1!, Dp is the total number of
states in the partitionp, E is the excitation energy,E0 is the
ground state energy,Ēp and s̄p are the first~centroid! and
second~width! moments, respectively, for each partition. Th
partition momentsĒp and s̄p can be calculated using
©2003 The American Physical Society09-1



-
q.

ta-

MIHAI HOROI, JOSHUA KAISER, AND VLADIMIR ZELEVINSKY PHYSICAL REVIEW C 67, 054309 ~2003!
0

5000

10000

15000

20000

25000

30000

0 20 40 60 80 100 120

ρ(
E

) 
(M

eV
-1

)

E (MeV)

Sum of Gaussians Eq(1)
shell model

FIG. 1. Shell model density of states com
pared with the sum of Gaussians approach, E
~1!, based on partition averages according to s
tistical spectroscopy.
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straightforward method introduced in Ref.@14#, see below.
The precise knowledge of the ground state energyE0 is cru-
cial for the application of the partition summation. Figure
compares the results of Eq.~1! with full shell model calcu-
lations available for the case ofA512 valence particles in
thesd shell. Partitions have an important advantage of for
ing an invariant subspace with respect to rotational sym
try and parity. All the results shown in Figs. 1–5 are obtain
using the USD interaction of Ref.@27#. In all cases the num
ber of protons equals the number of neutrons and states o
isospins are included.

Previous work on level density mostly stressed only
description of the shape of the density, leaving aside the
of the starting energy. Papers based on Monte Carlo te
niques @9–11# use ~without emphasizing! the ground state
energy, however, they can only include very limited intera
tions to avoid the sign problem that induces high errors in
value of ground state energy@28#. Kota and Majumbar@29#
recognize the importance of knowing the location of t
ground state energy. In practice, their approach uses, be
theoretical results related to the shape of the density, set~s! of
experimental data, when available.

The total density of statesr(E) is normally calculated as
the first step in many other approaches, including the Fer
gas model and Monte Carlo method. To obtain the densit
levels r(E,J) for a given spinJ, one usually employs a
rescaling procedure based on the statistical distribution
spins, which we describe below. However, we show that
procedure is not sufficiently accurate, especially for the lo
est and highest spins.

The approach developed by Jacqueminet al. @22,26,30#
allows one to calculate exactly shell model centroidsĒ(J)
and widthss(J) for the level densities at fixed spinJ. In
principle, the knowledge of the cumulative level numb
N(E,J)5*2`

E dE8 r(E8,J) makes it possible to reproduc
the positions of the discrete levels@14#. However, in the
lowest part of the spectra this procedure would not w
because even the corrected Gaussian approximation doe
describe the lowest part of the spectrum that is very far fr
the centroid. In this situation it is natural to enrich the me
05430
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ods of statistical spectroscopy with information based on
generic properties of complicated~‘‘chaotic’’ ! many-body
wave functions found in the analysis of the exact shell mo
diagonalization@21# for the cases of smaller dimensions.

The classical derivation of the level density for given sp
@2,3# is based on the idea of random coupling of individu
particle spins into the total spin of the many-body syste
This ‘‘geometric chaoticity’’ originates from the presence
many possible coupling schemes described by the com
cated 3n j symbols rather than from specific features
nuclear forces. The random-walk process of spin coupl
results in the Gaussian level density as a function of the t
spin projectionJz5M ,

rM~E!5
r~E!

A2ps2
e2M2/2s2

, ~2!

wherer(E) is the total density of states at excitation ener
E, and s2 is the average valuêM2& in the shell model
space. Assuming Eq.~2!, the level densityr(E,J) for spinJ
can be obtained with no further approximations in a conv
tional way,

r~E,J!5rM5J~E!2rM5J11~E!, ~3!

which leads to the standard expression

r~E,J!5
r~E!

A8ps3
~2J11!e2(J11/2)2/2s2

. ~4!

The next steps usually taken are the Fermi-gas approxi
tion for the total density of statesr(E), the backward shift of
the excitation energy,E→U5E2D, whereD(Z,N) reflects
the pairing threshold for two-quasiparticle excitations~in
even-even nuclei!, and the expression ofs in terms of the
statistical~rigid body! moment of inertia.

One can notice that the random walk approximation~2!–
~4! works much better for the total number of states, dime
siond(J) in Hilbert space, the quantity of a pure geometric
nature, than for the energy-dependent densityr(E,J) that is
9-2
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FIG. 2. Spin-dependent level densitiesr(E,J) from shell model calculations~times 2J11) ~crosses! and rescaled densities~broken
lines! for 12 particles in thesd-shell.
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determined by the interaction dynamics. If one tries to r
cale the partial level densitiesr(E,J) from the total level
densityr(E) of Eq. ~1! with the aid of the scaling factor
lJ5d(J)/dtot , the deviations turn out to be much more pr
nounced~see Fig. 2!, even for the most important low spin

FIG. 4. J50 shell model level density for 12 particles in thesd
shell model ~stars!, compared with the rescaled total dens
l0r(E) ~upper panel!, and fixed-J Gaussian sum of Eq.~9! ~lower
panel!.
05430
-The physical reason for this discrepancy is that the centro
and widths found according to the recipes of statistical sp
troscopy@22,26# depend on spin, Fig. 3. Similar results fo
the J dependence of centroids and widths were reported
Refs. @31,32#. For J55 and 6, theJ-dependent scalar cen
troids and widths coincide with those of the total dens
~Fig. 3!, and the rescaling scheme describes reasonably
the J-dependent level density, see Fig. 2. In fact, as a ru
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FIG. 5. Low energy part ofJ50 ~upper panel! andJ53 ~lower
panel! shell model level density times 2J11 for 28Si ~histogram!
compared with the fixed-J sum of finite range Gaussians, Eq.~11!.
9-4



e

ir

of
e

op

o

he
b

av
ju
n
d
-
-

o
e
il

ao
l-
ti
-

o

l

fu

tri

1
or

n
in

ve
in

ou-

-

ca-
t

g
tion

ns-
d

he
me
en

res-
ing
nd

ions

e-

of
r-

of
er
del

ch as

de-

ned
not

ate

rse
eve

for

SPIN- AND PARITY-DEPENDENT NUCLEAR LEVEL . . . PHYSICAL REVIEW C 67, 054309 ~2003!
the variancesc(J) of the centroid distributions makes th
main contribution to the total widths(J) larger than the
average width of individual partitions weighted with the
dimensions@22#.

As a practical solution for the problem of calculation
shell-model level densities without full diagonalization w
can suggest the following. For each shell model partitionp

51, . . . ,P, the fixed-J centroid Ēp(J) is calculated in ac-
cordance with the prescriptions of statistical spectrosc
@22,17#, together with the fixed-J width sp(J). Since the
results for the level density obtained from the spectral m
ments are sensitive to the positionE0 of the ground state, we
apply the method of exponential extrapolation to find t
ground state energy. This method, based on the generic
havior of small admixtures of remote basis states to the w
functions of low-lying states, was suggested, tested, and
tified by shell-model examples, random matrix theory, a
exactly solvable models@25#. It was later successfully use
for ground state energies off p nuclei @37# and the superde
formed state in56Ni as well as for single-particle occupan
cies @33#.

We remind the reader the main justification of the exp
nential extrapolation. The typical properties of complicat
many-body states are revealed, for example, by a deta
analysis in the framework of the nuclear shell model@21#.
Very similar results for complex atoms@20# show that these
properties are indeed generic for many-body quantum ch
It is practically important that the determination of the re
evant global parameters does not require the diagonaliza
of the huge Hamiltonian matrix. The distribution of the com
ponents Ck

a of a many-body stateua& in the basis of
JpT-projected independent particle configuration statesuk& is
close to the Gaussian predicted by the random matrix the
@1,18,19#. The same is valid for the strength functions

Fk~E!5(
a

uCk
au2d~E2Ea! ~5!

of the shell model basis statesuk& for the realistic residua
interaction strength@34#. The centroidsĒk of these distribu-
tions are given by the diagonal matrix elements of the
HamiltonianH,

Ēk[(
a

uCk
au2Ea5Hkk . ~6!

The widthsk of the strength function~5! is also known prior
to the diagonalization as the sum of the off-diagonal ma
elements squared,

sk
2[(

a
uCk

au2~Ea
22Ēk

2!5 (
l (Þk)

Hkl
2 . ~7!

An illustration of these distributions for the case ofJpT
5010 states ofA512 particles in thesd-shell model, where
the USD interaction@27# was used, can be found in Figs.
and 2 of Ref.@35#. The results are qualitatively the same f
different effective interactions; thef p-shell model provides
also quite similar results. We need to stress that no diago
ization is required here. As was shown for the first time
05430
y

-

e-
e
s-
d

-
d
ed

s.

on

ry

ll

x

al-

Ref. @21#, the widthssk are nearly constant,sk's̄. The
mechanism of this equilibration is provided by the abo
mentioned geometric chaoticity that is inevitably growing
the process of constructingJpT-projected states@21,36#. As
discussed earlier, the same chaoticity of almost random c
pling of individual spins into total spinJ is in the core of the
standard derivation@1–3# of the spin-dependent level den
sity. The fact of constancy of the widthssk is essential for
establishing a practical boundary for the shell model trun
tion @35# on the level of (3 –4)s. This truncation gives a firs
approximation to the energy eigenvalues.

The further precise definition of energies of low-lyin
states can be achieved using the exponential extrapola
@25,37#. It was established@34# that the remote tails of the
generic strength function are exponential. This can be tra
lated into exponentially small admixtures of highly excite
states, located beyond threshold of (3 –4)s from the cen-
troid, to the exact wave functions of low-lying states. T
exponential convergence was rigorously proved in so
models and tested by the full matrix diagonalization wh
possible. A practical algorithm was worked out@37# to estab-
lish the onset of the exponential regime by several prog
sive truncations keeping the partitions in their entirety. Us
this algorithm, it is usually possible to locate the ground a
low-lying states very close~better than 200–300 keV! to the
exact energy value using shell model spaces of dimens
that are less than 1% of the full dimension@37,33#.

With the knowledge of the ground state position we d
termine the set of the Gaussians,

Gp~E,J![G@E1E02Ēp~J!,sp~J!#, ~8!

where E is the excitation energy from the ground state
energyE0. The superposition of the contributions of the pa
titions weighted with their dimensionsdp(J) leads to the full
level density

r~E,J!5(
p

P

dp~J!Gp~E,J!. ~9!

In this approach each partition has a definite number
particles and parity; no special effort for conserving numb
of particles and parity is required, as in the case of a mo
that cannot select subspaces with correct symmetries, su
shell model Monte Carlo@38,39#. The generalization to the
fixed-isospin level density is straightforward.Ēp(J) and
sp(J) are calculated using techniques similar to those
scribed in Ref.@22#.

A part of the present approach was sometimes mentio
in the literature as a method to determine the shape, but
theJ-dependent level densityr(E,J). A novel feature here is
the opportunity of estimating the position of the ground st
with very good accuracy@25,37#; the method works if the
ground state energy is known with an accuracy not wo
than 100–200 keV. But this is the precision one can achi
with the aid of the exponential convergence@37#. The expo-
nential convergence method was recently proven to work
many major shells, and many\v excitations@40#. Figure 4
9-5



f
-

c

al

s
y

ac

an
-
ce
u
t.
r

en
th

t
he

e

in
ap
h
co
ta

ar
se

K
er
-o
sti
t

of
of

ach
the

arlo
ell

of
d
d

edi-
f the
tial

ce
82.

i-
rity

MIHAI HOROI, JOSHUA KAISER, AND VLADIMIR ZELEVINSKY PHYSICAL REVIEW C 67, 054309 ~2003!
shows the results for this approach applied to the case o
valence particles in thesd-shell model using the USD inter
action of Ref.@27#.

Recently, a method proposed by Zuker@23#, which uses
four scalar moments, was generalized by Johnson and
laborators to the sum of configurations@41–43#. Due to the
complexity of the calculations, they could not obtain
J-dependent moments, as in Eq.~9!. Therefore, they relied
on a rescaling procedure based on Eq.~4!, but using an en-
ergy dependent spin-cutoff factors. This approach attempt
to calculate more accurately the shape of the total densit
states, but introduces two new approximations, Eq.~4! and
the approximate calculation of^Ĵ2&(E), that could affect the
overall accuracy. Figs. 2–4 of Ref.@43# do not prove that the
inclusion of the third and fourth moments improves the
curacy of the results.

One can understand why our sum using only the first
second moments, Eq.~9!, turns out to be so reliable. Al
though the higher moments describing skewness and ex
are significant, in adding contributions from many config
rations, the asymmetries have a tendency to average ou
Fig. 1 of Ref. @35# suggests, the only configurations fo
which the asymmetry may survive are those with the c
troids close to the edges of the spectrum. In addition,
ranges of those distributions are finite@typically, the ranges
of the spectrum are about (12–16)s]. To take into account
these effects, we replaced the Gaussians in Eq.~9! by the
finite range Gaussians~FRGs! that span over a range of a
most63s, and do not extend lower than the energy of t
yrast state for each spin,

Gp~E,J!°~FRG!p~E,J,EJ!, ~10!

where

~FRG!p~E,J,EJ!5A2

p

e2t2

s@erf~ t2!1erf~ t1!#
~11!

if t2,t,t1 , and 0 otherwise. Here

t5
E1E02Ēp~J!

A2s
, ~12!

t2 corresponds to either theĒp(J)23s or the yrast state
energy ~whichever is higher!, and, similarly, t15Ēp(J)
13s. The choice of63s for the FRGs is based on th
observation of Ref.@35# ~see, e.g., Fig. 3 of Ref.@35#! that,
for the low-lying states, the configurations located with
63s to the centroid provide more than 90% of the overl
with the exact wave function. An accurate calculation of t
yrast state energy can be obtained using the exponential
vergence method with the same effort as for the ground s
energy@25,37#.

The results obtained with the use of this procedure
shown in Fig. 5 for the lowest part of spectrum in the ca
of J50 andJ53. Figure 6 shows the density of 01 and 02

states for six particles inpsdmodel space using the PSDM
interaction@44# ~no attempt was made to remove the cent
of-mass spurious components; the effect of the center
mass spurious motion on the nuclear level density is
under investigation@43,48#!. The comparison with exac
shell model calculations proves to be very good.
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In conclusion, we proposed a new practical method
calculating the total density of states using the procedure
statistical spectroscopy for the centroids and widths for e
partition in a given shell model space. We show that
rescaling scheme based on Eq.~4! for the total density of
states, sometimes used with the Fermi-gas and Monte C
methods@28#, is not accurate enough in describing sh
modelJ-dependent densities, especially for low spinsJ that
are of special interest in applications. However, a sum
Gaussians over partitions with theJ-dependent centroids an
widths, Eqs.~8!–~12!, can successfully describe spin- an
parity-dependent partial level densities; the essential ingr
ent is an accurate estimate of the ground state energy o
system, which is possible with the aid of the exponen
convergence method.

We acknowledge support from the National Scien
Foundation, Grant Nos. PHY-0070911 and DMR-99775
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