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Density dependence of two-body interactions for beyondmean-field calculations
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This paper deals with the theoretical foundation of effective two-body forces for the generator coordinate
method and the projected mean-field method. The first aim of this paper is to reduce the in-medium content of
a generalizeds matrix, removing the hard-core problem in this extended context, into various local densities.
Then, we consider the possible renormalization of multibody forces through a density-dependent two-body
interaction in the context of configuration mixing calculations. A density dependence of theforas used
in Skyrme and Gogny forces, is successfully interpreted as doing so when the mixed density is used. Finally,
we propose a simple extension of the Skyrme force dedicated to the calculation of matrix elements between
nonorthogonal product states, which are needed to evaluate the correlated energy.
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I. INTRODUCTION
> T fa(@BIH|G)
Mean-field approximations are a first step towards the de- P ©)
scription of the ground state and low-lying excited states in s fk*fk<q),8|q)a>
microscopic nuclear structure calculations. They take into oy A

account the physical content of the one-body density matrix

only. Consequently, data not related to one-body operators S . .
may not be satisfactorily reproduced in this context. Mean*an be _m'n'm'ZEd \_N'th respect to variational parameters. The
ean-field approximation is recovered from E(B—(3) if

field approximations make use of a product wave function td" I ficient i it i stent .
approximate the eigenstates of the systems in the variation@f"y On€ CO€Ilcient IS nonzero, Its sefi-consistent version
problem. It is a Slater determinant in the Hartree-Fgdk) corrgsp_opds to the m|n|m|z_at|on Of. th.e energy With respect to
theory [1] or a quasiparticleqp) vacuum in the Hartree- the individual wave functions. W|th|n. t.hIS general frame-
Fock-Bogolyubov(HFB) theory [2], which includes static WOrK: let us explicit some methods mixing low-energy con-
o ) figurations.
pairing correlations. The GCM 3-8l deals with | litud llecti
In cases where the agreement with the data is not satis- € [3-5] deals with large-amplitude collective

factory, one has to go beyond this approximation to inCIudemotions in nuclei and allows the evaluation of ground-state

important missing correlations. Another reason to performcorrelatlons, low-lying collective spectra, and transition ma-

more elaborate calculations is the necessary restoration HI’X elements associated with different vibrational modes or

symmetries possibly broken by mean-field solutions. Wherpairing vibrations. Within this method, the mixed states, gen-

the symmetry breaking is weak, including appropriate corre-era”y determined through constrained self-consistent calcu-

lations allows for a significant improvement of the binding 1ations, are fixed npnorthogonal*mean-field stateg). The
energy in addition to obtain a wave function with good quan-€nergy is varied with respect mﬁ -

tum numbers. The projected mean-field meth@6l—9] is another kind of
Some variational methods beyond the mean field mak&ixing. It is used to restore symmetries broken at the mean-
use ofN-body wave functions of the form field level such as particle number and translational or rota-

tional invariance. The degeneracy of the symmetry breaking
Ki o mean-field solution$d) is used to construct eigenstates of
V)= Ea: fal ®g), @) the infinitesimal generator of the associated symmetry group.
For Abelian groups, such a requirement fixes the coefficients
where {|®g)} constitutes a set of product states. This dis-of the mixing (f‘;) [1] and the variation after projection
crete superposition is sometimes an approximation for a mix¢VAP) is performed with respect to the individual wave func-
ing originally written in terms of a continuous coordinaie  tions from which the nonorthogonal product stafids) are
This is the case in the generator coordinate meti@dM) built.
and for some symmetry restorations. Once such a trial wave Finally, an improvement of the ground-state as well as of

function is given, its mean energy low-lying state properties can be achieved by going beyond
the independent quasiparticle picture through a mixing of

gmix— (Wy[H[ W) 2 quasiparticle excitations. This corresponds to the treatment

k (V| P of small-amplitude correlations. The set of product states is

composed of zero, two, four, etc., quasiparticle stded)
built on top of the mean-field stat@g) approximating the
*Present address: Argonne National Laboratory, Physics Divisionground-state wave function. This gives a set of fixed, ortho-
9700 South Cass Avenue, Argonne, IL 60439. Email addressnormal product functions. Alternatively, each of these quasi-
duguet@theory.phy.anl.gov particle states can be calculated self-consistently through the
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minimization of the corresponding mean-field energy. In this When going beyond the mean-field approximation
case, the mixed quasiparticle statds®) are fixed nonor- through the use of the trial stat&,), there is no natural
thogonal product wave functions with identical quantumchoice for the local density to insert into nondiagonal matrix
numbers. The variation is performed with respecfh’b. elementg ®4|H[ p]|®§). Two prescriptions have been used
The former cases have been distinguished not only fountil now in such calculations.

their different physical content but also because one has in (1) The local scalar-isoscalar part of thaxeddensity,
practice to determine whether the mixed product functions o
are orthogonal or not and what the variational parameters (Ba) B <q>g|po(R)|q>g>
are. Indeed, the evaluation of the energy in the correlated Po (R):W
state| W) requires the calculation of matrix elements of the orro

form (®g|H|®5). The evaluation of two-, three-, etc., body \yhich has to be used in the corresponding  kernel
operators is feasible between nonorthogonal product state{s(D€|H|®g> in Eq. (3). This choice has been made in the
thanks to the generalized Wick theor¢h®]. For orthogonal 5\ with or without projection on particle number and an-

states, one has to express both of them with respect to & .. momentum[14—16,20—22 Note that the diagonal
single vacuum of reference before using the standard Wic ixed density is notr;ing but a mean-field density

theorem[11]. As for the variation, a double variational - = . . .
[11] ps™(R)=p&(R). So far, this choice has been motivated by

method with respect td* and the single-particle wave ! o :
P ! gle-p the equivalence existing at the mean-field level between a

functions defining the mixed states could be performed i . ;
principle; at least when the coefficients of the mixing are nor&hree—body zero-range force and a linearly density-dependent

: : wo-body interaction[17] for time-reversal invariant sys-
completely determined by geometrical arguments. Howeve o -
the resolution of this problem is rather complicated and ofter?engs' (Cs)onslldenng this argument and the fact that the ker_nel
contains a high degree of redundangy. Finally, the above (06| V| 0) fpr a threg—body force can be expressed in
cases can be mixed through a more general ansatz for tHgrms _Of the mixed de_nS|t_y matrix only, it was chosen to use
correlated functiorf¥,) in order to study the coupling be- e Mixed local dkensnly (;n thehtwot-)body for¢§0,2$,23. .
tween different physical effect&oupling of collective and TOWEVer, to our knowledge, the above mentioned equiva-

single-particle degrees of freeddi2,13, GCM in symme- Ignce hqs no%_Eeen shovyn explicitly fc:_r a gegerall cogfigura—
try restored collective spacé$4—16). tion mixing. The extension to a nonlinear density depen-

However, a formal problem arises when considering thé:ience as used in the Skyrme and the Gogny interactions has

calculation of the correlated energy in connection with effecNOt been theoretically Jl.JSt'f'ed as well.
(2) The local scalar-isoscalar part of tkerrelatedden-

tive density-dependent Hamiltoniakf p]. This is the case
for nuclear structure calculations with phenomenological inSIY:
teractiong17,1§. A o

At the mean-field level, no ambiguity exists since the VKR = (Wil po(R)W ) @
evaluation of Eq(3) requires the calculation of a single di- 0 (WP
agonal matrix elemen{®g|H[p]|®g), and the one-body _ _ _
density used is naturally taken as the corresponding meanthich does not depend onB(«) and is to be used in all
field density. Precisely, it is taken as the local scalar-isoscaldfernels in Eq(3). This choice has been made in approximate

, (6)

part of the one-body density matrig7—19 and exact variation after particle number projection calcula-
tions[23-29. Similar results to those found with the mixed
L {@g]po(R)[ ) density were obtained. The choice of the correlated density
po(R)= —————, (4) in the evaluation of the correlated energy seems as reason-
(Pl Dg) able as the use of the mean-field density in the calculation of

the mean-field energy. We discusgriori stronger argument
B favor of the correlated densif23] in Appendix C.
One could add the possibility to use the local mean-field
density, as defined by E@), in projected mean-field calcu-
o= > & ,sz,t)<pJ(F,§Z,sz,t)crg,sztcxzszt. (5) lations. Indeed, it is possible in this case to express the cor-
13,4580 5, t z related energy in terms of the density matrix and the pairing
) tensor of the single product sta@3) from which |¥,) is
The individual wave functionsp,_n.(r,¢,,S,,t) have  projected ouf9]. This suggests the use of the corresponding
good paritysr, z-signaturel,, spin projection on the axis  mean-field density in the Hamiltonian in order to keep the
s,, and isospin projectioft N being the principal quantum energy as a functional of these variables only. No quantita-
number! They constitute a basis of the single-particle Hilberttive calculation has been performed until now using this pre-
space. scription. It is worth noting that this argument does not hold
in the general case. Indeed, the energy as given by(&Eq.
cannota priori be written in terms of the density matrix and
tUpper cases will denote, throughout the paper, all quantum numpairing tensor of a single mean field.
bersexceptfor signature, spin, and isospin; while lower cases will ~ Given the lack of theoretical support for the commonly
denote all quantum numbeirscluding signature, spin, and isospin. used prescriptions, the aim of the present work is to develop

where the local scalar-isoscalar part of the one-body densi
operator is defined as
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theoretical arguments in favor of a particular density depen4 in ab initio calculations using the Green’s function Monte
dence vy|th|n the general framework of conflguratllon miXing Carlo method[37]. In addition to these studies on bound
calculations. In order to do that, one has to identify physicalyyclear systems, including three-body forces in the treatment
reasons for the effectlve two-body _force to depend on SOMBf nucleon induced deuteron breakup or nucleon-deuteron
density. We now give a nonexhaustive review of the possiblg|astic scattering has resolved several inconsistencies with
ongins. these data observed when using two-body forces [B8Y.

The renormalization of the described effects is understood
at the mean-field level. The deduced effective two-body in-
teraction always depends on the density of the underlying
Slater determinant. However, as soon as the model or the

One can roughly identify three cases where effective twovariational space is modified to include correlations explic-
body forces should have a density dependdaée-28. itly, not only the analytical structure of the density depen-

(i) The effective interaction includes some specific corre-dence must be changed but the kind of density itself is no
lations induced by the bare nucleon-nuclébiiN) interaction  longer obvious.
through explicit summation of diagrams in a perturbative The derivation of the analytical structure associated to
expansion. This is the case for two-body correlations associevery above mentioned origins constitutes a difficult task at
ated with the repulsive core and the tensor component of thany level of approximation. This is beyond the scope of this
NN interaction which are taken care of, in presence of thevork. We rather concentrate on the determination oftyipe
other nucleons, through Brueckner ladder summatiorof density to be used in relation to origirie and (iii) in
[29,30. In that sense, phenomenological forces have beefalculations beyond the mean field. The corresponding ana-
characterized as Brueckn& matrices in the local density lytical functional will have a more phenomenological char-
approximation(LDA) [31,32 or after a density matrix ex- acter. We are looking for guidelines to the definition of phe-
pansion(DME) [33]. nomenological forces while the phenomenology embodied

There are other correlations not considered explicitly aby their fit on a few nuclear data should allow us to smooth
first order in theG matrix, such as three-body, four-body, etc. out the imperfections of the analytical derivation.
short-range correlations. The corresponding contributions to Section Il A recalls some results associated to the exten-
the binding energy can be phenomenologically includedsion of the usual Goldstone-Brueckner perturbation theory to
through a density dependence of the effective fo&a. configuration mixing calculationg39]. In Secs. Il B-IIl G,

Long-range correlations can be treated explicitly throughwe deal with the local-density approximation of the general-
configuration mixings, such as those considered in this workized Brueckner matrix emerging in that extended perturba-
If this is the case, the effective interaction must not renortion theory. These calculations relate to the particle-hole
malize them. channel of the interaction since the Brueckner ladders should

(il) The phenomenological effective interaction omits ex-not be summed in the pairing chanfi40—44. Section IV A
plicitly some operators that are known to be important indeals with the renormalization of three-body forces within
realistic NN interactions and known to bring about a non-the GCM, while Sec. IV B is devoted to the same problem
trivial density dependence in the binding energy. This is thdor the projected mean-field method. We generalize our re-
case for the tensor force which is generally omitted in phesults to higher multibody forces in Sec. IV C; and in Sec.
nomenological interactions such as the Skyfmg,19 and IV D, we make some comments about the configuration mix-
the Gogny[18] forces. As this component of the force plays ing of individual excitations. The corresponding calculations
a crucial role in the saturation process, any effective two-are presented without taking care of static pairing correla-
body interaction not including it explicitly should have a tions, but the results can be extended to the pairing channel
corresponding phenomenological density dependgsde as well. We supplement this part of the work with appendixes

(iii) The Hamiltonian includes the bare two-body force providing details of our calculations, remarks concerning the
but higher-order interactions such as three-body terms argse of the correlated density, and a discussion on the crucial
omitted. In this case, one can think of renormalizing theirrole of rearrangement terms in the equations of motion. Ap-
effects through a density-dependent two-body interactiorplying our results to the standard Skyrme force, we propose
[17,27. It is beyond the scope of this paper to discuss thdn Sec. V an extension of its density dependence to be used
subnucleonic origins of three-body and higher multibodyin projected mean field and generator coordinate methods. As
forces as well as their quantitative relevari2é,27. How-  an application, the generalized Skyrme force is shown to be
ever, it is worth mentioning their importance in nuclear sys-well defined for symmetry restoration. Conclusions are given
tems. Three-body forces, either phenomenological or deriveth Sec. VII.
from microscopic meson-exchange models with nucleonic
virtual excitations and nucleon-antinucleon pair creations,
have been necessary to get good propertieg)siymmetric [ll. TWO-BODY CORRELATIONS FOR MIXED
nuclear matter. In particular, they allow the reproduction of NONORTHOGONAL VACUA
the empirical saturation at the correct density and energy per
particle in nonrelativistic Brueckner-Hartree-Fock calcula-
tions[35,36]. Three-body forces have also been essential to In Ref.[39], a generalized perturbation theory written in
describe spectroscopic properties of light nuclei up to masterms of nonorthogonal Slater determinants has been devel-

II. DENSITY-DEPENDENCE ORIGINS OF TWO-BODY
INTERACTIONS

A. Generalized Brueckner matrix
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oped. Contrary to usual perturbation theorid§—48, this  location, the matrix elemerya,| G| apaq) depends upon
method aims at writing the actual ground state of the systera, + an_Wa through the energy denominator Q“/(W,

as a superposition of solutions originating from several non-_ h). The question addressed now is whether these in-

orthogonal product states close in energytat—=. One  medium effects can be reduced to a simpler dependence on
obtains a perturbative series taking care of correlations assQzrious local densities.

piated to !arge gmplitude coIIect.ive motions, which cannot be The G* matrix elements are well defined in tHep,, }
included in a simple way by using an expansion referring to . - . k.

a single vacuum. The new expansion still faces the prObIEH;?epresentatmn. Con3|dt_ar|ng the transformation to configura-
related to the hard core of the two-body nucleon-nucleo lon space, one can write

interactionV. Referencg39] shows how to sum generalized o
particle-particle ladders through a newly defined Brueckner (aman|G®lapaq)= > f dr,dr,dridr;

matrix, removing the hard-core problem in this extended ooty

context. This effective interactio®#) is given in terms of

. . X F1latif 200t
two standard Brueckner matric€ andG*“ referring to two (amanlr1Zatar2lzate)

i B @y . g g Wl ol 1 T el 4t
different vacug g) and|®g): X(r1&atal 2 ztal Gr1dputir ¢ 5ts)
(B.@) =GA el g 2V Mg BV )
G U(Wg,W,)=GP(Wp)V™ "G (W,), €S) X(FLLtiT sl ol apag), (12)
where the standar&® Brueckner matrix satisfies a self- _ _
consistent equation of the forf29,45 where (r1{;,tirs0Hts|apag) is an antisymmetrized two-
body wave function. Equatiof), satisfied by the standard
Q“ G“ matrix, reads in configuration space as
Ga(Wa)=V+VWGa(WQ). (9)
a0

, _ o , (ridatar2atal G ridptir oot

Q¢ is the Pauli operator acting in the two-particle space to R R R R
exclude occupied states @) as intermediate states in the =(ry{patal 2ot |VIr1 Lot rsLamts)
Brueckner ladder. Equation@) and (9) make use of the
one-body Hamiltonianhg whose N-body ground state is > >
D) (wi o : - : +(r1latar 24tV =

o) (with energy&g). The single-particle eigenstates and W,—h§
eigenenergies ofg are defined a$¢ak, fak}’ wherek de-
notes the quantum numbefbl7{,t}. This set of quantum
numbers covers the cases of triaxially deformed and/or time- . - . .
reversal symmetry breaking mean-field solutions. The star2Nd 1S Imkgd to the orllgmal matrix element in the,, }
ing energiesV,, andW, characterize the dependence of therepresentation through its dependence:pnt €, . Note that
in-medium interaction of two particles on the energy of theit is not necessary to antisymmetrize the matrix elements in
others. The diagrammatic content f#%), its matrix ele- coordinate space since it is done in the,, } representation.
gepgg?nd the precise definitionswf, andW; are givenin e now write the bare interactidi] under the form

ef. .

Considering the lowest order of the extended perturbation R A A A A
theory, the ground-state energy is approximated3g) (riraVIrar)=V(r,p,o1,0,,71" 1)

3

Gr Lt rsints),

(12

S, 1% 1(@]t+ G (0,0]05) TR, 1
gpo="2 (10 T T
0 0% £0 /0 B v ' wherer =r,—r, andp=(p;— p,)/2 are the relative position
azﬁ f5" fo(Po|P5) and momentum vectors of the two interacting nucleons. The
' f) dependence is a practical manner to take the nonlocality of
This is precisely the energg'™ for a state mixing non-  the force into account. Using this expression and the fact that
orthogonal vacua as used in the GCM or the projected meaR“/(W,—hg) is diagonal in thenon-antisymmetrized heye
field method, where the starting two-body interactidmas  two-particle basis,
been replaced by the regularized effective vertex on the en-
ergy shell Wo=W,=0). Q . 2 | ag)(a; a

. - —he o€y t€, —W,—€, —€,’
B. LDA for standard Brueckner matrices: Definitions and the W,—ho €, P %a a7 Tas
goal €a > €F

(14

The interactionG® includes many-body effects through
the operatoQ“/(W,—hg). The value ofwW, depends upon one obtains, by inserting the identity operator twice through
the location of theG“ interaction in a given graph. At that closure relations in the last term of Ed.2),
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a if he used it successfully, Negele has shown the crudeness of
aGa|Fi§Q1tiFé§£2té> the above procedure for this energy depend¢nég
«— Ng The second energW, induces a nontrivial dependence of
G“ on its location in the diagram. Given that locatiaM,, is
_ i fixed for all matrix elements defined by E¢L1). At the
gzsgtm (CatalaaolV(1P.01,02: 71 72) | Eastaduala) lowest order, this parameter is zero sinc)é thngrueckner ma-
trix is taken on the energy shell.
The last energy, + €, makes the denominator of Eg.

(Flatal 2lpta|V

o

R, et . .
X | dradrg(ridsatar 28zatal ———[r3dzatar aduata)

W, —hg (16) dependent on the running indices and ag. This en-
ergy comes from each two-body propagator in the Bru_eckr_ler
X (T3l gatal alsata| GO|r | Logtir 5L iath). (15) ladder and the indices run over particle states up to infinite

energies. It is in no way related to any energy in the Fermi
sea. As it is a weighting factor for each particle-particle in-
C. LDA for standard Brueckner matrices: Analysis termediate state entering the ladder, it is strongly connected
o ) to the numerator in Eq.16). Omitting this link amounts to
We study the operatd®“/(W,—hg) which is responsible  giving up an important part of the physics involved in the
for the in-medium effects and thus for the possible densityBrueckner resummation by providing particle states with the
dependence. Its non-antisymmetrized matrix elements reashme weight whatever be their unperturbed energies.
in coordinate space as The usual averaging procedure finally amounts to stating
that the Pauli operator

a

(V1satal 2 patal W _he P 3 satal al sata) (V1L5atal 287atal Q7|T 3L 3t al alsata)
] 0
> - - -~ :[5(F2_F4)_Pta (F2,F4)]
5 B (Ta) a (12 b% (13) b (T1) abas
B a €, +e, —W,—€, —¢€ ' X[o(ri=r3)=pry (r1.r3)] 17
E“r>€Ft ) %p g a a, ag 30s3
3¢z3
el is the essential quantity to treat in detail in the operator
T lem Q“/(W,—hg). Itis at that point that the DME is performed

(16)  [33,49. As the procedure providing E@L7) is questionable,
and as a simplification of th&“ is by far necessary to pro-

. - . . . . ceed to extensive nuclear structure calculations, we could
and are diagonal in ISoSpin. The ISOSpINS Of the stg.tes "Mhink of a direct local approximation of the “energy density”
volved in the sum satisfyt(=ts,t;=t,).This s specified  yefined by Eq(16) [50]. Following the spirit of the DME,
through two labeled Fermi energméts% and e this approximation should be of similar quality as for Eq.

In order to write an approximation in terms of local den- (17) [33]. However, this would not provide the interaction

sities, one has to make the one-body density matrix appear ifith dependences on local densitide*(R),VZp*(R),
the numerator of E¢16). To do so, one has to perform some _«(g 1.2

average on the energy denominator to make it independent of |, splte of the weaknesses we have just discussed, there is

the running indicesd; ,a). In most existing works the pro- 5 fully coherent picture available approximating matrix el-
cedu_re consists of averaging th|_s denominator over the Fem@ment(lG) by a functional of local densities. Consequently,
sea in nuclear mattgB3,49. This mean value depends on e give up the idea of deriving analytically the density de-
the Fermi energy, which in turn depends upon the total de“pendence induced by the opera@*/(W, — hg).

sity of the system. This dependence is eventually trans- @ 70

formed into a local-density dependence when going back to D. Ansatz

finite nuclei. Together with a density-matrix expansion in the . . .
numerator, this provides the full local-density dependence of Because of the conclusions of the preceding section, we
the effective interactior33,49. However, this strategy is PosStulatethe possibility to approximate matrix eleme(is)
doubtful from a formal point of view; indeed, three types of through alocal, zero-range quantity of the form

energies should be distinguished in the energy denominator

of Eq. (16). o Etal oot o Falotal alont

The first energye,, + e, refers to the unperturbed two- (Mdaatal 2Laatsl Wa—hg| 3alol aluala)
body ket in the original matrix elemei(tl). This energy is e s a - o - -
fixed in the right-hand side of Eq16). It is indeed reason- ~Klpty, (1Pt (T2)16(r1—T3) 8(ra—ry4)
able to average it out over the Fermi sea since the matrix R L L .
elements ofG“ involved in the calculation of the energy at ~Hpo(R)JO(r1—r3)d(ra—=rg)8(ri—ry), (18

the lowest-order concern occupied states. However, such an

average is related to the Fermi energies in the studied finite——

nucleus, and thus thl andZ rather than to a local density at  ?For the definitions of the different densities, see, for instance,
the center of mass of the interacting nucleons. Besides, eveRef.[51].
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where F(K) is an unknown functional of the local scalar- tain an expression valid for alG{y, matrix elements in
isoscalarisospin and signature dependetiénsityies) asso-  signature and isospin spaces which, without writing explic-
ciated with the product staeg). = =
The DME, which we keep as a motivation for the local ~ ~

approximation embodied by E@L8), suggests a dependence and r; - 7,, takes the form

of F(K) on a power series of the relative coordinatgs

—r5 andr,—r, [49] figuring the nonlocality of the operator e L e e
Q*/(W,—hg). Thus, some corrective terms depending on LDA(R-r’p):E0 V) Fpg(R)]

second derivatives of the local densitig&(R) and on the - - - - e
econd derivatives ¢ eS(R) =V(\B)+ V(T B) A p§(R)]
kinetic densitiesr*(R) should also be considered. For sys-

itly the dependences &f andG[",, on the operators,, o,

tems breaking time-reversal invariance, the DME provides +V3(r,p) Fps(R)I+---. (20
dependences on spin densitis&(R), current densities
i*(R), and spin-current densitig€(R). The fully local ap- E. LDA for G(8.®

proximation embodied by E@18) is correct at high densities

but particularly crude at the surface in finite nuclei. The Zero- . irix on the energy shell. Using Eq8) and (20), we ob-

range approximation im;—r, is much safer sinc®/(W,  tain after some manipulations
—hg) is always surrounded by twéinteractions inG* [33].

It is responsible for the dependencepn{i;fgzg andpf’4§Z4 onR

We now turn to the local approximation of tHa(#:®)

R TR 1- Fpd(R
GE%K)(RJ,D)=|Z VI(F.B) [po(R)]=F [po(R)]

rather than o, andr,, respectively in, Eq(18). 1 HApER)-HAp&R)]

As suggested by Eq$17) and (18), the in-medium con- L 2,2 > B/3 arg
tent of the effective force depends on the isospin of the in- —V(r,pZJ:V (r,p){{[pO(R)]+ﬂp0(R)]}
teracting nucleons and should provide a dependence on both +V3(r,p{FYp§(R)]
the |soscalar and thg isovector components of th_e local part + F pB(RA p2(R) 1+ FA p&(R) I}
of the density matrix. However, phenomenological forces
used generally depend on the isoscalar density only, what- BRRRE (21)
ever be the isospin of the interacting nucleons. This has been
satisfying for nuclei around the stability line but could be This form of the effective interaction relies on general
guestionable for near drip-line nuclei. In the same spirit, themanipulations only and is still far too complicated to be used
in-medium content of the effective force depends on the sigin extensive calculations of finite nuclei. It needs to be sim-
nature of the interacting nucleons and should provide a deplified. However, one can already conclude one important
pendence on both the scalar and the vector components pbint. Equation21) shows that whatever the explicit form of
the local part of the density matrix. This would differentiate the functional is, G{4%) will depend neither on the mixed
the effective interaction for even-even and odd-even nucledensity nor on the correlated density, but on local mean-field
as well as fod=0 andJ>0 states. . densitiespg(R) and p5(R) of the two product states in-

Taking the complete dependences into account WO“'Q/olved in the matrix elemer(ttbg|t+G(B'“)|<I>3).

complicate the following theoretical and numerical develop- We shall now go through some simplifications. As stan-

ments dramatically. This is why none of the refinements Withd rd phenomenological forces such as the Gogny and the
respect to a dependence of the local scalar-isoscalar part

Skyrme forces have often been interpreted as local-densit
the density matrix will be considered here. This is consisten y P y

) Bpproximations of the Brueckner matric¢47,49, one
with the present form of the Gogny and the Skyrme forcesgp, 14 recover their usual mean-field density dependence

Corrections will be included through the phenomenologica\Nhen considering a diagonal temg€ a) in Eq. (21). For

nature_,- of these interactions. . instance, a typical Skyrme force redd$9]
Using the ansatz18), and the fact that the operator

=(p,—P,)/2 does not act oR, the matrix element defined I -

throdgh éq(lZ) becomes USkyl’méervkik ):t0(1+XOP0') 5(r)+ %t1(1+X1P0.)

X[ S(rK3+Kk'258(r)]

<§z1t1§z2t2|GfDA(§1F, 5:(;1,5'2: 1+ Tp) +t2(l+X2P(r)|((—’ -8(Nk
—V(T,P,G1,02, 71 T2) |ty Lanth) + 3 ta(1+x3P,) [ pg(R)]74(r)
= A PR Laats Looto| V(T P, 01, G, Ty 7) +iWg( a1+ o)k AS(NK, (22)

XGEpa(RI,P,01,02, 71 T)|Entilnts).  (19) . _ _
where k=(V;—V,)/2i embodies the momentum operator
Let us introduce a closure relation in the tensorial productcting on the right whilek’ embodies the same operator,
space of signature and isospin spaces betweandGp,, with a minus sign, acting on the lef.; is the spin exchange
iterate Eq.(19), and eliminate this closure relation. We ob- operator. Tensor forces are still not included in the Skyrme
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forces. On one hand, the Hartree-Fock calculations including F. Mean field

such a term have shown no improvement on spin-orbit split- . . (Bra)(B 2 C O .
tings in spin unsaturated nuclg2]. On the other hand, per- Skln or?er to reda”y r;dentlfy GfL'DIAd(|R,r,|k'k ) x\nth ad
turbative calculations have shown the importance of the ten="Y'Me orce used at the rr?e{::jn- 'e.f. evel, oneb a; tor l;)
sor component in generating two-body correlations and A N EQ-(24). Doing so, the identi |cat|orl)can. e done Dby
associated density dependeri&8,54. This is due to the truncating the power series appearingdffs? to first order
dependence of the tensor force contribution to the energy off 7 by taking

the Pauli operatoiQ®. This remark is also supported by o2 @ B

many-body calculations taking into account the mesonic de- Hpo(R)1=alps(R]%, (25)
gree of freedom which shows the strong in-medium effects ] o

generated by pions exchanids]. Thus, one would expect a wherea is a constant, and by establishing the formal corre-
density-dependent tensor term in phenomenological effectivéPondence:

interactions to be important for some phenomena. Whereas

the density dependence associated to the two-body correla- to(1+ %P )= Vo(1),
tions generated by the tensor force is thought to be included
in F, a better treatment of the tensor force in effective inter- 2t(1+x,P,) eV (1),
actions, especially as a function of isospin, deserves addi-
tional work in the future. L to(1+x,P,) = Vy(1),
The  identification  of G49(R,r,p)  with
vskyrmd R.I,K,K") requires to neglect the tensor force in the Lta(1+x3P,)=2aV,(2),
bare interaction and to perform an expansion to second order
in the range of the effective interacti@®{%%(R,r,p);° that W Va(1). (26)

is, for all powersV'(F, 5) of the bare interaction. Performing
these expansions and grouping the terms coming from the As we were not able to derivé explicitly, Eq. (25) is to

central and the spin-orbit parts, one formally obtains be understood as its phenomenological determination relying
. _ L on existing successful effective interactions. The actual value
V(1 kK" ) =Vo(D)S(r)+ V(D[ 8(r)k>+k'28(r)] of o has been a subject of debate. On one hand, general
—_ ~ arguments were in favor of=2/3 [34]. Fits to diagonal
+ V(K - 8(NK+Va(l) (o, + )k’ AS(r)Kk.  Brueckner matrix elements at the Fermi level calculated

23) from realistic forces gaver=1/6 [56] or 1/3[57] as good
values for the short-range repulsive as well as for the long-
In this equation, the coefficient (1) incorporate depen- range attractive parts of the interaction; this being true for
S several spin and isospin channels. Similar calculations pro-
vided two different values for the short- and the long-range
71- 7, originating fromV. From a general point of view, itis parts of the interaction, namely, 1 and 183,5§. On the
unfortunately not possible for a given interaction to expres®ther hand, fits of phenomenological forces on empirical
these coefficients as a function lobr through iterative rela- nuclear matter properties gave several values ranging from
tions. o=1 for previous versions of the Skyrme forf&9] to o
Here in fact, only the terms independent of the velocities=1/6 for some recent versiof$9]. This low value has been
should present a density dependenceiféﬁz)(ﬁ'ﬁ 5) inor- hecessary to get reali;ti_c_ vaIues_ fqr _both the eff_edtimass
der to recover a Skyrme type interaction. Thus, expansioff- @nd the compressibiliti.. of infinite symmetric nuclear
(23) has to be cut to zero-order andk’ for =2. A few matter. Such fits take into account the der_15|ty c_;lependence
coefficients only remain, and one obtains stemming from several physical effects as listed in Sec. Il.

dences ork originally denoted aﬁ, but also Ol’k;'l, 52 and

GUER(R,I KK~ V(1) 8(r) +Vy(1)[ 8(N)k2+K'25(1)] G. Beyond the mean field

We can now extend the density dependence of the effec-
tive interaction for calculations beyond the mean-field ap-
2 A S(FVR proximation. The hypothesis of a truncation to first order in
+Va(1)(a1t o)k’ AS(r)k F together with the previous phenomenological determina-
2 S tion of this function provide the nondiagonal term of E2y¢
FofRI-FIp3(R)] _ - P g 2t

sr). (a#p),

+Vo(1)k' - 8(r)k

+
|

VO(I) BB @B
< FIpER]-Fps(R)] [pE(R)17+[p§(R)]
Po 3 Po ar), (@27

1
(24) 5la(1+x3Py)

3The Gogny force also makes use of a zero-range densitydS the natural extension for the density-dependent part of the
dependent velocity-independent term. Skyrme force to be used P4 - - -|®S). The derived pre-
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scription is different from those used until now in the GCM 1
or the projected mean-field calculations. For projection on H(g):Z tijCiTCj+Z 2 vi(lzjl)(CiTCITCij
particle number, one can check that Eg7) reduces to a H R
dependence on a single local mean-field density since the
mean-field IocaI-densit)ag(ﬁ) is invariant under rotation in
gauge space.

1
+= > Vi(li)jkmcrcrclcmckcj . (28
36 i,j,k,I,mn

X . . v(2) V3 i i i -
Equation(27) constitutes the main result of the present™Where Vi and Vijj, are antisymmetrized matrix ele

section. It has been obtained through a sequence of reasdR€Nts- The creation and annihilation operaf’s,c;} refer

able approximations. The last ones have been performed #§ the single-particle basige;}. We consider at this stage
relation with the specific form of the Skyrme force. The pres-that two-body correlations have already been renormalized in

. (2) i
ently developed scheme is more general, and one COU@Légll)a way thaV'*’ is to be seen as the Brueckner matrix
G and that the three-body vertex approximately in-

avoid some approximations in order to generalize €4). LDA )
For instance, one could keep a finite-range densityCludes these correlations through
dependent term or at least the density dependence of the ) - - - _~@ - - = P -
velocity-dependent terms in EqR4), as suggested in Ref. ! (r1,ra,r3)=V(ry,ra,ra)[1—m(ri—rz)J[1-n(r;
[57]. One could also consider higher powersin Eq. (21) _ ;3)][1_ 77(;3_ ;1)] (29)
or in Eqg. (24). The reduction of the original isospin-

dependent densities to the isoscalar density could be avoidegnere V(3) is the actual bare three-body force amdr,

at least for exotic nuclei. The reduction of the original — 1) is some average of the two-body defect wave function

sign_ature—dependent densities to the scqlar density could Bg o, occupied statd80]. The proper treatment of these cor-
avoided for odd-even and rotating nucteliast but not the yelations together with a three-body force relies on the

least, the dependence on starting energies should also be kgfiihe-Faddeev equatiop82].

since i_t is known to play a rol¢60]. However, all these In what follows, no density dependence appeaiViR)
extensions would correspond to more general forms of thgnqv(®), unless otherwise specified. Of course, the preced-
Skyrme or the Gogny forces at the mean-field level, whichpg statement about two-body correlations implies that some
have not been considered up to now in quantitative microyensity dependences originating from two-body correlations
scopic calculations of finite nuclei. Following the strategy gre contained in the first place in both the effective two-body
behind the use of phenomenological forces, implementingnq the three-body interactions. We will return to this issue
such further complications in the interaction will have to be|ater.
motivated by clear experimental hints. We separate the GCM from the projected mean-field
method since the energy minimization is performed with re-
. spect to different variational parameters in the two cases.
H. Higher orders
The generalized Skyrme force derived from tB&% ) A. The GCM and the three-body forces
interaction on the energy shell should not be used beyond the . . . .
. . . In order to identify the density dependence accounting for
lowest order n the perturbatlve expansion of the energy’[hree-body force efff{acts we ca)I/cuIapte and minimize thg en-
::gmg\éegi;%;gft:f?ggs'ti:ameb%gigllj]l 'RSSSOOT&?&SEQ_S t%rgy for two different Hamiltonians. First, the three-body
grams correspond to nonzero order.s in the extendegjrce is taken into account but no density dependence occurs
: I the two-body one. Then, the three-body force is omitted in
Ssoelds;grggal?rg;ctlr(wr;e;npeerrturs?glcl) ?o:hv?/;[%?l]ltr;re h?rger:]akze- the Hamiltonian but a density dependence is introduced ex-
. 1€ energy st e o gy plicitly in the two-body force. In this second case, the Hamil-
nominator appearing in E§16) is modified. Within the local tonian is denoted as @
approximation, the functionaF should be changed for each - eff- . )
vertex with respect to its definition at the lowest order. This 10We obtain in the first case using the general Wick theorem
means that the use of E(R7) in the GCM is questionable [10],
when including diabatic effects. This deserves additional

work in the future. (‘l'k|H(3)|\Ifk>=BE fi i DEIH® D) (30)
IV. MULTIBODY FORCE RENORMALIZATION
- . = ke gk . (B@)
We now turn to another origin of the density dependence % fg Ta ;} tijpji

of the two-body effective interaction. Let us make the hy- 1
pothesis that the actual Hamiltonian of thebody nuclear + = E Vi(|2'l)<P(iB'a)P(k[|;'a)
system reads as 2Tk

1

*s . ;m ] vi(ﬁw)jkmpj(iﬁ’a)l)(kf'a)l)gfﬁa)
“Then, one should be careful to end up with an energy functional BJ o

invariant under time-reversal symmetry. ><<CI’o|‘I’o>’ (31)
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where
o <\Pk|H(esf)f|\I’k>E;X flgr ek .EJ tijp{f
(ﬁ'a):<q)0|ci CJ|(I)O> (32)
! (05| @5) ! VR (Ba) (Ba)
+§i§| (Vert” Diikpji PRy
denotes a matrix element of the mixed one-body density op- P
erator. The minimization of the energy with respect to the X(®p|Pg). (37

fi* gives

Developing V¥ in Eq. (37), one obtains the same
expression as that given by E&1) with Vi(ﬁﬁjkm replaced by
the matrix element iy, defining an effective three-body
force,

>

k
B 5fﬁ*

6 [(‘I’HH(S)WO

RS }‘”F’* -0 33

for all 5f';;* , Which can be recast into a set of coupled equa-
tions of motion: Uilnjkm:3f f dridroef (r) e (ra)en (rav(ry

> f

1 n maa
: 2) (B.a) (B, > =23 3 3 3 > >y 2
Zj tijp](ilg a)+§ i%| viﬂj&pj(iﬂ a)P(kllg “ —12,P,01,02,71- T2) @m(r D[ @x(r1) @j(r2)

! VR, (B.a) (Ba) (B.a) — ¢ (r)e(ra)]. (39)
5 1 D Vimanefl ol 0l (@)

Thus, the correlated energy in the stat,) for the
HamiltonianH(®) is finally reproduced term by term for all
_ omix K/ Bl @ spin/isospin indices. The key point of this derivation is the
£k ; Fa(®o|®o), B34 mixednature of the density inserted in the effective two-body
force.
for all . The equivalence is not complete since effective matrix
Omitting the three-body force, we proceed to the sameglementg38) cannot simulate all antisymmetrized matrix el-
calculation using an effective two-body force depending lin-ements of an arbitrary three-body fort#3)(r,,r,,rs), in
early on the mixed density: particular because of their non-antisymmetrized character in
(k,m) and (j,m). However, the freedom in the choice of the

B)B.a) (¢ BRY=\ () (B (r L. 2 a
Verr " (LR)=VIE() +u(n)p(rr2), 39 o pody termu(r,p,04,0,,71- 7,) can be used to make

3/(3) i
- > . . Viinjkm reproduceVii, as accurately as possible. The pos-
wherer af‘?‘ R are, respectively, t_he rela'qve and center Qfsibility of an exact equivalence has already been discussed at
mass Boslt|on vectors of the two interacting nucleons Whllethe mean-field level in connection with particular forms of
p#9(ry,r,) denotes the nonlocal mixed nucleon density, the three-body effective interaction. In practice, this has only
been done for zero-range forces. It has been shown how a
BaO(F. Fy= (B (F 5.t .Frs't’ Skyrme force depending linearly on the mean-field matter
pErLr) 2 P PACSATS) density in the =1,T=0) channel allows for the reproduc-

205, bt : . :
% tion of the HF energy obtained with a zero-range three-body
. o - (B.a) force in a spin-saturatedtime-reversal invariaft system
=i2j @i (r2,87,8,,0)¢(r1,47,8;,,)pj" [17]. Alternatively, by changing the spin-isospin dependence
of the density-dependent two-body term, Onishi and Negele
=p§f'“’(ﬂ,F2)+(s§)ﬁ'“))x(Fl,F2), (36)  Were able to reproduce the effect of the zero range three-

body force for the HF energy, single-particle spectrum and
two-body p-h matrix elements of a spirsospin saturated

where p{®® and s{¥*® are its scalar-isoscalar and vector- . !
isoscalar part§51]. The nonappearance of isovector compo-.SyStem[63]' Both versions could be easily recovered by tak-

i oL ) ing o= B in previous expressions; the local part of the den-
nents inp#*(r,,r,) is due to the fact that we restrict our ga=pginp P P

study to systems where protons and neutrons are not mixe?'.ty Po(R) being selected by the zero-range character of the

The interaction defined through E@5) depends ong,«) _orcelz_.dlr; both (;asesbhOV\Iiever{_ the equwalfznce carrt1e OIL,:t tlo be
and i 1o be used i the corresponding matr clemenf1 1 IS beakng fmeeverss summery. g
(PEIHE B9 D). Thus, one gets P g y

force having a necessary repulsive nature in t8e{, T

=0) channel led to spin instabilities in time-reversal invari-
ant systems[64—66. The exact equivalence in systems
breaking time-reversal symmetry is not achievable if one
NI does not keep any spin-density dependence in the zero-range
isospin operatorsdy,ao, 7+ 7). two-body term, as shown by E@36). However, the spin

SFor simplicity, we do not write the dependences\df\#
V@, andv on the relative momenturp, and on the spin and
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instability associated to the Skyrme interaction can be curedincep(®)(r, r,) is independent of the mixing coefficients
by restricting oneself to a density-dependent two-body terngks -

. . . . . . B
with appropriate spin-isospin dependeti6é], by keeping a Thus, the contribution from the three-body force to Eq.

finite-range three-body force, or at least by considering atizy is rocovered from the redefinition of the two-body force
tractive velocity-dependent three-body terms. The last op: nly. As demonstrated in Appendix A, the use of the corre-

tion, however, often induces a collapse in the equation ted density would aenerate redundant terms. notabl
state of symmetric nuclear matter at high den$®,67] y 9 ' y
through a nonzero rearrangement term.

while a finite range would destroy the numerical conve-
nience of the Skyrme interaction.

The reduction of the density dependence of the two-body B. Projection and three-body force
term to the scalar part of the density matrix is a stronger
limitation beyond the mean-field level than at the mean-ﬁelddr
level. Indeed, even for time-reversal invariant systems, th%
vector part of the local mixed density is nonzero to# 8

The same question as in the preceding section is ad-
essed for projection type configuration mixings. In this
ase, the VAP is performed with respect to the individual
- , wave functions defining the product state from whigh,) is

)

[20]. If one forgets about the dependence sifi) in Ed- projected out. As an application, we consider the restoration
(35), nondiagonal matrix elementgyjxm i (SzmSm) Will - ¢ angular momentuni, with projectionM, for an axially

not be considered. By keeping this dependence, one woulg,\etric Slater determinant. The projected state reads as
have to be careful about spin instabilities as discussed be-

fore. n
The above derivation is a general starting point for the | )= 2 f'aM|q)g>:|5|M|q>g>, (40)
guantitative renormalization of three-body forces. First, it a=-n

shows the mixed nature of the density required for nondiago-
nal N-body matrix elements. Second, we think that it will be whereP,,, is the angular momentum projectd] and|®§)

useful to move towards the next step which has to be thes written in terms of a fixed product state of referendg
gross renormalization akalistic three-body interactions. In- - through

deed, rather than the reproduction of a simplified analytical
three-body interaction, which is itself phenomenological, it 1
would be more worthwhile to reproduce the main properties |<Dg>=ex;<§ > zMcley
of a three-body force derived from an underlying field uu’

theory. Using Eq.(38), together with a sufficiently simple

two-body effective interaction which satisfies E§6), could Note that|/®g) implicitly depends orlM since the mini-
help to do so. In particular, the repulsive or attractive charimization procedure provides a different product state for
acter of three-body forces derived from microscopic mesoneach value of these quantum numbers.

exchange models has been characterized in €adh) Chan- The variation of the mean energy in the stile,) is

nel in nuclear matter calculation§35,36. The subtle done with respect to th& ", and reads as

combination of these contributions as a function of the den-

sity is an important part of the saturation process. It allows a (U HOW,) 1
correct reproduction of the empirical values of the density §6————— == 2
and energy per particle at the saturation point in Brueckner- (Vim[ W) 2 5w
Hartree-Fock calculation§36]. These combined contribu-
tions are also important to describe asymmetric nuclear mat-

|D). (41)

<‘I’|M|CﬂcufH(3’|‘l’|M>
(Vi)

_ (¥im |CICu' [P M)W |H(3)|‘I’|M>

ter correctly as a function of isospin. Consequently, the (W] ¥ )2
different channels of the three-body force should be treated "
carefully in mean-field-type calculations using phenomeno- X6Z,,=0 (42)

logical effective forces. In particular, one has to reconcile the

crucial binding effect of three-body forces in light nuclei for all 5ZLMU,. The equations of motion are

[37] with its saturation character at normal density of nuclear

matter(35,36. <‘I’|M|CECu'H(3)|‘I'|M>:ng<W|M|CECu'|‘I’|M> (43)
Varying the energy given by E@37) with respect tdf;* ,

the same equations of motion as with the Hamiltorti#?  for all couples (1,u’). These equations are valid only if no

are obtained. The choice of the mixed density inrearrangement term appears. This is the case With.

VEAe)(r R) leads to a zero rearrangement term: Equation(43) expanded in terms of mixed densities is given
in Appendix B 1.
D= £k As for the GCM, we do the calculation using the Hamil-
NogL P tonianH)#9 _ In this case, a nonzero rearrangement term

B)Bia), > 3 .. appears in the equations of motion. The calculation is per-
NettP(r,R) apB)(ry,ry) formed in Appendix B 2. The comparison between the con-

B @
x{®g] B (F. F ko |®G)! tributions arising from the three-body force and those com-
dap (rq,ry) of . .
A ing from the redefinition of the two-body force and the
(WP )=0, (39 rearrangement term is also proposed. This calculation shows
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that the equivalence between the two is once again obtainegpgﬁya)(ﬁ)]rr as approximately renormalizing multibody
thanks to the choice of the mixed density in the effectiveforce effects, the crucial point being again the use of the

interaction. mixed density.
Finally, let us mention that identical calculations mixing
C. Generalization to multibody forces nonorthogonal HFB quasiparticle states instead of Slater de-

peen shown in the context of configuration mixing calcu_la-tiensor are kept in the energy.
tions. However, nowadays, most of the phenomenologica

interactions depend on the density through a nonlinear func-
tion p” with 0<o=<1 (e.g., 1/6 for the Skyrme force SLy4
[19]). Even if such a dependence certainly accounts for sev- Two different cases occur when a mixing of individual
eral physical effects, we can interpret it as coming from theexcitations is considered to include small amplitude correla-
renormalization of multibody force effects. In order to do tions and diabatic effects in the trial state.

that, p” is written in terms of a power series around the First, each particle-hole statgb{*) is calculated self-

D. Quasiparticle-type configuration mixing

nuclear saturation densigysa;, consistently through the minimization of its energy. In this
B N case, thg®?) are fixed nonorthogonal product wave func-
p":Pgatz afl") P_psat) , (44) t|_ons .and.th.e var!atlon is performed with respecti“tb. The_
n Psat situation is identical to the GCM and the same conclusions

as regard the renormalization of multibody force effects

K k hold.
~pZ, E b(kf’)(i) (45) Second, particle-hole states are calculated perturbatively
= Psat with respect to each ground-state Slater determiftbg. In

this case the individual excitation®{*) referring to a given

The domain of validity of expansio@4) is ]0,2ps,{- We  vacuum are orthogonal, and the above calculations do not
rearrange it as a function of the successive integer powers @fold since the generalized Wick theorem cannot be used. For
p. Doing so, each coefficient f is in principle divergent such a configuration mixing, and whatever the variational
as no expansion exists fpf  around 0 wherr € N. Thus, we  parameters are, we were not able to obtain any formal
approximate Eq(44) by cutting the sum at some ordaer  equivalence between a particular two-body density-
=K. In this way, we obtain a good approximatfasf p” on  dependent interaction and a three-body one.
the domain €(K),psa¢] and can reorder the finite number of
term as a function Obk. This gives the formal expansion v THE SKYRME EORCE BEYOND THE MEAN FEIELD
(45).

In the following, we use such an expansion to interpret Given the results obtained in the previous sections, we
the full density dependencﬁ” as Coming from mu|t|body propose a Simple extension of the Skyrme force for configu-
forces in the nuclear Hamiltoniad () the linear term of ration mixing calculations such as the GCM and the pro-
Eq. (45) being related to the three-body force, the squaredected mean-field method:
term to the four-body force, etc. Starting from such an hy- .
pothesis, one can show, using the same technique as in méﬁlg;,)ng,r,k,k’)
previous sections for the three-body force, that the two-body

L1 e

force, =t0(1+x0P‘,)5(r)+§t1(1+x1P,,)(6(r)k2+k’25(r))
VA R) o oo L

Fa(1HXP,)K - SR+ 5 Xts(1+X5P,)

> - e P(B’a)(Fl,Fz) “
=V(2)(r)+v(f)Pé'atg41 b\ | —————| ., (49)

BRI+ [pa(R)T” . 1
sat X[Po( ] Z[Po( ] 6(r)+g(1—x)t3(1+X3Pg)
allows to formally reproduce the energy of a correlated state . )
for a Hamiltonian having two, three, four, etc-body X[ pPI(R)I7S(r) +iWq(op+ o)k ANS(NK.  (47)
forces. The non-antisymmetrized matrix elemenffs® ).
of the corresponding effectivepg-body” interaction are de- In EqQ. (47), X is an adjustable parameter expressing our

fined from the term withk=p—2 in Eq. (46) in the same lack of knowledge about the relative weight of the two renor-
spirit and with the same limitations as,jxm in Sec. IVA.  malized effects. The two types of densities used coincide
Finally, this calculation motivates a term proportional to with the standard local mean-field density when going back
to a diagonaN-body matrix element. As they are considered

with the same exponent, v . reduces to the usual
be(K)—0 for K— oo, Skyrme force when going back to the mean-field level. In
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other words, the proposed Skyrme interaction is the simplestulations is given in Ref20] and is to be corrected in agree-
theoretically motivated extension for the calculation of non-ment with the newly derived density dependence of the ef-
diagonalN-body matrix elements. Note that, since two-body fective interaction.
correlations are taken into account in Eg9), the term pro- The second equality in Eq48) is a matter of definition
portional to (1—X) in Eq. (47) should depend both on the only since the right-hand sidéhs) cannot be refactorized
mixed and the mean-field densities. However, ladder diainto the left-hand side, that is, as the mean value of a two-
grams in connection with the three-body interaction do nobody operator in the stateV,). To make the meaningful
play a significant role at and below the saturation densityeffective interaction appear explicitly, the correlated energy
[36]. This is due to the small probability at low density for had to be fully expanded in terms of the mixed product
two nucleons to get very close to each other and feel thstates. As discussed in R¢R9], this expresses the fact that
influence of the third one at the same time. Not taking thes¢he energy obtained from an effective force is more to be
correlations into account should not be a strong limitation forseen as a functional diocal) densities than as the mean
finite nuclei. Concerning the term proportionalXpits pos-  value of a two-body Hamiltonian in a definite state. This is,
sible generalizations have already been discussed in Seit. fact, already true at the mean-field level. Note, however,
I G. that the functional as considered here does not aim at renor-
Given the different origins of the two density-dependentmalizing all correlations since it is defined at some precise
terms, taking identical analytical expressions for both is aorder of a perturbative expansion. It keeps, at least formally,
restrictive and nonmotivated choice. In particular, it woulda link with the original bare force.
be reasonable to have different exponents. The predominance In order to obtain the energy as given by H48), we
of three-body over higher multibody forces suggests an exhave interpreted the Skyrme force as coming from an expan-
ponent close to one for the associated term whereas a smallgion in the range of the effective interaction. For Neddi,
exponent would be appropriate to the resummation of twothis force should rather be interpreted as a result of density
body correlations. Similarly, the spin dependence (1matrix expansions in the energy denspfy(ﬁ,a)(ﬁj) ob-
+X3P,) should be different in the two terms. However, suchtained using a finite rangg{% %) interaction as given by Eq.
a differentiation asks for a redefinition of the Skyrme inter-21 | this context, the Skyrme force would result from an
action at the mean-field level. Such a work is underé8].  additional average over the occupied states, and its param-
The essential factor to retain is that going beyond the mearsters would contain a combination of information about both
field approximation distinguishes the two origins of the den-the initial effective two-body interactiorG#® and two
sity dependence by making two kinds of density appear, anftermi seas. Within this interpretation, the extended Skyrme
opens a new degree of freedom in the interaction. force would provide the energy functional with coefficients
themselves depending on local mixed density matrices.

A. Extended Skyrme functional
. ) . VI. APPLICATION: SYMMETRY RESTORATION
Using the generalized Skyrme for¢#7), the approximate

ground-state energi8) takes the form: It is worth illustrating the previous result in the particular
case of symmetry restoration. More specifically, we consider

emi_ (Wo[H| Vo) the restoration of angular momentum from an axially sym-
o = (Vo |WPo) metric product state and extrapolate the use of the general-

ized Skyrme force to spim#0.” The projected energy on
Eﬁ f%*.|:2<q)g|H(B,a)[pg(ﬁ)'ptol(ﬁ)'pgﬁ,a)(ﬁ)]|®g> spinl and spin projectiotM =0 for an even-even nucleus is

given by
S 10 19(0f|0g) :
@8 2 Ot oG mdR()| PE)
. . Ely0=" . (49
=> fg*f‘;f dRH B9(R), (48) 10 é oo o
ap i fa <®0|R(a)|q)0>
where H#9)(R) is a functional of local densities only. It Where the coefficients of the mixing are
includes the local scalar-isoscalar mean field and mixed den-
sities originating from the generalized Skyrme force, and o 2l+1 I
also the local mixed densities as coming from the nondiago- @ 2n sin(ma/n)dog(maln), (50)

nal contractions in Eq(48). Time-odd components of the

force are always switched on in the context of mixed vacua:

It makes nonzero time-odd local densities emerge in the en-"Thijs extrapolation concerns not only the fact that additional local
ergy functional such as the spin density, the current densityensities should be considered fot 0 as discussed in Sec. Il B,

or the vector part of the kinetic energy density. The explicitbut also the fact that the underlying perturbative expansion has been
form of the Skyrme functional for configuration mixing cal- written for the ground-state onfa9].
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with d},, the Wigner function for the quantum numbers coexistence in nuclei. As a consequence, it appeared impor-
(I,M,K=0) [68]. The rotation operator for an angtea/n tant to revisit this question. Instead of letting a quantitative
around they axis orthogonal to the symmetry axis is agreement with experimental data decide which density
should be used in this context, we have tried to come back to
the origins of the density dependence of effective two-body
R(a)=e'mey/n, (51) forces.
First we have dealt with the Brueckner ladder summation
which accounts for two-body correlations induced by ke

In Eq. (49), vgok";)rmedepends on the mean-field densitiesinteraction in the presence of other nucleons. It is known to

pg(ﬁ) and pg(ﬁ) of the product stat¢d>8) and the rotated Pring about a density .dependencg in the eﬁectivg two-body
one |®%)=R(a)|®%) as well as their mixed density force used together with a mean-field wave function. Devel-

(0)(B). For the derived o be reliable f oping an extended Brueckner-Goldstone scheme, we derived
po “'(R). For the derived prescription to be reliable for sym- , affective force accounting for these correlations within the
metry restoration, two properties have to be satisfied

L ORSTHES i ) framework of mixed nonorthogonal Slater determinants.
(_1) As for a bare Hamlltonlan_lnvarlant under rotation, the Discussing the foundations of a local approximation for
projected energy49) has to be independent of the orienta- ¢he Bryeckner matrix, we have explained why such a local
tion axis in the laboratory franfe. expression has not been derived explicitly. As the imperfec-

(2) The correlated energi49) has to be reeﬂ. _ _ tions and unnecessary complications of the formal derivation

In the present context, the first property is immediatelycan he smoothed out through the use of phenomenological
satisfied. Indeed, the commutation of the proje®ps with  forces fitted to the data, we have taken the validity of such a
the bare Hamiltonian was done in the expression of the adocal density approximation as an ansatz. We have deduced
tual ground-state energy before any resummation and truncghe corresponding functional of local mean-field densities by
tion took place in the perturbative expans[@9] and before  making it match the standard Skyrme or the Gogny density-
the multibody force renormalization was performed. This isdependent term at the mean-field level.
why the rotation matrixR(«) only appears on the rhs of  Second, we have analyzed the density dependence stem-
v me in Eq. (49). Thus, (®JHCR(a)|®J) only de-  ming from the possible renormalization of multibody forces
pends on the relative angle between the two involved produdh the nuclear Hamiltonian. We have shown, in the context of
states. The projected energy is independent of the choice ebnfiguration mixing calculations, the formal equivalence
the axis with respect to which angles are measured in thexisting between a three-body force and a two-body force
laboratory frame. The second property is demonstrated ihaving a linear dependence on the mixed density. This result
Appendix D. holds for the equations of motion obtained from the minimi-

The prescription derived from the extended perturbatiorzation of the energy, whatever the variational parameters are.
theory satisfies the minimal mathematical properties necesFhe role of the rearrangement terms has been emphasized.
sary to be used for symmetry restoration. Then, showing that a density dependence of the fofrwith
a noninteger value ofr, as used in the Skyrme and the
Gogny phenomenological forces, can originate from the
renormalization of multibody force effects, we have general-
ized the result obtained for a three-body force.

In this paper, we have analyzed the density dependence of Finally, two kinds of density dependence ought to be used
phenomenological effective two-body forces for calculationsdepending on whether they deal with the renormalization of
beyond the mean-field approximation. Up to now, two pre-two-body correlations induced by the strong-repulsive core
scriptions have been used in the GCM and the projectednd the tensor part of the bare nucleon-nucleon interaction,
mean-field method without being supported by strong theoer with the renormalization of multibody forces effects. One
retical arguments. They correspond to the lonadeddensity common feature of these two prescriptions is their depen-
[4,5] and the localcorrelated density [25]. Similar results dence on theN-body matrix element in which they are in-
have been obtained with both in calculations dealing withserted when expressing the approximate energy in terms of
projection on particle numbefg5]. the mixed product states. They both coincide with the mean-

However, it is not clear whether other configuration mix- field matter density when returning to the mean-field ap-
ing calculations such as projection on angular momentum foproximation. This shows how going beyond the mean field
high spin states, projection on parity, or GCM calculationsmay open degrees of freedom in the effective force, which
for various collective coordinates involving extended nuclearare not fixed at the mean-field level.
shapes would give comparable results for both prescriptions. Using these results, we have proposed a theoretically
This remark is also relevant for physical properties involvinggrounded extension of the Skyrme force for configuration
exotic densities such as halos or neutron skins or for shapaixing calculations. Explaining in detail all the approxima-

tions performed on the way to this definition, we have dis-
cussed its possible generalizations. GCM and projected
8t is not necessary foH(®“=t+v ) to be invariant under mMean-field calculations testing the presently proposed as well
rotation. as existing prescriptions are now underway. Corresponding
%It is not necessary foH(® to be Hermitian. results are the aim of a forthcoming paper.

VIl. CONCLUSIONS

054308-13



T. DUGUET AND P. BONCHE PHYSICAL REVIEW (57, 054308 (2003

ACKNOWLEDGMENTS 1
i 2 v(ls)k (pUi) p(B) o) (B
One of the author$T.D.) is indebted to U. Reinosa for 6 ijkTmn MM PUu
fruitful discussions and to N. J. Hammond for the proofread-

ing of the paper. —pfﬁ a)P,(.B ) (B’Q)P%ﬁa)—l)ﬁﬁn@ﬁ’(ﬁ ) (B ) (B )

APPENDIX A: GCM AND DEPENDENCE ON p" — U5 plf) p(Br plBc)y | DB D)

In order to reproduce the effect of a three-body force, we
incorporate the nonlocal correlated density

N N _ emix IM% ¢IM (,8 a) B
PUMILT) =2 A M P (A EX T P (@E]E) BD
into the two-body force defined by E@35) and get the ef-
fective interaction for all (u,u’).
VTR =VEAM) +u(r)p ryrp).  (A2)
Using this density dependence, one gets a nonzero rear- 2. Rearrangement term
rangement term by varying the correlated energy
(W [ HSW )1V, W) with respect tof* . This is differ- For the density-dependent Hamiltonian()# ) Eq.
ent from the result obtained with the mixed density. The(43) must be modified in order to include the rearrangement
variation leads to the following equations of motion: term originating from the variation of the two-body interac-
L tion with respect to the individual wave functions. The equa-
a (23 (23 i f i
E f 2 t”p(ﬁ )+§ % vl(ﬁ&pj(lﬁ )p&ﬁ ) tions of motion become
S i) (B wg K| oo o (261P5) BE fp* fa' | (@flclien HEHP 2| 0g)
6 T mn Uilnjkm jl Pmn (‘I’ |\I’k> )
&V(3)(.3 @) r r R) 9 (Ba)(r r+.r
S (pq)< Bl °><¢B|q)a> +2<q)ﬁ| i ( p”(ry, 2)|<I> ay
P " (W) 0 (r1.ro) &Zuu/
=ERM2 1 @f|wg). (A3) =M cley [P (B2)

In order to reproduce Eq34), the term between paren-
theses in Eq(A3) should be equal tp%fﬁa)_ This means that The .calculation of the rearrangement term requires the
p¥+ap" 19t} should be equal tp#) for all (B,a). evaluation of
However, this is not true in general. Therefore, the use of the
correlated density in the effective two-body force generates
redundant terms. The above consideration suggests that iop(#)(r, r2) 1| (®B|cley p(ry,r)|®§)
should be avoided in configuration mixing calculations.

| @
azuu’ 2 <q)g|(b0>
APPENDIX B: PROJECTION AND THREE-BODY FORCE ~ <®€|Cﬂcuf|®8><¢glﬁ(ﬂ,F2)|<I>8>
1. Equation of motion <<D€|d>g>2
The equations of motion defined by E@3) take the 1
eXp“C't form :_EZ (Pr(r21§£lséit,)(PJ(rlié’ZaSZ!t)
i
IM% ¢IM (B.a) (Ba)_ (Ba) (B,a) @ @
%f fa 2 tij(pyry P Piu) X pBie) pp.e) (B3)
1
+ = V2 (p(ﬁ a)p(/s a)p(ﬁ @) o _
2,57, Nk uru B We sum the contribution from the density-dependent part

of V¥ in the first term of Eq.(B2) together with the

(B,a) (B,@) . o
('B a) ('B a)_P (B a) (ﬁ a)) rearrangement term, and obtain the total contribution:

“Pur
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1 . > >
2 % f:BM*fLMi%I <<Pi<P||U(r1_rz)P(ﬁ’a)(rlvrz)l(Pk(Pj><q)g|CECu’CiTCITCkCi|(Dg>

&p(B,a)(Fl,Fz) Tt
(92—'| @Dk@j><q)g|ci C Cij|‘I’3>

IM IM g g
+ FR M > (iilv(ri—ry)
B, ikl

uu’

> e Vitnjkm( P P3P ol plf ) — pU5i) p(re) plre) p(Br)

! ’
Ba i,i.krn,m utu B u'l

Ol N

1
=il P N @G — 5 X M X viapmelin ol ol i (@] 05

B i,j,kI,n,m

1
IM IM Ne3 ,a ,a ,a Ne3 ,a ,a ,a
= 2 M X vinm(py el el — ol p(P ol O
B,a i,j,k,I,n,m

(B.a) Ja Ja Ja (B,a) Ja Ja Ja a
—pun ool o = ol (e o ol N BB D), (B4)

where v takes the formo(fy—ry.p ;1 ;2 ;»_1_;»_2) and which_clearly _shows how the project(i)on pic_ks up the energy
where its matrix elements;,j, are defined through Eq. asst_)C|ated Wlth_the component [b) having exactlyN
(39). particles. Then! if one makeHe_ff depend ony, the calcu-
The comparison with EqB1) shows that the same formal lated energy will not be factonzab[e again as a mean value
contributions to the equations of motion as the one comin W[Her| W)/ (W[ Wy) in t_he_ projected state havm_g the
from a three-body force are obtained as S0ON @Sy iS ood quantum numbeN. This is correct but not pertinent
able to reproducﬂ?-km. The rearrangement term is essen-he-rg' n orde,r to understand why, one has to_go bac|§ to the
tial as it gives a terrJn with a combination of indices, which origin of Heyfs effectiveness characterized by its density de-

X .y endence.
]E?;I’(I:I;Oct) rﬁs obtained through the redefinition of the two-bod First, one has to be aware that the rational of any micro-

scopic calculationvariational or perturbativeis always to
approximate the actual eigenstates and eigenenergies of the
APPENDIX C: PROJECTION AND DEPENDENCE ON p¥ system, the leading quantity being the energy. Thus, coming
In Ref. [23], Valor and co-workers gave an argument in back to our example, the u_Itimate goal _is not to obta_in the
favor of the correlated density. They argued that once th&'€@" value of some effective Hamlltonle_m in the _prOJected
correlated energy is developed in terms of product states agate but to reproduce as closely as possible the eigenenergy,
given by Eq.(3), the introduction of a dependence of the
effective HamiltoniarH .¢; on the mixing anglesd, 8), as it (B|H|B)
is the case when using the mixed density for instance, pre- ICRERES
vents from extracting the mean energy of the correlated state
with good quantum numbers. It seems to be in favop®f,  whereH is the actual Hamiltonian of the system ajfdl)

(C3

which is independent of the mixing angles. the unknown ground-state wave function.
Let us exemplify the situation through the projection of an  Within the projected mean-field method, this is done
HFB wave function on good particle numbiérj: through an approximation as given by EG2) whereH ¢ is

1 effective in order to remove the repulsive core of the bare

_B 0 5 _ i i (N—N nucleon-nucleon interaction and/or to renormalize multibod

V1) =Pul®o), PN_EJ’ﬁdae e force effect. It has been shown in this context hély g
should depend om and why the corresponding energf]"

where N, N, and « are the particle number operator, the could not be factorized intQW |Het W)/ (W | ¥ ).

actual number of particles, and the mixing angle in gauge For instance, considering only the renormalization of

space, respectively. For simplicity, a single kind of nucleonsnultibody force effects, the argument given in RE23]

is considered here. omits that one wants to reproduce the projected energy
First, the energy of the correlated stidey) is developed (‘I’O|H(_3)|‘I'p>/<‘lf0|\1f0> including multibody forces, itself
in terms of the mixed product statg®2) = e “N|d?), approximating(®o|H®)|0,)/(0,|0,). Using an effective

two-bodyHamiltonianH$) to do so, it is necessary to make

w AN a0 a0 this latter depend oa. Then, the impossibility to factorize
fﬁ dae (Do|Herie' M| Do) the energy(C2) does not contradict the fact that one approxi-
5&”: i , (C2 mates properly the projected energy féf®) and that|¥ )
f” daefiaN<(D8|eiaN|q)8> remains the corresponding approximate state of the system
— from which other observables can be evaluated.
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APPENDIX D: V&) . FOR SYMMETRY RESTORATION which, thanks to Eqs(D4) and(D6), can be recast as

We have to check whether the projected ground-state en- Olots o™ - 0
ergy (49) is real. Thanks to the symmetric integration aroundRT(y)p(ﬁ,a)(F): (®[R'(B)po R()r JR()| D) (=)
0 on the variablex in Eq. (49), it is sufficient to prove that 0 <¢)8|RT(,3)R(Q)|<1>8>

0 14(0, O\1% _ /A0 (0, —a)pr _ N0 A -
[(DIHOR(a)| o) ]* =(Po|HO™ “R(—a)|Dg)  (DD) {(DYRT(BIR()po(NRT(7)R(a)| DY)
is valid for the mixed HamiltoniarH(®®) specified to the (PIRY(BR(YR'(y)R(a)| D7)
projection on angular momentum. The same property is
straightforward for the overlap®|R(a)|DJ). R(—y)=p~ " N(IR(— ). (D8)

Let us first look at the different densities under rotation.
We introduce the unitary<33 matrix R(«) which rotates an We also need to calculate the complex conjugate of the
eigenvector of the position operator, local scalar-isoscalar part of the mixed density:

R(e)|r)=|R(a)r), (D2) - (BYRT(@)po(NR(B)| DY ;
o)1 = =GP0,

or a vector operator, such as the vector position operator:

R (a)rR(a@)=R(a)r. (D3)

(PR (a)R(B)| DY)
(D9)

The local scalar-isoscalar part of the mixed density speci®S well as the structure of the effective Hamiltonian deduced

fied to the projection is from Eq. (47),
e X - - -
o) S PR BRI WO Z R+ HEpE RN+ (LX) H[pP (R,
(POIRT(B)R(a)|P) (D10)

This quantity is a matrix element between tWebody  \vhereH is the mean-fieldSkyrme Hamiltonian. Finally, we
states where is an external variable. As an operator function can now prove identityD1),

of the vector position operatar, its behavior under rotation

is, thanks to Eq(D3), [(DYHOR(a)|Dg)]*
Ri(@)pl V(OR(@)=pf [R(@)r]. (09 =<<1>8|R*<a)[g{HupS(fe))*HH[<p3<r*e>>*]}
As an operator function of the positiorﬁs of the nucle-
ons, the transformation under rotation of the local scalar- +(1—X)H[(pg°'“)(li))*]]
isoscalar part of the one-body density operator can be written
as

X R .
N =<<I>8|R*<a)[5<H[p8<R>]+H[p3<R)J)
RT<a)ﬁo<F>R<a>=i§l Sr—R(a)r]

- X >
N I . +(1—X>H[p5“'°’<R)]]|<I>8>=<<1>8||5<H[pa“<R>]
=2, AR =ri]=p R ()],

(D6) +HLpg(R)]) + (1= X)H[p§~ P (R)IR(— o) | ®g)
Following Eq.(D5), one can write =(PJHO~IR(—a)| DY), (D11
R(9)pd () =R (y)pF ) NR(YR(y) where we have applied Eqd9) and(D8) to the three den-
(B.a) - sities involved. The extension to triaxially deformed product
=pg “[R(VIIR(= ), (D7) states poses no difficulty.
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