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Density dependence of two-body interactions for beyond–mean-field calculations
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~Received 18 October 2002; revised manuscript received 3 March 2003; published 21 May 2003!

This paper deals with the theoretical foundation of effective two-body forces for the generator coordinate
method and the projected mean-field method. The first aim of this paper is to reduce the in-medium content of
a generalizedG matrix, removing the hard-core problem in this extended context, into various local densities.
Then, we consider the possible renormalization of multibody forces through a density-dependent two-body
interaction in the context of configuration mixing calculations. A density dependence of the formrs, as used
in Skyrme and Gogny forces, is successfully interpreted as doing so when the mixed density is used. Finally,
we propose a simple extension of the Skyrme force dedicated to the calculation of matrix elements between
nonorthogonal product states, which are needed to evaluate the correlated energy.
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I. INTRODUCTION

Mean-field approximations are a first step towards the
scription of the ground state and low-lying excited states
microscopic nuclear structure calculations. They take i
account the physical content of the one-body density ma
only. Consequently, data not related to one-body opera
may not be satisfactorily reproduced in this context. Me
field approximations make use of a product wave function
approximate the eigenstates of the systems in the variati
problem. It is a Slater determinant in the Hartree-Fock~HF!
theory @1# or a quasiparticle~qp! vacuum in the Hartree
Fock-Bogolyubov~HFB! theory @2#, which includes static
pairing correlations.

In cases where the agreement with the data is not s
factory, one has to go beyond this approximation to inclu
important missing correlations. Another reason to perfo
more elaborate calculations is the necessary restoratio
symmetries possibly broken by mean-field solutions. Wh
the symmetry breaking is weak, including appropriate cor
lations allows for a significant improvement of the bindin
energy in addition to obtain a wave function with good qua
tum numbers.

Some variational methods beyond the mean field m
use ofN-body wave functions of the form

uCk&5(
a

f a
k uF0

a&, ~1!

where $uF0
a&% constitutes a set of product states. This d

crete superposition is sometimes an approximation for a m
ing originally written in terms of a continuous coordinatea.
This is the case in the generator coordinate method~GCM!
and for some symmetry restorations. Once such a trial w
function is given, its mean energy

E k
mix[

^CkuHuCk&

^CkuCk&
~2!
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(
a,b

f b
k* f a

k ^F0
buHuF0

a&

(
a,b

f b
k* f a

k ^F0
buF0

a&

~3!

can be minimized with respect to variational parameters. T
mean-field approximation is recovered from Eqs.~1!–~3! if
only one coefficient is nonzero; its self-consistent vers
corresponds to the minimization of the energy with respec
the individual wave functions. Within this general fram
work, let us explicit some methods mixing low-energy co
figurations.

The GCM @3–5# deals with large-amplitude collectiv
motions in nuclei and allows the evaluation of ground-st
correlations, low-lying collective spectra, and transition m
trix elements associated with different vibrational modes
pairing vibrations. Within this method, the mixed states, ge
erally determined through constrained self-consistent ca
lations, are fixed nonorthogonal mean-field statesuF0

a&. The
energy is varied with respect tof b

k* .
The projected mean-field method@6–9# is another kind of

mixing. It is used to restore symmetries broken at the me
field level such as particle number and translational or ro
tional invariance. The degeneracy of the symmetry break
mean-field solutionsuF0

a& is used to construct eigenstates
the infinitesimal generator of the associated symmetry gro
For Abelian groups, such a requirement fixes the coefficie
of the mixing (f a

k ) @1# and the variation after projection
~VAP! is performed with respect to the individual wave fun
tions from which the nonorthogonal product statesuF0

a& are
built.

Finally, an improvement of the ground-state as well as
low-lying state properties can be achieved by going beyo
the independent quasiparticle picture through a mixing
quasiparticle excitations. This corresponds to the treatm
of small-amplitude correlations. The set of product state
composed of zero, two, four, etc., quasiparticle statesuF i

a&
built on top of the mean-field stateuF0

a& approximating the
ground-state wave function. This gives a set of fixed, ort
normal product functions. Alternatively, each of these qua
particle states can be calculated self-consistently through

n,
s:
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minimization of the corresponding mean-field energy. In t
case, the mixed quasiparticle statesuF i

a& are fixed nonor-
thogonal product wave functions with identical quantu
numbers. The variation is performed with respect tof i

k* .
The former cases have been distinguished not only

their different physical content but also because one ha
practice to determine whether the mixed product functio
are orthogonal or not and what the variational parame
are. Indeed, the evaluation of the energy in the correla
stateuCk& requires the calculation of matrix elements of t
form ^F0

buHuF0
a&. The evaluation of two-, three-, etc., bod

operators is feasible between nonorthogonal product sta
thanks to the generalized Wick theorem@10#. For orthogonal
states, one has to express both of them with respect
single vacuum of reference before using the standard W
theorem @11#. As for the variation, a double variationa
method with respect tof i

k* and the single-particle wav
functions defining the mixed states could be performed
principle; at least when the coefficients of the mixing are
completely determined by geometrical arguments. Howe
the resolution of this problem is rather complicated and of
contains a high degree of redundancy@1#. Finally, the above
cases can be mixed through a more general ansatz fo
correlated functionuCk& in order to study the coupling be
tween different physical effects~coupling of collective and
single-particle degrees of freedom@12,13#, GCM in symme-
try restored collective spaces@14–16#!.

However, a formal problem arises when considering
calculation of the correlated energy in connection with eff
tive density-dependent HamiltoniansH@r#. This is the case
for nuclear structure calculations with phenomenological
teractions@17,18#.

At the mean-field level, no ambiguity exists since t
evaluation of Eq.~3! requires the calculation of a single d
agonal matrix element̂F0

auH@r#uF0
a&, and the one-body

density used is naturally taken as the corresponding m
field density. Precisely, it is taken as the local scalar-isosc
part of the one-body density matrix@17–19#

r0
a~RW !5

^F0
aur̂0~RW !uF0

a&

^F0
auF0

a&
, ~4!

where the local scalar-isoscalar part of the one-body den
operator is defined as

r̂0~rW!5 (
I,J,zz ,zz8 ,sz ,t

wI* ~rW,zz8 ,sz,t!wJ~rW,zz,sz,t!cIz
z8szt

†
cJzzszt

. ~5!

The individual wave functionsw I 5Np(rW,zz ,sz ,t) have
good parityp, z-signaturezz , spin projection on thez axis
sz , and isospin projectiont; N being the principal quantum
number.1 They constitute a basis of the single-particle Hilb
space.

1Upper cases will denote, throughout the paper, all quantum n
bersexceptfor signature, spin, and isospin; while lower cases w
denote all quantum numbersincluding signature, spin, and isospin
05430
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When going beyond the mean-field approximati
through the use of the trial stateuCk&, there is no natural
choice for the local density to insert into nondiagonal mat
elementŝ F0

buH@r#uF0
a&. Two prescriptions have been use

until now in such calculations.
~1! The local scalar-isoscalar part of themixeddensity,

r0
(b,a)~RW !5

^F0
bur̂0~RW !uF0

a&

^F0
buF0

a&
, ~6!

which has to be used in the corresponding ker
^F0

buHuF0
a& in Eq. ~3!. This choice has been made in th

GCM with or without projection on particle number and a
gular momentum@14–16,20–22#. Note that the diagona
mixed density is nothing but a mean-field densi
r0

(a,a)(RW )5r0
a(RW ). So far, this choice has been motivated

the equivalence existing at the mean-field level betwee
three-body zero-range force and a linearly density-depen
two-body interaction@17# for time-reversal invariant sys
tems. Considering this argument and the fact that the ke
^F0

buV(3)uF0
a& for a three-body force can be expressed

terms of the mixed density matrix only, it was chosen to u
the mixed local density in the two-body force@20,21,23#.
However, to our knowledge, the above mentioned equi
lence has not been shown explicitly for a general configu
tion mixing. The extension to a nonlinear density depe
dence as used in the Skyrme and the Gogny interactions
not been theoretically justified as well.

~2! The local scalar-isoscalar part of thecorrelatedden-
sity,

r0
Ck~RW !5

^Ckur̂0~RW !uCk&

^CkuCk&
, ~7!

which does not depend on (b,a) and is to be used in al
kernels in Eq.~3!. This choice has been made in approxima
and exact variation after particle number projection calcu
tions @23–25#. Similar results to those found with the mixe
density were obtained. The choice of the correlated den
in the evaluation of the correlated energy seems as rea
able as the use of the mean-field density in the calculatio
the mean-field energy. We discussa priori stronger argumen
in favor of the correlated density@23# in Appendix C.

One could add the possibility to use the local mean-fi
density, as defined by Eq.~4!, in projected mean-field calcu
lations. Indeed, it is possible in this case to express the
related energy in terms of the density matrix and the pair
tensor of the single product stateuF0

0& from which uCk& is
projected out@9#. This suggests the use of the correspond
mean-field density in the Hamiltonian in order to keep t
energy as a functional of these variables only. No quant
tive calculation has been performed until now using this p
scription. It is worth noting that this argument does not ho
in the general case. Indeed, the energy as given by Eq~3!
cannota priori be written in terms of the density matrix an
pairing tensor of a single mean field.

Given the lack of theoretical support for the common
used prescriptions, the aim of the present work is to deve

-
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DENSITY DEPENDENCE OF TWO-BODY INTERACTIONS . . . PHYSICAL REVIEW C 67, 054308 ~2003!
theoretical arguments in favor of a particular density dep
dence within the general framework of configuration mixi
calculations. In order to do that, one has to identify physi
reasons for the effective two-body force to depend on so
density. We now give a nonexhaustive review of the poss
origins.

II. DENSITY-DEPENDENCE ORIGINS OF TWO-BODY
INTERACTIONS

One can roughly identify three cases where effective tw
body forces should have a density dependence@26–28#.

~i! The effective interaction includes some specific cor
lations induced by the bare nucleon-nucleon~NN! interaction
through explicit summation of diagrams in a perturbat
expansion. This is the case for two-body correlations ass
ated with the repulsive core and the tensor component of
NN interaction which are taken care of, in presence of
other nucleons, through Brueckner ladder summat
@29,30#. In that sense, phenomenological forces have b
characterized as BruecknerG matrices in the local density
approximation~LDA ! @31,32# or after a density matrix ex
pansion~DME! @33#.

There are other correlations not considered explicitly
first order in theG matrix, such as three-body, four-body, e
short-range correlations. The corresponding contribution
the binding energy can be phenomenologically includ
through a density dependence of the effective force@26#.

Long-range correlations can be treated explicitly throu
configuration mixings, such as those considered in this w
If this is the case, the effective interaction must not ren
malize them.

~ii ! The phenomenological effective interaction omits e
plicitly some operators that are known to be important
realistic NN interactions and known to bring about a no
trivial density dependence in the binding energy. This is
case for the tensor force which is generally omitted in p
nomenological interactions such as the Skyrme@17,19# and
the Gogny@18# forces. As this component of the force pla
a crucial role in the saturation process, any effective tw
body interaction not including it explicitly should have
corresponding phenomenological density dependence@34#.

~iii ! The Hamiltonian includes the bare two-body for
but higher-order interactions such as three-body terms
omitted. In this case, one can think of renormalizing th
effects through a density-dependent two-body interac
@17,27#. It is beyond the scope of this paper to discuss
subnucleonic origins of three-body and higher multibo
forces as well as their quantitative relevance@26,27#. How-
ever, it is worth mentioning their importance in nuclear sy
tems. Three-body forces, either phenomenological or der
from microscopic meson-exchange models with nucleo
virtual excitations and nucleon-antinucleon pair creatio
have been necessary to get good properties of~a!symmetric
nuclear matter. In particular, they allow the reproduction
the empirical saturation at the correct density and energy
particle in nonrelativistic Brueckner-Hartree-Fock calcu
tions @35,36#. Three-body forces have also been essentia
describe spectroscopic properties of light nuclei up to m
05430
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10 in ab initio calculations using the Green’s function Mon
Carlo method@37#. In addition to these studies on boun
nuclear systems, including three-body forces in the treatm
of nucleon induced deuteron breakup or nucleon-deute
elastic scattering has resolved several inconsistencies
these data observed when using two-body forces only@38#.

The renormalization of the described effects is underst
at the mean-field level. The deduced effective two-body
teraction always depends on the density of the underly
Slater determinant. However, as soon as the model or
variational space is modified to include correlations exp
itly, not only the analytical structure of the density depe
dence must be changed but the kind of density itself is
longer obvious.

The derivation of the analytical structure associated
every above mentioned origins constitutes a difficult task
any level of approximation. This is beyond the scope of t
work. We rather concentrate on the determination of thetype
of density to be used in relation to origins~i! and ~iii ! in
calculations beyond the mean field. The corresponding a
lytical functional will have a more phenomenological cha
acter. We are looking for guidelines to the definition of ph
nomenological forces while the phenomenology embod
by their fit on a few nuclear data should allow us to smoo
out the imperfections of the analytical derivation.

Section III A recalls some results associated to the ext
sion of the usual Goldstone-Brueckner perturbation theor
configuration mixing calculations@39#. In Secs. III B–III G,
we deal with the local-density approximation of the gener
ized Brueckner matrix emerging in that extended pertur
tion theory. These calculations relate to the particle-h
channel of the interaction since the Brueckner ladders sho
not be summed in the pairing channel@40–44#. Section IV A
deals with the renormalization of three-body forces with
the GCM, while Sec. IV B is devoted to the same proble
for the projected mean-field method. We generalize our
sults to higher multibody forces in Sec. IV C; and in Se
IV D, we make some comments about the configuration m
ing of individual excitations. The corresponding calculatio
are presented without taking care of static pairing corre
tions, but the results can be extended to the pairing cha
as well. We supplement this part of the work with appendix
providing details of our calculations, remarks concerning
use of the correlated density, and a discussion on the cru
role of rearrangement terms in the equations of motion. A
plying our results to the standard Skyrme force, we prop
in Sec. V an extension of its density dependence to be u
in projected mean field and generator coordinate methods
an application, the generalized Skyrme force is shown to
well defined for symmetry restoration. Conclusions are giv
in Sec. VII.

III. TWO-BODY CORRELATIONS FOR MIXED
NONORTHOGONAL VACUA

A. Generalized Brueckner matrix

In Ref. @39#, a generalized perturbation theory written
terms of nonorthogonal Slater determinants has been de
8-3
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oped. Contrary to usual perturbation theories@45–48#, this
method aims at writing the actual ground state of the sys
as a superposition of solutions originating from several n
orthogonal product states close in energy att52`. One
obtains a perturbative series taking care of correlations a
ciated to large amplitude collective motions, which cannot
included in a simple way by using an expansion referring
a single vacuum. The new expansion still faces the prob
related to the hard core of the two-body nucleon-nucle
interactionV. Reference@39# shows how to sum generalize
particle-particle ladders through a newly defined Brueck
matrix, removing the hard-core problem in this extend
context. This effective interactionG(b,a) is given in terms of
two standard Brueckner matricesGb andGa referring to two
different vacuauF0

b& and uF0
a&:

G(b,a)~Wb ,Wa!5Gb~Wb!V21Ga~Wa!, ~8!

where the standardGa Brueckner matrix satisfies a sel
consistent equation of the form@29,45#

Ga~Wa!5V1V
Qa

Wa2h0
a

Ga~Wa!. ~9!

Qa is the Pauli operator acting in the two-particle space
exclude occupied states inuF0

a& as intermediate states in th
Brueckner ladder. Equations~8! and ~9! make use of the
one-body Hamiltonianh0

a whose N-body ground state is
uF0

a& ~with energyE 0
a). The single-particle eigenstates an

eigenenergies ofh0
a are defined as$fak

,eak
%, wherek de-

notes the quantum numbers$Npzzt%. This set of quantum
numbers covers the cases of triaxially deformed and/or ti
reversal symmetry breaking mean-field solutions. The st
ing energiesWa andWb characterize the dependence of t
in-medium interaction of two particles on the energy of t
others. The diagrammatic content ofG(b,a), its matrix ele-
ments, and the precise definitions ofWa andWb are given in
Ref. @39#.

Considering the lowest order of the extended perturba
theory, the ground-state energy is approximated by@39#

E 0
n505

(
a,b

f b
0* f a

0^F0
but1G(b,a)~0,0!uF0

a&

(
a,b

f b
0* f a

0^F0
buF0

a&

. ~10!

This is precisely the energyE 0
mix for a state mixing non-

orthogonal vacua as used in the GCM or the projected me
field method, where the starting two-body interactionV has
been replaced by the regularized effective vertex on the
ergy shell (Wa5Wb50).

B. LDA for standard Brueckner matrices: Definitions and the
goal

The interactionGa includes many-body effects throug
the operatorQa/(Wa2h0

a). The value ofWa depends upon
the location of theGa interaction in a given graph. At tha
05430
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location, the matrix element^amanuGauapaq& depends upon
eap

1eaq
2Wa through the energy denominator ofQa/(Wa

2h0
a). The question addressed now is whether these

medium effects can be reduced to a simpler dependenc
various local densities.

The Ga matrix elements are well defined in the$fak
%

representation. Considering the transformation to configu
tion space, one can write

^amanuGauapaq&5 (
zz1•••t1•••

E drW1drW2drW18drW28

3^amanurW1zz1t1rW2zz2t2&

3^rW1zz1t1rW2zz2t2uGaurW18zz18 t18rW28zz28 t28&

3^rW18zz18 t18rW28zz28 t28uapaq&, ~11!

where ^rW18zz18 t18rW28zz28 t28uapaq& is an antisymmetrized two
body wave function. Equation~9!, satisfied by the standar
Ga matrix, reads in configuration space as

^rW1zz1t1rW2zz2t2uGaurW18zz18 t18rW28zz28 t28&

5^rW1zz1t1rW2zz2t2uVurW18zz18 t18rW28zz28 t28&

1^rW1zz1t1rW2zz2t2uV
Qa

Wa2h0
a

GaurW18zz18 t18rW28zz28 t28&,

~12!

and is linked to the original matrix element in the$fak
%

representation through its dependence oneap
1eaq

. Note that
it is not necessary to antisymmetrize the matrix element
coordinate space since it is done in the$fak

% representation.
We now write the bare interaction@1# under the form

^rW18rW28uVurW1rW2&5V~rW,pW ,sŴ 1 ,sŴ 2 ,tŴ1•tŴ2!

3d~rW12rW18!d~rW22rW28!, ~13!

whererW5rW12rW2 andpW 5(pW 12pW 2)/2 are the relative position
and momentum vectors of the two interacting nucleons. T
pW dependence is a practical manner to take the nonlocalit
the force into account. Using this expression and the fact
Qa/(Wa2h0

a) is diagonal in the~non-antisymmetrized here!
two-particle basis,

Qa

Wa2h0
a

5 (
ear

.eF
a

eas
.eF

a

ua ras&^a rasu
eap

1eaq
2Wa2ear

2eas

, ~14!

one obtains, by inserting the identity operator twice throu
closure relations in the last term of Eq.~12!,
8-4
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^rW1zz1t1rW2zz2t2uV
Qa

Wa2h0
a

GaurW18zz18 t18rW28zz28 t28&

5 (
zz3zz4t3t4

^zz1t1zz2t2uV~rW,pW ,sŴ 1,sŴ 2,tŴ1•tŴ2!uzz3t3zz4t4&

3E drW3drW4^rW1zz3t3rW2zz4t4u
Qa

Wa2h0
a

urW3zz3t3rW4zz4t4&

3^rW3zz3t3rW4zz4t4uGaurW18zz18 t18rW28zz28 t28&. ~15!

C. LDA for standard Brueckner matrices: Analysis

We study the operatorQa/(Wa2h0
a) which is responsible

for the in-medium effects and thus for the possible den
dependence. Its non-antisymmetrized matrix elements
in coordinate space as

^rW1zz3t3rW2zz4t4u
Qa

Wa2h0
a

urW3zz3t3rW4zz4t4&

5 (
ear

.eFt3zz3

a

eas
.eFt4zz4

a

fas
* ~rW4!fas

~rW2!far
* ~rW3!far

~rW1!

eap
1eaq

2Wa2ear
2eas

,

~16!

and are diagonal in isospin. The isospins of the states
volved in the sum satisfy (t r5t3 ,ts5t4).This is specified
through two labeled Fermi energieseFt3zz3

a andeFt4zz4

a .

In order to write an approximation in terms of local de
sities, one has to make the one-body density matrix appe
the numerator of Eq.~16!. To do so, one has to perform som
average on the energy denominator to make it independe
the running indices (a r ,as). In most existing works the pro
cedure consists of averaging this denominator over the Fe
sea in nuclear matter@33,49#. This mean value depends o
the Fermi energy, which in turn depends upon the total d
sity of the system. This dependence is eventually tra
formed into a local-density dependence when going bac
finite nuclei. Together with a density-matrix expansion in t
numerator, this provides the full local-density dependence
the effective interaction@33,49#. However, this strategy is
doubtful from a formal point of view; indeed, three types
energies should be distinguished in the energy denomin
of Eq. ~16!.

The first energy,eap
1eaq

, refers to the unperturbed two
body ket in the original matrix element~11!. This energy is
fixed in the right-hand side of Eq.~16!. It is indeed reason-
able to average it out over the Fermi sea since the ma
elements ofGa involved in the calculation of the energy a
the lowest-order concern occupied states. However, suc
average is related to the Fermi energies in the studied fi
nucleus, and thus toN andZ rather than to a local density a
the center of mass of the interacting nucleons. Besides, e
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if he used it successfully, Negele has shown the crudenes
the above procedure for this energy dependence@49#.

The second energyWa induces a nontrivial dependence
Ga on its location in the diagram. Given that location,Wa is
fixed for all matrix elements defined by Eq.~11!. At the
lowest order, this parameter is zero since the Brueckner
trix is taken on the energy shell.

The last energyear
1eas

makes the denominator of Eq
~16! dependent on the running indicesa r and as . This en-
ergy comes from each two-body propagator in the Brueck
ladder and the indices run over particle states up to infin
energies. It is in no way related to any energy in the Fe
sea. As it is a weighting factor for each particle-particle
termediate state entering the ladder, it is strongly connec
to the numerator in Eq.~16!. Omitting this link amounts to
giving up an important part of the physics involved in th
Brueckner resummation by providing particle states with
same weight whatever be their unperturbed energies.

The usual averaging procedure finally amounts to sta
that the Pauli operator

^rW1zz3t3rW2zz4t4uQaurW3zz3t3rW4zz4t4&

5@d~rW22rW4!2r t4zz4

a ~rW2 ,rW4!#

3@d~rW12rW3!2r t3zz3

a ~rW1 ,rW3!# ~17!

is the essential quantity to treat in detail in the opera
Qa/(Wa2h0

a). It is at that point that the DME is performe
@33,49#. As the procedure providing Eq.~17! is questionable,
and as a simplification of theGa is by far necessary to pro
ceed to extensive nuclear structure calculations, we co
think of a direct local approximation of the ‘‘energy density
defined by Eq.~16! @50#. Following the spirit of the DME,
this approximation should be of similar quality as for E
~17! @33#. However, this would not provide the interactio
with dependences on local densities@ra(RW ),¹2ra(RW ),
ta(RW ), . . . ].2

In spite of the weaknesses we have just discussed, the
no fully coherent picture available approximating matrix e
ement~16! by a functional of local densities. Consequent
we give up the idea of deriving analytically the density d
pendence induced by the operatorQa/(Wa2h0

a).

D. Ansatz

Because of the conclusions of the preceding section,
postulatethe possibility to approximate matrix element~16!
through a local, zero-range quantity of the form

^rW1zz3t3rW2zz4t4u
Qa

Wa2h0
a

urW3zz3t3rW4zz4t4&

'K@r t3zz3

a ~rW1!,r t4zz4

a ~rW2!#d~rW12rW3!d~rW22rW4!

'F@r0
a~RW !#d~rW12rW3!d~rW22rW4!d~rW12rW2!, ~18!

2For the definitions of the different densities, see, for instan
Ref. @51#.
8-5
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whereF(K) is an unknown functional of the local scala
isoscalar~isospin and signature dependent! density~ies! asso-
ciated with the product stateuF0

a&.
The DME, which we keep as a motivation for the loc

approximation embodied by Eq.~18!, suggests a dependenc
of F(K) on a power series of the relative coordinatesrW1

2rW3 andrW22rW4 @49# figuring the nonlocality of the operato
Qa/(Wa2h0

a). Thus, some corrective terms depending

second derivatives of the local densitiesra(RW ) and on the
kinetic densitiesta(RW ) should also be considered. For sy
tems breaking time-reversal invariance, the DME provid
dependences on spin densitiessWa(RW ), current densities
jWa(RW ), and spin-current densitiesJWa(RW ). The fully local ap-
proximation embodied by Eq.~18! is correct at high densitie
but particularly crude at the surface in finite nuclei. The ze
range approximation inrW12rW2 is much safer sinceQa/(Wa

2h0
a) is always surrounded by twoV interactions inGa @33#.

It is responsible for the dependence ofr t3zz3

a andr t4zz4

a on RW

rather than onrW1 and rW2, respectively in, Eq.~18!.
As suggested by Eqs.~17! and ~18!, the in-medium con-

tent of the effective force depends on the isospin of the
teracting nucleons and should provide a dependence on
the isoscalar and the isovector components of the local
of the density matrix. However, phenomenological forc
used generally depend on the isoscalar density only, w
ever be the isospin of the interacting nucleons. This has b
satisfying for nuclei around the stability line but could b
questionable for near drip-line nuclei. In the same spirit,
in-medium content of the effective force depends on the
nature of the interacting nucleons and should provide a
pendence on both the scalar and the vector componen
the local part of the density matrix. This would differentia
the effective interaction for even-even and odd-even nu
as well as forJ50 andJ.0 states.

Taking the complete dependences into account wo
complicate the following theoretical and numerical develo
ments dramatically. This is why none of the refinements w
respect to a dependence of the local scalar-isoscalar pa
the density matrix will be considered here. This is consist
with the present form of the Gogny and the Skyrme forc
Corrections will be included through the phenomenologi
nature of these interactions.

Using the ansatz~18!, and the fact that the operatorpW

5(pW 12pW 2)/2 does not act onRW , the matrix element defined
through Eq.~12! becomes

^zz1t1zz2t2uGLDA
a ~RW ,rW,pW ,sŴ 1,sŴ 2,tŴ1•tŴ2!

2V~rW,pW ,sŴ 1,sŴ 2,tŴ1•tŴ2!uzz18 t18zz28 t28&

5F@r0
a~RW !#^zz1t1zz2t2uV~rW,pW ,sŴ 1,sŴ 2,tŴ1•tŴ2!

3GLDA
a ~RW ,rW,pW ,sŴ 1,sŴ 2,tŴ1•tŴ2!uzz18 t18zz28 t28&. ~19!

Let us introduce a closure relation in the tensorial prod
space of signature and isospin spaces betweenV andGLDA

a ,
iterate Eq.~19!, and eliminate this closure relation. We o
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tain an expression valid for allGLDA
a matrix elements in

signature and isospin spaces which, without writing exp

itly the dependences ofV andGLDA
a on the operatorss1Ŵ , s2Ŵ

andt1Ŵ •t2Ŵ , takes the form

GLDA
a ~RW ,rW,pW !5(

l 50

`

Vl 11~rW,pW !F l@r0
a~RW !#

5V~rW,pW !1V2~rW,pW !F@r0
a~RW !#

1V3~rW,pW !F 2@r0
a~RW !#1•••. ~20!

E. LDA for G„b,a…

We now turn to the local approximation of theG(b,a)

matrix on the energy shell. Using Eqs.~8! and ~20!, we ob-
tain after some manipulations

GLDA
(b,a)~RW ,rW,pW !5(

l 51

`

Vl~rW,pW !
F l@r0

b~RW !#2F l@r0
a~RW !#

F@r0
b~RW !#2F@r0

a~RW !#

5V~rW,pW !1V2~rW,pW !$F@r0
b~RW !#1F@r0

a~RW !#%

1V3~rW,pW !$F 2@r0
b~RW !#

1F@r0
b~RW !#F@r0

a~RW !#1F 2@r0
a~RW !#%

1•••. ~21!

This form of the effective interaction relies on gener
manipulations only and is still far too complicated to be us
in extensive calculations of finite nuclei. It needs to be si
plified. However, one can already conclude one import
point. Equation~21! shows that whatever the explicit form o
the functionalF is, GLDA

(b,a) will depend neither on the mixed
density nor on the correlated density, but on local mean-fi
densitiesr0

a(RW ) and r0
b(RW ) of the two product states in

volved in the matrix element̂F0
but1G(b,a)uF0

a&.
We shall now go through some simplifications. As sta

dard phenomenological forces such as the Gogny and
Skyrme forces have often been interpreted as local-den
approximations of the Brueckner matrices@17,49#, one
should recover their usual mean-field density depende
when considering a diagonal term (b5a) in Eq. ~21!. For
instance, a typical Skyrme force reads@19#

vSkyrme~RW ,rW,kW ,kQ8!5t0~11x0Ps!d~rW !1 1
2 t1~11x1Ps!

3@d~rW !kW21kQ82d~rW !#

1t2~11x2Ps!kQ8•d~rW !kW

1 1
6 t3~11x3Ps!@r0

a~RW !#sd~rW !

1 iW0~s1Ŵ1s2Ŵ !kQ8`d~rW !kW , ~22!

where kW5(¹12¹2)/2i embodies the momentum operat
acting on the right whilekQ8 embodies the same operato
with a minus sign, acting on the left.Ps is the spin exchange
operator. Tensor forces are still not included in the Skyr
8-6
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forces. On one hand, the Hartree-Fock calculations includ
such a term have shown no improvement on spin-orbit sp
tings in spin unsaturated nuclei@52#. On the other hand, per
turbative calculations have shown the importance of the
sor component in generating two-body correlations a
associated density dependence@53,54#. This is due to the
dependence of the tensor force contribution to the energy
the Pauli operatorQa. This remark is also supported b
many-body calculations taking into account the mesonic
gree of freedom which shows the strong in-medium effe
generated by pions exchange@55#. Thus, one would expect
density-dependent tensor term in phenomenological effec
interactions to be important for some phenomena. Whe
the density dependence associated to the two-body cor
tions generated by the tensor force is thought to be inclu
in F, a better treatment of the tensor force in effective int
actions, especially as a function of isospin, deserves a
tional work in the future.

The identification of GLDA
(a,a)(RW ,rW,pW ) with

vSkyrme(RW ,rW,kW ,kQ8) requires to neglect the tensor force in t
bare interaction and to perform an expansion to second o
in the range of the effective interactionGLDA

(b,a)(RW ,rW,pW );3 that

is, for all powersVl(rW,pW ) of the bare interaction. Performin
these expansions and grouping the terms coming from
central and the spin-orbit parts, one formally obtains

Vl~rW,kW ,kQ8!'V0~ l !d~rW !1V1~ l !@d~rW !kW21kQ82d~rW !#

1V2~ l !kQ8•d~rW !kW1V3~ l !~s1
Ŵ1s2

Ŵ !kQ8`d~rW !kW .

~23!

In this equation, the coefficientsVi( l ) incorporate depen

dences onkW originally denoted aspW , but also onsŴ 1 , sŴ 2 and

tŴ1•tŴ2 originating fromV. From a general point of view, it is
unfortunately not possible for a given interaction to expr
these coefficients as a function ofl or through iterative rela-
tions.

Here in fact, only the terms independent of the velocit
should present a density dependence inGLDA

(a,a)(RW ,rW,pW ) in or-
der to recover a Skyrme type interaction. Thus, expans
~23! has to be cut to zero-order inkW andkQ8 for l>2. A few
coefficients only remain, and one obtains

GLDA
(b,a)~RW ,rW,kW ,kQ8!'V0~1!d~rW !1V1~1!@d~rW !kW21kQ82d~rW !#

1V2~1!kQ8•d~rW !kW

1V3~1!~sŴ 11sŴ 2!kQ8`d~rW !kW

1(
l 52

`

V0~ l !
F l@r0

b~RW !#2F l@r0
a~RW !#

F@r0
b~RW !#2F@r0

a~RW !#
d~rW !.

~24!

3The Gogny force also makes use of a zero-range den
dependent velocity-independent term.
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F. Mean field

In order to really identify GLDA
(b,a)(RW ,rW,kW ,kQ8) with a

Skyrme force used at the mean-field level, one has to da
5b in Eq. ~24!. Doing so, the identification can be done b
truncating the power series appearing inGLDA

(a,a) to first order
in F, by taking

F@r0
a~RW !#5a@r0

a~RW !#s, ~25!

wherea is a constant, and by establishing the formal cor
spondence:

t0~11x0Ps!⇔V0~1!,

1
2 t1~11x1Ps!⇔V1~1!,

t2~11x2Ps!⇔V2~1!,

1
6 t3~11x3Ps!⇔2aV0~2!,

iW0⇔V3~1!. ~26!

As we were not able to deriveF explicitly, Eq. ~25! is to
be understood as its phenomenological determination rely
on existing successful effective interactions. The actual va
of s has been a subject of debate. On one hand, gen
arguments were in favor ofs52/3 @34#. Fits to diagonal
Brueckner matrix elements at the Fermi level calcula
from realistic forces gaves51/6 @56# or 1/3 @57# as good
values for the short-range repulsive as well as for the lo
range attractive parts of the interaction; this being true
several spin and isospin channels. Similar calculations p
vided two different values for the short- and the long-ran
parts of the interaction, namely, 1 and 1/3@33,58#. On the
other hand, fits of phenomenological forces on empiri
nuclear matter properties gave several values ranging f
s51 for previous versions of the Skyrme force@59# to s
51/6 for some recent versions@19#. This low value has been
necessary to get realistic values for both the effectivek-mass
m*̀ and the compressibilityK` of infinite symmetric nuclear
matter. Such fits take into account the density depende
stemming from several physical effects as listed in Sec.

G. Beyond the mean field

We can now extend the density dependence of the ef
tive interaction for calculations beyond the mean-field a
proximation. The hypothesis of a truncation to first order
F together with the previous phenomenological determi
tion of this function provide the nondiagonal term of Eq.~24!
(aÞb),

1

6
t3~11x3Ps!

@r0
b~RW !#s1@r0

a~RW !#s

2
d~rW !, ~27!

as the natural extension for the density-dependent part o
Skyrme force to be used in̂F0

bu•••uF0
a&. The derived pre-

y-
8-7
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T. DUGUET AND P. BONCHE PHYSICAL REVIEW C67, 054308 ~2003!
scription is different from those used until now in the GC
or the projected mean-field calculations. For projection
particle number, one can check that Eq.~27! reduces to a
dependence on a single local mean-field density since

mean-field local-densityr0
0(RW ) is invariant under rotation in

gauge space.
Equation~27! constitutes the main result of the prese

section. It has been obtained through a sequence of rea
able approximations. The last ones have been performe
relation with the specific form of the Skyrme force. The pre
ently developed scheme is more general, and one c
avoid some approximations in order to generalize Eq.~27!.
For instance, one could keep a finite-range dens
dependent term or at least the density dependence of
velocity-dependent terms in Eq.~24!, as suggested in Re
@57#. One could also consider higher powers ofF in Eq. ~21!
or in Eq. ~24!. The reduction of the original isospin
dependent densities to the isoscalar density could be avo
at least for exotic nuclei. The reduction of the origin
signature-dependent densities to the scalar density coul
avoided for odd-even and rotating nuclei.4 Last but not the
least, the dependence on starting energies should also be
since it is known to play a role@60#. However, all these
extensions would correspond to more general forms of
Skyrme or the Gogny forces at the mean-field level, wh
have not been considered up to now in quantitative mic
scopic calculations of finite nuclei. Following the strate
behind the use of phenomenological forces, implemen
such further complications in the interaction will have to
motivated by clear experimental hints.

H. Higher orders

The generalized Skyrme force derived from theG(b,a)

interaction on the energy shell should not be used beyond
lowest order in the perturbative expansion of the ene
However, for instance, it can be useful in some system
include diabatic effects in the GCM@61#. Associated dia-
grams correspond to nonzero orders in the exten
Goldstone-Brueckner perturbation theory@39#. They make
use ofG(b,a) off the energy shell for which the energy d
nominator appearing in Eq.~16! is modified. Within the local
approximation, the functionalF should be changed for eac
vertex with respect to its definition at the lowest order. T
means that the use of Eq.~27! in the GCM is questionable
when including diabatic effects. This deserves additio
work in the future.

IV. MULTIBODY FORCE RENORMALIZATION

We now turn to another origin of the density dependen
of the two-body effective interaction. Let us make the h
pothesis that the actual Hamiltonian of theN-body nuclear
system reads as

4Then, one should be careful to end up with an energy functio
invariant under time-reversal symmetry.
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H (3)5(
i , j

t i j ci
†cj1

1

4 (
i , j ,k,l

V̄i l jk
(2) ci

†cl
†ckcj

1
1

36 (
i , j ,k,l ,m,n

V̄iln jkm
(3) ci

†cl
†cn

†cmckcj , ~28!

where V̄il jk
(2) and V̄iln jkm

(3) are antisymmetrized matrix ele
ments. The creation and annihilation operators$ci

† ,cj% refer
to the single-particle basis$w i%. We consider at this stag
that two-body correlations have already been renormalize
such a way thatV(2) is to be seen as the Brueckner matr
GLDA

(b,a) , and that the three-body vertex approximately
cludes these correlations through

V(3)~rW1 ,rW2 ,rW3![Ṽ(3)~rW1 ,rW2 ,rW3!@12h~rW12rW2!#@12h~rW2

2rW3!#@12h~rW32rW1!#, ~29!

where Ṽ(3) is the actual bare three-body force andh(rW1

2rW2) is some average of the two-body defect wave funct
over occupied states@30#. The proper treatment of these co
relations together with a three-body force relies on
Bethe-Faddeev equations@62#.

In what follows, no density dependence appear inV(2)

andV(3), unless otherwise specified. Of course, the prec
ing statement about two-body correlations implies that so
density dependences originating from two-body correlatio
are contained in the first place in both the effective two-bo
and the three-body interactions. We will return to this iss
later.

We separate the GCM from the projected mean-fi
method since the energy minimization is performed with
spect to different variational parameters in the two cases

A. The GCM and the three-body forces

In order to identify the density dependence accounting
three-body force effects, we calculate and minimize the
ergy for two different Hamiltonians. First, the three-bod
force is taken into account but no density dependence oc
in the two-body one. Then, the three-body force is omitted
the Hamiltonian but a density dependence is introduced
plicitly in the two-body force. In this second case, the Ham
tonian is denoted asHe f f

(3) .
We obtain in the first case using the general Wick theor

@10#,

^CkuH (3)uCk&5(
b,a

f b
k* f a

k ^F0
buH (3)uF0

a& ~30!

5(
b,a

f b
k* f a

k F(
i , j

t i j r j i
(b,a)

1
1

2 (
i , j ,k,l

V̄i l jk
(2) r j i

(b,a)rkl
(b,a)

1
1

6 (
i , j ,k,l ,m,n

V̄iln jkm
(3) r j i

(b,a)rkl
(b,a)rmn

(b,a)G
3^F0

buF0
a&, ~31!

al
8-8
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where

r j i
(b,a)5

^F0
buci

†cj uF0
a&

^F0
buF0

a&
~32!

denotes a matrix element of the mixed one-body density
erator. The minimization of the energy with respect to t
f b

k* gives

(
b

d

d f b
k*

F ^CkuH (3)uCk&

^CkuCk&
Gd f b

k* 50 ~33!

for all d f b
k* , which can be recast into a set of coupled eq

tions of motion:

(
a

f a
k F(

i , j
t i j r j i

(b,a)1
1

2 (
i , j ,k,l

V̄i l jk
(2) r j i

(b,a)rkl
(b,a)

1
1

6 (
i , j ,k,l ,m,n

V̄iln jkm
(3) r j i

(b,a)rkl
(b,a)rmn

(b,a)G ^F0
buF0

a&

5E k
mix(

a
f a

k ^F0
buF0

a&, ~34!

for all b.
Omitting the three-body force, we proceed to the sa

calculation using an effective two-body force depending l
early on the mixed density:5

Ve f f
(3)(b,a)~rW,RW !5V(2)~rW !1v~rW !r (b,a)~rW1 ,rW2!, ~35!

where rW and RW are, respectively, the relative and center
mass position vectors of the two interacting nucleons wh
r (b,a)(rW1 ,rW2) denotes the nonlocal mixed nucleon density

r (b,a)~rW1 ,rW2!5 (
sz ,sz8 ,t,t8

r (b,a)~rW1szt,rW2sz8t8!

5(
i j

w I* ~rW2 ,zz8 ,sz8 ,t !wJ~rW1 ,zz ,sz ,t !r j i
(b,a)

5r0
(b,a)~rW1 ,rW2!1~s0

(b,a)!x~rW1 ,rW2!, ~36!

where r0
(b,a) and sW0

(b,a) are its scalar-isoscalar and vecto
isoscalar parts@51#. The nonappearance of isovector comp
nents inr (b,a)(rW1 ,rW2) is due to the fact that we restrict ou
study to systems where protons and neutrons are not mi
The interaction defined through Eq.~35! depends on (b,a)
and is to be used in the corresponding matrix elem
^F0

buHe f f
(3)(b,a)uF0

a&. Thus, one gets

5For simplicity, we do not write the dependences ofVe f f
(3)(b,a) ,

V(2), and v on the relative momentumpW , and on the spin and

isospin operators (sŴ 1 ,sŴ 2 ,tŴ1•tŴ2).
05430
p-
e

-

e
-

f
e

-

d.

t

^CkuHe f f
(3)uCk&[(

b,a
f b

k* f a
k F(

i , j
t i j r j i

(b,a)

1
1

2 (
i , j ,k,l

~V̄e f f
(3)(b,a)! i l jk r j i

(b,a)rkl
(b,a)G

3^F0
buF0

a&. ~37!

Developing V̄e f f
(3)(r ,s) in Eq. ~37!, one obtains the sam

expression as that given by Eq.~31! with V̄iln jkm
(3) replaced by

the matrix elementv i ln jkm defining an effective three-bod
force,

v i ln jkm53E E drW1drW2w i* ~rW1!w l* ~rW2!wn* ~rW2!v~rW1

2rW2 ,pW ,sŴ 1 ,sŴ 2 ,tŴ1•tŴ2!wm~rW1!@wk~rW1!w j~rW2!

2w j~rW1!wk~rW2!#. ~38!

Thus, the correlated energy in the stateuCk& for the
HamiltonianH (3) is finally reproduced term by term for a
spin/isospin indices. The key point of this derivation is t
mixednature of the density inserted in the effective two-bo
force.

The equivalence is not complete since effective ma
elements~38! cannot simulate all antisymmetrized matrix e
ements of an arbitrary three-body forceV(3)(rW1 ,rW2 ,rW3), in
particular because of their non-antisymmetrized characte
(k,m) and (j ,m). However, the freedom in the choice of th

two-body termv(rW,pW ,sŴ 1 ,sŴ 2 ,tŴ1•tŴ2) can be used to make

v i ln jkm reproduceV̄iln jkm
(3) as accurately as possible. The po

sibility of an exact equivalence has already been discusse
the mean-field level in connection with particular forms
the three-body effective interaction. In practice, this has o
been done for zero-range forces. It has been shown ho
Skyrme force depending linearly on the mean-field ma
density in the (S51,T50) channel allows for the reproduc
tion of the HF energy obtained with a zero-range three-bo
force in a spin-saturated~time-reversal invariant! system
@17#. Alternatively, by changing the spin-isospin dependen
of the density-dependent two-body term, Onishi and Neg
were able to reproduce the effect of the zero range th
body force for the HF energy, single-particle spectrum a
two-body p-h matrix elements of a spin-isospin saturated
system@63#. Both versions could be easily recovered by ta
ing a5b in previous expressions; the local part of the de
sity r0

a(RW ) being selected by the zero-range character of
force. In both cases, however, the equivalence came out t
invalid for systems breaking time-reversal symmetry. It a
became clear that the use of a simple zero-range three-b
force having a necessary repulsive nature in the (S51, T
50) channel led to spin instabilities in time-reversal inva
ant systems@64–66#. The exact equivalence in system
breaking time-reversal symmetry is not achievable if o
does not keep any spin-density dependence in the zero-r
two-body term, as shown by Eq.~36!. However, the spin
8-9
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instability associated to the Skyrme interaction can be cu
by restricting oneself to a density-dependent two-body te
with appropriate spin-isospin dependence@64#, by keeping a
finite-range three-body force, or at least by considering
tractive velocity-dependent three-body terms. The last
tion, however, often induces a collapse in the equation
state of symmetric nuclear matter at high density@65,67#
while a finite range would destroy the numerical conv
nience of the Skyrme interaction.

The reduction of the density dependence of the two-b
term to the scalar part of the density matrix is a stron
limitation beyond the mean-field level than at the mean-fi
level. Indeed, even for time-reversal invariant systems,
vector part of the local mixed density is nonzero foraÞb
@20#. If one forgets about the dependence onsW0

(b,a) in Eq.
~35!, nondiagonal matrix elementsv i ln jkm in (szm,szm) will
not be considered. By keeping this dependence, one w
have to be careful about spin instabilities as discussed
fore.

The above derivation is a general starting point for
quantitative renormalization of three-body forces. First,
shows the mixed nature of the density required for nondia
nal N-body matrix elements. Second, we think that it will b
useful to move towards the next step which has to be
gross renormalization ofrealistic three-body interactions. In
deed, rather than the reproduction of a simplified analyt
three-body interaction, which is itself phenomenological
would be more worthwhile to reproduce the main propert
of a three-body force derived from an underlying fie
theory. Using Eq.~38!, together with a sufficiently simple
two-body effective interaction which satisfies Eq.~36!, could
help to do so. In particular, the repulsive or attractive ch
acter of three-body forces derived from microscopic mes
exchange models has been characterized in each (S,T) chan-
nel in nuclear matter calculations@35,36#. The subtle
combination of these contributions as a function of the d
sity is an important part of the saturation process. It allow
correct reproduction of the empirical values of the dens
and energy per particle at the saturation point in Brueckn
Hartree-Fock calculations@36#. These combined contribu
tions are also important to describe asymmetric nuclear m
ter correctly as a function of isospin. Consequently,
different channels of the three-body force should be trea
carefully in mean-field-type calculations using phenome
logical effective forces. In particular, one has to reconcile
crucial binding effect of three-body forces in light nucl
@37# with its saturation character at normal density of nucl
matter@35,36#.

Varying the energy given by Eq.~37! with respect tof b
k* ,

the same equations of motion as with the HamiltonianH (3)

are obtained. The choice of the mixed density
Ve f f

(3)(b,a)(rW,RW ) leads to a zero rearrangement term:

GdV5(
b,a

f b
k* f a

k

3^F0
bu

]Ve f f
(3)(b,a)~rW,RW !

]r (b,a)~rW1 ,rW2!

]r (b,a)~rW1 ,rW2!

] f b
k*

uF0
a&/

^CkuCk&50, ~39!
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sincer (b,a)(rW1 ,rW2) is independent of the mixing coefficient
f b

k* .
Thus, the contribution from the three-body force to E

~34! is recovered from the redefinition of the two-body for
only. As demonstrated in Appendix A, the use of the cor
lated density would generate redundant terms, nota
through a nonzero rearrangement term.

B. Projection and three-body force

The same question as in the preceding section is
dressed for projection type configuration mixings. In th
case, the VAP is performed with respect to the individu
wave functions defining the product state from whichuCk& is
projected out. As an application, we consider the restora
of angular momentumI, with projectionM, for an axially
symmetric Slater determinant. The projected state reads

uC IM &5 (
a52n

n

f a
IM uF0

a&5 P̂IM uF0
a&, ~40!

whereP̂IM is the angular momentum projector@6# anduF0
a&

is written in terms of a fixed product state of referenceuF&
through

uF0
a&5expS 1

2 (
u,u8

Zuu8
IM cu

†cu8D uF&. ~41!

Note thatuF0
a& implicitly depends onIM since the mini-

mization procedure provides a different product state
each value of these quantum numbers.

The variation of the mean energy in the stateuC IM & is
done with respect to theZuu8

IM and reads as

d
^C IM uH (3)uC IM &

^C IM uC IM &
5

1

2 (
u,u8

F ^C IM ucu
†cu8H

(3)uC IM &

^C IM uC IM &

2
^CIMucu

†cu8uCIM&^CIMuH(3)uCIM&

^C IM uC IM &2 G
3dZuu8

IM
50 ~42!

for all dZuu8
IM . The equations of motion are

^C IM ucu
†cu8H

(3)uC IM &5E IM
mix^C IM ucu

†cu8uC IM & ~43!

for all couples (u,u8). These equations are valid only if n
rearrangement term appears. This is the case withH (3).
Equation~43! expanded in terms of mixed densities is giv
in Appendix B 1.

As for the GCM, we do the calculation using the Ham
tonianHe f f

(3)(b,a) . In this case, a nonzero rearrangement te
appears in the equations of motion. The calculation is p
formed in Appendix B 2. The comparison between the co
tributions arising from the three-body force and those co
ing from the redefinition of the two-body force and th
rearrangement term is also proposed. This calculation sh
8-10
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that the equivalence between the two is once again obtai
thanks to the choice of the mixed density in the effect
interaction.

C. Generalization to multibody forces

The formal equivalence between a three-body force an
two-body one depending linearly on the mixed density h
been shown in the context of configuration mixing calcu
tions. However, nowadays, most of the phenomenolog
interactions depend on the density through a nonlinear fu
tion rs with 0,s<1 ~e.g., 1/6 for the Skyrme force SLy
@19#!. Even if such a dependence certainly accounts for s
eral physical effects, we can interpret it as coming from
renormalization of multibody force effects. In order to d
that, rs is written in terms of a power series around t
nuclear saturation densityrsat ,

rs5rsat
s (

n
an

(s)S r2rsat

rsat
D n

, ~44!

'rsat
s (

k50

K

bk
(s)S r

rsat
D k

. ~45!

The domain of validity of expansion~44! is ]0,2rsat@ . We
rearrange it as a function of the successive integer powe
r. Doing so, each coefficient ofrk is in principle divergent
as no expansion exists forrs around 0 whensP” N. Thus, we
approximate Eq.~44! by cutting the sum at some ordern
5K. In this way, we obtain a good approximation6 of rs on
the domain@e(K),rsat# and can reorder the finite number
term as a function ofrk. This gives the formal expansio
~45!.

In the following, we use such an expansion to interp
the full density dependencers as coming from multibody
forces in the nuclear HamiltonianH (K); the linear term of
Eq. ~45! being related to the three-body force, the squa
term to the four-body force, etc. Starting from such an h
pothesis, one can show, using the same technique as in
previous sections for the three-body force, that the two-b
force,

Ve f f
(K)(b,a)~rW,RW !

5V(2)~rW !1v~rW !rsat
s (

k51

K22

bk
(s)S r (b,a)~rW1 ,rW2!

rsat
D k

, ~46!

allows to formally reproduce the energy of a correlated s
for a Hamiltonian having two, three, four, etc.,K-body
forces. The non-antisymmetrized matrix elementsv i l ••• jk•••

(‘ ‘ p’ ’)

of the corresponding effective ‘‘p-body’’ interaction are de-
fined from the term withk5p22 in Eq. ~46! in the same
spirit and with the same limitations asv i ln jkm in Sec. IV A.
Finally, this calculation motivates a term proportional

6e(K)→0 for K→`.
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@r0
(b,a)(RW )#s as approximately renormalizing multibod

force effects, the crucial point being again the use of
mixed density.

Finally, let us mention that identical calculations mixin
nonorthogonal HFB quasiparticle states instead of Slater
terminants would have led to the same conclusion for
density dependence induced in the particle-particle chan
as soon as the terms up to second order only in the pai
tensor are kept in the energy.

D. Quasiparticle-type configuration mixing

Two different cases occur when a mixing of individu
excitations is considered to include small amplitude corre
tions and diabatic effects in the trial state.

First, each particle-hole stateuF i
a& is calculated self-

consistently through the minimization of its energy. In th
case, theuF i

a& are fixed nonorthogonal product wave fun
tions and the variation is performed with respect tof i

k* . The
situation is identical to the GCM and the same conclusio
as regard the renormalization of multibody force effe
hold.

Second, particle-hole states are calculated perturbati
with respect to each ground-state Slater determinantuF0

a&. In
this case the individual excitationsuF i

a& referring to a given
vacuum are orthogonal, and the above calculations do
hold since the generalized Wick theorem cannot be used.
such a configuration mixing, and whatever the variatio
parameters are, we were not able to obtain any form
equivalence between a particular two-body dens
dependent interaction and a three-body one.

V. THE SKYRME FORCE BEYOND THE MEAN FIELD

Given the results obtained in the previous sections,
propose a simple extension of the Skyrme force for confi
ration mixing calculations such as the GCM and the p
jected mean-field method:

vSkyrme
(b,a) ~RW ,rW,kW ,kQ8!

5t0~11x0Ps!d~rW !1
1

2
t1~11x1Ps!~d~rW !kW21kQ82d~rW !!

1t2~11x2Ps!kQ8•d~rW !kW1
1

6
Xt3~11x3Ps!

3
@r0

b~RW !#s1@r0
a~RW !#s

2
d~rW !1

1

6
~12X!t3~11x3Ps!

3@r0
(b,a)~RW !#sd~rW !1 iW0~s1

Ŵ1s2
Ŵ !kQ8`d~rW !kW . ~47!

In Eq. ~47!, X is an adjustable parameter expressing o
lack of knowledge about the relative weight of the two ren
malized effects. The two types of densities used coinc
with the standard local mean-field density when going ba
to a diagonalN-body matrix element. As they are consider
with the same exponents, vSkyrme

(b,a) reduces to the usua
Skyrme force when going back to the mean-field level.
8-11
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other words, the proposed Skyrme interaction is the simp
theoretically motivated extension for the calculation of no
diagonalN-body matrix elements. Note that, since two-bo
correlations are taken into account in Eq.~29!, the term pro-
portional to (12X) in Eq. ~47! should depend both on th
mixed and the mean-field densities. However, ladder d
grams in connection with the three-body interaction do
play a significant role at and below the saturation den
@36#. This is due to the small probability at low density fo
two nucleons to get very close to each other and feel
influence of the third one at the same time. Not taking th
correlations into account should not be a strong limitation
finite nuclei. Concerning the term proportional toX, its pos-
sible generalizations have already been discussed in
III G.

Given the different origins of the two density-depende
terms, taking identical analytical expressions for both is
restrictive and nonmotivated choice. In particular, it wou
be reasonable to have different exponents. The predomin
of three-body over higher multibody forces suggests an
ponent close to one for the associated term whereas a sm
exponent would be appropriate to the resummation of tw
body correlations. Similarly, the spin dependence
1x3Ps) should be different in the two terms. However, su
a differentiation asks for a redefinition of the Skyrme inte
action at the mean-field level. Such a work is underway@69#.
The essential factor to retain is that going beyond the me
field approximation distinguishes the two origins of the de
sity dependence by making two kinds of density appear,
opens a new degree of freedom in the interaction.

A. Extended Skyrme functional

Using the generalized Skyrme force~47!, the approximate
ground-state energy~3! takes the form:

E 0
mix[

^C0uHuC0&

^C0,uC0&

[

(
a,b

f b
0* f a

0^F0
buH (b,a)@r0

b~RW !,r0
a~RW !,r0

(b,a)~RW !#uF0
a&

(
a,b

f b
0* f a

0^F0
buF0

a&

5(
a,b

f b
0* f a

0E dRW H (b,a)~RW !, ~48!

whereH (b,a)(RW ) is a functional of local densities only. I
includes the local scalar-isoscalar mean field and mixed d
sities originating from the generalized Skyrme force, a
also the local mixed densities as coming from the nondia
nal contractions in Eq.~48!. Time-odd components of th
force are always switched on in the context of mixed vac
It makes nonzero time-odd local densities emerge in the
ergy functional such as the spin density, the current den
or the vector part of the kinetic energy density. The expl
form of the Skyrme functional for configuration mixing ca
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culations is given in Ref.@20# and is to be corrected in agree
ment with the newly derived density dependence of the
fective interaction.

The second equality in Eq.~48! is a matter of definition
only since the right-hand side~rhs! cannot be refactorized
into the left-hand side, that is, as the mean value of a tw
body operator in the stateuC0&. To make the meaningfu
effective interaction appear explicitly, the correlated ene
had to be fully expanded in terms of the mixed produ
states. As discussed in Ref.@39#, this expresses the fact tha
the energy obtained from an effective force is more to
seen as a functional of~local! densities than as the mea
value of a two-body Hamiltonian in a definite state. This
in fact, already true at the mean-field level. Note, howev
that the functional as considered here does not aim at re
malizing all correlations since it is defined at some prec
order of a perturbative expansion. It keeps, at least forma
a link with the original bare force.

In order to obtain the energy as given by Eq.~48!, we
have interpreted the Skyrme force as coming from an exp
sion in the range of the effective interaction. For Negele@49#,
this force should rather be interpreted as a result of den
matrix expansions in the energy densityH (b,a)(RW ,rW) ob-
tained using a finite rangeGLDA

(b,a) interaction as given by Eq
21. In this context, the Skyrme force would result from
additional average over the occupied states, and its par
eters would contain a combination of information about bo
the initial effective two-body interactionG(b,a) and two
Fermi seas. Within this interpretation, the extended Skyr
force would provide the energy functional with coefficien
themselves depending on local mixed density matrices.

VI. APPLICATION: SYMMETRY RESTORATION

It is worth illustrating the previous result in the particul
case of symmetry restoration. More specifically, we consi
the restoration of angular momentum from an axially sy
metric product state and extrapolate the use of the gene
ized Skyrme force to spinIÞ0.7 The projected energy on
spin I and spin projectionM50 for an even-even nucleus i
given by

EI0
n505

(
a52n

n

f a
I0^F0

0u@ t1vSkyrme
(0,a) #R~a!uF0

0&

(
a52n

n

f a
I0^F0

0uR~a!uF0
0&

, ~49!

where the coefficients of the mixing are

f a
I05

2I 11

2n
sin~pa/n!d00

I* ~pa/n!, ~50!

7This extrapolation concerns not only the fact that additional lo
densities should be considered forIÞ0 as discussed in Sec. III B
but also the fact that the underlying perturbative expansion has b
written for the ground-state only@39#.
8-12
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with dM0
I the Wigner function for the quantum numbe

(I ,M ,K50) @68#. The rotation operator for an anglepa/n
around they axis orthogonal to the symmetry axis is

R~a!5eipaJy /n. ~51!

In Eq. ~49!, vSkyrme
(0,a) depends on the mean-field densiti

r0
0(RW ) and r0

a(RW ) of the product stateuF0
0& and the rotated

one uF0
a&5R(a)uF0

0& as well as their mixed densit

r0
(0,a)(RW ). For the derived prescription to be reliable for sym

metry restoration, two properties have to be satisfied
~1! As for a bare Hamiltonian invariant under rotation, t

projected energy~49! has to be independent of the orient
tion axis in the laboratory frame.8

~2! The correlated energy~49! has to be real.9

In the present context, the first property is immediat
satisfied. Indeed, the commutation of the projectorP̂I0 with
the bare Hamiltonian was done in the expression of the
tual ground-state energy before any resummation and tru
tion took place in the perturbative expansion@39# and before
the multibody force renormalization was performed. This
why the rotation matrixR(a) only appears on the rhs o
vSkyrme

(0,a) in Eq. ~49!. Thus, ^F0
0uH (0,a)R(a)uF0

0& only de-
pends on the relative angle between the two involved prod
states. The projected energy is independent of the choic
the axis with respect to which angles are measured in
laboratory frame. The second property is demonstrated
Appendix D.

The prescription derived from the extended perturbat
theory satisfies the minimal mathematical properties ne
sary to be used for symmetry restoration.

VII. CONCLUSIONS

In this paper, we have analyzed the density dependenc
phenomenological effective two-body forces for calculatio
beyond the mean-field approximation. Up to now, two p
scriptions have been used in the GCM and the projec
mean-field method without being supported by strong th
retical arguments. They correspond to the localmixeddensity
@4,5# and the localcorrelated density @25#. Similar results
have been obtained with both in calculations dealing w
projection on particle numbers@25#.

However, it is not clear whether other configuration m
ing calculations such as projection on angular momentum
high spin states, projection on parity, or GCM calculatio
for various collective coordinates involving extended nucl
shapes would give comparable results for both prescriptio
This remark is also relevant for physical properties involvi
exotic densities such as halos or neutron skins or for sh

8It is not necessary forH (0,a)5t1vSkyrme
(0,a) to be invariant under

rotation.
9It is not necessary forH (0,a) to be Hermitian.
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coexistence in nuclei. As a consequence, it appeared im
tant to revisit this question. Instead of letting a quantitat
agreement with experimental data decide which den
should be used in this context, we have tried to come bac
the origins of the density dependence of effective two-bo
forces.

First we have dealt with the Brueckner ladder summat
which accounts for two-body correlations induced by theNN
interaction in the presence of other nucleons. It is known
bring about a density dependence in the effective two-b
force used together with a mean-field wave function. Dev
oping an extended Brueckner-Goldstone scheme, we der
an effective force accounting for these correlations within
framework of mixed nonorthogonal Slater determinants.

Discussing the foundations of a local approximation
the Brueckner matrix, we have explained why such a lo
expression has not been derived explicitly. As the imperf
tions and unnecessary complications of the formal deriva
can be smoothed out through the use of phenomenolog
forces fitted to the data, we have taken the validity of suc
local density approximation as an ansatz. We have dedu
the corresponding functional of local mean-field densities
making it match the standard Skyrme or the Gogny dens
dependent term at the mean-field level.

Second, we have analyzed the density dependence s
ming from the possible renormalization of multibody forc
in the nuclear Hamiltonian. We have shown, in the contex
configuration mixing calculations, the formal equivalen
existing between a three-body force and a two-body fo
having a linear dependence on the mixed density. This re
holds for the equations of motion obtained from the minim
zation of the energy, whatever the variational parameters
The role of the rearrangement terms has been emphas
Then, showing that a density dependence of the formrs with
a noninteger value ofs, as used in the Skyrme and th
Gogny phenomenological forces, can originate from
renormalization of multibody force effects, we have gener
ized the result obtained for a three-body force.

Finally, two kinds of density dependence ought to be us
depending on whether they deal with the renormalization
two-body correlations induced by the strong-repulsive c
and the tensor part of the bare nucleon-nucleon interact
or with the renormalization of multibody forces effects. O
common feature of these two prescriptions is their dep
dence on theN-body matrix element in which they are in
serted when expressing the approximate energy in term
the mixed product states. They both coincide with the me
field matter density when returning to the mean-field a
proximation. This shows how going beyond the mean fi
may open degrees of freedom in the effective force, wh
are not fixed at the mean-field level.

Using these results, we have proposed a theoretic
grounded extension of the Skyrme force for configurat
mixing calculations. Explaining in detail all the approxim
tions performed on the way to this definition, we have d
cussed its possible generalizations. GCM and projec
mean-field calculations testing the presently proposed as
as existing prescriptions are now underway. Correspond
results are the aim of a forthcoming paper.
8-13
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APPENDIX A: GCM AND DEPENDENCE ON rC

In order to reproduce the effect of a three-body force,
incorporate the nonlocal correlated density

rCk~rW1 ,rW2!5(
a,b

f b
k* f a

k r~b,a!~rW1 ,rW2! ~A1!

into the two-body force defined by Eq.~35! and get the ef-
fective interaction

Ve f f
(3)~rW,RW !5V(2)~rW !1v~rW !rCk~rW1 ,rW2!. ~A2!

Using this density dependence, one gets a nonzero
rangement term by varying the correlated ene
^CkuHe f f

(3)uCk&/^CkuCk& with respect tof b
k* . This is differ-

ent from the result obtained with the mixed density. T
variation leads to the following equations of motion:

(
a

f a
k F(

i , j
t i j r j i

(b,a)1
1

2 (
i , j ,k,l

V̄i l jk
(2) r j i

(b,a)rkl
(b,a)

1
1

6 (
i , j ,k,l ,m,n

v i ln jkmr j i
(b,a)rkl

(b,a)(
q

f q
kS rmn

(b,q) ^F0
buF0

q&

^CkuCk&

1(
p

f p* rmn
(p,q)^F0

puF0
q&

^CkuCk&
^F0

buF0
a&

5E k
mix(

a
f a

k ^F0
buF0

a&. ~A3!

In order to reproduce Eq.~34!, the term between paren
theses in Eq.~A3! should be equal tormn

(b,a) . This means that
rC1]rC/] f b

k* should be equal tor (b,a) for all (b,a).
However, this is not true in general. Therefore, the use of
correlated density in the effective two-body force genera
redundant terms. The above consideration suggests th
should be avoided in configuration mixing calculations.

APPENDIX B: PROJECTION AND THREE-BODY FORCE

1. Equation of motion

The equations of motion defined by Eq.~43! take the
explicit form

(
b,a

f b
IM* f a

IM F(
i , j

t i j ~ru8u
(b,a)r j i

(b,a)2ru8 i
(b,a)r ju

(b,a)!

1
1
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for all (u,u8).

2. Rearrangement term

For the density-dependent HamiltonianHe f f
(3)(b,a) , Eq.

~43! must be modified in order to include the rearrangem
term originating from the variation of the two-body intera
tion with respect to the individual wave functions. The equ
tions of motion become

(
b,a

f b
IM* f a

IMF ^F0
bucu

†cu8He f f
(3)(b,a)uF0

a&

12^F0
bu

]Ve f f
(3)(b,a)~rW,RW !

]r (b,a)~rW1 ,rW2!

]r (b,a)~rW1 ,rW2!

]Zuu8
I uF0

a&G
5E k

mix^Ckucu
†cu8uCk&. ~B2!

The calculation of the rearrangement term requires
evaluation of
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We sum the contribution from the density-dependent p
of Ve f f

(3)(b,a) in the first term of Eq.~B2! together with the
rearrangement term, and obtain the total contribution:
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where v takes the formv(rW12rW2 ,pW ,sŴ 1 ,sŴ 2 ,tŴ1•tŴ2) and
where its matrix elementsv i ln jkm are defined through Eq
~38!.

The comparison with Eq.~B1! shows that the same forma
contributions to the equations of motion as the one com
from a three-body force are obtained as soon asv i ln jkm is
able to reproduceV̄iln jkm

(3) . The rearrangement term is esse
tial as it gives a term with a combination of indices, whi
cannot be obtained through the redefinition of the two-bo
force only.

APPENDIX C: PROJECTION AND DEPENDENCE ON rC

In Ref. @23#, Valor and co-workers gave an argument
favor of the correlated density. They argued that once
correlated energy is developed in terms of product state
given by Eq.~3!, the introduction of a dependence of th
effective HamiltonianHe f f on the mixing angles (a,b), as it
is the case when using the mixed density for instance,
vents from extracting the mean energy of the correlated s
with good quantum numbers. It seems to be in favor ofrCk,
which is independent of the mixing angles.

Let us exemplify the situation through the projection of
HFB wave function on good particle number@1#:

uCN&5 P̂NuF0
0&, P̂N5

1

2pE2p

p

daeia(N̂2N), ~C1!

where N̂, N, and a are the particle number operator, th
actual number of particles, and the mixing angle in gau
space, respectively. For simplicity, a single kind of nucleo
is considered here.

First, the energy of the correlated stateuCN& is developed
in terms of the mixed product statesuF0

a&5eiaN̂uF0
0&,

E N
mix5

E
2p

p

dae2 iaN^F0
0uHe f fe

iaN̂uF0
0&

E
2p

p

dae2 iaN^F0
0ueiaN̂uF0

0&

, ~C2!
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which clearly shows how the projection picks up the ene
associated with the component ofuF0

0& having exactlyN
particles. Then, if one makesHe f f depend ona, the calcu-
lated energy will not be factorizable again as a mean va
^CNuHe f fuCN&/^CNuCN& in the projected state having th
good quantum numberN. This is correct but not pertinen
here. In order to understand why, one has to go back to
origin of He f f’s effectiveness characterized by its density d
pendence.

First, one has to be aware that the rational of any mic
scopic calculation~variational or perturbative! is always to
approximate the actual eigenstates and eigenenergies o
system, the leading quantity being the energy. Thus, com
back to our example, the ultimate goal is not to obtain
mean value of some effective Hamiltonian in the projec
state but to reproduce as closely as possible the eigenen

^Q0uHuQ0&

^Q0uQ0&
, ~C3!

whereH is the actual Hamiltonian of the system anduQ0&
the unknown ground-state wave function.

Within the projected mean-field method, this is do
through an approximation as given by Eq.~C2! whereHe f f is
effective in order to remove the repulsive core of the b
nucleon-nucleon interaction and/or to renormalize multibo
force effect. It has been shown in this context howHe f f

should depend ona and why the corresponding energyE N
mix

could not be factorized intôCNuHe f fuCN&/^CNuCN&.
For instance, considering only the renormalization

multibody force effects, the argument given in Ref.@23#
omits that one wants to reproduce the projected ene
^C0uH (3)uC0&/^C0uC0& including multibody forces, itself
approximating^Q0uH (3)uQ0&/^Q0uQ0&. Using an effective
two-bodyHamiltonianHe f f

(3) to do so, it is necessary to mak
this latter depend ona. Then, the impossibility to factorize
the energy~C2! does not contradict the fact that one appro
mates properly the projected energy forH (3) and thatuC0&
remains the corresponding approximate state of the sys
from which other observables can be evaluated.
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APPENDIX D: VSkyrme
„b,a… FOR SYMMETRY RESTORATION

We have to check whether the projected ground-state
ergy ~49! is real. Thanks to the symmetric integration arou
0 on the variablea in Eq. ~49!, it is sufficient to prove that

@^F0
0uH (0,a)R~a!uF0

0&#* 5^F0
0uH (0,2a)R~2a!uF0

0& ~D1!

is valid for the mixed HamiltonianH (0,a) specified to the
projection on angular momentum. The same property
straightforward for the overlap̂F0

0uR(a)uF0
0&.

Let us first look at the different densities under rotatio
We introduce the unitary 3* 3 matrixR(a) which rotates an
eigenvector of the position operator,

R~a!urW&[uR~a!rW&, ~D2!

or a vector operator, such as the vector position operato

R†~a!rWR~a!5R~a!rW. ~D3!

The local scalar-isoscalar part of the mixed density sp
fied to the projection is

r0
(b,a)~rW !5

^F0
0uR†~b!r̂0~rW !R~a!uF0

0&

^F0
0uR†~b!R~a!uF0

0&
. ~D4!

This quantity is a matrix element between twoN-body
states whererW is an external variable. As an operator functi
of the vector position operatorrW, its behavior under rotation
is, thanks to Eq.~D3!,

R†~a!r0
(b,a)~rW !R~a!5r0

(b,a)@R~a!rW#. ~D5!

As an operator function of the positionsrW i of the nucle-
ons, the transformation under rotation of the local sca
isoscalar part of the one-body density operator can be wri
as

R†~a!r̂0~rW !R~a!5(
i 51

N

d@rW2R~a!rW i #

5(
i 51

N

d@R †~a!rW2rW i #5 r̂0@R †~a!rW#.

~D6!

Following Eq.~D5!, one can write

R†~g!r0
(b,a)~rW !5R†~g!r0

(b,a)~rW !R~g!R†~g!

5r0
(b,a)@R~g!rW#R~2g!, ~D7!
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as well as the structure of the effective Hamiltonian dedu
from Eq. ~47!,
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whereH is the mean-field~Skyrme! Hamiltonian. Finally, we
can now prove identity~D1!,
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where we have applied Eqs.~D9! and~D8! to the three den-
sities involved. The extension to triaxially deformed produ
states poses no difficulty.
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