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Semiclassical evaluation of average nuclear one- and two-body matrix elements
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Thomas-Fermi theory is developed to evaluate nuclear matrix elements averaged on the energy shell, on the
basis of independent particle Hamiltonians. One- and two-body matrix elements are compared with the quantal
results, and it is demonstrated that the semiclassical matrix elements, as function of energy, well pass through
the average of the scattered quantum values. For the one-body matrix elements it is shown how the Thomas-
Fermi approach can be projected on good parity and also on good angular momentum. For the two-body case,
the pairing matrix elements are considered explicitly.
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I. INTRODUCTION

The solution of the nuclear many-body problem presen
formidable challenge. Not only bare and effective nucleo
nucleon forces are not completely known, but still for tho
given as granted, one has to solve the many-body proble
a highly quantal, strongly interacting, self-bound, and the
fore inhomogeneous Fermi system. Over the years, semi
sical techniques have helped to solve this problem, for
stance, in regard to the latter aspect. In practice, it is ma
the Thomas-Fermi~TF! method and its extensions for th
description of nuclear ground-state properties which
been considered~see Ref.@1# and references therein!. The
nuclear density and kinetic energy density are the main
gredients of this approach.

The semiclassical approximation often gives a dir
physical insight, yielding the shell average of the quantit
under consideration and providing their main trend~which,
in certain cases, may be obscured by strong shell fluc
tions!. A known example is the nuclear binding energy whi
coincides with the liquid drop part in the semiclassical a
proach. Another quantity of longstanding interest is the
erage single-particle level density. It is well known that t
TF approximation to the level density~including \ correc-
tions! coincides analytically with the Strutinsky averag
quantal level density for the harmonic oscillator~HO! poten-
tial @2#. First performing the quantal calculation and then t
average is more cumbersome than calculating the shell a
age directly via the TF method. The technical advantage
the latter becomes significant in the deformed case@2# or, for
instance, when one wants to go beyond the independent
ticle description to include correlations@3#. The TF approach
is also very helpful for the calculation of surface and curv
ture energies. Actually, the latter quantity can only be c
rectly extracted in a semiclassical procedure@4#.

In general, however, we believe that the true virtue of
TF method shows up not only in calculating average prop
ties in the independent particle approximation, where it c
replace the results obtained through the more cumbers
Strutinsky method@5#, but rather in many-body application
going beyond the mean field or independent particle pict
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where a straightforward quantum solution for finite syste
may reach its limits. A case where we treated correlat
effects in TF approximation was, as already mentioned,
level density parameter@3#. Pairing correlations in finite nu-
clei have also already successfully been treated in the
@6#. This is one of the aspects which we shall consider ag
in this work in more detail.

In this work we want to discuss on an aspect of t
Thomas-Fermi theory which in the past has been explo
only very little. This concerns the evaluation of matrix el
ments averaged over a certain energy interval that may
typically of the order of\v, i.e., the separation of majo
shells. It must be pointed out that this is, to our knowled
the first attempt to evaluate not only one-body but also tw
body matrix elements in the TF approximation. This sem
classical calculation provides the smoothly varying part
the matrix elements dropping the shell effects according
the idea of the Strutinsky averaging method@7#. We will
describe several tests of the accuracy of the TF method
on-shell densities. In the first part we will develop our a
proach for the matrix elements of single-particle operato
for given parity and angular momentum. This goes alo
similar lines already developed in the domain of syste
with chaotic behavior@8–11#. In the second part we will
address our main objective, which is to show that the met
also works for two-body matrix elements. Some prelimina
results have been published previously in Ref.@12#. As a
specific example, we will treat the pairing matrix element

Let us give a short summary of the approach we are go
to develop. Consider, for example, the expectation value
single-particle operatorÔ in some shell model stateun&:

On5^nuÔun&5Tr@Ôun&^nu#. ~1!

Instead of knowing theOn quantum state by a quantum sta
it may sometimes be advantageous and instructive to o
know how matrix element~1! changes as a function of en
ergy. We therefore introduce a single-particle matrix elem
averaged over the energy shell:

O~E!5Tr@Ôr̂E#, ~2!
©2003 The American Physical Society07-1
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where we callr̂E the density matrix on the energy shell. It
related with the so-called spectral density matrix and will
defined immediately below.

The spectral density matrixd(E2Ĥ) has the characteris
tic discontinuous behavior due to the quantization of the
genvalues of the single-particle HamiltonianĤ. It can be
written, however, as a sum of a smooth partd̃(E2Ĥ) and of
a strongly oscillating part, i.e.,d(E2Ĥ)5 d̃(E2Ĥ)
1dosc(E2Ĥ) @1,13,14#. Analogously, the single-particle
level densityg(E)5Tr@d(E2Ĥ)#5(nd(E2«n) is obtained
as a sum of two terms:g(E)5g̃(E)1gosc(E), whereg̃ and
gosc stand for the smooth and the rapidly fluctuating con
butions, respectively. Using the smoothd̃(E2Ĥ) andg̃(E),
we define the density matrix averaged on the energy she

r̂E5
1

g̃~E!
d̃~E2Ĥ !5

1

g̃~E!
(

n
d̃~E2«n!un&^nu. ~3!

It is therefore a smooth function ofE. The smeared leve
density g̃(E) ~per spin and isospin in this paper! in the de-
nominator of expression~3! ensures the right normalizatio
of r̂E , sinceg̃(E)5Tr@ d̃(E2Ĥ)#.

The smooth quantities entering Eq.~3! are to be evaluated
in some continuum limit@13,14#. This is the case, for ex
ample, when one introduces the Strutinsky averaging pro
dure@5,7# or alternatively~and this is the approach we ado
in this work!, it can be done by replacingĤ, the
independent-particle~mean field! Hamiltonian, by its classi-
cal counterpartHcl that corresponds to the TF approximatio
@1#. Such an approximation has been used very early
Migdal @15# and later, as already mentioned, in the contex
chaotic motion dynamics@8–11#. Recently, we have em
ployed it to describe Bose condensates in traps@16#, but we
are not aware of any systematic use in the context of nuc
physics. The approach is not limited to the evaluation
expectation values of single-particle operators. Also the
erage behavior of two-body matrix elements can be ca
lated. For instance, the semiclassical evaluation of the a
age pairing matrix element,

v~E,E8!5
1

g̃~E!g̃~E8!
(
n,n8

d̃~E2«n!d̃~E82«n8!

3^F~n,n̄ !uvuF~n8,n̄8!&, ~4!

where uF(n,n̄)& is an antisymmetricnormalized two-body
state constructed out of a stateun& and its time-reversed stat
un̄&, can be of great practical interest and shall be conside
in this work. As it is known@1,2#, the Strutinsky method
averages the density matrix over an energy interval co
sponding roughly to the distance between two major she
Implicitly the same holds if the equivalent Wigner-Kirkwoo
expansion~TF approximation at lowest order! is used for
r̂E .

Our paper is organized as follows. In the following se
tion, the Wigner function on the energy shell is introduc
05430
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and applied to the evaluation of some semiclassical one-b
and two-body matrix elements of physical interest. Our co
clusions are given in the last section.

II. WIGNER FUNCTION ON THE ENERGY SHELL

As stated in Eq.~3! of the Introduction, we are intereste
in the density matrixr̂E on the energy shell. Consider th
Wigner transform@1# of density matrix~3!, namely,

f E~R,p!5E dse2 ips/\^R1s/2ur̂EuR2s/2&, ~5!

where

R5~r1r8!/2, s5r2r8

are the centroid and relative coordinates, respectively. In
der to obtain the TF approximation plus\ corrections to the
Wigner function on the energy shell~5!, it is convenient to
differentiate with respect toE the Wigner-Kirkwood expan-
sion of the full single-particle one-body density matrixr̂

5Q(E2Ĥ), which is amply given in the literature@1#. Up
to order\2, the result is

f E~R,p!5
1

g̃~E!
Fd~E2Hcl!2

\2

8M
“

2Vd9~E2Hcl!

1
\2

24M F ~“V!21
1

M
~p•“ !2VGd-~E2Hcl!

1O~\4!G . ~6!

One should realize thatg̃(E) also contains\ corrections and
that, strictly speaking, in order to get a consistent expans
of f E one should also take into account the\ expansion of
g̃(E) and then correctly sort out relation~6! to order\2 ~see
also comments at the end of Sec. II A!.

The first term in Eq.~6! represents evidently the pure T
approximation that is of lowest order in\. In a first attempt
and to assess the accuracy of our approximation, we
content ourselves with the TF approximation. Integrati
over the momenta yields the local density on the ene
shell:

rE
TF~R!5

1

~2p\!3E dpf E
TF~R,p!5

MkE~R!

2p2\2g̃~E!
, ~7!

where

kE~R!5A2M

\2
@E2V~R!# ~8!

is the local momentum at the energyE in the potentialV(R),
and the level densityg̃(E) is given by
7-2
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g̃~E!5E dR
MkE~R!

2p2\2
. ~9!

For the following, it is important to first elaborate on th
meaning and accuracy of this density on the energy shell.
demonstration purposes, we will take as an example
spherical HO potential but later we will see that our meth
works equally well for a Woods-Saxon~WS! potential.

In Fig. 1 we display the quantal~solid line! and TF~dash-
dotted line! densities of theN54 andN55 HO shells with
\v541A21/3 and A5224. For the TF densities, we hav
taken the quantal energies. We see that in both cases th
result passes accurately through the average, terminatin
the classical turning point defined by

E5V~Rcl!. ~10!

The features of the TF densities on the energy shell are q
analogous to the ones already known for the full TF den
@1#. However, on the quantal side one remarks that there
strong difference between odd parity (N55) and even parity
(N54) shells. The former show a pronounced hole at
origin whereas the second ones show, on the contrary
enhancement. Both features can obviously be related to
absence or presence of thes-wave contributions in the cor
responding HO shell, respectively. One may try to reco
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FIG. 1. Quantal~solid line!, pure TF~dashed-dotted line!, and
TF densities projected on the good parity~dashed line! for the
N54 andN55 harmonic oscillator shells.
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this even-odd parity effect in projecting the TF density m
trix on good parity. This is easily done as follows. We ca
culate the inverse Wigner transform off E

TF(R,p). This yields

rE
TF~r,r8!5rE

TF~R! j 0@skE~R!#, ~11!

where j 0 is the zeroth-order spherical Bessel function. No
the even-odd parity density on the energy shell is obtaine

rE
e/o~r!5

1

2
@rE

TF~r,r8!6rE
TF~r,2r8!# r5r8

5
1

2
$rE

TF~r!6rE
TF~0! j 0@2rkE~0!#%. ~12!

We have drawn this expression in Fig. 1~dashed lines! as
well. The bump~hole! structure exhibited by the quantal de
sity is now well reproduced in the interior. The agreeme
only deteriorates near the classical turning point. One sho
mention, however, that in spite of the seemingly rather sp
tacular improvement of formula~12! over Eq.~7!, the former
presents some small problems. This concerns the behavi
Eq. ~12! around the turning point. The presence of the seco
term in Eq.~12! can induce a slightly negative value of th
density around the turning point. Also the second term is
naturally limited tor values inside the turning point and thu
is oscillating around zero due to the Bessel function. T
leads to ambiguities in evaluating matrix elements such
Eq. ~2! which, however, numerically are rather unimporta
Thus we advocate to use Eq.~7! instead of Eq.~12!, except
for some problems where the even-odd bump structure m
be particularly important. The latter may, for example, be
case for the evaluation of matrix elements of operators m
concentrated at the nuclear interior, e.g. 1/r 2, etc.

A. One-body matrix elements

We now proceed to calculate in TF approximation, as
function of the energy, the rms radius of a nucleon confin
in a WS potential withV05244 MeV, a50.67 fm, andR
51.27A1/3 fm with A5224 nucleons. We choose the rm
radius for demonstration purposes but we could have ta
as well any other smoothly varying single-particle operat
We use the TF approximation~11! and show the results
~dashed line! together with their quantum mechanical cou
terparts, represented by dots, in Fig. 2. We see that the
calculation very nicely passes through the average of
scattered quantal values, with the exception of the lowes
state. This is a first confirmation of the accuracy of our a
proach.

In a next step we want to project the TF density matrix
different partial waves and calculate matrix elements a
function of the energy for differentl values. One way to
project on partial waves has been elaborated by Hasse@17#.
There one premultiplies the Wigner function with the sem
classical projectors on the orbital angular momentum and
z component, i.e.,
7-3
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f E,l ,m~R,p!5
1

g̃E,l ,m

d~ l 2uR3pu!d@m2 l z~R,p!#d~E2Hcl!.

~13!

Then one can calculate single particle matrix elements a

O~E,l ,m!5E dRdp

~2p\!3
O~R,p! f E,l ,m~R,p!. ~14!

For local operators it is sufficient to know the density, whi
can be obtained in integrating Eq.~13! over momenta. As-
suming spherical symmetry we can also sum over them
quantum numbers, and after some algebra one finally fi
@17#:

rE,l~R!5
2l 11

8p2R2g̃E,l

A2M

\2
F E2V~R!2

S l 1
1

2D 2

\2

2MR2
G21/2

3QS E2V~R!2

S l 1
1

2D 2

\2

2MR2
D , ~15!

where the level densityg̃E,l is chosen in such a way that th
integral of Eq.~15! over the availableR space is normalized
to unity. Let us mention that we have replacedl ( l 11) by
( l 1 1

2 )2, as it is done in the WKB method to recover th
right asymptotic behavior of the wave function in the fr
@V(R)50# case@18#.

We recently employed, however, a different way to do
l projection, which for some purposes may be more con
nient@19#. For this we first perform the inverse Wigner tran
form of the TF part of Eq.~6!,
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FIG. 2. Quantal and TF~dashed line! rms radii for a Woods-
Saxon potential.
05430
ds

e
-

rE~r,r8!5
1

g̃~E!
E dp

~2p\!3
eip•r/\e2 ip•r8/\

3dS E2
p2

2M
2V~R! D . ~16!

Expanding the plane waves in spherical harmonics,

eik•r54p(
l ,m

~2 i ! l j l~kr !Ylm~Vk!Ylm* ~V r !, ~17!

we can read off thel-projected density matrix. For the loca
density, we then obtain

rE,l ,m~R!5
1

g̃E,l ,m

2M

p\2
kE~R!$ j l@RkE~R!#%2uYlm~V!u2

3Q@E2V~R!#, ~18!

where g̃E,l ,m is again chosen to ensure the right normaliz
tion of Eq.~18!, i.e.,*dRrE,l ,m(R)51. We can calculate, for
example, the mean square radius as a function ofE for dif-
ferent l values,

^R2&E,l5E dRR2rE,l ,m~R!. ~19!

Notice that Eq.~19! becomes independent ofm after the
angular integration.

In Table I we show various moments^Rn&1/n ~in fm! ob-
tained using the TF local densities on the energy shell p
vided by Eqs.~15! and ~18!, as compared with the corre
sponding quantal values for the aforementioned WS poten
with A5224 nucleons. From these tables one can see tha
quantal rms radius (n52) of eachnl state is, on average
well reproduced using the semiclassicall-projected on-shell
densities given by the TF approaches in Eqs.~15! and ~18!,
whereE has been replaced by the quantal eigenvalue co
sponding to thenl state~for consistency, we should perform
a WKB quantization from which we refrain for simplicity a
it would not affect the result much!. A more quantitative
analysis shows that the quantal rms radii are reproduced
Eq. ~15! within 2% in average over the range of energi
considered, while using Eq.~18! the average relative error i
around 4%. Higher moments obtained with the TF densi
on the energy shell also reproduce reasonably well the res
of the full quantal calculation. For the highest moment co
sidered here (n510), the average relative error with respe
to the quantal calculation is around 4.3% for both semicl
sical approximations. One should point out that the TF lo
densities on the energy shell are free of the shell effects
are present in the quantal calculation. Actually, the TF res
represent the shell averaged values of the moments and
difference with the quantal calculations provides an estim
of the shell correction for the considered state. Of cours
precise calculation of the shell correction in the conside
moments would require a Strutinsky calculation, which is n
an easy task for a WS potential. For a related discussion
refer the reader to Ref.@20#, where the moments rangin
7-4
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TABLE I. Moments^Rn&1/n ~in fm! of severalnl states forA5224 particles in the Woods-Saxon potenti
described in the text. The full quantum mechanical values~QM! are compared with those obtained with th
semiclassical approaches, Eqs.~15! and ~18!.

nl E ~MeV! n52 n54 n56 n58 n510

1s QM 3.87 4.021 4.441 4.780 5.069 5.323
Eq. ~15! 4.040 4.528 4.824 5.019 5.160
Eq. ~18! 4.299 4.638 4.863 5.024 5.143

1p QM 7.65 4.732 5.042 5.307 5.543 5.758
Eq. ~15! 4.653 5.011 5.267 5.449 5.583
Eq. ~18! 4.900 5.144 5.321 5.546 5.561

1d QM 12.23 5.226 5.477 5.701 5.907 6.09
Eq. ~15! 5.123 5.397 5.612 5.776 5.900
Eq. ~18! 5.323 5.516 5.664 5.782 5.876

2s QM 13.92 4.746 5.401 5.780 6.052 6.27
Eq. ~15! 4.668 5.301 5.662 5.897 6.064
Eq. ~18! 4.683 5.331 5.679 5.901 6.060

1 f QM 17.49 5.616 5.831 6.031 6.218 6.39
Eq. ~15! 5.511 5.731 5.913 6.057 6.172
Eq. ~18! 5.568 5.819 5.948 6.054 6.141

2p QM 20.08 5.154 5.771 6.159 6.439 6.66
Eq. ~15! 5.065 5.653 6.009 6.244 6.411
Eq. ~18! 4.931 5.601 6.002 6.256 6.433

1g QM 23.37 5.948 6.143 6.327 6.504 6.67
Eq. ~15! 5.836 6.021 6.179 6.309 6.414
Eq. ~18! 5.942 6.083 6.200 6.297 6.379

2d QM 26.63 5.587 6.159 6.547 6.836 7.07
Eq. ~15! 5.480 6.014 6.354 6.583 6.747
Eq. ~18! 5.293 5.942 6.356 6.622 6.802

3s QM 27.80 5.485 6.236 6.679 6.998 7.26
Eq. ~15! 5.374 6.077 6.467 6.719 6.895
Eq. ~18! 5.156 6.014 6.483 6.771 6.963

1h QM 29.78 6.252 6.435 6.612 6.788 6.96
Eq. ~15! 6.128 6.289 6.429 6.547 6.644
Eq. ~18! 6.177 6.316 6.427 6.521 6.601

2 f QM 33.44 6.063 6.606 6.999 7.304 7.58
Eq. ~15! 5.923 6.410 6.731 6.950 7.108
Eq. ~18! 5.775 6.375 6.766 7.018 7.188

3p QM 34.97 6.097 6.862 7.341 7.709 8.03
Eq. ~15! 5.939 6.621 7.004 7.421 7.421
Eq. ~18! 5.866 6.621 7.036 7.294 7.469
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from n51 to n510 of the total density ofA5224 particles
in a HO potential were evaluated using several semiclass
approaches and the Strutinsky averaging method. The
that TF works for moments as high asn510 makes us be
lieve that one can certainly consider in our approach
single-particle operators that are low-order polynomials
the phase-space variables.

It is also instructive to directly compare the densities. F
this, we again takeE equal to its quantal value in Eqs.~15!
and ~18!. The comparison between the quantal and TF
shell densities is shown in Figs. 3–5. In each one of th
figures, the quantal on-shell density~solid line! and the semi-
classical densities provided by Eq.~15! ~dash-dotted line!
and Eq.~18! ~dashed line! are displayed for all the bounds
05430
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and p states of a WS potential withA5224. From these
figures one can see that the quantal on-shell densities
rather well reproduced by the TF approach, Eq.~18!. In par-
ticular, the quantal 1l on-shell densities are well reproduce
by Eq. ~18! in the interior. However, as in Fig. 1, there a
discrepancies between the quantal and TF densities in
outer part around the classical turning point. Fornl states
(n.1), the innern21 bumps are well reproduced by Eq
~18!, and the agreement deteriorates in the outer bumps
to the classical turning point where the TF densities van
On the other hand, the TF on-shell densities obtained w
Eq. ~15! do not reproduce the quantal density profiles at
As it can be seen from Eq.~15!, this density is defined in the
region in between the two roots~turning points! of
7-5
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E2V~R!2

S l 1
1

2D 2

\2

2MR2
50. ~20!

In this approach, the three-dimensional problem has b
reduced to an equivalent one-dimensional problem forR,
with an effective potential that in addition toV(R) contains
the centrifugal barrier, as it happens in the WKB meth
Thus, in this case, we find two different turning points. T
largest root of Eq.~20! is very close to the classical turnin
point of Eq. ~18! given by kE50 @see Eq.~8!#, while the
smallest root gives the inner turning point due to the c
trifugal barrier. Since the TF on-shell density~15! has square
root singularities at the two turning points, its integral as w
as the corresponding expectation values converge.

We arrive at the, at first sight, paradoxical result that
densities~15! that have no detailed resemblance with t
quantal ones reproduce the rms values~and very likely most
of other expectation values of smoothly varying operato!
better than the densities given in Eq.~18!, which show quite
reasonable overall behavior in comparison with the qua
results. We here find an illustrating example that the Thom
Fermi and Wigner-Kirkwood local densities are to be
garded as mathematical distributions, in the sense tha
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FIG. 3. 1s and 1p on-shell densities in a Woods-Saxon potent
calculated quantally~solid line! and with the TF approximation us
ing Eq.~15! ~dash-dotted line! and Eq.~18! ~dashed line!. The dash-
dotted vertical lines indicate the asymptotes of Eq.~15!.
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spite of their possible divergences, they yield finite and
curate results when used to compute a restricted clas
expectation values by integration@13,20#. In this respect, we
again refer the reader to Tables I and II where he finds c
firmation of our statement. A similar situation is found
computing the kinetic energy for a bosonic system in R
@16#: the semiclassical and quantal kinetic energy densi
are clearly different but give similar values of the integrat
kinetic energy. On the other hand, one should note that s
ing out correctly the various orders in\ is very important to
achieve optimal results as shown on other occasions@20,21#.
In expression~18!, there remain some\ corrections to all
orders in the form of the spherical harmonics which a
quantal wave functions, i.e., solutions of a Schro¨dinger equa-
tion. This mixing of resummation in\ on the one hand and
of lowest order in\ on the other hand@in the form of thed
function in Eq.~16!# finally makes the on-shell density~18!
slightly less accurate than Eq.~15!, which represents the cor
rect \→0 limit as shown in Ref.@17#.

B. Two-body matrix elements

As a further interesting application we want to consid
the semiclassical evaluation of average two-body matrix
ements. An example of particular interest is the case of m

trix elements of the pairing type,^F(n,n̄)uvuF(n8,n̄8)& @see

l
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FIG. 4. Same as Fig. 3 for the 2s and 2p on-shell densities.
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Eq. ~4!#, which we shall address in this section for identic
nucleons. It is straightforward to recast the state-depen
pairing matrix element as

^F~n,n̄ !uvuF~n8,n̄8!&5^nn̄uvun8n̄8&2^nn̄uvun̄8n8&.
~21!

The two-particle statesunn̄& on the right-hand side are prod
uct states ofun& and un̄&. The statesun& are represented b

0 2 4 6 8 10
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0.05
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) 
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)
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3p

FIG. 5. Same as Fig. 3 for the 3s and 3p on-shell densities.
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single-particle wave functionsfn(r,s)5fnlm(r)xs ~with
s56 1

2 ). Assuming spherical symmetry, and consideri
that the time reversal of un& involves T̂(Ylmxs)
5(21)mYl ,2m(21)1/22sx2s5(21)1/22sYlm* x2s , one
finds

1

4 (
m,m8

(
s,s8

^F~n,n̄ !uvuF~n8,n̄8!&

5 (
m,m8

E drdr8fnlm~r8!fnlm* ~r!v~r2r8!

3fn8 l 8m8~r!fn8 l 8m8
* ~r8!. ~22!

According to this result, we obtain the following expressi
for the average pairing matrix elements of Eq.~4!:

v~E,E8!5E drdr8rE~r,r8!v~r2r8!rE8~r8,r!, ~23!

whererE(r,r8)5^rur̂Eur8&. In TF approximation, the nonlo
cal on-shell density matrixrE(r,r8) is given by Eq.~11!. We
see that it is a symmetric function inr and r8.

For the case of a forcev0d(r2r8), Eq. ~23! reduces to~a
practically identical expression can be found in Ref.@22#!

v~E,E8!5v0E drrE~r!rE8~r!. ~24!

Using the TF expression~7! for rE(r), we can evaluate Eq
~24! with a HO potentialV(r)5mv0

2r 2/2 and compare with
the quantum mechanical matrix elements averaged on e
major shellN of energyE5EN5(N1 3

2 )\v. This is done in
Table II with v052345.723 MeV fm3 and \v0541A21/3

MeV. We again see that the semiclassical results agree
well with the averaged quantal values, even for the non
agonal elements.

With the above positive experience at hand, we next p
ceed to calculate the average pairing matrix eleme
v(«F ,«F) of the Gogny D1S force@23# that is known to
TABLE II. QM and TF averaged two-body matrix elements~in MeV! of the v(r,r8)52345.723d(r
2r8) force calculated with harmonic oscillator density matrices on the energy shell forA5224 particles.

N/N8 0 1 2 3 4 5

QM 0 21.44 20.72 20.45 20.32 20.24 20.19
TF 21.20 20.68 20.44 20.31 20.23 20.18
QM 1 20.60 20.41 20.29 20.22 20.18
TF 20.56 20.39 20.29 20.22 20.18
QM 2 20.35 20.27 20.21 20.17
TF 20.34 20.26 20.21 20.17
QM 3 20.24 20.19 20.16
TF 20.23 20.19 20.16
QM 4 20.17 20.15
TF 20.17 20.15
QM 5 20.14
TF 20.13
7-7
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reproduce experimental gap values when used in mi
scopic Hartree-Fock-Bogolyubov calculations@24#. Writing
the diagonal matrix element~4! at the Fermi energy«F , by
using Eq.~23!, and expressing it through the lowest-ord
Wigner function in inverting Eq.~5!, one arrives in TF ap-
proximation at

v~«F ,«F!5
1

g̃~«F!2E dRE dpdp8

~2p\!6
d@«F2Hcl~R,p!#

3v~p2p8!d@«F2Hcl~R,p8!#. ~25!

Here, Hcl5p2/2M* 1V(R) is the classical Hamiltonian o
independent particles with effective massM* ~see below!
moving in an external potential wellV(R), andv(p2p8) is
the Fourier transform of the particle-particle part of t
Gogny force which describes the pairing. For the numer
application, we use forV(R) a slight variant of the potentia
given by Shlomo@14#:

V~R!52
V0

11exp~2R0 /d!
1

V0

11exp@~R2R0!/d#
,

~26!

with

R05
1.12A1/311

@11~pd/R0!2#1/3
fm,

d50.70 fm, and V05254 MeV. ~27!

In this equation,R0 has to be determined iteratively.
Equation~25! can be reduced to a one dimensional in

gral overR, which can be performed numerically,

v~«F ,«F!5 (
c51

2

zc

1

mc
2E0

Rc
dRR2B

3exp$2a@«F2V~R!#%sinh$a@«F2V~R!#%,

~28!

whereRc is the classical turning point defined in Eq.~10!,
and

B5
1

4p3g̃~«F!2 S 2M*

\2 D 2

, a5
M* mc

2

\2
,

and

zc5p3/2mc
3~Wc2Bc2Hc1Mc!. ~29!

The factorszc correspond to pairing in theS50 andT51
channels and are written in terms of the parameters of
Gogny force (Wc , Bc , Hc , Mc , and mc) @23#. We have
introduced the position-dependent effective massM* (R)
from the Gogny force in order to make the calculation of t
pairing matrix element more realistic. It is obtained by eva
ating atk5k«F

(R) the position- and momentum-depende
effective mass@25#,
05430
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M

M* ~R,k!
511

M

\2k

]

]k
U~R,k!, ~30!

whereU(R,k) is the Wigner transform of the single-partic
potential obtained from the Gogny interaction assum
spherically symmetric ink.

Also, the level densityg̃(«F) is calculated in the TF ap
proach using the same potential and effective mass,

g̃~«F!5
1

pE0

Rc
dRR2S 2M* ~R!

\2 D 3/2

A«F2V~R!. ~31!

In Fig. 6, we showAv(«F ,«F) as a function of the mas
numberA. The Coulomb force has been switched off in t
present calculation. We see that there is a quite pronouncA
dependence, which is somewhat in contradiction with
valueG;28/A MeV for the constant pairing matrix elemen
at the Fermi level usually employed in more schematic tre
ments of the nuclear pairing. On the other hand, if we cal
late Av(«F ,«F) not with a WS potential but with the HO
potential, we obtain a practically constant value. This m
indicate that theA21 dependence of the constant pairing m
trix element is better fulfilled in conjunction with a harmon
potential. The difference in the behavior withA using the HO
and WS potentials may come from the absence~HO! or pres-
ence~WS! of a surface contribution tov(«F ,«F), like it is
the case for the level density@1#.

III. CONCLUSIONS

In this work we showed how average nuclear one- a
two-body matrix elements can very efficiently be evalua
using the Thomas-Fermi approach. The main ingredient i
replace the density matrix for a given quantum stater̂n

5un&^nu by its counterpart averaged over the energy she

r̂E5
1

g̃~E!
(

n
d̃~E2«n!un&^nu,

0 100 200 300 400 500
 A

−38

−36

−34

−32

−30

−28

−26

−24

A
 v

(ε
F,ε

F) 
  (

M
eV

)

FIG. 6. Two-body pairing matrix elements computed with t
D1S Gogny force and the Shlomo potential~26! as a function of the
mass numberA.
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with simultaneous application of the Wigner-Kirkwood\ ex-
pansion for the smoothly varying spectral densityd̃(E2Ĥ)
and level densityg̃(E)5Tr@ d̃(E2Ĥ)#.

We calculated one- and two-body matrix elements,
stricting ourselves~in this exploratory work! to the lowest
order, i.e., the pure Thomas-Fermi approximation. We co
pared quantal and semiclassical values of the matrix
ments using harmonic oscillator and Woods-Saxon type
potentials. We did this also for parity projected and for a
gular momentum projected Thomas-Fermi theory. In all
cases close agreement with the average quantal beha
was found, showing the accuracy of the method. As in
case of the well-tested Wigner-Kirkwood expansion of t
full density matrix@1#, one expects that some improveme
also could be achieved for the matrix elements by inclus
of \ corrections.

With the positive result for the single-particle matrix el
ments at hand, we also calculated the average pairing m
elements of some effective nuclear two-body forces. Fi
we used ad interaction and compared diagonal and o
diagonal semiclassical elements with the correspond
quantal values. Again, the TF values nicely reproduce
quantum results on average. Next we estimated semicla
cally the diagonal pairing matrix elements of the Gogny D
force at the Fermi energy. Since the Gogny force is known
reproduce very well nuclear pairing properties@24#, it is in-
teresting to evaluate, e.g., theA dependence of its pairing
matrix elements around the Fermi energy and to see to w
extent the common assumption of aA21 dependence holds
Using for the mean field a potential of the Woods-Sax
type, it turned out that the falloff of the pairing matrix ele
,

C

s.

-
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ment is stronger than theA21 law. For this problem we have
no comparison with quantum values available, but the ex
rience with the one-body matrix elements and the pair
matrix elements for thed force makes us believe that th
values shown in Fig. 6 are also reasonably accurate.
stronger thanA21 decrease observed in Fig. 6 has its orig
very likely in the presence of a surface contribution impli
from the use of a WS potential, whereas the use of a
potential with the absence of a surface shows agreement
the A21 law.

It should be emphasized that, to our knowledge, the
method to calculate average matrix elements of a two-b
force has never been applied before. We think that the c
clusive study of this work will allow one to use averag
matrix elements for the calculation of many nuclear quan
ties where fine shell effects are not needed, such as op
potentials, giant resonances and their widths, and many o
quantities where the average trend is of interest. In a fut
publication, we will show how the application of these tec
niques can be used to study in a very transparent way the
dependence of the average pairing gap in finite Fermi s
tems in an almost analytical way.
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