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Thomas-Fermi theory is developed to evaluate nuclear matrix elements averaged on the energy shell, on the
basis of independent particle Hamiltonians. One- and two-body matrix elements are compared with the quantal
results, and it is demonstrated that the semiclassical matrix elements, as function of energy, well pass through
the average of the scattered quantum values. For the one-body matrix elements it is shown how the Thomas-
Fermi approach can be projected on good parity and also on good angular momentum. For the two-body case,
the pairing matrix elements are considered explicitly.
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[. INTRODUCTION where a straightforward quantum solution for finite systems
may reach its limits. A case where we treated correlation
The solution of the nuclear many-body problem presents &ffects in TF approximation was, as already mentioned, the
formidable challenge. Not only bare and effective nucleonlevel density parametéB]. Pairing correlations in finite nu-
nucleon forces are not completely known, but still for thoseclei have also already successfully been treated in the past
given as granted, one has to solve the many-body prob|em (56] This is one of the aspects which we shall consider again
a highly quantal, strongly interacting, self-bound, and therein this work in more detail.
fore inhomogeneous Fermi system. Over the years, semiclas- In this work we want to discuss on an aspect of the
sical techniques have helped to solve this problem, for inThomas-Fermi theory which in the past has been exploited
stance, in regard to the latter aspect. In practice, it is mainl@nly very little. This concerns the evaluation of matrix ele-
the Thomas-Ferm{TF) method and its extensions for the ments averaged over a certain energy interval that may be
description of nuclear ground-state properties which hadypically of the order offiw, i.e., the separation of major
been consideregsee Ref[1] and references therginThe shells. It must be pointed out that this is, to our knowledge,
nuclear density and kinetic energy density are the main inthe first attempt to evaluate not only one-body but also two-
gredients of this approach. body matrix elements in the TF approximation. This semi-
The semiclassical approximation often gives a directclassical calculation provides the smoothly varying part of
physical insight, yielding the shell average of the quantitieghe matrix elements dropping the shell effects according to
under consideration and providing their main tremehich, ~ the idea of the Strutinsky averaging methpd. We will
in certain cases, may be obscured by strong shell fluctuaglescribe several tests of the accuracy of the TF method for
tions). A known example is the nuclear binding energy whichon-shell densities. In the first part we will develop our ap-
coincides with the liquid drop part in the semiclassical ap-Proach for the matrix elements of single-particle operators,
proach. Another quantity of longstanding interest is the avfor given parity and angular momentum. This goes along
erage single-particle level density. It is well known that thesimilar lines already developed in the domain of systems
TF approximation to the level densityncluding # correc-  With chaotic behaviof8-11. In the second part we will
tions) coincides ana|ytica||y with the Strutinsky averaged address our main objective, which is to show that the method
quantal level density for the harmonic oscillatetO) poten- ~ also works for two-body matrix elements. Some preliminary
tial [2]. First performing the quantal calculation and then theresults have been published previously in Réf2]. As a
average is more cumbersome than calculating the shell avespecific example, we will treat the pairing matrix elements.
age directly via the TF method. The technical advantage of Let us give a short summary of the approach we are going
the latter becomes significant in the deformed ¢a3er, for  to develop. Consider, for example, the expectation value of a
instance, when one wants to go beyond the independent pagingle-particle operatdd in some shell model stafe):
ticle description to include correlatiof3]. The TF approach

is also very helpful for the calculation of surface and curva- 0,=(¥|0|»)=TrO|v)(»|]. (1)
ture energies. Actually, the latter quantity can only be cor-
rectly extracted in a semiclassical procedi4g Instead of knowing th®, quantum state by a quantum state

In general, however, we believe that the true virtue of thet may sometimes be advantageous and instructive to only
TF method shows up not only in calculating average properknow how matrix elementl) changes as a function of en-
ties in the independent particle approximation, where it carergy. We therefore introduce a single-particle matrix element
replace the results obtained through the more cumbersonaveraged over the energy shell:

Strutinsky method5], but rather in many-body applications .
going beyond the mean field or independent particle picture O(E)=Tr[ Opgl, 2
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where we caIbE the density matrix on the energy shell. It is and applied to the evaluation of some semiclassical one-body
related with the so-called spectral density matrix and will beand two-body matrix elements of physical interest. Our con-
defined immediately below. clusions are given in the last section.

The spectral density matrig(E — I:|) has the characteris-
tic discontinuous behavior due to the quantization of the ei- Il. WIGNER FUNCTION ON THE ENERGY SHELL

genvalues of the single-particle Hamiltoni&h It can be As stated in Eq(3) of the Introduction, we are interested
written, however, as a sum of a smooth p&(E —H) and of  , the density matrixoz on the energy shell. Consider the
a strongly oscillating part, i.e.,8(E-H)=6(E—H)  Wigner transforn{1] of density matrix(3), namely,
+8.sdE—H) [1,13,14. Analogously, the single-particle

level densityg(E) =Tr[ S(E— I:|~)]=EV5(E—3V) is oblained fe(Rp)= f dse™ PR+ s/2|;)E|R— §2), (5)

as a sum of two termg)(E) =g(E) +9.s{ E), whereg and

Oosc Stand for the smooth and the rapidly fluctuating contri-

butions, respectively. Using the smoa$tE —H) andg(E), where
we define the density matrix averaged on the energy shell as R=(r+r")/2, s=r—r’

- 1 ~ are the centroid and relative coordinates, respectively. In or-
PE= (E)é( = EJ(_E) EV SE=e,)v)(*I- 3 gerto obtain the TF approximation pléscorrections to the
Wigner function on the energy shéb), it is convenient to
It is therefore a smooth function d&. The smeared level differentiate with respect t& the Wigner-Kirkwood expan-
densityg(E) (per spin and isospin in this papen the de-  sion of the full single-particle one-body density matpx
nominator of expressiofB) ensures the right normalization =®(E—|3|), which is amply given in the literaturel]. Up

of pg, sinceg(E)=Tr{ S(E—H)]. to order#?, the result is

The smooth quantities entering Eg) are to be evaluated
in some continuum limif13,14). This is the case, for ex- 1 %2
ample, when one introduces the Strutinsky averaging proce- fe(R,p)= —[ o(E— Hcl)——VzVﬁ"(E— Hel)
dure[5,7] or alternatively(and this is the approach we adopt (B)
in this work), it can be done by replacindd, the 72 ) ) .,
independent-particlémean field Hamiltonian, by its classi- YTy {(VV) + —(p V)VI5"(E—=H¢)

cal counterparH_, that corresponds to the TF approximation

[1]. Such an approximation has been used very early by 4

Migdal [15] and later, as already mentioned, in the context of +O(R%) . (6)
chaotic motion dynamic$8—11]. Recently, we have em-
ployed it to describe Bose condensates in tfdi8, but we
are not aware of any systematic use in the context of nucle at strictly speaking. in order to get a consistent expansion
physics. The approach is not limited to the evaluation o f yh pld Ig,t ke int g t th P f
expectation values of single-particle operators. Also the av2! Te one should aiso take into accoun eexpansz|on 0
erage behavior of two-body matrix elements can be calcud(E) and then correctly sort out relatif) to order (see

lated. For instance, the semiclassical evaluation of the avef!SO comments at the end of Sec. Il A
age pairing matrix element, The first term in Eq(6) represents evidently the pure TF

approximation that is of lowest order fin In a first attempt
and to assess the accuracy of our approximation, we will

%ne should realize th@l(E) also containg corrections and

v(EE )= —=—- 2 S(E—¢,)8(E —¢,) content ourselves with the TF approximation. Integration
9(E)G(E) over the momenta yields the local density on the energy
) r shell:
X{(P(v,v)|v|®(v',v")), (4)
where |®(v,v)) is an antisymmetricnormalized two-body TF f ~ Mke(R) @
state constructed out of a stat¢ and its time-reversed state pe’( 2 ﬁ)3 pre"(Rp 2ﬁ2~(E)

|v), can be of great practical interest and shall be considered

in this work. As it is known[1,2], the Strutinsky method where

averages the density matrix over an energy interval corre-

sponding roughly to the distance between two major shells. oM

Implicitly the same holds if the equivalent Wigner-Kirkwood ke(R)=\/—[E-V(R)] (8)
expansion(TF approximation at lowest ordeis used for h?

PE
Our paper is organized as follows. In the following sec-iS the local momentum at the energyn the potentiaV(R),

tion, the Wigner function on the energy shell is introducedand the level densitg(E) is given by
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0.03 : : : this even-odd parity effect in projecting the TF density ma-
= g trix on good parity. This is easily done as follows. We cal-
0.025 culate the inverse Wigner transform tﬁ’:(R,p). This yields
0.02|-
e pE (1,1 =pL (R)jolske(R)], (12)
= 0.015
% e wherej, is the zeroth-order spherical Bessel function. Now
‘ the even-odd parity density on the energy shell is obtained as
0.005
elo 1 TF ' TF ’
0 pE°(0= 5Pt (1) =pL (1 =1 =
1
ETTTA | =S (= plm @)jo2rke(O)]}. (12
. N=5 i
0.01 / \"‘\\-\.\ B . We have drawn this expression in Fig.(dashed linesas
"E N N well. The bump(hole) structure exhibited by the quantal den-
= - \:-\\_\ g sity is now well reproduced in the interior. The agreement
L3 e only deteriorates near the classical turning point. One should
< 0,005 \‘\\\ — mention, however, that in spite of the seemingly rather spec-
N\ tacular improvement of formulél2) over Eq.(7), the former
r \ 1 presents some small problems. This concerns the behavior of
‘ ‘ ‘ .0 Eq. (12) around the turning point. The presence of the second
% 2 4 6 3 10 termin Eq.(12) can induce a slightly negative value of the
density around the turning point. Also the second term is not
R (fm) naturally limited tor values inside the turning point and thus

is oscillating around zero due to the Bessel function. This
leads to ambiguities in evaluating matrix elements such as
Eq. (2) which, however, numerically are rather unimportant.
Thus we advocate to use E) instead of Eq(12), except
for some problems where the even-odd bump structure may
a(E):f dRM ke(R) _ 9) be particularly important. The latter may, for example, be the
2m2H2 case for the evaluation of matrix elements of operators more
concentrated at the nuclear interior, e.g21ktc.
For the following, it is important to first elaborate on the
meaning and accuracy of this density on the energy shell. For
demonstration purposes, we will take as an example the
spherical HO potential but later we will see that our method We now proceed to calculate in TF approximation, as a
works equally well for a Woods-SaxaiVS) potential. function of the energy, the rms radius of a nucleon confined
In Fig. 1 we display the quantéolid line) and TF(dash- in a WS potential withVy=—44 MeV, a=0.67 fm, andR
dotted line densities of theN=4 andN=5 HO shells with =1.27AY3 fm with A=224 nucleons. We choose the rms
ho=41A"*3 and A=224. For the TF densities, we have radius for demonstration purposes but we could have taken
taken the quantal energies. We see that in both cases the BS well any other smoothly varying single-particle operator.
result passes accurately through the average, terminating We use the TF approximatiofiil) and show the results

FIG. 1. Quantal(solid line), pure TF(dashed-dotted line and
TF densities projected on the good parigashed ling for the
N=4 andN=5 harmonic oscillator shells.

A. One-body matrix elements

the classical turning point defined by (dashed lingtogether with their quantum mechanical coun-
terparts, represented by dots, in Fig. 2. We see that the TF
E=V(Ry). (10)  calculation very nicely passes through the average of the

scattered quantal values, with the exception of the lowest
The features of the TF densities on the energy shell are quitstate. This is a first confirmation of the accuracy of our ap-
analogous to the ones already known for the full TF densityproach.
[1]. However, on the quantal side one remarks that there is a In a next step we want to project the TF density matrix on
strong difference between odd parit€£5) and even parity different partial waves and calculate matrix elements as a
(N=4) shells. The former show a pronounced hole at thdunction of the energy for different values. One way to
origin whereas the second ones show, on the contrary, goroject on partial waves has been elaborated by Hglsge
enhancement. Both features can obviously be related to thEhere one premultiplies the Wigner function with the semi-
absence or presence of teavave contributions in the cor- classical projectors on the orbital angular momentum and its
responding HO shell, respectively. One may try to recovez component, i.e.,
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FIG. 2. Quantal and TRdashed ling rms radii for a Woods-
Saxon potential.

feim(Rp)= 8(1=[Rxp) Slm=1,(R,p)]S(E—H¢)).

(13

gE,I,m

Then one can calculate single particle matrix elements as

Rdp
(27h)3

O(E,I,m)=f OR.pPfem(Rp). (19

For local operators it is sufficient to know the density, which
can be obtained in integrating EGL3) over momenta. As-
suming spherical symmetry we can also sum over rthe

guantum numbers, and after some algebra one finally find

[17]:
2 —-1/2
41,02
PSS N CL] I ('+2 g
PE g n?R%ge, Y 42 IMR?
1 2
I+E) #2
x®| E-V(R)——_|, 15
RI-— 15

where the level densitﬁEJ is chosen in such a way that the
integral of Eq.(15) over the availabléR space is normalized
to unity. Let us mention that we have repladéti+1) by
(I+%)?, as it is done in the WKB method to recover the
right asymptotic behavior of the wave function in the free
[V(R)=0] case[18].

PHYSICAL REVIEW ®&7, 054307 (2003

pe(r,r')==—— dp glp-rlfig=ip-t'lfi
g(E)J) (27h)3
p2
X O E_W_V(R)) (16)

Expanding the plane waves in spherical harmonics,
e r=am 2, (=KD Yim( QW Y@, (17

we can read off thé-projected density matrix. For the local
density, we then obtain

2M _

pe 1 m(R) ==—— —= ke(RI{[I[RKe(R) 1} Y ()|
9e,I,m mh
XO[E-V(R)], (18

whereElEJan is again chosen to ensure the right normaliza-
tion of Eq.(18), i.e., [dRpg | m(R) =1. We can calculate, for
example, the mean square radius as a functioi fr dif-
ferentl values,

<R2>E,I:f dRR?pg | m(R). (19
Notice that Eq.(19) becomes independent of after the
angular integration.

In Table | we show various momen{[ﬁ%“)”“ (in fm) ob-
tained using the TF local densities on the energy shell pro-
vided by Eqgs.(15 and (18), as compared with the corre-
sponding quantal values for the aforementioned WS potential
with A=224 nucleons. From these tables one can see that the
quantal rms radiusn=2) of eachnl state is, on average,
well reproduced using the semiclassitgirojected on-shell
densities given by the TF approaches in E4$) and(18),
whereE has been replaced by the quantal eigenvalue corre-
sponding to thenl state(for consistency, we should perform
a WKB quantization from which we refrain for simplicity as
it would not affect the result mughA more quantitative
analysis shows that the quantal rms radii are reproduced by
Eqg. (15) within 2% in average over the range of energies
considered, while using E418) the average relative error is
around 4%. Higher moments obtained with the TF densities
on the energy shell also reproduce reasonably well the results
of the full quantal calculation. For the highest moment con-
sidered herer{=10), the average relative error with respect
to the quantal calculation is around 4.3% for both semiclas-
sical approximations. One should point out that the TF local
densities on the energy shell are free of the shell effects that
are present in the quantal calculation. Actually, the TF results
represent the shell averaged values of the moments and their
difference with the quantal calculations provides an estimate
of the shell correction for the considered state. Of course, a

We recently employed, however, a different way to do theprecise calculation of the shell correction in the considered
| projection, which for some purposes may be more convemoments would require a Strutinsky calculation, which is not

nient[19]. For this we first perform the inverse Wigner trans-
form of the TF part of Eq(6),

an easy task for a WS potential. For a related discussion we
refer the reader to Ref20], where the moments ranging
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TABLE I. Moments(R™*" (in fm) of severan| states forA= 224 particles in the Woods-Saxon potential
described in the text. The full quantum mechanical vali@el) are compared with those obtained with the
semiclassical approaches, E¢E5) and(18).

nl E (MeV) n=2 n=4 n=6 n=8 n=10
1s QM 3.87 4.021 4.441 4.780 5.069 5.323
Eq. (15 4.040 4.528 4.824 5.019 5.160
Eq. (189 4.299 4.638 4.863 5.024 5.143
1p QM 7.65 4,732 5.042 5.307 5.543 5.758
Eqg. (15 4.653 5.011 5.267 5.449 5.583
Eqg. (18 4.900 5.144 5.321 5.546 5.561
1d QM 12.23 5.226 5.477 5.701 5.907 6.099
Eq. (15 5.123 5.397 5.612 5.776 5.900
Eq. (18 5.323 5.516 5.664 5.782 5.876
2s QM 13.92 4.746 5.401 5.780 6.052 6.275
Eq. (15 4.668 5.301 5.662 5.897 6.064
Eq. (18 4.683 5.331 5.679 5.901 6.060
1f QM 17.49 5.616 5.831 6.031 6.218 6.397
Eqg. (15 5511 5.731 5.913 6.057 6.172
Eqg. (18 5.568 5.819 5.948 6.054 6.141
2p QM 20.08 5.154 5771 6.159 6.439 6.668
Eq. (15 5.065 5.653 6.009 6.244 6.411
Eq. (189 4.931 5.601 6.002 6.256 6.433
1g QM 23.37 5.948 6.143 6.327 6.504 6.679
Eq. (15 5.836 6.021 6.179 6.309 6.414
Eq. (18 5.942 6.083 6.200 6.297 6.379
2d QM 26.63 5.587 6.159 6.547 6.836 7.078
Eqg. (15 5.480 6.014 6.354 6.583 6.747
Eqg. (18 5.293 5.942 6.356 6.622 6.802
3s QM 27.80 5.485 6.236 6.679 6.998 7.263
Eq. (15 5.374 6.077 6.467 6.719 6.895
Eq. (189 5.156 6.014 6.483 6.771 6.963
1h QM 29.78 6.252 6.435 6.612 6.788 6.967
Eq. (15 6.128 6.289 6.429 6.547 6.644
Eq. (189 6.177 6.316 6.427 6.521 6.601
2f QM 33.44 6.063 6.606 6.999 7.304 7.584
Eq. (15 5.923 6.410 6.731 6.950 7.108
Eqg. (18 5.775 6.375 6.766 7.018 7.188
3p QM 34.97 6.097 6.862 7.341 7.709 8.037
Eq. (15 5.939 6.621 7.004 7.421 7.421
Eq. (189 5.866 6.621 7.036 7.294 7.469

from n=1 to n=10 of the total density oA=224 particles and p states of a WS potential witlh=224. From these
in a HO potential were evaluated using several semiclassicdigures one can see that the quantal on-shell densities are
approaches and the Strutinsky averaging method. The facather well reproduced by the TF approach, E). In par-
that TF works for moments as high as-10 makes us be- ticular, the quantal lLon-shell densities are well reproduced
lieve that one can certainly consider in our approach alby Eqg. (18) in the interior. However, as in Fig. 1, there are
single-particle operators that are low-order polynomials indiscrepancies between the quantal and TF densities in the
the phase-space variables. outer part around the classical turning point. Fdrstates

It is also instructive to directly compare the densities. For(n>1), the innern—1 bumps are well reproduced by Eq.
this, we again také& equal to its quantal value in EggL5) (18), and the agreement deteriorates in the outer bumps due
and (18). The comparison between the quantal and TF onto the classical turning point where the TF densities vanish.
shell densities is shown in Figs. 3-5. In each one of thes®n the other hand, the TF on-shell densities obtained with
figures, the quantal on-shell densfgolid line) and the semi- Eg. (15) do not reproduce the quantal density profiles at all.
classical densities provided by E¢L5 (dash-dotted line  As it can be seen from E@15), this density is defined in the
and Eq.(18) (dashed ling are displayed for all the bounsl  region in between the two rootsurning points of
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FIG. 3. 1s and Ip on-shell densities in a Woods-Saxon potential ~ FIG. 4. Same as Fig. 3 for theszand 2p on-shell densities.

calculated quantallysolid line) and with the TF approximation us-

ing Eq.(15) (dash-dotted lineand Eq.(18) (dashed ling The dash-  gpjte of their possible divergences, they yield finite and ac-

dotted vertical lines indicate the asymptotes of Ep). curate results when used to compute a restricted class of

) expectation values by integratiph3,20. In this respect, we

|4 E 52 again refer the reader to Tables | and Il where he finds con-

2 firmation of our statement. A similar situation is found in

E-V(R) - W: : (20 computing the kinetic energy for a bosonic system in Ref.

[16]: the semiclassical and quantal kinetic energy densities

In this approach, the three-dimensional problem has beef® c_IearIy different but give similar values of the integrated

reduced to an equivalent one-dimensional problem Ror kinetic energy. On the other hand, one should note that sort-

with an effective potential that in addition ¥(R) contains Ing out correctly the various orders #nis very important to

the centrifugal barrier, as it happens in the WKB method.achieve optimal results as shown on other occagi2021].

Thus, in this case, we find two different turning points. Theln expression(18), there remain somé corrections to all

largest root of Eq(20) is very close to the classical turning orders in the form of the spherical harmonics which are

point of Eq. (18) given by ke=0 [see Eq.(8)], while the  quantal wave functions, i.e., solutions of a Sctinger equa-

smallest root gives the inner turning point due to the cention. This mixing of resummation ii on the one hand and

trifugal barrier. Since the TF on-shell dens(fys) has square of lowest order in% on the other hanin the form of thed

root singularities at the two turning points, its integral as wellfunction in Eq.(16)] finally makes the on-shell densiti8)

as the corresponding expectation values converge. slightly less accurate than E(L.5), which represents the cor-
We arrive at the, at first sight, paradoxical result that therect—0 limit as shown in Ref[17].

densities(15) that have no detailed resemblance with the

guantal ones reproduce the rms val(asd very likely most

of other expectation values of smoothly varying operators B. Two-body matrix elements

better than the densities given in Ed8), which show quite i i L i

reasonable overall behavior in comparison with the quantal AS & further interesting application we want to consider

results. We here find an illustrating example that the Thomaghe semiclassical evaluation of average two-body matrix el-

Fermi and Wigner-Kirkwood local densities are to be re-ements. An example of particular interest is the case of ma-

garded as mathematical distributions, in the sense that itrix elements of the pairing typé® (v, v)[v|®(v',v')) [see
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' ' ' ' single-particle wave functions,(r,o) = ¢nm(r) x, (with
o=+3%). Assuming spherical symmetry, and considering
01 3s B that the time reversal of|v) involves :|'(Y|m)(g)
— :(_l)mYl,fm(_1)1/270—)(70:(_1)1/270Y|*mX7(ri one
e 1 finds
@0 05 — 1 R P
=0 72 2 APl )
mm’ o,0'
=2 f drdr’ dpim(r’) dim(Nv(r—r")
0 Sk ST | ‘ ! m’ml
4 6 8 10 ,
X¢n’|’m’(r)¢:r|rml(r ) (22)
L ': D ' ' ' ] According to this result, we obtain the following expression
L | for the average pairing matrix elements of E4):
0.061— ! i\ 3 | -
AN P !
— i /' \ | T v(E,E’):jdrdr’pE(r,r’)v(r—r’)pE,(r’,r), (23
’ 0 1
o004l i\ I
g | : v\ | | wherepe(r,r')=(r|pg|r’). In TF approximation, the nonlo-
< : 3\ i cal on-shell density matrigg(r,r') is given by Eq.(11). We
002= /1 ; N see that it is a symmetric function mandr’.
i i \ i | For the case of a force,6(r—r'"), Eq.(23) reduces tda
| | ‘\I TN ~ I practically identical expression can be found in Reg])
1l 1 i \_m
% 2 4 6 8 10
R (fm) U(E,E,):Uof drpE(I‘)pE/(l’). (24)
FIG. 5. Same as Fig. 3 for thesaand 3 on-shell densities. Using the TF expressiof¥) for pg(r), we can evaluate Eq.

(24) with a HO potentiaV(r) = mw§r2/2 and compare with
Eq. (4)], which we shall address in this section for identicalthe quantum mechanical matrix elements averaged on each
nucleons. It is straightforward to recast the state-dependemiajor shellN of energyE=Ey=(N+ 3)Aw. This is done in
pairing matrix element as Table Il with vy=—345.723 MeV fni and iwy=41A"1°
_ _ _ _ - MeV. We again see that the semiclassical results agree very
(@(v,0)|v|P(v",v"))=(vr|v|[v'v") = (vy[v|v'"). well with the averaged quantal values, even for the nondi-
(21)  agonal elements.
_ — _ _ With the above positive experience at hand, we next pro-
The two-particle statev) on the right-hand side are prod- ceed to calculate the average pairing matrix elements
uct states of v) and|v). The stategv) are represented by v(eg,e¢) of the Gogny D1S forcd23] that is known to

TABLE Il. QM and TF averaged two-body matrix elemerits MeV) of the v(r,r')=—345.723(r
—r") force calculated with harmonic oscillator density matrices on the energy shell=f@24 particles.

N/N' 0 1 2 3 4 5
QM 0 —1.44 -0.72 -0.45 -0.32 —0.24 -0.19
TF -1.20 -0.68 —0.44 -0.31 -0.23 -0.18
QM 1 -0.60 -0.41 -0.29 -0.22 -0.18
TF —0.56 -0.39 -0.29 -0.22 -0.18
QM 2 -0.35 -0.27 -0.21 -0.17
TF ~0.34 ~0.26 -0.21 -0.17
QM 3 —-0.24 ~0.19 -0.16
TF -0.23 -0.19 -0.16
QM 4 -0.17 -0.15
TF -0.17 -0.15
QM 5 -0.14
TF -0.13
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reproduce experimental gap values when used in micro- -24 T

scopic Hartree-Fock-Bogolyubov calculatiof4]. Writing - .

the diagonal matrix elemertt) at the Fermi energgr, by 26 E

using Eq.(23), and expressing it through the lowest-order < - w -

Wigner function in inverting Eq(5), one arrives in TF ap- g C l. ]

proximation at ~ -30|- —

3 :

1 dpdp’ £ " =

v(eg,e )=~—f dRJ —d[eg—Hy(R,p)] = C N ]

T (2m)8 CLEFT TP < [ . =

C u ]

Xv(p=p')dler—He(RP)]. (25) 3 o

_ Covovv v v v b b v by gy 1

Here, Hy,=p%/2M* + V(R) is the classical Hamiltonian of 8 100 200 300 400 500
independent particles with effective makk* (see below A

moving in an external potential well(R), andv(p—p’) is
the Fourier transform of the particle-particle part of the
Gogny force which describes the pairing. For the numerica
application, we use fo¥(R) a slight variant of the potential
given by Shlomd14]:

FIG. 6. Two-body pairing matrix elements computed with the
PlS Gogny force and the Shlomo potentiab) as a function of the
mass numbeA.

M =1+ M 2 U(R,k) (30)
V(R)=— Vo 4 Vo , M* (R,k) Rk ok
1+exp—Rp/d)  1+exd(R—Ry)/d]
(26 whereU(R,k) is the Wigner transform of the single-particle
with potential obtained from the Gogny interaction assumed
spherically symmetric irk.
o 1aA™3+1 Also, the level density(e¢) is calculated in the TF ap-
Ro—[lﬂwd/Ro)z]ﬂg m, proach using the same potential and effective mass,
d=0.70fm, and Vo=—54 MeV. (27) 2M*(R)

3/2
~ 1(Re
g(ep)= ;J dRRZ(T) Ver—V(R). (31
In this equationR, has to be determined iteratively. 0
Equation(25) can be reduced to a one dimensional inte-

gral overR, which can be performed numerically, In Fig. 6, we showAv(er ,e¢) as a function of the mass
numberA. The Coulomb force has been switched off in the

2 1 (R present calculation. We see that there is a quite pronouced

U(s,:,s,:)=2 ZC_zf dRRB dependence, which is somewhat in contradiction with the
=1 ucJo value G~ 28/A MeV for the constant pairing matrix element

X exp{—al e~ V(R) J}sinh{al e~ V(R) ]}, at the Fermi level usually employed in more schematic treat-

ments of the nuclear pairing. On the other hand, if we calcu-
(28)  late Av(eg,e¢) not with a WS potential but with the HO
potential, we obtain a practically constant value. This may

whereR; is the classical turning point defined in EQ.0), indicate that theéd ~ ! dependence of the constant pairing ma-

and trix element is better fulfilled in conjunction with a harmonic
L\ 2 . 2 potential. The difference in the behavior withusing the HO
_ 1 2M a= M™ and WS potentials may come from the abse(t®) or pres-
473g(ep)?\ #2 |’ B2 ence(WS) of a surface contribution to(eg,e¢), like it is
the case for the level densify].
and
z.= W3/2M3(WC_ BC_ HC+ MC) (29) I1l. CONCLUSIONS

L In this work we showed how average nuclear one- and
The factorsz correspond to pairing in th&=0 andT=1  \4.hody matrix elements can very efficiently be evaluated
channels and are written in terms of the parameters of thﬁsing the Thomas-Fermi approach. The main ingredient is to

Gogny force W., B., He, M., and u.) [23]. We have . . . -
. S . replace the density matrix for a given quantum state
introduced the position-dependent effective mass(R) —|2)(»| by its counterpart averaged over the energy shell

from the Gogny force in order to make the calculation of the
pairing matrix element more realistic. It is obtained by evalu- 1
ating .atk:ksF(R) the position- and momentum-dependent - Z E(E—ay)|v><v|,
effective masg$25], g(E) v
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with simultaneous application of the Wigner-Kirkwosicex-  ment is stronger than th& ™! law. For this problem we have
pansion for the Smooth|y Varying Spectra' dengs‘()E_ |:|) no Comparison with quantum values aVaiIabIe, but the expe-
and level densit)ﬁ(E)=Tr[~5(E—H)] rience with the one-body matrix elements and the pairing

We calculated one- and two-body matrix elements rematrix elements for thej force makes us believe that the

stricting ourselvegin this exploratory work to the lowest values shown in Fig. 6 are also reasonably accurate. The

order, i.e., the pure Thomas-Fermi approximation. We comstronger tharA~ ! decrease observed in Fig. 6 has its origin

pared quantal and semiclassical values of the matrix elel®y likely in the presence of a surface contribution implicit
?rom the use of a WS potential, whereas the use of a HO

ments using harmonic oscillator and Woods-Saxon type o . ; )
potentials. We did this also for parity projected and for an-Potential with the absence of a surface shows agreement with

-1
gular momentum projected Thomas-Fermi theory. In all thdheA” = law. .
cases close agreement with the average quantal behaviors 't Should be emphasized that, to our knowledge, the TF

was found, showing the accuracy of the method. As in thdnethod to calculate average matrix elements of a two-body

case of the well-tested Wigner-Kirkwood expansion of theforce has never been applied before. We think that the con-

full density matrix[1], one expects that some improvementCIUS'Ve study of this work will allow one to use average

also could be achieved for the matrix elements by inclusiofnatrix elements for the calculation of many nuclear quanti-
of % corrections. ties where fine shell effects are not needed, such as optical

With the positive result for the single-particle matrix ele- potenf[i_als, giant resonances and the!r wid.ths, and many other
ments at hand, we also calculated the average pairing matrgyam't'e.s where 'the average trend is _Of mterest. In a future
elements of some effective nuclear two-body forces. FirstP_Ubl'Cat'O”’ we will show hOV_V the application of these teChf
we used ad interaction and compared diagonal and off- hiques can be used to study in a very transparent way the sizé
diagonal semiclassical elements with the correspondingependence of the average pairing gap in finite Fermi sys-
quantal values. Again, the TF values nicely reproduce th&€MS in an almost analytical way.
guantum results on average. Next we estimated semiclassi-
cally the diagonal pairing matrix elements of the Gogny D1S
force at the Fermi energy. Since the Gogny force is known to
reproduce very well nuclear pairing propert{est], it is in- P. S. wants to thank P. Leboeuf and N. Pavloff for useful
teresting to evaluate, e.g., thhe dependence of its pairing discussions and information. Two of ¢X. V. and M. C)
matrix elements around the Fermi energy and to see to whicacknowledge financial support from the D@llinisterio de
extent the common assumption ofAa® dependence holds. Ciencia y Tecnolog, Spain and the FEDER under Grant
Using for the mean field a potential of the Woods-SaxonNo. BFM2002-01868 and from the DGatalonia under
type, it turned out that the falloff of the pairing matrix ele- Grant No. 2001SGR-00064.
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