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Cluster effects in the structure of the ground state and superdeformed bands 0f%Zn
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The properties of the states of the superdeformed barfdZin, including the moment of inertia and its
angular momentum dependence, transition quadrupole moment, and the decay intensities into the ground state
band, are analyzed in the framework of the dinuclear system model. The model Hamiltonian depends only on
special degree of freedom, namely, on the mass asymmetry coordinate. The results of calculations agree well
with the experimental data.
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I. INTRODUCTION mis the nucleon mass. These values are close to the sticking
moment of inertia of the®’Fe+®Be cluster configuration,
In many light nuclei clustering is a very prominent feature which is 750n fm?. We should mention also that the thresh-
in a large number of states. Typical examples of clustering irld energies for the decay d¥Zn into *%Fe+®Be (10.8
light nuclei are known, for example, O and?Ne, where ~MeV) and **Cr+*2C (11.2 Me\) are close to the extrapo-
12C+ o and %0+ a structures are particularly stadle—3. lated value of the superdeformed band head, which is ap-
It is interesting that the clustering i#Ne is realized in the Proximately 7.5 MeV. Thus, it is quite possible f8iZn that
ground state band, but iA€O a cluster structure has the We have two sets of states belonging to two cluster configu-
excited band built on the 6.06 MeV intruder state. In heaviefations. The first set includes states of the ground state band
nuclei the a-cluster structures have been predicted to be?"d contains thex-cluster configuration as an important
stable in%°Ca and“Ti. In Refs.[3,4] the a clustering is component. The second set mcIudes states of the superde-
discussed with respect to the excited deformed barfiQa formed band and corresponds mainly to the Be-cluster con-

fyya figuration.
and the ground band iff'Ti. . : . _
In thegpairs of nuclei®0— 2Ne and %°Ca—*Ti one of The aim of the present paper is to describe the properties

X . . of the superdeformed band 6fZn and especially the decay
the partners is a spherical double magic nucleus and thgs yhe superdeformed band into the ground state band by
other'lsa}doqblgemagéc nucleugsp@uspartlcle:The nextpair ysing the dinuclear model, which is a variant of a cluster
of th_ls kind is _N|— %Zn. In 5®Ni the excited deformed model. In this model the mass asymmetry variable (A,
rotational band is knowri5] up to 17=12". In ®Zn the  _ A )/(A,+A,), which describes the partition of nucleons
threshold for thea decay is only 2.7 MeV higher than the between the clusters, is used as a collective coordiriaiie
ground state. Therefore, it is quite possible that the groungince in this modely is a dynamical variable, the wave
state band of°Zn contains ar-cluster component. In Ref. function of the nucleus contains the components of different
[6] this assumption has been used for the description of theluster configurations including the mononucleus.
ground state band d%Zn where ana-cluster configuration
with fixed mass asymmetry has been applied. However, there Il. MODEL
is also observed a superdeformed band%n [7]. At spins '
higher than 12 onl\E2 transitions between the states of the = Nuclear systems consisting of the heavy clugteiplus a
superdeformed band have been seen. In the spin regionlight clusterA, belong to the class of dinuclear-type shapes.
=8-12 the superdeformed band decays into the states of tidey were first introduced to explain data on deep inelastic
ground band. The decay of superdeformed rotational bandand fusion reactions with heavy ions. Instead of a parametri-
into normally deformed or spherical states is one of the veryation of the nuclear shape in terms of quadrupole, octupole,
interesting nuclear structure problems. It can be viewed as and higher multipole deformations, the mass asymmetry co-
shape coexistence phenomenon. By using the experimentatdinatez and the distanc® between the centers of mass of
information on the decay out of the superdeformed states, thitie clusters are used as relevant collective variables. They
mixing mechanism of states having very different internalform a minimal set of the collective variables, which can be
structures can be studied as a function of spin and excitationsed to describe both mirror symmetric and mirror asymmet-
energy. The properties of the superdeformed states in heavic deformations of a dinuclear system. There is another col-
nuclei have been analyzed in the framework of the dinuclealective variable, namely, the charge asymmetry coordinate
model in Ref[8]. The properties of the superdeformed bands»y,=(Z,—2,)/(Z,+Z,), which also plays an important
in the A=60 region have also been theoretically explainedrole. However, sincéZn is anN=Z nucleus, we specify
within the cranked Hartree-Fock, cranked Nilsson-the trajectory of the motion of the system in thern, plane
Strutinsky, and relativistic mean field approach@s13. taking »,= 5 along this trajectory. In this case both clusters
In the superdeformed band 6%Zn the moment of inertia are nuclei with isospinT=0 in the ground state and the
depending on spin takes the values (692—-#9%?, where  symmetry energy is minimized.
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Since for very asymmetric systems considered in the pa- 25
per the frequency of the oscillation Rin the cluster-cluster
interaction potential is much larger than the frequency of the
oscillation in , we can seR=R,(7), whereR,,(7) is a
distance between the centers of mass of the clusters at the
minimum of the cluster-cluster interaction potential, in the  1sf .
treatment of the motion imy. This approximation reduces the
problem to the one-dimensional one. The used effective
cluster-cluster interaction potential &=R,,(7) takes the
zero-point energy iR into accoun{8,15].

As mentioned in the Introduction, the wave functionzn 5- ]
can be thought of as a superposition of different cluster-type
configurations including the mononucleus configuration with |
|71=1. The relative contribution of each cluster component
to the total wave function is determined by the collective a a
Hamiltonian. Treating the dynamical variabjeas a continu- 38 o8 o2 o2 0 02 04 o6 o8
ous variable, we take the collective Hamiltonian in the form X

101 1

E (MeV)

A2 d 1 d FIG. 1. Potential energy of%Zn as a function ok used in the
T dy B(y) dgy +U(7.1), (D) calculations. The variable is defined asc= p+1if <0, x=7
-1 if »>0.
whereB( 7) is the inertia coefficient and(#,l) the poten-
tial energy. The eigenfunctions of this Hamiltonian have asponding to the Li- and B-cluster configurations, potential
well defined parity with respect to the reflectiop— — %, energy has maxima. Using the calculated values of the po-
which is in fact a space reflection. Here, we take tential at »=7,,7.,78e, 78, 7c and so on we have ap-

=R, (7) and deal with the one-dimensional problem. proximated the potentidl by the stepwise potential shown
The potentiall(#,1) in Eqg. (1) is taken as the dinuclear in Fig. 1. The widths of the minima and the barriers of the
system potential energy for| <1 [8,15), potentialU are not known from our calculations, since these

calculations give us only the values of the potential at dis-
U(n,1)=Bi(n)+By(n)—B+V(R=Ry,71). (2) crete points. To minimize the number of the free parameters,

- . , we have taken the widths of all the potential minima to be
Here, the quantitieB, () andBy(#) (which are negative o5 to each other. The same is done for the barrier's

are the experimental binding energies of the clusters forming s The widths of the potential minima are taken to be
the dinuclear system at a givep, and B is the binding  gjightly wider than the widths of the barriers in order to

energy of the mononucleus. The quantityR, #,1) in the — geqerine correctly the energy of the experimentally known
Eq. (2) is the effective nucleus-nucleus interaction potential.3— gtate which is very sensitive to the width of themini-
It is given as mum.

To calculate the potential energy B0, we need the
moments of inertia. For different cluster configurations, they

with the Coulomb potentiaVc,,, the centrifugal potential are set equz_il t_o the dir_u_JcIear moment of inertia calculated

Vioe=h2(1+1)/[23(7,R)], and the nuclear interaction Under the sticking condition

Vn, Which is obtained with a double-folding procedure using AA

the ground state nuclear densities of the clusié®. Anti- J=3% +35 + ﬁmRﬁ]( 7), (4)

symmetrization between the nucleons belonging to different ! 2 A

clusters is regarded by a density dependence of the nucleon- _ ) o o

nucleon forces used in a double-folding procedure. This denwhereJ, (i=1,2) is the rigid body moment of inertia of the

sity dependence of the nucleon-nucleon forces producesigh cluster. To reach the correct description of the

repulsive core in the cluster-cluster interaction potential andy-transition energies in the ground state band, we describe

thus, the minimum aR=R,,. The details of calculation of this band as a soft rotor with the moment of inertia linearly

V\ are presented in Ref8]. depending on spih for 1<8. Thus, the known energies of
Our calculations have shown féPzn that the dinuclear the states of the ground band are fitted, in fact. It is seen from

configuration with ane cluster as the light cluster has a the experimental data that the ground state band%@h

potential energy smaller than the energy of the mononucleushanges abruptly abovie=8. The experimental energy of

at|n|=1. With respect to the ground state energy the potenthe | =10 state is much higher than the value that can be

tial at thea minimum is equal to—4.5 MeV. Next impor-  obtained by extrapolating smoothly the data for the lower

tant minima correspond t6Be and “C cluster configura- spins. The physical reason is clear. In the configurations with

tions with the following values of the potential at the 1<8 the four valence nucleons, two protons and two neu-

minima: 5.1 MeV and 9.0 MeV, respectively, with respect totrons, occupy single particle states of fheshell: ps,, 5,

the energy of the mononucleus. At the valuessotorre-  andpy,. In this casd =8 is the maximum angular momen-

V(R!nll):Vcoul(R!n)+VN(R!7])+Vr0t(R!771|) (3)
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tum, which can be realized. To obtain a larger valué, dfie  pairing correlations. SubstitutingG instead of (7
nucleons have to occupy higher lying single particle states+ A 7|H|7), we obtain the upper boundary 8
First of all, gg/». In this case the energies of the states with
=10 obtain an additional shift related to the shell gap. In B h2A3 _ RPAR
the group theoretical realization of the cluster mo[d], T 2X16X25 MeV 800 MeV'
which takes into account the Pauli principle exactly, this
abrupt change is described by a change of the irreduciblor 5%Zn, it gives B=11165n fm?. This estimate can be
representation of the dynamical symmetry group describingised for orientation only in the case of massive clusters
the cluster configuration. In our rather macroscopical modeWhere pairing concept is better justified. The case ofdhe
we describe it by an increase of the value Wf| /=1, cluster should be considered separately. The best description
I =10) needed to reproduce the experimental energy of thef the experimental data we obtain takirg(»= 7g)
|”=10" state. For higher values ¢f we assume the same =7580m fm? is not far from estimaté7). The value of the
angular momentum dependence of the moment of inertia ahertia coefficient at thex—minimum, where it determines
the ground state band dras forl <8. We did not change the the value of the zero point energy, is fixed by the experimen-
| dependence of the moment of inertia because of the followtal value of the ground state energy. We obtairigfy
ing reasons: in the shell model the wave functions of the= »,)=790m fm?, which is used in our calculations.
states of the ground state band wits 8 are characterized The value ofB(7,) can be estimated also in a different
mainly by four valence nucleons. States witk10 have way. Let ¥{*) be the eigenfunctions of the positive and
more valence nucleons. However, nuclei from the same paregative parity states with angular momenturitheir linear
of the nuclide chart a§%Zn, but having more than four va- combinations \[rvaL>=1/\/§(\[rf+)tqf|(—)) are the wave
lence nucleons, such &8Fe, °Ni, °#%Zn, and®Ge have functions located at the right or left minima[17]. By anal-
approximately the same energies of the firstghd 4" states ogy with Eq. (6) the transition matrix element
as %%n. (PPIH|w{")y can be estimated as

The inertia coefficienB is considered as a function af
In Ref. [15], where the alternating parity bands in actinides %2
have been analyzed, the inertia coefficient was treated as a(W{P|H|¥My=(— 7' |H|7.)= | -
constant. However, in the present paper a lighter nucleus is 2B(7,)[2(1-17,)]
considered and because of this the scalelof variation isf ®)
larger, since this Sca'? IS proportlonalkp_. Moreover, in 1At the same time, substituting in this matrix element the
the present investigation at least two minima of the potential . (RL) ; . ()
U play an important role. Our previous investigation of the - AP c>>1ons fOF.P' In terms of the eigenfunction¥,

piay P b - 9 of the HamiltonianH, we obtain
cluster effects in the structure of the actini&5] has shown ’
that for mass asymmetries corresponding todtm Be clus- 1
ter, theoretical models can give only a qualitative estimate of <\I'|(R)|H|\P|(L))=§(E,(’)— E(M). 9)
the value ofB(7), since in this case a smaller number of
single particle states is involved in the nucleon transfer anc‘.hus
fluctuations of the matrix elements become important. The '
average value of the inertia coefficieBican be estimated in

)

2
the following way. Rewriting the Schdinger equation with (El(—)_ E,(+)): h _ (10)
Hamiltonian(1) and a constarB in a discrete form B(7)[2(1— 7' )]?
42 For =3, parity splitting El(_)—El(”) can be calculated
(A +i(n—An)—24(n)] using the experimental energies of the lowest 2, and
2B(A7) 4" states. Substituting this value ang, ®=0.9 into Eq.
+U(n)p(n)=E(7), (5) (10), we obtainB(7,) =660m fm?, which is consistent with

the value used in the calculations.
we obtain the following expression for the nondiagonal ma- The experimental mean quadrupole momentis deter-

trix element ofH in a discrete basis: mined by the transitions in the spin range 12—-22. The
best fit to data is obtained wit@;=2.75+0.45eb[7]. In the
22 cluster model the transition quadrupole moment is deter-
+A7HI = — 6 mined by the following expressidi8]:
(n+An|H|7) 2B(A7)? (6)

ARy 2y Z3\ ,
22 (AZA_1+A1A_2 Rin(7)

As it follows from the definition ofy, for two-nucleon trans- Qi=2e
fer Ap=4/A. The quantity{ 7+ A »|H|7) can be estimated

in the case of two-nucleon transfer as a matrix element of the Z, Z,
pairing interaction. Ther(»+A |H|7)| takes the values = ZeARZn( 7)(1— 7;2)((1— n)A—+(1+ 77)A— ,
between the pairing interaction constadf which is esti- 1 2
mated asG=25/A MeV, and the pairing gap if there are (11
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FIG. 3. Spin as a function d&, in the superdeformed band of

80zn. The results of calculations are shown by the dashed curve.
FIG. 2. Experimental and calculated energies of the states of th&he experimental datésolid curve are taken from Refl7].
ground statdGS) and superdeforme(SD) bands in®%Zn. Experi-

mental data are taken from Ré7]. compared with the results of calculations. The calculations

qualitatively reproduce a deviation from the smooth depen-
dence of the angular momentum on thdransition energy.
However, the effect is overestimated.

Figure 4 shows the squares of the wave functions of the
states of the ground state and superdeformed bands taken at
"Y=8 as functions of the variabedefined as

where the intercluster distanég, is equal to
Ru(7)=[1.14A}*+A}3 +s] fm (12

and s takes values between 0 and 0.5. For the cluster co
figuration with 8Be A;=52, A,=8, Z;/A;=Z,/A,=ZIA
=1/2, andQ;=3.43eb for s=0.5 andQ,;=2.96eb for s
=0. Thus, the results of the cluster model are in agreement x=n+1 if <0,
with the experimental data for the transition quadrupole mo-
ment. Concerning the moment of inertia, we already men-
tioned in the Introduction that the experimental moment of
inertia of the superdeformed band is in correspondence with
the moment of inertia of the cluster configuratidiBe 30
+%2Fe calculated under the sticking condition. “
Thus, our estimates show that the cluster interpretation of 2s- I 1
the properties of the superdeformed band®f&n is quite ro
realistic. In the following section we present the results of 5L
calculations of the energies and decay properties of the su-
perdeformed band with Hamiltonigt).

x=n—1 if >0. (13

(MeV)

Ill. RESULTS OF CALCULATIONS AND DISCUSSION 10k - -

The calculated spectra of the ground state and superde-
formed bands are shown in Fig. 2. As is described in Sec. Il, 5 ]
the energies of the states of the ground state band with spins
from 1=0 to 1=10 have been used to fix the angular mo- or .
mentum dependence of the moment of inertia and the addi- | =8
tional shift of theU(|»|=1,1=10). The energies of the 5 ‘ ‘ ‘ ‘ ‘ ‘
states of the superdeformed band are described quite well ° 0.1 0.2 e 05 0.6
including a variation of the moment of inertia with spin. In
our calculations this variation is reproduced because at spin giG._ 4. Squares of the wave functions of the states of the ground
values around =20 the superdeformed band is crossed bystate(solid curve and superdeformettiashed curvebands withl
the ground state band, located mainly in #a€luster mini- =8 as functions of. Definition of the variablex is given in the
mum, and becomes the yrast band ablow@0. In Fig. 3 the caption of Fig. 1. The scale for the squares of the wave functions is
experimental upbending plot for the superdeformed band ifixed so that ak=0.4 both wave functions are equal to zero.

054303-4



CLUSTER EFFECTS IN THE STRUCTURE OF H. .. PHYSICAL REVIEW C 67, 054303 (2003

It is seen that these wave functions are well separated. Let us 49

consider the decay of the superdeformed states into the GS GS,, sD SD,
ground state band. We have calculated the branching ratios | e ° e ° |
of the E2 Al =2 intensities of they transitions. In the ex- 20
periment for the 18, 164, and 14, states only decay into 29
the superdeformed states has been observed. In our calcula- 30| 28" . l
tions we obtain the branching ratios for these transitions 26"
251 . 25 4
(18,4~ 164) 000 (16— 1455) _ 2 N
(18,160  1(16[—~140y ’ %20* Z 2 1
2 19
~ 18"
(14 —12" w_| . 7
——=f __us 2"45) =0.18. (14) 15 ” T
1(1454—124) 12* ﬁ
L 10 i
For the ratiol (1254— 10, ¢)/1 (12{4— 10y, where the low- 10 e u & —7
est experimental 10 state is treated as the g*l_sostate, the X , %I 3
experimental value is 0.5f18] and the calculated one is 5 i s i
0.42. For the ratiol (1054,—8)/1(10.4— 8¢, the experi- a 1
mental value is 0.6018] and the calculated one 0.63. If an or 5 .
upper limit of ~4% of the superdeformed band intensity is
assumed for the unobserved8-6, transition, a lower FIG. 5. Calculated energies of the positive and negative parity

limit of 0.01 W.u. (Weisskopf unit was obtained if7] for states in®%zn.

the B(E2;8,4—645). The calculated value of the

B(E2;8S+d_>69*_s) is 0.19 W.u., which is large enough to ex- of the nucleus is taken as an antisymmetrized product of the
plain an absence of the g-6_, transition. The last two Cluster's wave functions. The antisymmetrization procedure
ratios in Eq.(14) are, probably, not small enough to explain €xcludes from this product components forbidden by the
the absence of the corresponding transitions between tHgauli principle. The excluded components seem to be differ-
states of the superdeformed and the ground state band@t for different parities. In light nuclei such &&n, open
However, it is quite possible that the strength of the correshells include only single particle states of the same parity.

sponding transitions is fragmented over several states thdiherefore, in order to obtain states of negative parity in
are not presented in our model, but can be reproduced b?,OZn, at least one additional nucleon should be transferred

shell model calculations. from thep,f shell to thegg,, subshell. To obtain a notion of
The crucial point for the asymmetric cluster structures isan additional energy needed to realize such a configuration,
the existence of the alternating parity bands. Unfortunatelyyve can consideps5dq, Ph configuration as characterized
there is no experimental information about collective negaby the largest octupole transition matrix element. The exci-
tive parity states if°Zn. There is known only the 3state at  tation energy of this configuration is 3—4 M¢®0] which is
the excitation energy 3.504 MeV. With Hamiltonigh) we  comparable to the 0.5-2.0 MeV parity splitting mentioned
have calculated the energies of the negative parity states. Tiadove. The shift of the potential for the negative parity states
results of calculations are shown in Fig. 5, together with thewill not change our results for the positive parity states.
calculated positive parity states. It is seen from Fig. 5 thatin Thus, it is a crucial test of the model described above to
the ground state band there is an appreciable shift of the®ok in more detail in the experiment whether the negative
negative parity states with respect to the positive parity onegarity superdeformed states exist or not. If they exist but are
which is the parity splitting. In the superdeformed band theshifted up in energy with respect to the positive parity super-
parity splitting practically disappears. deformed states it will support a treatment of the superde-
The last result contradicts the experimental observationformed band inf%Zn as the asymmetric cluster configuration,
in Ref.[7], which show that the absence of a population ofalthough it will mean that approach should be more micro-
the negative parity superdeformed states can be understosdopic with respect to the account of antisymmetrization ef-
only if these negative parity states are shifted up by 0.5-2.@ects. If negative parity states do not exist it will exclude the
MeV [18,19 with respect to the positive parity superde- asymmetric cluster treatment of the superdeformed band in
formed states. The reason of the absence of this shift in ouf°Zn. We mention, however, that our preliminary consider-
calculations can be the following. In our approach the anti-ation indicates the possibility to consider the superdeformed
symmetrization effect is taken into account by a density deband in °%Zn as a mirror symmetric cluster configuration
pendence of the effective nucleon-nucleon interaction usewith two “He on the opposite sides 8fFe. This is possible
in the calculations of the cluster-cluster interaction potentiabecause®Be is a system of two weakly bound particles.
and therefore in the calculations Of( ,1) [8,15]. This pro-  This cluster configuration has approximately the same mo-
cedure produces parity independent poteritlly,1). In a  ment of inertia a$Be+ %?Fe configuration and leads to simi-
pure microscopical treatment the antisymmetrization effect i¢ar spectrum for the positive parity superdeformed states but
taken into account in a different way: a total wave functionexcludes the negative parity superdeformed states.
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IV. SUMMARY band are described mainly as Be-cluster configurations.
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