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Cluster effects in the structure of the ground state and superdeformed bands of60Zn
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The properties of the states of the superdeformed band in60Zn, including the moment of inertia and its
angular momentum dependence, transition quadrupole moment, and the decay intensities into the ground state
band, are analyzed in the framework of the dinuclear system model. The model Hamiltonian depends only on
special degree of freedom, namely, on the mass asymmetry coordinate. The results of calculations agree well
with the experimental data.
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I. INTRODUCTION

In many light nuclei clustering is a very prominent featu
in a large number of states. Typical examples of clustering
light nuclei are known, for example, in16O and 20Ne, where
12C1a and 16O1a structures are particularly stable@1–3#.
It is interesting that the clustering in20Ne is realized in the
ground state band, but in16O a cluster structure has th
excited band built on the 6.06 MeV intruder state. In heav
nuclei the a-cluster structures have been predicted to
stable in 40Ca and 44Ti. In Refs. @3,4# the a clustering is
discussed with respect to the excited deformed band in40Ca
and the ground band in44Ti.

In the pairs of nuclei16O220Ne and 40Ca244Ti one of
the partners is a spherical double magic nucleus and
other is a double magic nucleus plusa particle. The next pair
of this kind is 56Ni260Zn. In 56Ni the excited deformed
rotational band is known@5# up to I p5121. In 60Zn the
threshold for thea decay is only 2.7 MeV higher than th
ground state. Therefore, it is quite possible that the gro
state band of60Zn contains ana-cluster component. In Ref
@6# this assumption has been used for the description of
ground state band of60Zn where ana-cluster configuration
with fixed mass asymmetry has been applied. However, th
is also observed a superdeformed band in60Zn @7#. At spins
higher than 12 onlyE2 transitions between the states of t
superdeformed band have been seen. In the spin regiI
58 –12 the superdeformed band decays into the states o
ground band. The decay of superdeformed rotational ba
into normally deformed or spherical states is one of the v
interesting nuclear structure problems. It can be viewed
shape coexistence phenomenon. By using the experime
information on the decay out of the superdeformed states
mixing mechanism of states having very different intern
structures can be studied as a function of spin and excita
energy. The properties of the superdeformed states in he
nuclei have been analyzed in the framework of the dinuc
model in Ref.@8#. The properties of the superdeformed ban
in the A>60 region have also been theoretically explain
within the cranked Hartree-Fock, cranked Nilsso
Strutinsky, and relativistic mean field approaches@9–13#.

In the superdeformed band of60Zn the moment of inertia
depending on spin takes the values (692–795)m fm2, where
0556-2813/2003/67~5!/054303~6!/$20.00 67 0543
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m is the nucleon mass. These values are close to the stic
moment of inertia of the52Fe18Be cluster configuration,
which is 750m fm2. We should mention also that the thres
old energies for the decay of60Zn into 52Fe18Be ~10.8
MeV! and 48Cr112C ~11.2 MeV! are close to the extrapo
lated value of the superdeformed band head, which is
proximately 7.5 MeV. Thus, it is quite possible for60Zn that
we have two sets of states belonging to two cluster confi
rations. The first set includes states of the ground state b
and contains thea-cluster configuration as an importan
component. The second set includes states of the supe
formed band and corresponds mainly to the Be-cluster c
figuration.

The aim of the present paper is to describe the proper
of the superdeformed band of60Zn and especially the deca
of the superdeformed band into the ground state band
using the dinuclear model, which is a variant of a clus
model. In this model the mass asymmetry variableh5(A1
2A2)/(A11A2), which describes the partition of nucleon
between the clusters, is used as a collective coordinate@14#.
Since in this modelh is a dynamical variable, the wav
function of the nucleus contains the components of differ
cluster configurations including the mononucleus.

II. MODEL

Nuclear systems consisting of the heavy clusterA1 plus a
light clusterA2 belong to the class of dinuclear-type shap
They were first introduced to explain data on deep inela
and fusion reactions with heavy ions. Instead of a parame
zation of the nuclear shape in terms of quadrupole, octup
and higher multipole deformations, the mass asymmetry
ordinateh and the distanceR between the centers of mass
the clusters are used as relevant collective variables. T
form a minimal set of the collective variables, which can
used to describe both mirror symmetric and mirror asymm
ric deformations of a dinuclear system. There is another c
lective variable, namely, the charge asymmetry coordin
hZ5(Z12Z2)/(Z11Z2), which also plays an importan
role. However, since60Zn is anN5Z nucleus, we specify
the trajectory of the motion of the system in theh-hZ plane
taking hZ5h along this trajectory. In this case both cluste
are nuclei with isospinT50 in the ground state and th
symmetry energy is minimized.
©2003 The American Physical Society03-1
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Since for very asymmetric systems considered in the
per the frequency of the oscillation inR in the cluster-cluster
interaction potential is much larger than the frequency of
oscillation in h, we can setR5Rm(h), whereRm(h) is a
distance between the centers of mass of the clusters a
minimum of the cluster-cluster interaction potential, in t
treatment of the motion inh. This approximation reduces th
problem to the one-dimensional one. The used effec
cluster-cluster interaction potential atR5Rm(h) takes the
zero-point energy inR into account@8,15#.

As mentioned in the Introduction, the wave function inh
can be thought of as a superposition of different cluster-t
configurations including the mononucleus configuration w
uhu51. The relative contribution of each cluster compone
to the total wave function is determined by the collecti
Hamiltonian. Treating the dynamical variableh as a continu-
ous variable, we take the collective Hamiltonian in the fo

H52
\2

2

d

dh

1

B~h!

d

dh
1U~h,I !, ~1!

whereB(h) is the inertia coefficient andU(h,I ) the poten-
tial energy. The eigenfunctions of this Hamiltonian have
well defined parity with respect to the reflectionh→2h,
which is in fact a space reflection. Here, we takeR
5Rm(h) and deal with the one-dimensional problem.

The potentialU(h,I ) in Eq. ~1! is taken as the dinuclea
system potential energy foruhu,1 @8,15#,

U~h,I !5B1~h!1B2~h!2B1V~R5Rm ,h,I !. ~2!

Here, the quantitiesB1(h) andB2(h) ~which are negative!
are the experimental binding energies of the clusters form
the dinuclear system at a givenh, and B is the binding
energy of the mononucleus. The quantityV(R,h,I ) in the
Eq. ~2! is the effective nucleus-nucleus interaction potent
It is given as

V~R,h,I !5VCoul~R,h!1VN~R,h!1Vrot~R,h,I ! ~3!

with the Coulomb potentialVCoul , the centrifugal potentia
Vrot5\2I (I 11)/@2I(h,R)#, and the nuclear interactio
VN , which is obtained with a double-folding procedure usi
the ground state nuclear densities of the clusters@15#. Anti-
symmetrization between the nucleons belonging to differ
clusters is regarded by a density dependence of the nucl
nucleon forces used in a double-folding procedure. This d
sity dependence of the nucleon-nucleon forces produc
repulsive core in the cluster-cluster interaction potential a
thus, the minimum atR5Rm . The details of calculation o
VN are presented in Ref.@8#.

Our calculations have shown for60Zn that the dinuclear
configuration with ana cluster as the light cluster has
potential energy smaller than the energy of the mononuc
at uhu51. With respect to the ground state energy the pot
tial at thea minimum is equal to24.5 MeV. Next impor-
tant minima correspond to8Be and 12C cluster configura-
tions with the following values of the potential at th
minima: 5.1 MeV and 9.0 MeV, respectively, with respect
the energy of the mononucleus. At the values ofh corre-
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sponding to the Li- and B-cluster configurations, potent
energy has maxima. Using the calculated values of the
tential at h5ha ,hLi ,hBe,hB ,hC and so on we have ap
proximated the potentialU by the stepwise potential show
in Fig. 1. The widths of the minima and the barriers of t
potentialU are not known from our calculations, since the
calculations give us only the values of the potential at d
crete points. To minimize the number of the free paramet
we have taken the widths of all the potential minima to
equal to each other. The same is done for the barri
widths. The widths of the potential minima are taken to
slightly wider than the widths of the barriers in order
describe correctly the energy of the experimentally kno
32 state, which is very sensitive to the width of thea mini-
mum.

To calculate the potential energy atIÞ0, we need the
moments of inertia. For different cluster configurations, th
are set equal to the dinuclear moment of inertia calcula
under the sticking condition

I5IA1

r 1IA2

r 1
A1A2

A
mRm

2 ~h!, ~4!

whereIAi

r ( i 51,2) is the rigid body moment of inertia of th

i th cluster. To reach the correct description of t
g-transition energies in the ground state band, we desc
this band as a soft rotor with the moment of inertia linea
depending on spinI for I<8. Thus, the known energies o
the states of the ground band are fitted, in fact. It is seen f
the experimental data that the ground state band of60Zn
changes abruptly aboveI 58. The experimental energy o
the I 510 state is much higher than the value that can
obtained by extrapolating smoothly the data for the low
spins. The physical reason is clear. In the configurations w
I<8 the four valence nucleons, two protons and two n
trons, occupy single particle states of thep f shell:p3/2, f 5/2,
andp1/2. In this caseI 58 is the maximum angular momen
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FIG. 1. Potential energy of60Zn as a function ofx used in the
calculations. The variablex is defined asx5h11 if h<0, x5h
21 if h.0.
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tum, which can be realized. To obtain a larger value ofI, the
nucleons have to occupy higher lying single particle sta
First of all, g9/2. In this case the energies of the states w
I>10 obtain an additional shift related to the shell gap.
the group theoretical realization of the cluster model@16#,
which takes into account the Pauli principle exactly, th
abrupt change is described by a change of the irreduc
representation of the dynamical symmetry group describ
the cluster configuration. In our rather macroscopical mo
we describe it by an increase of the value ofU(uhu51,
I 510) needed to reproduce the experimental energy of
I p5101 state. For higher values ofI, we assume the sam
angular momentum dependence of the moment of inerti
the ground state band onI as forI<8. We did not change the
I dependence of the moment of inertia because of the foll
ing reasons: in the shell model the wave functions of
states of the ground state band withI<8 are characterized
mainly by four valence nucleons. States withI>10 have
more valence nucleons. However, nuclei from the same
of the nuclide chart as60Zn, but having more than four va
lence nucleons, such as60Fe, 62Ni, 62,64Zn, and 64Ge have
approximately the same energies of the first 21 and 41 states
as 60Zn.

The inertia coefficientB is considered as a function ofh.
In Ref. @15#, where the alternating parity bands in actinid
have been analyzed, the inertia coefficient was treated
constant. However, in the present paper a lighter nucleu
considered and because of this the scale of variation ofh is
larger, since this scale is proportional toA21. Moreover, in
the present investigation at least two minima of the poten
U play an important role. Our previous investigation of t
cluster effects in the structure of the actinides@15# has shown
that for mass asymmetries corresponding to thea or Be clus-
ter, theoretical models can give only a qualitative estimate
the value ofB(h), since in this case a smaller number
single particle states is involved in the nucleon transfer
fluctuations of the matrix elements become important. T
average value of the inertia coefficientB can be estimated in
the following way. Rewriting the Schro¨dinger equation with
Hamiltonian~1! and a constantB in a discrete form

2
\2

2B~Dh!2
@c~h1Dh!1c~h2Dh!22c~h!#

1U~h!c~h!5Ec~h!, ~5!

we obtain the following expression for the nondiagonal m
trix element ofH in a discrete basis:

^h1DhuHuh&52
\2

2B~Dh!2
. ~6!

As it follows from the definition ofh, for two-nucleon trans-
fer Dh54/A. The quantitŷ h1DhuHuh& can be estimated
in the case of two-nucleon transfer as a matrix element of
pairing interaction. Thenu^h1DhuHuh&u takes the values
between the pairing interaction constantG, which is esti-
mated asG525/A MeV, and the pairing gapD if there are
05430
s.

le
g

el

e

of

-
e

rt

a
is

l

f

d
e

-

e

pairing correlations. SubstitutingG instead of ^h
1DhuHuh&, we obtain the upper boundary forB,

B<
\2A3

2316325 MeV
5

\2A3

800 MeV
. ~7!

For 60Zn, it gives B511165m fm2. This estimate can be
used for orientation only in the case of massive clust
where pairing concept is better justified. The case of thea
cluster should be considered separately. The best descrip
of the experimental data we obtain takingB(h5hBe)
57580m fm2 is not far from estimate~7!. The value of the
inertia coefficient at thea –minimum, where it determines
the value of the zero point energy, is fixed by the experim
tal value of the ground state energy. We obtainedB(h
5ha)5790m fm2, which is used in our calculations.

The value ofB(ha) can be estimated also in a differe
way. Let C I

(6) be the eigenfunctions of the positive an
negative parity states with angular momentumI. Their linear
combinations C I

(R,L)51/A2(C I
(1)6C I

(2)) are the wave
functions located at the right or lefta minima @17#. By anal-
ogy with Eq. ~6! the transition matrix elemen
^C I

(R)uHuC I
(L)& can be estimated as

^C I
(R)uHuC I

(L)&[^2ha
I uHuha

I &5
\2

2B~ha
I !@2~12ha

I !#2
.

~8!

At the same time, substituting in this matrix element t
expressions forC I

(R,L) in terms of the eigenfunctionsC I
(6)

of the HamiltonianH, we obtain

^C I
(R)uHuC I

(L)&5
1

2
~EI

(2)2EI
(1)!. ~9!

Thus,

~EI
(2)2EI

(1)!5
\2

B~ha
I !@2~12ha

I !#2
. ~10!

For I 53, parity splitting (EI
(2)2EI

(1)) can be calculated
using the experimental energies of the lowest 32, 21, and
41 states. Substituting this value andha

I 5350.9 into Eq.
~10!, we obtainB(ha)5660m fm2, which is consistent with
the value used in the calculations.

The experimental mean quadrupole momentQt is deter-
mined by the transitions in the spin rangeI 512–22. The
best fit to data is obtained withQt52.7560.45eb @7#. In the
cluster model the transition quadrupole moment is de
mined by the following expression@8#:

Qt52e
A1A2

A2 S A2

Z1

A1
1A1

Z2

A2
DRm

2 ~h!

5
1

4
eARm

2 ~h!~12h2!S ~12h!
Z1

A1
1~11h!

Z2

A2
D ,

~11!
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where the intercluster distanceRm is equal to

Rm~h!5@1.14~A1
1/31A2

1/3!1s# fm ~12!

and s takes values between 0 and 0.5. For the cluster c
figuration with 8Be A1552, A258, Z1 /A15Z2 /A25Z/A
51/2, andQt53.43eb for s50.5 andQt52.96eb for s
50. Thus, the results of the cluster model are in agreem
with the experimental data for the transition quadrupole m
ment. Concerning the moment of inertia, we already m
tioned in the Introduction that the experimental moment
inertia of the superdeformed band is in correspondence
the moment of inertia of the cluster configuration8Be
152Fe calculated under the sticking condition.

Thus, our estimates show that the cluster interpretatio
the properties of the superdeformed band in60Zn is quite
realistic. In the following section we present the results
calculations of the energies and decay properties of the
perdeformed band with Hamiltonian~1!.

III. RESULTS OF CALCULATIONS AND DISCUSSION

The calculated spectra of the ground state and supe
formed bands are shown in Fig. 2. As is described in Sec
the energies of the states of the ground state band with s
from I 50 to I 510 have been used to fix the angular m
mentum dependence of the moment of inertia and the a
tional shift of the U(uhu51, I 510). The energies of the
states of the superdeformed band are described quite
including a variation of the moment of inertia with spin.
our calculations this variation is reproduced because at
values aroundI 520 the superdeformed band is crossed
the ground state band, located mainly in thea-cluster mini-
mum, and becomes the yrast band aboveI 520. In Fig. 3 the
experimental upbending plot for the superdeformed ban
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FIG. 2. Experimental and calculated energies of the states o
ground state~GS! and superdeformed~SD! bands in60Zn. Experi-
mental data are taken from Ref.@7#.
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compared with the results of calculations. The calculatio
qualitatively reproduce a deviation from the smooth dep
dence of the angular momentum on theg-transition energy.
However, the effect is overestimated.

Figure 4 shows the squares of the wave functions of
states of the ground state and superdeformed bands tak
I 58 as functions of the variablex defined as

x5h11 if h<0,

x5h21 if h.0. ~13!

he
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FIG. 3. Spin as a function ofEg in the superdeformed band o
60Zn. The results of calculations are shown by the dashed cu
The experimental data~solid curve! are taken from Ref.@7#.
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FIG. 4. Squares of the wave functions of the states of the gro
state~solid curve! and superdeformed~dashed curve! bands withI
58 as functions ofx. Definition of the variablex is given in the
caption of Fig. 1. The scale for the squares of the wave function
fixed so that atx50.4 both wave functions are equal to zero.
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It is seen that these wave functions are well separated. Le
consider the decay of the superdeformed states into
ground state band. We have calculated the branching ra
of the E2 DI 52 intensities of theg transitions. In the ex-
periment for the 18sd

1 , 16sd
1 , and 14sd

1 states only decay into
the superdeformed states has been observed. In our cal
tions we obtain the branching ratios for these transitions

I ~18sd
1 →16g.s.

1 !

I ~18sd
1 →16sd

1 !
50.02,

I ~16sd
1 →14g.s.

1 !

I ~16sd
1 →14sd

1 !
50.07,

I ~14sd
1 →12g.s.

1 !

I ~14sd
1 →12sd

1 !
50.18. ~14!

For the ratioI (12sd
1 →10g.s.

1 )/I (12sd
1 →10sd

1 ), where the low-
est experimental 101 state is treated as the 10g.s.

1 state, the
experimental value is 0.54@18# and the calculated one i
0.42. For the ratioI (10sd

1 →8g.s.
1 )/I (10sd

1 →8sd
1 ) the experi-

mental value is 0.60@18# and the calculated one 0.63. If a
upper limit of ;4% of the superdeformed band intensity
assumed for the unobserved 8sd

1 →6sd
1 transition, a lower

limit of 0.01 W.u. ~Weisskopf unit! was obtained in@7# for
the B(E2;8sd

1 →6g.s.
1 ). The calculated value of the

B(E2;8sd
1 →6g.s.

1 ) is 0.19 W.u., which is large enough to e
plain an absence of the 8sd

1 →6sd
1 transition. The last two

ratios in Eq.~14! are, probably, not small enough to expla
the absence of the corresponding transitions between
states of the superdeformed and the ground state ba
However, it is quite possible that the strength of the cor
sponding transitions is fragmented over several states
are not presented in our model, but can be reproduced
shell model calculations.

The crucial point for the asymmetric cluster structures
the existence of the alternating parity bands. Unfortunat
there is no experimental information about collective ne
tive parity states in60Zn. There is known only the 32 state at
the excitation energy 3.504 MeV. With Hamiltonian~1! we
have calculated the energies of the negative parity states.
results of calculations are shown in Fig. 5, together with
calculated positive parity states. It is seen from Fig. 5 tha
the ground state band there is an appreciable shift of
negative parity states with respect to the positive parity on
which is the parity splitting. In the superdeformed band
parity splitting practically disappears.

The last result contradicts the experimental observati
in Ref. @7#, which show that the absence of a population
the negative parity superdeformed states can be unders
only if these negative parity states are shifted up by 0.5–
MeV @18,19# with respect to the positive parity superd
formed states. The reason of the absence of this shift in
calculations can be the following. In our approach the a
symmetrization effect is taken into account by a density
pendence of the effective nucleon-nucleon interaction u
in the calculations of the cluster-cluster interaction poten
and therefore in the calculations ofU(h,I ) @8,15#. This pro-
cedure produces parity independent potentialU(h,I ). In a
pure microscopical treatment the antisymmetrization effec
taken into account in a different way: a total wave functi
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of the nucleus is taken as an antisymmetrized product of
cluster’s wave functions. The antisymmetrization proced
excludes from this product components forbidden by
Pauli principle. The excluded components seem to be dif
ent for different parities. In light nuclei such as60Zn, open
shells include only single particle states of the same pa
Therefore, in order to obtain states of negative parity
60Zn, at least one additional nucleon should be transfer
from thep, f shell to theg9/2 subshell. To obtain a notion o
an additional energy needed to realize such a configurat
we can considerp3/2

21g9/2 ph configuration as characterize
by the largest octupole transition matrix element. The ex
tation energy of this configuration is 3–4 MeV@20# which is
comparable to the 0.5–2.0 MeV parity splitting mention
above. The shift of the potential for the negative parity sta
will not change our results for the positive parity states.

Thus, it is a crucial test of the model described above
look in more detail in the experiment whether the negat
parity superdeformed states exist or not. If they exist but
shifted up in energy with respect to the positive parity sup
deformed states it will support a treatment of the super
formed band in60Zn as the asymmetric cluster configuratio
although it will mean that approach should be more mic
scopic with respect to the account of antisymmetrization
fects. If negative parity states do not exist it will exclude t
asymmetric cluster treatment of the superdeformed ban
60Zn. We mention, however, that our preliminary consid
ation indicates the possibility to consider the superdeform
band in 60Zn as a mirror symmetric cluster configuratio
with two 4He on the opposite sides of52Fe. This is possible
because8Be is a system of two weakly bounda particles.
This cluster configuration has approximately the same m
ment of inertia as8Be152Fe configuration and leads to sim
lar spectrum for the positive parity superdeformed states
excludes the negative parity superdeformed states.
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IV. SUMMARY

In conclusion, we described the properties of the supe
formed band in60Zn including the branching ratios of th
decay intensities of theE2 DI 52 transitions with the di-
nuclear model, which is a variant of a cluster model. T
Hamiltonian of the model contains the degree of freedom
mass asymmetry motion. Our analysis has shown that
states of the ground state band have a significant contribu
of an a-cluster component. The states of the superdeform
y

o,
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band are described mainly as Be-cluster configurations.
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