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Microscopic calculations in asymmetric nuclear matter
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A microscopic calculation of the equation of state for asymmetric nuclear matter is presented. We employ
realistic nucleon-nucleon forces and operate within the Dirac-Brueckner-Hartree-Fock approach to nuclear
matter. The focal point of this paper iSmomentum-spages matrix that properly accounts for the asymmetry
between protons and neutrons. This will merge naturally into the development of an effective interaction
suitable for applications to asymmetric nuclei, which will be the object of extensive study in the future.
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I. INTRODUCTION A approximation is adopted in Rdf20], and the spectator
equation[22] approach is used in Ref21]. At this time,
Nuclear matter is an idealized uniform infinite system ofthere is no compellingmodel-independeintevidence for
protons and neutrons under their mutual strong forces andeeming the DBHF method less reliable than any of the ap-
without electromagnetic interactions. Symmetric nucleamproximations applied in those studies. On the contrary, the
matter (that is, equal densities of protons and neutjdrss DBHF framework appears to be a reliable, as well feasible,
been studied extensively. The so-called conventional apmicroscopic method to describe quantitative effective inter-
proach to nuclear matter goes back to earlier works byactions in the nuclear medium.
Brueckner and other§l1-6] and is known as the BHF Similar calculations have been done in &f3]. The pur-
(Brueckner-Hartree-Fogktheory. During the 1980s, the pose of our paper, however, is to produce a self-contained
Dirac-Brueckner-Hartree-FodloBHF) approach was devel- report, including all relevant formulas and nuclear matter
oped [7-9]. The breakthrough came with the observationresults, and, most important, to examine the effect of the
that the DBHF theory, unlike the conventional one, couldasymmetry on the in-mediutN interaction. This work will
describe successfully the saturation properties of nucleaserve as a baseline for the future applications we plan to
matter, that is, saturation energy and density of the equatiopursue. These include reaction studies using effective inter-
of state(EOS. The DBHF method adopts realistic nucleon- actions based on asymmetric matter suitable for scattering on
nucleon(NN) interactions and contains features of the rela-finite nuclei, and calculations of neutron radii and neutron
tivistic theory. It characterizes the nuclear mean field byskins. Concerning properties of astrophysical implications,
strong, competing scalar and vector fields that together aawe calculate the pressure in symmetric matter and neutron
count for the binding of nucleons as well as the large spinmatter at high densitietup to about five times saturation
orbit splitting seen in nuclear states. density, and compare these values with recent experimental
Concerning asymmetric nuclear matter, systematic emeonstraints obtained from analyses of nuclear collis{@4s,
pirical investigations to determine its saturation propertieswith the extracted pressures being the highest recorded under
have so far not been done. From the theoretical side, somaboratory conditions.
older studies can be found in Refd0,11]. Interactions ad- Recently, much interest has developed around the study of
justed to fit properties of finite nuclei, such as those based ohighly asymmetric nucleiin particular, extremely neutron-
the nonrelativistic Skyrme Hartree-Fock thedty2] or the  rich nuclei, and halo nuclgi If approved for construction,
relativistic mean field theorf/13], have been used to extract the Rare Isotope AcceleratéRIA) will map the limits of
phenomenological EOSs. Generally, considerable model derclear existence and allow the study of the unique nuclear
pendence is observed among predictions based on differeaystems that populate those boundaries. Thus, it is important
EOSs[14]. Variational calculations of asymmetric matter and timely to develop microscopic effective interactions that
have also been report¢d5]. In Ref.[16], a Lorentz invari- can account for the asymmetry between proton and neutron
ant functional of the baryon field operators is defined todensities.
project Dirac-Brueckner nuclear matter results onto the In the self-consistent approach, a calculation of nuclear
meson-nucleon vertices of an effective density-dependemhatter properties yields, at the same time, a convenient pa-
field theory. This is then applied to asymmetric matter andametrization of the density dependence in the form of
finite nuclei in Hartree calculatiod.7]. nucleon effective masses. This information can then facilitate
We use realistiécNN forces and operate within the DBHF the calculation of the scattering matrix at positive energies,
framework. Explicit inclusion of negative energy states inand finally of an effective interaction suitable, for example,
the nucleon Dirac structure has been and still is the subject dbr proton scattering on asymmetric nuclei. This interaction
extensive debate[18—-21. Three-dimensional reduction will be “isospin dependent,” in the sense of being different
schemes of the covariant propagator are not unique, and théisr the nn, pp or np cases.
the importance of those contributions in nuclear matter has Here, we will first describe our DBHF calculation of
been examined within particular choices of covariant equaasymmetric matte(Sec. 1. In Sec. Il we will present and
tions and various approximations. For instance, the so-callediscuss results for the EOS at various levels of asymmetry,
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which confirm the findings from Ref23]. We then compare The energy of the two-particle system is

high-density pressure calculations to most recent experimen- o o o

tal observations. In the context of nonrelativistic calcula- ei’](P,K)zei"(P,K)+eJ-"(P,K) (7)
tions, we also consider a popular potential based on chiral

perturbation theory. In Sec. IV, we explore the sensitivity ofand (€};)o is the starting energy. The single-particle energy
the G matrix at various positive energies to increasing value]” includes kinetic energy and potential energy; see below.
of the neutron excess parameter. Conclusions and plans fdhe Pauli operato@ prevents scattering to occupied states.

future applications are presented in Sec. V. To eliminate the angular dependence from the kernel of Eq.
(4), it is customary to replace the exact Pauli operator with
Il. DESCRIPTION OF THE CALCULATION its angle average. Detailed expressions for the Pauli operator

in the case of two different Fermi momenta are given in
Asymmetric nuclear matter can be characterized by th@\ppendix A. It is also customary to introduce an average
neutron densityp,, and the proton density,. It is also  center-of-mass momentufis]. Definitions and details are
convenient to define the total densipy=p,+p, and the also provided in Appendix A.

asymmetry(or neutron excesgsparametera=(p,— pp)/p. With the definitions
Clearly, =0 corresponds to symmetric matter, anet 1 to
neutron matter. mf my

In terms ofa and the average Fermi momentum, related Gij :mgiig—@ ®
to the total density in the usual way, ' !

and
2k3
P=32 (1) my m¥
m e T 9
. "UER@) UEf(d)
the neutron and proton Fermi momenta can be expressed as
one can rewrite Eq4) as
KR =Ke(1+ o) @
- 3K .
and Glj(q,7qvpi(eﬁ)0)zvﬁ(q”1q))+j(ZT):SV:(qraK)
KR=ke(1— )™, (3) o
Qij(K,P) s L=

respectively. X—————G;j(K,G,P.()o).

We use the Thompson relativistic three-dimensional re- (€])o~ & (P.K)
duction of the Bethe-Salpeter equation. The Thompson equa- (10

tion is applied to nuclear matter in strict analogy to free-

space scattering and reads, in the nuclear matter rest fram@/hich is formally identical to the nonrelativistic equation.
We make use of the definitions Eq8) and (9) throughout

R d3K mFm? this paper, which is why all formulas involving the operator
gij(ﬁ’,q,P,(ei*j)o)zui’j(d’,ﬁ)Jrf 3ui*j(ﬁ’,K) '* i G appear identical to their nonrelativistic equivalent.
(2m) Ei Ej The goal is to determine self-consistently the nuclear mat-
.. ter single-particle potential which, in our case, will be differ-
Qij(K,P) s 2 . ent for neutrons and protons. To facilitate the description of
X ij (K.4,P, (€))o), the numerical procedure, we will use a schematic notation

X\ _ %X DK
(€i)o € (P.K) for the neutron or proton potenti@ivhile the corresponding
(4) detailed expressions are reported in Appendix\Be write,

N I for neutrons,
whereij =nn, pp, or np, and the asterisk signifies that me-

dium effects are applied to those quantities. In &G, ', Upn=UpnptUnn, (13)
and K are the initial, final, and intermediate relative mo-

.~ and for protons
menta, andE* = \/(m*)?+ K2, The momenta of the two in- P

teracting particles in the nuclear matter rest frame have been Up=Upn+Upp, (12)
expressed in terms of their relative momentum and the
center-of-mass momenturR, through where each of the four terms on the right-hand-side of Egs.
(12) and(12) depends on the approprigBematrix (nn, pp or
R |21+|22 np) from Eq. (10). Clearly, the two equations above are
P= — (5)  coupled through thenp component and thus they must be
solved simultaneously. Furthermore, tematrix equation
I and Egs.(11) and (12) are coupled through the single-
K= ki—kz 6) particle energywhich includes the single-particle potential

So we have three coupled equations to be solved self-
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consistently. As done in the symmetric c49¢ we param- we find a value of 233 MeV. This is in excellent agreement
etrize the single-particle potential for protons and neutronsvith the recent empirical determination of 2285
[Egs.(11) and(12)] in terms of two constants)s; andU\ ; MeV [26].

(the scalar and vector potenfiahrough As the neutron density increasg@hke total density remain-
ing constant the EOS becomes increasingly repulsive and
the minimum shifts towards lower densities. As the system
Ui(ki)= E_*Us,i“L Uy, (13 moves towards neutron matter, the “energy well” gets more
and more shallow, until, for larger than about 0.8, the
pystem is no longer bound.

We also show for comparison the EOS based on the BHF
calculation(see Fig. 2, lower panglAlso, in this case we
have performed a self-consistent calculation based on the

Mm*=m +Uc. (14 ~ same realistic force. However, no medium modifications are
! ! Si included in the potential to account for the proper Dirac
structure of the nucleons in nuclear matter. As a conse-
guence, saturation of symmetric matter is obtained at a much
Ugi=Us,+ Uy, (15) higher density, a well-known problem with the conventional
approach.
In Fig. 3, we take a different look at the EOS. There, we
lot the quantitye(kg ,a) —e(kg,0) versusa?. Clearly, the
ehavior is linear, that is,

For the purpose of facilitating the connection to the usual
nonrelativistic framework5], it is customary to redefing s
andUy ; in terms of two other constants defined as

and

The subscript " signifies that these parameters are different
for protons and neutrons. Starting from some initial values o
mi and Uy;, the G-matrix equation is solved and a first
approximation forU,(k;) is then obtained. This solution is
again parametrized in terms of a new set of constants, and e(ke ,a) —e(kg,0)=esa?, (20
the procedure is repeated until convergence is reached. The ) . ) _
effective masses for neutrons and protons,, obtained or parab_o_llc_versusg. Th's linear behavior, share(_j W'th. the
through this procedure are shown in Fig. 1 as a function Oponre]at|V|st|c predictions(see lower panel of Fig. )3 is :
the Fermi momentum at various levels of asymmetry. reminiscent of the asymmetry term in the familiar semi-

Finally, the energy per neutron or proton in nuclear mattelemp'r'c""I mass fqrmula. By reading the slope of each line,
is calculated from we can then predict the nuclear symmetry energy, defined as

& =(T)+(U). (16) 15%e(ke , @)
T2 Pa @)
(See Appendix C for details.The EOS, or energy per a=0
nucleon as a function of density, is then written as This is shown in Fig. 4, where the solid curve is the predic-
- o tion from the DBHF model and the dashed curve corre-
S )= Pn€nt pp€p 17 sponds to the BHF calculation. The DBHF prediction at satu-
n:Pp ration density is about 30 MeV. The behavior of the
symmetry energy is most controversial at high densities,
or where even the trend depends strongly on the type of inter-
action used[27]. Energetic reactions induced by heavy
_ (1+a)e,+(1-a)e, neutron-rich nuclei have been proposed as a mean to obtain
e(kg,a)= 5 : (18 crucial information on the high-density behavior of the

nuclear symmetry energy and thus the EOS of dense
neutron-rich matte{27]. Analyses of collision dynamics
. PROPERTIES OF THE EQUATION OF STATE have been done at the National Superconducting Cyclotron
Laboratory to extract EOS-sensitive observables such as the
elliptic flow [24]. In this way, empirical constraint has been
obtained for the pressure of symmetric and neutron matter.
The pressure of neutron-rich matter is defined in terms of
the energy/particle as

The NN potential used in this work is the relativistic
OBEP from Ref.[25], which uses the Thompson equation
and the pseudovector coupling for theand » mesons. The
EOS as obtained from our DBHF calculation is displayed in
Fig. 2 (upper panel as a function okg and for values ofx
between 0 and 1. The symmetric matter EOS saturates at o
ke~1.4 fm ! with a value of 16.7 MeV, in good agreement _ ,0e(p,a)
with the empirical values. For the compression modulus of P(p,a)=p ap (22
saturated symmetric matter, defined as

[We notice that Eq(20) facilitates the calculation of the

, 9°e(k) pressure for any.]
k=Kg—2 . (19 In Fig. 5, we show the pressure obtained from the DBHF-
F lke=K? based EOS for symmetric matter and neutron matter. The
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FIG. 1. Upper panel: neutron effective mass as a function of the Fermi momentum and for increasing valbesagfen 0 and 1. The
upper curve corresponds to=1. Lower panel: proton effective mass. The upper curve corresponds- th

empirical constraints have been provided by the authors dfig. 5 correspond to the weake@bwer contouy and the
Ref. [24]. The area within the dashed lines indicates EOSstrongesthigher contour density dependence fey(p) pro-
consistent with the elliptic flow measurements reported inposed by Prakash, Ainsworth, and Lattinh28].

that work. For the case of neutron matter, two different pa- It is fair to say that DBHF predictions produce a reason-
rametrizations for the symmetry energy are assumed in thable amount of repulsion. In contrast, relativistic mean field
analysis. The two pressure contours in the bottom panel aheoriestRMFT) tend to generate too much press[24], as
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FIG. 2. Upper panel: energy per nucleon as a function of the FIG. 3. Upper panel: the left-hand side of EB0) vs o? (DBHF
Fermi momentum at different values of the asymmetry parametemode) for increasing values of the Fermi momentum from 0.9
(in steps of 0.1 from symmetric matteflowest curvg to neutron  fm™* (lowest curvé to 1.7 fm %, Lower panel: corresponding pre-
matter (highest curve The predictions are obtained from DBHF dictions from BHF calculations.
calculations. Lower panel: corresponding predictions from BHF
calculations.

A. Nonrelativistic calculations with a high-precision
chiral potential

can be expected from the higher compression modulus usu- The predictions shown above are typical of meson-
ally predicted by RMFT. While very repulsive EOSs such asexchange potentials with moderate strength in the tensor
those obtained from RMFT as well as weakly repulsiveforce (as indicated by a deuterdhstate probability of about
EOSs(compression modulus of 167 Me\re ruled out by 5%). In-medium predictions, however, can be very sensitive
the analysis, EOSs that become softer at densities highéo the nature of the chosen two-body force, and can be so
than three times saturation densfpossibly due to a phase even if the interactions under consideration predict very
transition to quark matteare not excluded. similar free-space observables.
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FIG. 4. Nuclear symmetry energy as a function of the Fermi
momentum. The solid line is the prediction from DBHF calcula-
tions, while the dashed line is obtained with the conventional

Brueckner approach. 100

%)

Recently, a new generation NN potentials based on chi-
ral perturbation theoryxPT) has begun to emerde9,30.
These interactions may become increasingly popular in the
future as a way to describe low-energy processes in terms @
effective degrees of freedom while respecting the symme-
tries of QCD. Thus we felt it would be interesting to consider
one of these potentials as well in calculations of symmetric
and asymmetric matter. In this section, we show basic EOS
properties for the chiral potential of R¢29], which is quan-
titative in its description oNN data up to 300 MeV.

Chiral potentials are nonrelativistic in nature and thus un-
suitable for a DBHF calculation. For comparison, we include ; ) ) , . . . ,
predictions from a modern high-precision meson-exchange 1 15 2 25 3 35 4 45 5
potential(the CD-Bonn potential from Ref31]). (The sym- P/Py
metry energy for various high-precision potentials has been
calculated in Ref[32].) The CD-Bonn potential, which uses FIG. 5. Upper panel: pressufm MeV/fm? in symmetric mat-
pseudoscalar coupling for the pion and has been developeaer as a function of densitin units of saturation densityThe area
within the framework of the nonrelativistic Lippman- within the dashed lines indicates pressure values consistent with the
Schwinger equation, will also be used, as it is appropriate, ilata. Lower panel: pressure in neutron matter. The two contours
a conventional Brueckner calculation. correspond to two parametrizations of the asymmetry term used in

When evaluating these predictions, one must keep ifhe analysis, as explained in text. The predictions are from DBHF
mind that consideration of many-body forces is a crucial is-calculations.
sue in nonrelativistic calculatiorsvhereas some three-body
forces are effectively included in the DBHF framework ventional meson-exchange potentials, with the chiral interac-
[33]). The chiral potential, in particular, requires the inclu- tions being “softer” due to cutoffs applied to eliminate high-
sion of three-body forces for consistency within its order.momentum components, as required by the nature of the
However, we are interested in a baseline comparison beshiral expansion. Such differences are likely to show up in
tween the two interactions as it will reveal differences, if any,G-matrix calculations.
originating at the two-body level. In fact, the free-space pre- EOS properties from the chiral potential in comparison
dictions of the two potentials under our consideration are ofvith the CD-Bonn potential are displayed in Figs. 6—8. Gen-
very similar quality. However, the momentum structure oferally, the behavior is similar to that of a low tensor force
chiral potentials can be quite different than the one of conpotential, such as the Bonn A potential, when used in a non-

MeV/fm

Pressure(
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relativistic context(the chiral potential predicts a deuteron 60 T T - . T T
D-state probability of 4.93% Although similar at moderate
densities, the two sets of predictions start differing consider- 50 | .
ably for higher values of the Fermi momentum. The best 7
overview is provided by the symmetry energy, Fig. 8, where 40 F AT
- —~ CHIRAL
we see the two curves being very close to each other up t¢>
about saturation density, after which the chiral curve seems& 5| 4
to get a bit steeper, but than crosses over to become softer i~
the higher densities. 20 L
Due to the cutoff applied to the chiral potential that sup- - g
presses momentum components higher than 460 KeV/
[29], it is legitimate to ask up to which value of the Fermi
momentum can its predictions be deemed reliable. As ai
guideline for this estimate, we will take the case of symmet- G
ric matter, which is obtained from the formulas in the Ap-
pendixes, setting the proton and neutron Fermi momenturn
equal to each other. Evaluation of the energy/particle re-
quires integration over the relative momentydenoted as
Ko in Appendixes B and Cup tokg, which is therefore the
maximum value oK. With the cutoff of 460 MeV¢ being
equivalent to 2.3 fm', the chiral potential predictions are
realistic for the values dkg shown in Figs. 6—38.

. -
,,,,

rgy/particle (M

T

IV. IN-MEDIUM INTERACTIONS e A
The G matrix calculated from Eq(10) has the depen- 50 [ 1
dence(for a given energy and momentiyim N CDBONN
[ 9
BB — BB 2
°
where 3 is an appropriate set of quantum numbers §nd Y
refers to the type of nucleons. We now wish to solve @6) &

for scattering states. Envisioning a physical situation where
protons are the incident particles, we then haypeand pn
possibilities, which are calculated separately with the appro-
priate effective masses and Pauli blocking operator.

As is well known since the birth of nuclear physics, tipe
andpn interactions in the same state would be identical ex-
cept for charge dependence. However, in the asymmetric me
dium, these interactions are physically different due to the 1 1.2 14 16 18 2 22
different Fermi momenta of protons and neutrons. In Fig. 9, k (fm'l)
the neutron and proton Fermi momenta from Egsand(3) F
are shown versus the asymmetry parametéor fixed (av- FIG. 6. Upper panel: energy per nucleon as a function of the
eragg Fermi momentum. . . Fermi momentum at different values of the asymmetry parameter

To which extent the asymmetry in the proton/neutron ration steps of 0.2 from symmetric mattetlowest curvé to neutron
in a nucleus will affect proton-nucleus scattering is equivamatter(highest curvie The predictions are obtained from BHF cal-
lent to the question: How sensitive is the interaction to theculations with the chiral potential. The lower panel corresponds to
asymmetry degree of freedom? We can certainly get insighthe predictions with the CD-Bonn potential.
into this issue from thdinfinite nuclear matterG matrix,
which, upon proper mapping into coordinate space and apeations forpp and pn [36]. The Melbourne group37] has
plication of the local density approximation, will yield the produced a very comprehensive set @fonrelativistig
effective interaction for finite nuclgi34,35. When “folded”  proton-nucleus scattering calculations, including some exotic
over the nucleus, the interaction yields the optical potentiahuclei. However, no attempt is made to account for the
used to describe elastic scattering, or, in the case of inelastasymmetry in the interaction. Clearly, additional calculations
scattering, it becomes the transition potential connecting thevould be helpful.
initial state to the target excited states. For this sensitivity study, we have selected @&ave

At present, scattering calculations on halo nuclei are beand oneP wave withT=1, so thafpp andpn cases are both
ing done with phenomenological interactions where the isosexisting and can be compared. Thg, wave will give us
pin asymmetry is accounted for through different parametriinsight into the central force, while th&P; wave contains

energy.
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FIG. 7. Upper panel: the left-hand side of H80) vs a? (ob-
tained with the chiral potentigfor increasing values of the Fermi
momentum from 0.9 fm® (lowest curve to 2.2 fm L. The lower
panel corresponds to predictions with the CD-Bonn potential.

strong sensitivity to the spin-orbit componefithe central
and spin-orbit pieces of the effective interaction play the
most important role in proton-nucleus elastic scattering and
inelastic scattering to natural-parity transitions.

In Figs. 10 and 11, we show the real and imaginary parts
of the (on-shel) 1S, matrix element at three different ener-
gies. In each case, the quantity is plotted versusakierage
Fermi momentum for three values of The same legend
applies to Figs. 12 and 13 for th#; matrix element.

In general, the(smalley imaginary part is much more

neutron/proton Fermi momentum (fm'l)

0.8

0.6

0.4

0.2

ke(fm™)

FIG. 8. Nuclear symmetry energy as a function of the Fermi
momentum. The solid line is the prediction obtained with the chiral
potential, while the dashed line is obtained with the CD-Bonn po-

larity in the scattering equation, E¢L0). That occurrence
will depend on the kinematics and the value of the Fermi
momenta. We see for instance that at 50 MeV the imaginary
part vanishes at higher densities for larger values.ofhis
is particularly striking in thepp case, due to the drastic low-
ering of the proton Fermi momentum as seen from Fig. 9.

It is interesting to notice how the dependence shows up

14 p=

0.2

0.4 0.6 0.8 1

a

FIG. 9. The protor(lower line) and neutrorn(upper ling Fermi
sensitive to the degree of asymmetry. The presence of amomenta as a function of the asymmetry parameter for fixed value

imaginary part is determined by the occurrence of a singuef the (average Fermi momentun{solid line).
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FIG. 10. Real part of thap andpp 1S, matrix element as a function of the Fermi momentum at different energies and for different levels
of asymmetry.

differently in thepp/pn cases. The dependence @rtomes tering is controlled by just the proton Fermi momentum,
in through thep/n effective massedsee Fig. 1 and, of  whereaspn scattering is controlled by both the neutron and
course, Pauli blocking, which acts differently @p or pn  proton Fermi momenta, which vary as seen from Fig. 9. As a
stateq'see Appendix A for detaijsPauli blocking inppscat-  result, the scattering probability in then states exhibits
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FIG. 11. Imaginary part of thap andpp 1S, matrix element as a function of the Fermi momentum at different energies and for different
levels of asymmetry.

overall a weaker dependence an nucleon collisions play an important role. For instance, we

We would expect a similar trend for in-mediupp or pn  would expect in-mediunpp cross sections to be more sensi-
cross sections, a very useful concept for transport model cative thanpn cross sections to increasing asymmetry. By the
culations [38], where both the mean field and nucleon-same tokennn cross sections would be subject to strong
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FIG. 12. As in Fig. 10, for the’P,; matrix element.

Pauli blocking in neutron-rich matter. We will look into this higher energies, relativistic density-dependent effects, which
aspect in a future work. are included, become the most importarExperiments at

Finally, as the energy increases, the details of Pauli blocklow energy would be best to reveal sensitivity of the interac-
ing become much less important, as doesdtdependence, tion to the asymmetry between neutron and proton distribu-
although the overall density dependence remains sti@tg. tions.
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FIG. 13. As in Fig. 11, for theéP; matrix element.
V. SUMMARY AND CONCLUSIONS consistent and parameter-free, in the sense that no parameter

. . ) of the NN force is adjusted in the medium.
) We have presented a microscopic calculation of the equa- As expected’ the Sing'e_partic|e energy moves up to less
tion of state of nuclear matter when protons and neutrongttractive values to merge with the neutron matter equation
have different Fermi momenta. The calculation is self-of state when the proton density approaches zero. The depen-
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dence of the EOS on the neutron excess parameter is clearly 0 if k,<kp or k,<kP

linear as a function ofx?. We make predictions for the Q=11 if k. >K" and k. >kp (#Fv=12. (A1)
nuclear symmetry energy and observe a large discrepancy wo TR v

between the relativistic and the nonrelativistic predictions ain the angle-average approximation, one replaces the €xact
high density. Our findings are in agreement with those fromoperator with its average over all angles for fixedndK.
Ref.[23]. That is, one defines

A relatively simple way to relate the microscopic EOS
directly to structural properties of finite nuclei is the use of a 9—(Q)= JQK,P,6)d0 1 eZQ(P K.6)do
mass formulgd 14], where the “volume” term is directly re- JdQ 2 Jo, Y '
lated to the EOS. In that context, it has been pointed bt (A2)
that, unlike proton densities, neutron densities are very sen- L
sitive to the EOS model. At the same time, precise data offhe variablesP, K, k, are as defined previously, is the
neutron radii and neutron skins are not readily available tangle betweer® andK, andQ+0 for 6,<0<4,.
discriminate clearly among models. Even for a nucleus such Several cases can occur, depending on the valuks Bf
as?%%Pb, for which is fairly large database exists, determinak? andk!. Those are
tions of the neutron skins differ considerably from model to
model[39]. We are presently in the process of using our EOS
in calculations of neutron radii and neutron skins.

The relative simplicity of a homogeneous infinite system
makes nuclear matter calculations a convenient starting point
for the determination of an effective interaction suitable for Q= 1 5 o . ) o
finite nuclei. Together with the local density approximation, apr LIKFP) = (ke)7]  (kp)*<(P—K)"<(kg)
this approach has been used extensively and with success for

i ing. With that in mi 1 1 |
proton-nucleus scattering. With that in mind, we have taken a —— K24 P2— Z[(KD)2+ (KR)?] otherwise.
closer look at the scattering matrix in asymmetric matter. ( 2PK 2-°F F '

Ultimately, the goal is to study nuclei with high levels of (A3)
asymmetry, about which very little is known. Coherent effort
from both the experimental and the theoretical side is neces- 2. Averaged center-of-mass momentum
sary in order to combine reliable models of the density de- 14 simplify the integration leading to the single-particle
pendence of the effective nuclear force with reliable StrUCtU“’spectrum and the energy per partitéee Appendixes B and
information. Hopefully, the RIA facility will be available in ) \ve introduce the average center-of-mass momentum.
the near future to answer open questions and help us undefys s defined as the root-mean-square valu® ébr two
stand the physics of the weakly bound systems that are exsarticles with the constraint that their relative momentum is
pected to exist at the limits of the nuclear chart. K (casea), and, in addition, that one of the particles has

momentunk,, (caseb).

0, K2<%[(k2)2+(kﬁ)z]—P2

1, (P=K)*>(kp)?
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APPENDIX A: ELIMINATION OF THE ANGULAR To simplify the final expressions, we introduce the following
DEPENDENCE notation:
1. Angle-averaged Pauli operator x=kf+K, y=kP—K, s=ki—-K, t=kP+K.

(AS5)

The definition of the Pauli operator is, for the case of two
different Fermi momenta, The final expression is then

g(kR)2+K?, 2K<kp—kP
EK(SP+Y°) + 5 (ty +5X)°+ 5(s®+y®) — (ty>+sX°)

Pa~ 58 T 3 112 5 . T 3 , otherwise (AB)
SK(S2+y3) + 3 (ty+sx)2+ (s*+yh) —2(ty3+sx)

0, (Kl+KkP)<2K.
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b. K and k, fixed

The definition of the average c.m. momentdhandk,,
fixed) is

N -

P
J0,dQ,Fdk,P?5 (K——

P y 1 (A7)
fgﬂdQ#fOFdIZZV&( K-35 k,—K, )
For k, <K,
Pa
(k,)2+K2  2K<kp—k,
=19 7[3(k,)2+(kp)?>—4Kk,], kr—k,<2K<kg+k,
0, otherwise. (A8)

Ui(k,)=

<A

PHYSICAL REVIEW C67, 054301 (2003

Fork, >k,

k,— ke <2K <kg+K,

av

NZ_[ L[3(k,,) 2+ (Kk)2— 4Kk, ],

0, otherwise
(A9)

whereu=1, 2 andi=n or p.

APPENDIX B: NUCLEAR MATTER SINGLE-PARTICLE
POTENTIAL

The single-particle potential in nuclear matter, (i=n
or p), is defined in the usual way0]:

<“iVi|Gij|MiVj_VjMi>:jZN <:“ile|Gin|Mile_leMi>+j2<Z (mivi,|GPlpiv,— vy ui).  (BY)
1 2

The explicit evaluation of this expression in partial-wave decomposition yields

n k +Kp )
Ui(k,) = Z (23+1)T] f ) OdKof P dP G"(P:Kg,Ko)
0 Ik, —Kol
n,2
f(k WPy dK fV[k W K2 Kop 4p Grin(PoK ) Ko) |+ (nesp,  KReskR) (B2)
(kp—k,)/2 [k, — Kol
(a stands for the quantum numbelsS andT).
Using the averaged-momentum approximatisee Appendix A
G (P;Ko,Ko) =G (Pay;iKo,Ko), (B3)
allows us to simplify the integral ove?, with the final result being
8\ n_ k,+K
Ui(k,)=—— > (23+1)T], f(kF K 0K oG (PayiKo K >f b el
7Tk/_,, L,a 0 |kM_KO‘
n
a 2
+f(kF+k“>’2 o dKoGEM (B Ko, Ko )fv“‘ W D2KGp bl 4 (nesp,  KRekR)
(kp—k,)/2 Kol

16N

(K 4k,
2K, J -k,

2
KOdKO(L

n_
:?LE (2J+1)TiTnU0(kF K 24K, G M (B Ko, Ko)

2

+(nep, kiekp).

(B4)

= Ko(Ko—k,J) "N(PaviKo,Ko)
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The coefficientsTE contain the isospin dependence and are equal to

T=01_~T=01_1 0 _ 40 _ 1 _ 1 _
T 0=T] 0=, 79, =79,=0, T} =T%=1.

APPENDIX C: ENERGY PER NUCLEON IN NUCLEAR MATTER

The energy per neutron/proton is

=T+ 55 5N ;A P (mivilGijlpivi—vjmi), (CY)
1
€p= <TP>+22;A| Z<MiVj|Gij|MiVj_VjMi>r (C2

which, in view of Eq.(B1), can be written as

Z|"‘

en=(To)+ Z (C3)

1
&=(Tp)+ —Z; (C4

By applying again the partial-wave decomposition and the average momentum approximation,
(1 (PiKo,Ko) =G (PayiKo,Ko), (C5)

the energy per neutron or proton is finally

p kp)3+ (kB)3
+kF>/2KgdK[( )3( F)

_ 6\ 4 (K2 —KkP)/2
=(T)+—5—=> (23+1 —kp3TTf PP KEAK G (P K +27Tf
&=+ e, (2 ){3< BT g0 T KEAKoGE ™ (PayiKo,Ko) R

k 2 k 212 K3
% —°——[(k >2+<kp>21}6“<“p><Pav;KO,K0>

Ko
i

Kl Ko
+ 2(kE )3Tgf FKgdKO[2—3F+
0 F

3
} A (Pay Ko, K o)}- (C6)

where, againj=n or p.
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