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Microscopic calculations in asymmetric nuclear matter

D. Alonso and F. Sammarruca
Physics Department, University of Idaho, Moscow, Idaho 83844

~Received 26 December 2002; published 6 May 2003!

A microscopic calculation of the equation of state for asymmetric nuclear matter is presented. We employ
realistic nucleon-nucleon forces and operate within the Dirac-Brueckner-Hartree-Fock approach to nuclear
matter. The focal point of this paper is a~momentum-space! G matrix that properly accounts for the asymmetry
between protons and neutrons. This will merge naturally into the development of an effective interaction
suitable for applications to asymmetric nuclei, which will be the object of extensive study in the future.

DOI: 10.1103/PhysRevC.67.054301 PACS number~s!: 21.65.1f, 21.30.Fe
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I. INTRODUCTION

Nuclear matter is an idealized uniform infinite system
protons and neutrons under their mutual strong forces
without electromagnetic interactions. Symmetric nucle
matter~that is, equal densities of protons and neutrons! has
been studied extensively. The so-called conventional
proach to nuclear matter goes back to earlier works
Brueckner and others@1–6# and is known as the BHF
~Brueckner-Hartree-Fock! theory. During the 1980s, th
Dirac-Brueckner-Hartree-Fock~DBHF! approach was devel
oped @7–9#. The breakthrough came with the observati
that the DBHF theory, unlike the conventional one, cou
describe successfully the saturation properties of nuc
matter, that is, saturation energy and density of the equa
of state~EOS!. The DBHF method adopts realistic nucleo
nucleon~NN! interactions and contains features of the re
tivistic theory. It characterizes the nuclear mean field
strong, competing scalar and vector fields that together
count for the binding of nucleons as well as the large sp
orbit splitting seen in nuclear states.

Concerning asymmetric nuclear matter, systematic e
pirical investigations to determine its saturation propert
have so far not been done. From the theoretical side, s
older studies can be found in Refs.@10,11#. Interactions ad-
justed to fit properties of finite nuclei, such as those based
the nonrelativistic Skyrme Hartree-Fock theory@12# or the
relativistic mean field theory@13#, have been used to extra
phenomenological EOSs. Generally, considerable model
pendence is observed among predictions based on diffe
EOSs @14#. Variational calculations of asymmetric matt
have also been reported@15#. In Ref. @16#, a Lorentz invari-
ant functional of the baryon field operators is defined
project Dirac-Brueckner nuclear matter results onto
meson-nucleon vertices of an effective density-depend
field theory. This is then applied to asymmetric matter a
finite nuclei in Hartree calculations@17#.

We use realisticNN forces and operate within the DBH
framework. Explicit inclusion of negative energy states
the nucleon Dirac structure has been and still is the subjec
extensive debate@18–21#. Three-dimensional reductio
schemes of the covariant propagator are not unique, and
the importance of those contributions in nuclear matter
been examined within particular choices of covariant eq
tions and various approximations. For instance, the so-ca
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L approximation is adopted in Ref.@20#, and the spectato
equation@22# approach is used in Ref.@21#. At this time,
there is no compelling~model-independent! evidence for
deeming the DBHF method less reliable than any of the
proximations applied in those studies. On the contrary,
DBHF framework appears to be a reliable, as well feasib
microscopic method to describe quantitative effective int
actions in the nuclear medium.

Similar calculations have been done in Ref.@23#. The pur-
pose of our paper, however, is to produce a self-contai
report, including all relevant formulas and nuclear mat
results, and, most important, to examine the effect of
asymmetry on the in-mediumNN interaction. This work will
serve as a baseline for the future applications we plan
pursue. These include reaction studies using effective in
actions based on asymmetric matter suitable for scatterin
finite nuclei, and calculations of neutron radii and neutr
skins. Concerning properties of astrophysical implicatio
we calculate the pressure in symmetric matter and neu
matter at high densities~up to about five times saturatio
density!, and compare these values with recent experime
constraints obtained from analyses of nuclear collisions@24#,
with the extracted pressures being the highest recorded u
laboratory conditions.

Recently, much interest has developed around the stud
highly asymmetric nuclei~in particular, extremely neutron
rich nuclei, and halo nuclei!. If approved for construction
the Rare Isotope Accelerator~RIA! will map the limits of
nuclear existence and allow the study of the unique nuc
systems that populate those boundaries. Thus, it is impor
and timely to develop microscopic effective interactions th
can account for the asymmetry between proton and neu
densities.

In the self-consistent approach, a calculation of nucl
matter properties yields, at the same time, a convenient
rametrization of the density dependence in the form
nucleon effective masses. This information can then facilit
the calculation of the scattering matrix at positive energi
and finally of an effective interaction suitable, for examp
for proton scattering on asymmetric nuclei. This interacti
will be ‘‘isospin dependent,’’ in the sense of being differe
for the nn, pp, or np cases.

Here, we will first describe our DBHF calculation o
asymmetric matter~Sec. II!. In Sec. III we will present and
discuss results for the EOS at various levels of asymme
©2003 The American Physical Society01-1
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which confirm the findings from Ref.@23#. We then compare
high-density pressure calculations to most recent experim
tal observations. In the context of nonrelativistic calcu
tions, we also consider a popular potential based on ch
perturbation theory. In Sec. IV, we explore the sensitivity
theG matrix at various positive energies to increasing valu
of the neutron excess parameter. Conclusions and plan
future applications are presented in Sec. V.

II. DESCRIPTION OF THE CALCULATION

Asymmetric nuclear matter can be characterized by
neutron density,rn , and the proton density,rp . It is also
convenient to define the total densityr5rn1rp and the
asymmetry~or neutron excess! parametera5(rn2rp)/r.
Clearly,a50 corresponds to symmetric matter, anda51 to
neutron matter.

In terms ofa and the average Fermi momentum, relat
to the total density in the usual way,

r5
2kF

3

3p2 , ~1!

the neutron and proton Fermi momenta can be expresse

kF
n5kF~11a!1/3 ~2!

and

kF
p5kF~12a!1/3, ~3!

respectively.
We use the Thompson relativistic three-dimensional

duction of the Bethe-Salpeter equation. The Thompson eq
tion is applied to nuclear matter in strict analogy to fre
space scattering and reads, in the nuclear matter rest fra

gi j „qW 8,qW ,PW ,~e i j* !0…5v i j* ~qW 8,qW !1E d3K

~2p!3
v i j* ~qW 8,KW !

mi* mj*

Ei* Ej*

3
Qi j ~KW ,PW !

~e i j* !02e i j* ~PW ,KW !
gi j „KW ,qW ,PW ,~e i j* !0…,

~4!

where i j 5nn, pp, or np, and the asterisk signifies that m
dium effects are applied to those quantities. In Eq.~4!, qW , qW 8,
and KW are the initial, final, and intermediate relative m
menta, andEi* 5A(mi* )21K2. The momenta of the two in
teracting particles in the nuclear matter rest frame have b
expressed in terms of their relative momentum and
center-of-mass momentum,PW , through

PW 5
kW11kW2

2
, ~5!

KW 5
kW12kW2

2
. ~6!
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The energy of the two-particle system is

e i j* ~PW ,KW !5ei* ~PW ,KW !1ej* ~PW ,KW ! ~7!

and (e i j* )0 is the starting energy. The single-particle ener
ei* includes kinetic energy and potential energy; see bel
The Pauli operatorQ prevents scattering to occupied state
To eliminate the angular dependence from the kernel of
~4!, it is customary to replace the exact Pauli operator w
its angle average. Detailed expressions for the Pauli oper
in the case of two different Fermi momenta are given
Appendix A. It is also customary to introduce an avera
center-of-mass momentum@5#. Definitions and details are
also provided in Appendix A.

With the definitions

Gi j 5
mi*

Ei* ~qW 8!
gi j

mj*

Ej* ~qW !
~8!

and

Vi j* 5
mi*

Ei* ~qW 8!
v i j*

mj*

Ej* ~qW !
, ~9!

one can rewrite Eq.~4! as

Gi j „qW 8,qW ,PW ,~e i j* !0…5Vi j* ~qW 8,qW !1E d3K

~2p!3
Vi j* ~qW 8,KW !

3
Qi j ~KW ,PW !

~e i j* !02e i j* ~PW ,KW !
Gi j „KW ,qW ,PW ,~e i j* !0…,

~10!

which is formally identical to the nonrelativistic equatio
We make use of the definitions Eqs.~8! and ~9! throughout
this paper, which is why all formulas involving the operat
G appear identical to their nonrelativistic equivalent.

The goal is to determine self-consistently the nuclear m
ter single-particle potential which, in our case, will be diffe
ent for neutrons and protons. To facilitate the description
the numerical procedure, we will use a schematic notat
for the neutron or proton potential~while the corresponding
detailed expressions are reported in Appendix B!. We write,
for neutrons,

Un5Unp1Unn , ~11!

and for protons

Up5Upn1Upp , ~12!

where each of the four terms on the right-hand-side of E
~11! and~12! depends on the appropriateG matrix ~nn, pp, or
np! from Eq. ~10!. Clearly, the two equations above a
coupled through thenp component and thus they must b
solved simultaneously. Furthermore, theG-matrix equation
and Eqs. ~11! and ~12! are coupled through the single
particle energy~which includes the single-particle potential!.
So we have three coupled equations to be solved s
1-2
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MICROSCOPIC CALCULATION IN ASYMMETRIC . . . PHYSICAL REVIEW C 67, 054301 ~2003!
consistently. As done in the symmetric case@9#, we param-
etrize the single-particle potential for protons and neutr
@Eqs.~11! and~12!# in terms of two constants,US,i andUV,i
~the scalar and vector potential! through

Ui~ki !5
mi*

Ei*
US,i1UV,i . ~13!

For the purpose of facilitating the connection to the us
nonrelativistic framework@5#, it is customary to redefineUS,i
andUV,i in terms of two other constants defined as

mi* 5mi1US,i ~14!

and

U0,i5US,i1UV,i . ~15!

The subscript ‘‘i’’ signifies that these parameters are differe
for protons and neutrons. Starting from some initial values
mi* and U0,i , the G-matrix equation is solved and a firs
approximation forUi(ki) is then obtained. This solution i
again parametrized in terms of a new set of constants,
the procedure is repeated until convergence is reached.
effective masses for neutrons and protons,mi* , obtained
through this procedure are shown in Fig. 1 as a function
the Fermi momentum at various levels of asymmetry.

Finally, the energy per neutron or proton in nuclear ma
is calculated from

ēi5^Ti&1^Ui&. ~16!

~See Appendix C for details.! The EOS, or energy pe
nucleon as a function of density, is then written as

ē~rn ,rp!5
rnēn1rpēp

r
~17!

or

ē~kF ,a!5
~11a!ēn1~12a!ēp

2
. ~18!

III. PROPERTIES OF THE EQUATION OF STATE

The NN potential used in this work is the relativisti
OBEP from Ref.@25#, which uses the Thompson equatio
and the pseudovector coupling for thep andh mesons. The
EOS as obtained from our DBHF calculation is displayed
Fig. 2 ~upper panel!, as a function ofkF and for values ofa
between 0 and 1. The symmetric matter EOS saturate
kF'1.4 fm21 with a value of 16.7 MeV, in good agreeme
with the empirical values. For the compression modulus
saturated symmetric matter, defined as

k5kF
2 ]2ē~kF!

]2kF
U

kF5k
F
~0!

, ~19!
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we find a value of 233 MeV. This is in excellent agreeme
with the recent empirical determination of 225615
MeV @26#.

As the neutron density increases~the total density remain-
ing constant!, the EOS becomes increasingly repulsive a
the minimum shifts towards lower densities. As the syst
moves towards neutron matter, the ‘‘energy well’’ gets mo
and more shallow, until, fora larger than about 0.8, the
system is no longer bound.

We also show for comparison the EOS based on the B
calculation~see Fig. 2, lower panel!. Also, in this case we
have performed a self-consistent calculation based on
same realistic force. However, no medium modifications
included in the potential to account for the proper Dir
structure of the nucleons in nuclear matter. As a con
quence, saturation of symmetric matter is obtained at a m
higher density, a well-known problem with the convention
approach.

In Fig. 3, we take a different look at the EOS. There, w
plot the quantityē(kF ,a)2ē(kF,0) versusa2. Clearly, the
behavior is linear, that is,

ē~kF ,a!2ē~kF,0!5esa
2, ~20!

or parabolic versusa. This linear behavior, shared with th
nonrelativistic predictions~see lower panel of Fig. 3!, is
reminiscent of the asymmetry term in the familiar sem
empirical mass formula. By reading the slope of each li
we can then predict the nuclear symmetry energy, define

es5
1

2

]2ē~kF ,a!

]2a U
a50

. ~21!

This is shown in Fig. 4, where the solid curve is the pred
tion from the DBHF model and the dashed curve cor
sponds to the BHF calculation. The DBHF prediction at sa
ration density is about 30 MeV. The behavior of th
symmetry energy is most controversial at high densiti
where even the trend depends strongly on the type of in
action used@27#. Energetic reactions induced by heav
neutron-rich nuclei have been proposed as a mean to ob
crucial information on the high-density behavior of th
nuclear symmetry energy and thus the EOS of de
neutron-rich matter@27#. Analyses of collision dynamics
have been done at the National Superconducting Cyclo
Laboratory to extract EOS-sensitive observables such as
elliptic flow @24#. In this way, empirical constraint has bee
obtained for the pressure of symmetric and neutron matt

The pressure of neutron-rich matter is defined in terms
the energy/particle as

P~r,a!5r2
]ē~r,a!

]r
. ~22!

@We notice that Eq.~20! facilitates the calculation of the
pressure for anya.#

In Fig. 5, we show the pressure obtained from the DBH
based EOS for symmetric matter and neutron matter.
1-3
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FIG. 1. Upper panel: neutron effective mass as a function of the Fermi momentum and for increasing values ofa between 0 and 1. The
upper curve corresponds toa51. Lower panel: proton effective mass. The upper curve corresponds toa50.
s
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eld
empirical constraints have been provided by the author
Ref. @24#. The area within the dashed lines indicates EO
consistent with the elliptic flow measurements reported
that work. For the case of neutron matter, two different
rametrizations for the symmetry energy are assumed in
analysis. The two pressure contours in the bottom pane
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Fig. 5 correspond to the weakest~lower contour! and the
strongest~higher contour! density dependence fores(r) pro-
posed by Prakash, Ainsworth, and Lattimer@28#.

It is fair to say that DBHF predictions produce a reaso
able amount of repulsion. In contrast, relativistic mean fi
theories~RMFT! tend to generate too much pressure@24#, as
1-4
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MICROSCOPIC CALCULATION IN ASYMMETRIC . . . PHYSICAL REVIEW C 67, 054301 ~2003!
can be expected from the higher compression modulus
ally predicted by RMFT. While very repulsive EOSs such
those obtained from RMFT as well as weakly repuls
EOSs~compression modulus of 167 MeV! are ruled out by
the analysis, EOSs that become softer at densities hi
than three times saturation density~possibly due to a phas
transition to quark matter! are not excluded.

FIG. 2. Upper panel: energy per nucleon as a function of
Fermi momentum at different values of the asymmetry param
~in steps of 0.1! from symmetric matter~lowest curve! to neutron
matter ~highest curve!. The predictions are obtained from DBH
calculations. Lower panel: corresponding predictions from B
calculations.
05430
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A. Nonrelativistic calculations with a high-precision
chiral potential

The predictions shown above are typical of meso
exchange potentials with moderate strength in the ten
force ~as indicated by a deuteronD-state probability of about
5%!. In-medium predictions, however, can be very sensit
to the nature of the chosen two-body force, and can be
even if the interactions under consideration predict v
similar free-space observables.

e
er

FIG. 3. Upper panel: the left-hand side of Eq.~20! vs a2 ~DBHF
model! for increasing values of the Fermi momentum from 0
fm21 ~lowest curve! to 1.7 fm21. Lower panel: corresponding pre
dictions from BHF calculations.
1-5
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Recently, a new generation ofNN potentials based on chi
ral perturbation theory~xPT! has begun to emerge@29,30#.
These interactions may become increasingly popular in
future as a way to describe low-energy processes in term
effective degrees of freedom while respecting the symm
tries of QCD. Thus we felt it would be interesting to consid
one of these potentials as well in calculations of symme
and asymmetric matter. In this section, we show basic E
properties for the chiral potential of Ref.@29#, which is quan-
titative in its description ofNN data up to 300 MeV.

Chiral potentials are nonrelativistic in nature and thus
suitable for a DBHF calculation. For comparison, we inclu
predictions from a modern high-precision meson-excha
potential~the CD-Bonn potential from Ref.@31#!. ~The sym-
metry energy for various high-precision potentials has b
calculated in Ref.@32#.! The CD-Bonn potential, which use
pseudoscalar coupling for the pion and has been develo
within the framework of the nonrelativistic Lippman
Schwinger equation, will also be used, as it is appropriate
a conventional Brueckner calculation.

When evaluating these predictions, one must keep
mind that consideration of many-body forces is a crucial
sue in nonrelativistic calculations~whereas some three-bod
forces are effectively included in the DBHF framewo
@33#!. The chiral potential, in particular, requires the incl
sion of three-body forces for consistency within its ord
However, we are interested in a baseline comparison
tween the two interactions as it will reveal differences, if a
originating at the two-body level. In fact, the free-space p
dictions of the two potentials under our consideration are
very similar quality. However, the momentum structure
chiral potentials can be quite different than the one of c
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FIG. 4. Nuclear symmetry energy as a function of the Fe
momentum. The solid line is the prediction from DBHF calcu
tions, while the dashed line is obtained with the conventio
Brueckner approach.
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ventional meson-exchange potentials, with the chiral inter
tions being ‘‘softer’’ due to cutoffs applied to eliminate high
momentum components, as required by the nature of
chiral expansion. Such differences are likely to show up
G-matrix calculations.

EOS properties from the chiral potential in comparis
with the CD-Bonn potential are displayed in Figs. 6–8. Ge
erally, the behavior is similar to that of a low tensor for
potential, such as the Bonn A potential, when used in a n

i

l

FIG. 5. Upper panel: pressure~in MeV/fm3! in symmetric mat-
ter as a function of density~in units of saturation density!. The area
within the dashed lines indicates pressure values consistent with
data. Lower panel: pressure in neutron matter. The two conto
correspond to two parametrizations of the asymmetry term use
the analysis, as explained in text. The predictions are from DB
calculations.
1-6
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MICROSCOPIC CALCULATION IN ASYMMETRIC . . . PHYSICAL REVIEW C 67, 054301 ~2003!
relativistic context~the chiral potential predicts a deutero
D-state probability of 4.93%!. Although similar at moderate
densities, the two sets of predictions start differing consid
ably for higher values of the Fermi momentum. The b
overview is provided by the symmetry energy, Fig. 8, whe
we see the two curves being very close to each other u
about saturation density, after which the chiral curve see
to get a bit steeper, but than crosses over to become soft
the higher densities.

Due to the cutoff applied to the chiral potential that su
presses momentum components higher than 460 Mec
@29#, it is legitimate to ask up to which value of the Ferm
momentum can its predictions be deemed reliable. A
guideline for this estimate, we will take the case of symm
ric matter, which is obtained from the formulas in the A
pendixes, setting the proton and neutron Fermi momen
equal to each other. Evaluation of the energy/particle
quires integration over the relative momentum~denoted as
K0 in Appendixes B and C! up tokF , which is therefore the
maximum value ofK0 . With the cutoff of 460 MeV/c being
equivalent to 2.3 fm21, the chiral potential predictions ar
realistic for the values ofkF shown in Figs. 6–8.

IV. IN-MEDIUM INTERACTIONS

The G matrix calculated from Eq.~10! has the depen
dence~for a given energy and momentum!

Gi j
b,b85Gi j

b,b8~kF ,a!, ~23!

where b is an appropriate set of quantum numbers andij
refers to the type of nucleons. We now wish to solve Eq.~10!
for scattering states. Envisioning a physical situation wh
protons are the incident particles, we then havepp and pn
possibilities, which are calculated separately with the app
priate effective masses and Pauli blocking operator.

As is well known since the birth of nuclear physics, thepp
andpn interactions in the same state would be identical
cept for charge dependence. However, in the asymmetric
dium, these interactions are physically different due to
different Fermi momenta of protons and neutrons. In Fig
the neutron and proton Fermi momenta from Eqs.~2! and~3!
are shown versus the asymmetry parametera for fixed ~av-
erage! Fermi momentum.

To which extent the asymmetry in the proton/neutron ra
in a nucleus will affect proton-nucleus scattering is equi
lent to the question: How sensitive is the interaction to
asymmetry degree of freedom? We can certainly get ins
into this issue from the~infinite nuclear matter! G matrix,
which, upon proper mapping into coordinate space and
plication of the local density approximation, will yield th
effective interaction for finite nuclei@34,35#. When ‘‘folded’’
over the nucleus, the interaction yields the optical poten
used to describe elastic scattering, or, in the case of inela
scattering, it becomes the transition potential connecting
initial state to the target excited states.

At present, scattering calculations on halo nuclei are
ing done with phenomenological interactions where the is
pin asymmetry is accounted for through different parame
05430
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zations forpp and pn @36#. The Melbourne group@37# has
produced a very comprehensive set of~nonrelativistic!
proton-nucleus scattering calculations, including some ex
nuclei. However, no attempt is made to account for
asymmetry in the interaction. Clearly, additional calculatio
would be helpful.

For this sensitivity study, we have selected oneS wave
and oneP wave withT51, so thatpp andpn cases are both
existing and can be compared. The1S0 wave will give us
insight into the central force, while the3P1 wave contains

FIG. 6. Upper panel: energy per nucleon as a function of
Fermi momentum at different values of the asymmetry param
~in steps of 0.2! from symmetric matter~lowest curve! to neutron
matter~highest curve!. The predictions are obtained from BHF ca
culations with the chiral potential. The lower panel corresponds
the predictions with the CD-Bonn potential.
1-7
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D. ALONSO AND F. SAMMARRUCA PHYSICAL REVIEW C67, 054301 ~2003!
strong sensitivity to the spin-orbit component.~The central
and spin-orbit pieces of the effective interaction play t
most important role in proton-nucleus elastic scattering
inelastic scattering to natural-parity transitions.!

In Figs. 10 and 11, we show the real and imaginary pa
of the ~on-shell! 1S0 matrix element at three different ene
gies. In each case, the quantity is plotted versus the~average!
Fermi momentum for three values ofa. The same legend
applies to Figs. 12 and 13 for the3P1 matrix element.

In general, the~smaller! imaginary part is much more
sensitive to the degree of asymmetry. The presence o
imaginary part is determined by the occurrence of a sin

FIG. 7. Upper panel: the left-hand side of Eq.~20! vs a2 ~ob-
tained with the chiral potential! for increasing values of the Ferm
momentum from 0.9 fm21 ~lowest curve! to 2.2 fm21. The lower
panel corresponds to predictions with the CD-Bonn potential.
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larity in the scattering equation, Eq.~10!. That occurrence
will depend on the kinematics and the value of the Fer
momenta. We see for instance that at 50 MeV the imagin
part vanishes at higher densities for larger values ofa. This
is particularly striking in thepp case, due to the drastic low
ering of the proton Fermi momentum as seen from Fig. 9

It is interesting to notice how thea dependence shows u
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momenta as a function of the asymmetry parameter for fixed va
of the ~average! Fermi momentum~solid line!.
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FIG. 10. Real part of thenp andpp 1S0 matrix element as a function of the Fermi momentum at different energies and for different
of asymmetry.
m,
nd
s a
differently in thepp/pn cases. The dependence ona comes
in through thep/n effective masses~see Fig. 1! and, of
course, Pauli blocking, which acts differently onpp or pn
states~see Appendix A for details!. Pauli blocking inpp scat-
05430
tering is controlled by just the proton Fermi momentu
whereaspn scattering is controlled by both the neutron a
proton Fermi momenta, which vary as seen from Fig. 9. A
result, the scattering probability in thepn states exhibits
1-9
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FIG. 11. Imaginary part of thenp andpp 1S0 matrix element as a function of the Fermi momentum at different energies and for diff
levels of asymmetry.
ca
n-

we
i-
he
ng
overall a weaker dependence ona.
We would expect a similar trend for in-mediumpp or pn

cross sections, a very useful concept for transport model
culations @38#, where both the mean field and nucleo
05430
l-

nucleon collisions play an important role. For instance,
would expect in-mediumpp cross sections to be more sens
tive thanpn cross sections to increasing asymmetry. By t
same token,nn cross sections would be subject to stro
1-10
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FIG. 12. As in Fig. 10, for the3P1 matrix element.
s

c
,
.

ich

c-
bu-
Pauli blocking in neutron-rich matter. We will look into thi
aspect in a future work.

Finally, as the energy increases, the details of Pauli blo
ing become much less important, as does thea dependence
although the overall density dependence remains strong~At
05430
k-

higher energies, relativistic density-dependent effects, wh
are included, become the most important.! Experiments at
low energy would be best to reveal sensitivity of the intera
tion to the asymmetry between neutron and proton distri
tions.
1-11
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FIG. 13. As in Fig. 11, for the3P1 matrix element.
u
on
lf

eter

ess
tion
pen-
V. SUMMARY AND CONCLUSIONS

We have presented a microscopic calculation of the eq
tion of state of nuclear matter when protons and neutr
have different Fermi momenta. The calculation is se
05430
a-
s

-

consistent and parameter-free, in the sense that no param
of the NN force is adjusted in the medium.

As expected, the single-particle energy moves up to l
attractive values to merge with the neutron matter equa
of state when the proton density approaches zero. The de
1-12



ea

n
a

om

S
f a

e
o
t

uc
na
to

O

m
o
fo
n
s
n

.
f

or
ce
de
ur

d
e

gy
W
g

o

ct

le

um.

is
as

g

MICROSCOPIC CALCULATION IN ASYMMETRIC . . . PHYSICAL REVIEW C 67, 054301 ~2003!
dence of the EOS on the neutron excess parameter is cl
linear as a function ofa2. We make predictions for the
nuclear symmetry energy and observe a large discrepa
between the relativistic and the nonrelativistic predictions
high density. Our findings are in agreement with those fr
Ref. @23#.

A relatively simple way to relate the microscopic EO
directly to structural properties of finite nuclei is the use o
mass formula@14#, where the ‘‘volume’’ term is directly re-
lated to the EOS. In that context, it has been pointed out@14#
that, unlike proton densities, neutron densities are very s
sitive to the EOS model. At the same time, precise data
neutron radii and neutron skins are not readily available
discriminate clearly among models. Even for a nucleus s
as208Pb, for which is fairly large database exists, determi
tions of the neutron skins differ considerably from model
model@39#. We are presently in the process of using our E
in calculations of neutron radii and neutron skins.

The relative simplicity of a homogeneous infinite syste
makes nuclear matter calculations a convenient starting p
for the determination of an effective interaction suitable
finite nuclei. Together with the local density approximatio
this approach has been used extensively and with succes
proton-nucleus scattering. With that in mind, we have take
closer look at the scattering matrix in asymmetric matter

Ultimately, the goal is to study nuclei with high levels o
asymmetry, about which very little is known. Coherent eff
from both the experimental and the theoretical side is ne
sary in order to combine reliable models of the density
pendence of the effective nuclear force with reliable struct
information. Hopefully, the RIA facility will be available in
the near future to answer open questions and help us un
stand the physics of the weakly bound systems that are
pected to exist at the limits of the nuclear chart.
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APPENDIX A: ELIMINATION OF THE ANGULAR
DEPENDENCE

1. Angle-averaged Pauli operator

The definition of the Pauli operator is, for the case of tw
different Fermi momenta,
05430
rly

cy
t

n-
n
o
h
-

S

int
r
,
for
a

t
s-
-
e

er-
x-

e

Q5H 0 if km<kF
n or kn<kF

p

1 if km.kF
n and kn.kF

p ~mÞn51,2!. ~A1!

In the angle-average approximation, one replaces the exaQ
operator with its average over all angles for fixedP andK.
That is, one defines

Q̃5^Q&5
*Q~K,P,u!dV

*dV
5

1

2 Eu1

u2
Q~P,K,u!du.

~A2!

The variablesPW , KW , kWm are as defined previously,u is the
angle betweenPW andKW , andQÞ0 for u1,u,u2 .

Several cases can occur, depending on the values ofK, P,
kF

p andkF
n . Those are

Q̄55
0, K2,

1

2
@~kF

n !21~kF
p !2#2P2

1, ~P2K !2.~kF
n !2

1

4PK
@~K1P!22~kF

n !2#, ~kF
p !2,~P2K !2,~kF

n !2

1

2PK H K21P22
1

2
@~kF

n !21~kF
p !2#J , otherwise.

~A3!

2. Averaged center-of-mass momentum

To simplify the integration leading to the single-partic
spectrum and the energy per particle~see Appendixes B and
C!, we introduce the average center-of-mass moment
This is defined as the root-mean-square value ofP for two
particles with the constraint that their relative momentum
K ~casea!, and, in addition, that one of the particles h
momentumkm ~caseb!.

a. K fixed

The definition of the average c.m. momentum~K fixed! is

Pav
2 5

*
0
kF

n

dkW1*
0
kF

p

dkW2P2d~K2 1
2 ukW12kW2u!

*
0
kF

n

dkW1*
0
kF

p

dkW2d~K2 1
2 ukW12kW2u!

. ~A4!

To simplify the final expressions, we introduce the followin
notation:

x5kF
n1K, y5kF

p2K, s5kF
n2K, t5kF

p1K.
~A5!

The final expression is then
Pav
2 55

3
5 ~kF

p !21K2, 2K,kF
n2kF

p

8
5 K~s51y5!1 1

12 ~ ty1sx!31 2
3 ~s61y6!2~ ty51sx5!

8
3 K~s31y3!1 1

2 ~ ty1sx!21~s41y4!22~ ty31sx3!
, otherwise

0, ~kF
n1kF

p !,2K.

~A6!
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b. K and kµ fixed

The definition of the average c.m. momentum~K andkm
fixed! is

P̃av
2 5

*Vm
dVm*

0
kF

i

dkW nP2dS K2
1

2 UkWm2kW nU D
*Vm

dVm*
0
kF

i

dkW2ndS K2
1

2 UkWm2kW nU D . ~A7!

For km,kF
i ,

P̃av
2

5H ~km!21K2, 2K,kF
i 2km

1
4 @3~km!21~kF

i !224Kkm#, kF
i 2km,2K,kF

i 1km

0, otherwise.
~A8!
1E
~kF

n
2km!/2

~kF
n

1km!/2
K0dK0GLL

a,in~ P̃av;K0

5
16l

p (
L,a

~2J11!T in
T F E

0

~kF
n

2km!/2
K

1
1

2km
E

~kF
n

2km!/2

~kF
n

1km!/2
K0dK0S ~kF

n !22

4

05430
For km.kF
i ,

P̃av
2 5H 1

4 @3~km!21~kF
i !224Kkm#, km2kF

i ,2K,kF
i 1km

0, otherwise
~A9!

wherem51, 2 andi 5n or p.

APPENDIX B: NUCLEAR MATTER SINGLE-PARTICLE
POTENTIAL

The single-particle potential in nuclear matter,Ui ( i 5n
or p!, is defined in the usual way@40#:
Ui~km!5 (
j ,A

^m in j uGi j um in j2n jm i&5 (
j 1,N

^m in j 1
uGinum in j 1

2n j 1
m i&1 (

j 2,Z
^m in j 2

uGipum in j 2
2n j 2

m i&. ~B1!

The explicit evaluation of this expression in partial-wave decomposition yields

Ui~km!5
8l

pkm
(
L,a

~2J11!T in
T F E

0

~kF
n

2km!/2
K0dK0E

ukm2K0u

km1K0
P dP GLL

a,in~P;K0 ,K0!

1E
~kF

n
2km!/2

~kF
n

1km!/2
K0dK0E

ukm2K0u

A@km
2

1~kF
n

!2#/22K0
2

P dP GLL
a,in~P;K0 ,K0!G1~n↔p, kF

n↔kF
p ! ~B2!

~a stands for the quantum numbersJ, S, andT!.
Using the averaged-momentum approximation~see Appendix A!,

GLL
a,i j ~P;K0 ,K0!'GLL

a,i j ~ P̃av;K0 ,K0!, ~B3!

allows us to simplify the integral overP, with the final result being

Ui~km!5
8l

pkm
(
L,a

~2J11!T in
T F E

0

~kF
n

2km!/2
K0dK0GLL

a,in~ P̃av;K0 ,K0!E
ukm2K0u

km1K0
P dPb
,K0!E
ukm2K0u

A@km
2

1~kF
n

!2#/22K0
2

P dPG1~n↔p, kF
n↔kF

p !

0
2dK0GLL

a,in~ P̃av;K0 ,K0!

km
2

2K0~K02km! DGLL
a,in~ P̃av;K0 ,K0!G1~n↔p, kF

n↔kF
p !.

~B4!
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The coefficientsT i j
T contain the isospin dependence and are equal to

T np
T50,15T pn

T50,15 1
2 , T nn

0 5T pp
0 50, T nn

1 5T pp
1 51.

APPENDIX C: ENERGY PER NUCLEON IN NUCLEAR MATTER

The energy per neutron/proton is

ēn5^Tn&1
1

2N (
j ,A

(
i ,N

^m in j uGi j um in j2n jm i&, ~C1!

ēp5^Tp&1
1

2Z (
j ,A

(
i ,Z

^m in j uGi j um in j2n jm i&, ~C2!

which, in view of Eq.~B1!, can be written as

ēn5^Tn&1
1

2N (
i ,N

Ui~km!, ~C3!

ēp5^Tp&1
1

2Z (
i ,Z

Ui~km!. ~C4!

By applying again the partial-wave decomposition and the average momentum approximation,

GLL
a,i j ~P;K0 ,K0!'GLL

a,i j ~Pav;K0 ,K0!, ~C5!

the energy per neutron or proton is finally

ēi5^Ti&1
6l

p~kF
i !3 (

L,a
~2J11!H 4

3
~kF

p !3T pn
T E

0

~kF
n

2kF
p

!/2
K0

2dK0GLL
a~np!~Pav;K0 ,K0!12T pn

T E
~kF

n
2kF

p
!/2

~kF
n

1kF
p

!/2
K0

2dK0F ~kF
n !31~kF

p !3

3

2
@~kF

n !22~kF
p !2#2

16K0
1

K0
3

3
2

K0

2
@~kF

n !21~kF
p !2#GGLL

a~np!~Pav;K0 ,K0!

1 2
3 ~kF

i !3T i i
TE

0

kF
i

K0
2dK0F223

K0

kF
i 1S K0

kF
i D 3GGLL

a~ i i !~Pav,K0 ,K0!J , ~C6!

where, again,i 5n or p.
s.
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