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Phase shift effective range expansion from supersymmetric quantum mechanics
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Supersymmetric or Darboux transformations are used to construct local phase equivalent deep and shallow
potentials for,Þ0 partial waves. We associate the value of the orbital angular momentum with the asymptotic
form of the potential at infinity, which allows us to introduce adequate long-distance transformations. The
approach is shown to be effective in getting the correct phase shift effective range expansion. Applications are
considered for the1P1 and 1D2 partial waves of the neutron-proton scattering.
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I. INTRODUCTION

In the description of the interaction between compos
particles by local potentials an ambiguity arises between
ferent phase equivalent orisophasepotential families. There
are shallow potentials, which possess only physical bo
states and deep potentials, which possess both physica
unphysical bound states. The latter, called Pauli-forbid
states, simulate nonlocal aspects of the potential, or else
complexity of the interaction between composite particl
The number of Pauli-forbidden states can be predicted f
a microscopic description of the interacting particles@1#. The
application of the supersymmetric~SUSY! quantum mechan
ics @2# to the inverse scattering problem provides an eleg
and powerful algebraic way to understand the relation
tween such phase equivalent potentials@3–6#. A supersym-
metric transformation can be seen as a specific Darb
transformation. In the following, we shall use Darboux a
SUSY transformations as synonyms.

The above procedures cannot directly provide a cor
behavior of the phase shift at energies small relative to
potential strength, i.e., a correct effective range expansion
,.0. In our opinion, the reason is that the role of the an
lar momentum for a given central potential was not prope
understood so far. In the framework of SUSY quantum m
chanics, the problem has been raised by Sukumar@3# and
Sparenberg and Baye@4# but not solved in principle. How-
ever, it has been tackled pragmatically in Ref.@7#. For ex-
ample, in the case of the,54 partial wave, it led to anS
matrix containing powers ofk restricted ton>10. How one
arrives at such a restriction is neither explained, nor
power 10 is justified.

The basic idea of this study is to associate the ang
momentum with the long-distance asymptotic behavior
the potential, irrespective of its singularity at the origin. Th
is in the spirit of Ref.@8# where these asymptotic limits ar
independent of each other. This starting point will provide
new possibility for getting a correct effective range expa
sion of the phase shift, which is the following Taylor seri
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expansion in the vicinity ofk50 ~see, e.g., Ref.@9#!:

k2,11cotd,~k!52
1

a0,
1

1

2
r 0,k21•••. ~1!

Herea0, is the scattering length andr 0, the effective range.
Expression~1! implies that for a given,, in the series ex-
pansion of tand,(k) the coefficients of the terms containin
powers ofk below 2,11 must vanish. In the frame of SUSY
quantum mechanics we solve this problem by introduc
adequate long-distance Darboux transformations.

The paper is organized as follows. In the subsection A
the next section we introduce the Darboux transformat
method and briefly review the,-fixed transformations. In
subsection B we introduce the long-distance transformatio
Section III is devoted to results and applications to t
neutron-proton scattering. Details are worked out for the,
51 and,52 partial waves. Conclusions are drawn in t
last section.

II. THEORY

A. ø-fixed Darboux transformations

We recall that the Darboux transformation method co
sists in getting solutionsw of one Schro¨dinger equation,

h1w5Ew, h152
d2

dx2
1V1~x!, ~2!

when solutionsc of another equation

h0c5Ec, h052
d2

dx2
1V0~x!, ~3!

are known. This is achieved by acting onc with a differen-
tial operatorL of the form

w5Lc, L52d/dx1w~x!, ~4!

where the real functionw(x), called superpotential, is de-
fined as the logarithmic derivative of a known solution of E
~3! denoted byu in the following. One has

w5u8~x!/u~x!, h0u5au, ~5!

,
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with a<E0, whereE0 is the ground state energy ofh0 if it
has a discrete spectrum or the lower bound of the continu
spectrum otherwise. The functionu is calledtransformation
or factorization functionand a its factorization constantor
factorization energy. The potentialV1 is defined in terms of
the superpotentialw as

V1~x!5V0~x!22w8~x!. ~6!

Equation~4! defines a first order Darboux transformation.
the following, we shall deal with chains ofN successive
transformations of this type.

Let us start by first considering,-fixedtransformations as
in Ref. @6#. This means that we use a special chain ofN
52n2n first-order Darboux transformations withn>0,
generated by the following system of transformation fun
tions:

v1~x!, . . . ,vn~x!,un11~x!,vn11~x!, . . . ,un~x!,vn~x!,
~7!

h0uj~x!52aj
2uj~x!, h0v j~x!52bj

2v j~x!, ~8!

where v j are regular@v j (0)50# and uj irregular @uj (0)
Þ0# ones, the latter being expressed in terms of the J
solutions as

uj~x!5Aj f ~x,2 ia j !1Bj f ~x,ia j !. ~9!

They have arbitrary eigenvalues2aj
2 and2bj

2 , respectively,
but always belowE0. If we are interested in the final actio
of the chain only, the solutioncN(x,k) of the transformed
equation with the Hamiltonian

hN52d2/dx21VN ~10!

corresponding to the energyE5k2 is given @10# by

cN~x,k!5W@u1 , . . . ,uN ,c0~x,k!#W21~u1 , . . . ,uN!,
~11!

whereW are Wronskians expressed in terms ofuj , denoting
symbolically any function of Eq.~7!, and ofc0(x,k) which
is a solution of the original Schro¨dinger equation corre
sponding to the same energyE. In Hamiltonian ~10!, the
transformed potential is

VN5V022
d2

dx2
lnW~u1 , . . . ,uN!. ~12!

For N51, one hasW(u1)[u1 and one recovers Eq.~6! with
u5u1. If V0 is finite at the origin,VN behaves asn(n
11)x22 whenx→0. Therefore the parametern is called the
singularity strength. Formulas~11! and ~12! result from the
replacement of a chain ofN first-order transformations by
single Nth-order transformation, which happens to be mo
efficient in practical calculations.

In Ref. @6#, we obtained that the transformed Jost functi
FN is related to the initial Jost functionF0 by
05400
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FN~k!5F0~k!)
j 51

n
k

k1 ib j
)

j 5n11

n
k2 ia j

k1 ib j
. ~13!

For n50, the first product is unity. Since a Jost function
analytic in the upper half of the complexk plane~see, e.g.,
Ref. @11#!, all b’s must be positive whereas thea’s can have
any sign, so that every positiveaj corresponds to a discret
level E52aj

2 of hN .
The corresponding phase shiftd,

N(k) can be written as

d,
N~k!5d,

0~k!1D,
N~k!, ~14!

whered,
0(k) is the initial phase shift due to the potentialV0,

and D,
N(k) is the phase shift produced by the chain ofN

Darboux transformations,

D,
N~k!52 (

j 5n11

n

arctan~k/aj !2(
j 51

n

arctan~k/bj !. ~15!

This is consistent with the asymptotic form of the scatter
solution sin@kx2(p,/2)1d,

N#. In the limit k→`, one has
d,

N→(,2n)p/2, in agreement with Ref.@8# for a singular
potential of parametern. More detailed discussion of prop
erties of,-fixed transformations may be found in Ref.@6#.

In the case,50, by expandingd,
0(k) and the arctangen

functions in Eq.~15! in power series, one obtains the effe
tive range expansion~1!. For ,.0 the situation is more
subtle, since the first term in power series of arctangent fu
tions is proportional tok. Therefore in the usual practic
based on the SUSY approach, whered,

0(k) is fixed, it would
be difficult to cancel the undesired powers ofk in order to
comply with Eq.~1!. As mentioned above, we believe th
the reason is that one deals with the Darboux transformat
that do not affect the long-distance behavior of the result
potential, as it was pointed out in Ref.@6#.

B. Long-distance Darboux transformations

To change the long-distance behavior of a potential
SUSY transformations, we use transformation functions w
zero eigenvalue. To cancel undesired powers in the seri
expansion of arctangent functions, we derive a properback-
ground phase shiftas shown below.

Consider the potentialV0(x) that for x→` behaves as

V0~x!5
,~,11!

x2
1O~x222g! ~g.0, ,>0!. ~16!

As it is known @11#, the Schro¨dinger equation containing a
potential satisfying Eq.~16! has zero-eigenvalue solution
with the following asymptotic behavior atx→`:

v~x!5Cx,11@11O~x2g!#, ~17!

u~x!5
D

x,
@11O~x2g!#. ~18!
5-2
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PHASE SHIFT EFFECTIVE RANGE EXPANSION FROM . . . PHYSICAL REVIEW C67, 054005 ~2003!
Functions~17! are regular at the origin but singular at infin
ity, and functions~18! are just the other way round. Whe
these functions are taken as transformation functions,
change in the potential for sufficiently largex has one of the
following forms:

DV~x!522@ lnv~x!#95
2~,11!

x2
1o~x222g!, ~19!

DV~x!522@ lnu~x!#952
2,

x2
1o~x222g!, ~20!

where DV(x)5VN2V0 with N51 in Eq. ~12!. It is clear
from here that function~16! increases the value of, by one
unit and function~18! decreases it by one unit. Moreover,
linear combination of Eqs.~17! and~18! is a function of type
~17!. They form a one-parameter family, while function~18!
is uniquely defined~up to an inessential constant factor!. In
this family there is only one function regular at the origi
This function, used as transformation function in the D
boux algorithm, changes bothn and ,, but all the other
members of the singular family change, without affecting
n. In the following, we shall use the singular functions of t
one-parameter family defined above to derive phase s
leading to a correct effective range expansion. We s
therefore show that the parameters appearing in the lin
combination of Eqs.~17! and ~18! can be chosen such tha
the resulting phase shift provides the general effective ra
expansion~1!. Hence, starting with a givenV0 with ,50,
we first perform a numberN5, of transformations which
give the correct long-distance behavior of the potentialV,

and introduce, parameters in the phase shift. Next,
,-fixed chain is performed, producing the final phase s
~14! for which the potentialV, plays the role of the initial
potential. The latter transformation does not affect
asymptotic form of the potentialV, at largex. Hence, the
resulting potentialVN has an asymptotic behavior corr
sponding to the,th partial wave. The addition of, zero-
energy eigenfunctions to theN52n2n first-order transfor-
mation functions used in the,-fixed chain increasesN by ,
units. This means that in theNth-order transformation to be
used below, the total number of transformation functions

N52n2n1,. ~21!

If we start with the zero initial potential,V0[0, formula
~14! for the phase shift has to be modified as follows:

d,
N~k!5d,

,~k!1D,
N2,~k!. ~22!

Hered,
,(k) is produced by the long-distance transformatio

that give rise to an intermediate potentialV, . In the follow-
ing, d,

,(k) will play the role of abackground phase shift. The
additional phase shiftD,

N2,(k) corresponding to the,-fixed
subchain ofN2,52n2n transformations has the sam
form as that of Eq.~15!. We shall illustrate this procedure b
applications given in the following section.
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III. APPLICATIONS

A. The caseøÄ1

We start with the potentialV050 in Eq. ~3!. Let us take
u0,15x1x0 as the transformation function with zero eige
value, wherex0>0 is a free parameter. Then the first-ord
transformation operator~4! takes the form

L152
d

dx
1

1

x1x0
. ~23!

The transformed potential is

V15
2

~x1x0!2
, x0>0, ~24!

and its Jost solutionf 1(x,k) may be found by applying op
erator~23! on the Jost solutionf 0(x,k)5exp(ikx) of the free
particle equation. After dividing by the factorik, one finds

f 1~x,k!5S 12
1

ik~x1x0! Dexp~ ikx!. ~25!

For x0Þ0, potential~24! hasn5n150, and its Jost function
F1(k) coincides withf 1(0,k). If one now applies operato
~23! on an oscillating solution of the free particle equati
@sin(kx1d1

1)#, one obtains

w1~x,k!52k cos~kx1d1
1!1

sin~kx1d1
1!

x1x0
. ~26!

This solution is regular at the origin, provided

d1
15arctankx0 , ~27!

and has the asymptotic behavior of;sin@kx1d1
12(p/2)# at

x→`, it describes the,51 scattering state of potential~24!.
Thus we have switched from the partial wave,50 of V0
50 to ,51 of potential~24!. Now we can perform,-fixed
transformations. The free parameterx0 will be chosen so that
the final phase shift~22! will have the correct effective rang
expansion. Replacingd,

, by the result in Eq.~27! and ex-
panding all arctangent functions in power series, one can
that the coefficient of the term proportional tok in tand1

N

vanishes for

x05 (
j 5n11

n

aj
211(

j 51

n

bj
21 . ~28!

Both the regular and irregular solutions corresponding to
tential ~24! can be found with the help of the Jost solutio
Eq. ~25!. But following Ref. @10#, we can avoid this step
thus considerably reducing the amount of numerical wo
This means that in formulas~11! and ~12!, we can directly
use appropriate solutions of the free particle equation, wh
are simple linear combinations of exponentials,

c j~x,k!5Ajexp~ ik jx!1Bjexp~2 ik jx!, Rekj50,
5-3
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BORIS F. SAMSONOV AND FL. STANCU PHYSICAL REVIEW C67, 054005 ~2003!
where we have to find the correct ratioBj /Aj . Since the
regular solutions of potential~24!, consisting of functions
v j (x)5L1c j (x,2 ib j ), satisfy the condition v j (0)50,
which fixes the ratioBj /Aj , we have free particle solution
of the form

c j~x,2 ib j !5~bjx011!exp~bjx!1~bjx021!exp~2bjx!.
~29!

The irregular solutions for the same potential, defined asuj
5L1c j (x,2 ia j ), should be obtained from the functions

c j~x,2 ia j !5Ajexp~ajx!1Bjexp~2ajx!, ~30!

which for Bj /AjÞ(ajx021)/(ajx011), AjÞ0, andaj.0
have an increasing asymptotic behavior; but ifAj50, they
decrease asymptotically. To stress the difference between
lutions with different asymptotic behavior, we choose in t
latter case,aj,0 andAjÞ0 butBj50 ~for more details, see
Ref. @6#!. Hereaj , bj , andx0 are parameters of the model
be found below. Then in theNth-order transformation, we
use the functionsu0,15x1x0, and Eqs.~29! and~30! to cal-
culate Eq.~11!. Note, nevertheless, that in the resulting pha
shift @given by~22!#, d,

, has to be replaced byd1
1 of Eq. ~27!

since the initial potential for the subchain of,-fixed trans-
formations is nowV1 of Eq. ~24!. For theNth-order trans-
formation, the potentialV1 and the phase shiftd1

1 play an
auxiliary role.

As an application, we look for neutron-proton (n-p) po-
tentials that reproduce the ‘‘pruned’’ phase shift of Ref.@12#
for the 1P1 partial wave. This phase shift together with th
theoretical values obtained from expression~13! and denoted
by d1

7 are exhibited in Table I. The six fittedS-matrix poles
are

TABLE I. The 1P1 phase shift. The theoretical value is calc
lated from Eq. ~14! with N57 transformation functions,Elab

5@(mn1mp)/mn#Ec.m., Ec.m.5\2k2/2m where m is the reduced
mass,mp5938.27 MeV andmn5939.36 MeV~c.m. being the cen-
ter of mass!. The experimental values are from Ref.@12# .

Elab (MeV) d1
exp (deg) d1

7 (deg)

14 24.1944 24.27887
42 29.01021 28.91287
70 211.99126 211.9844
98 214.42546 214.5092
126 216.60093 216.7024
154 218.59407 218.6533
182 220.42528 220.4137
210 222.09942 222.0187
238 223.61771 223.4936
266 224.9813 224.8577
294 226.19215 226.1263
322 227.25323 227.3113
350 228.16843 228.4228
05400
so-

e

a1520.7290, a2520.7295, a351.0368,

b150.4403, b250.4408, b353.3818, ~31!

in fm21 units. The superscript 7 carried by the phase shif
consistent with formulas~21! and~22!, and it implies that we
used a seventh-order transformation according to Eqs.~11!
and~12!. Then from Eq.~28! one getsx053.0578 fm. Now
we can expand all seven arctangent functions appearin
Eq. ~14! in power series. This leads to a correct effecti
range expansion given by

k3cotd1
7~k!520.318223.1511k21•••, ~32!

from which one can extract the scattering lengtha01 and the
effective ranger 01 defined according to Eq.~1!. In Table II
these values are compared with another theoretical m
@13#. They are surprisingly close to each other. The pheno
enological Reid93 potential@12# also gives similar values
@14#. Moreover, the scattering length is located in the inter
deduced from a partial wave analysis@15#.

In order to construct potentials giving rise to the pha
shift d1

7, the poles in Eq.~31! have to be associated wit
transformation functions defined by Eqs.~29! and ~30!. The
polesbj correspond to regular solutions ofV1(x) resulting
from Eq. ~29!. The polesa1 and a2, which are negative,
correspond to decreasing functions of the form~30!, with
Bj50 ( j 51,2). It remains the polea3, which is positive. If
we takeB3 /A3Þ(a3x021)/(a3x011) in Eq. ~30!, we ob-
tain from Eq.~12! a one-parameter (B3 /A3) family of one-
level isophase deep potentials with the discrete level atE5
2a3

2. But if we chooseB3 /A35(a3x021)/(a3x011), the
initially irregular function moves into the regular family

FIG. 1. 1P1 n-p shallow potentials.V7 ~solid line! together with
the Reid68 potential@16# ~dashed line!.

TABLE II. Theoretical values of the scattering length and t
effective range.

a01 r 01 a02 r 02 Reference

3.143 2 6.302 2 2.224 21.976 Present work
3.023 2 6.895 @13#

2.736 2 6.449 2 1.377 15.027 Reid93~Ref. @14#!

2.461.3 212.662.2 @15#
5-4
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PHASE SHIFT EFFECTIVE RANGE EXPANSION FROM . . . PHYSICAL REVIEW C67, 054005 ~2003!
the level disappears and one gets the uniquely defined s
low representative of the family of isophase potentials,
noted byV7. Figure 1 shows this potential from which th
centrifugal term has been subtracted. The potentialV7 is
quite close to the Reid68 potential@16#, represented in the
same figure. Figure 2 shows one of the deep isophase po
tials corresponding toB3 /A350.351. This constant has bee
adjusted to get a potential as close as possible to Reid93@12#
in the interval 0.4 fm<x<2 fm. This deep potential pos
sesses a Pauli-forbidden state of energyE52a3

2

5244.46 MeV. Contrary to the Reid93 potential that
deep but finite, our potential behaves at origin as22/x2. If
necessary, it can be regularized as, for example, in Ref.@7#.

It would be interesting to analyze the asymptotic behav
of our calculated potential to see if it is compatible wi
modern phenomenological potentials constructed in the s
of meson theory, i.e., which include one-pion-exchan
~OPE! contributions. This is precisely the case of the Reid
potential, which includes OPE with neutral and charg
pions ~for details, see Ref.@12#!. The comparison given in
Fig. 3 shows that the shallow potentialV7 and its deep part-
ner are practically identical in the asymptotic region, and t

FIG. 2. 1P1 n-p deep potentials. The full line corresponds to t
potential that gives the correct effective range expansion~32!, and
the dots represent the Reid93 potential@12#.

FIG. 3. Asymptotic behavior in natural logarithmic scale of t
value of the1P1 n-p potentials. The full line represents our shallo
potential of Fig. 1, the dashed line our deep potential of Fig. 2,
the dotted line the updated@14# phenomenological Reid93@12# po-
tential, including one-pion exchange.
05400
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they are both extremely close to the asymptotic form of
updated Reid93 potential@14#. Thus our potentials are in th
excellent agreement with expectations from Yukawa’s O
theory. We remind that we subtracted the centrifugal bar
from our potentials in order to make this comparison fe
sible. In solving the Schro¨dinger equation, this should b
added back to the nucleon-nucleon interaction in each c
The fact that the shallow and deep potentials are asymp
cally the same is physically correct. As mentioned in t
Introduction, deep potentials reflect the compositen
~quark structure! of the interacting particles in the overla
region, but, once the particles are well separated, they co
be treated as point particles as in OPE theories, which me
that beyond some distance the deep and shallow poten
should coincide.

B. The caseøÄ2

Now we have to apply two subsequent transformatio
associated with functions corresponding toE50 and then, as
above, a subchain of,-fixed transformations. After the firs
transformation with the functionu0,15x1x0, the potential
V1 of Eq. ~24! hasu51/(x1x0) andũ5(x1x0)2 as linearly
independent solutions atE50. Their linear combination
u0,25cu1ũ, which is the transformation function for th
second transformation step defined by the operator

L252d/dx1u0,28 ~x!/u0,2~x!, ~33!

contains two free parametersx0 andc. These can be chose
such that the series expansion for tand2(k) starts atk5. The
intermediate~or background! potential

V2522@ ln u0,2~x!u0,1~x!#95
6~x1x0!@~x1x0!322c#

@c1~x1x0!3#2

~34!

obtained from theL5L2L1 Darboux transformation~for
more details, see Ref.@6#! now plays the role of the initial
potential for an,-fixed subchain of transformations. Th
background phase shift~modulop) corresponding toV2 is

d2
25arctan

3kx0
2

3x02k2~x0
31c!

. ~35!

Note that the functionw2(x,k)5L2L1sin(kx1d2
2) is regular

at the origin and describes an un-normalized scattering s
for ,52. In formula ~22!, we have to identifyd,

,(k) with
d2

2(k) of Eq. ~35!. After expanding in power series all arc
tangent functions, we find that the coefficient of the te
linear in k vanishes forx0 given by Eq.~28! and

c5
1

3 F (
j 51

n

~aj
231bj

23!G ~36!

ensures the cancellation of the coefficient ofk3 in the series
expansion of tand2

N . Now, to find solutions of the free par
ticle equations, giving rise to the regular family of potent

d

5-5
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BORIS F. SAMSONOV AND FL. STANCU PHYSICAL REVIEW C67, 054005 ~2003!
~34!, to be used in Eq.~12!, we need eigenfunctions ofh0
52d2/dx2 satisfying the conditionL2L1c j (x,2 ib j )50 at
x50. They are given by the following linear combination
exponentials:

c j~x,2 ib j !5@3x013bjx0
21bj

2~c1x0
3!#exp~bjx!

2@3x023bjx0
21bj

2~c1x0
3!#exp~2bjx!.

~37!

The irregular family still results from Eq.~30! subject to the
condition that the ratioBj /Aj is different from that presente
in Eq. ~37!.

With a fit of a similar quality to that performed for1P1
we could reproduce the1D2 partial wave phase shift of Ref
@12# with the following four poles of theS matrix:

a1520.2047, a2521.9800,

b151.2305, b254.9631, ~38!

in fm21 units. From Eqs. ~28! and ~36!, we get x0
524.375 fm andc5116.08 fm3. This leads to the follow-
ing effective range expansion:

k5cotd2
6~k!50.4496110.9878k21•••, ~39!

where the superscriptN56 represents four transformatio
functions associated with the poles~38! plus two zero-
eigenvalue functionsu0,1 andu0,2 defined above. This is con
sistent with formula~21! with n52, n50, and,52. From
expansion~39!, one can extract the scattering lengtha02 and
b

s

05400
the effective ranger 02 defined in Eq.~1!. These values are
shown in Table II. They are comparable to those obtained
the potential Reid93@14#.

IV. CONCLUSIONS

By working out these two particular cases, we ha
shown that a new insight emerges into the role of the ang
momentum of a central potential. If associated with the lon
distance behavior of the potential, it allows us to introdu
transformations that bring, free parameters in the back
ground phase shift@Eqs. ~27! and ~35!#. When a correct ef-
fective range expansion is required, each extra unit of an
lar momentum imposes a new constraint on the wh
system of parameters of the model, such that the numbe
constraints coincides with the number of parameters in
background phase shift. For the particular cases of,51 and
,52, explicit solutions of the constraint equations are giv
Thus, the extension of the method to,.2 is straightforward.
Before ending we should mention that the generaliz
Levinson theorem@8# is always satisfied in our approach.
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