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Phase shift effective range expansion from supersymmetric quantum mechanics
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Supersymmetric or Darboux transformations are used to construct local phase equivalent deep and shallow
potentials forf # 0 partial waves. We associate the value of the orbital angular momentum with the asymptotic
form of the potential at infinity, which allows us to introduce adequate long-distance transformations. The
approach is shown to be effective in getting the correct phase shift effective range expansion. Applications are
considered for théP; and D, partial waves of the neutron-proton scattering.
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I. INTRODUCTION expansion in the vicinity ok=0 (see, e.g., Ref9]):

In the description of the interaction between composite K20+1 _
. . o ; cotd(k)=

particles by local potentials an ambiguity arises between dif-
ferent phase equivalent @ophasepotential families. There
are shallow potentials, which possess only physical bounéiereay, is the scattering length ang, the effective range.
states and deep potentials, which possess both physical af#pression(1) implies that for a givert, in the series ex-
unphysical bound states. The latter, called Pauli-forbiddefansion of tad,(k) the coefficients of the terms containing
states, simulate nonlocal aspects of the potential, or else, tH@wers ofk below 2¢ +1 must vanish. In the frame of SUSY
complexity of the interaction between composite particlesguantum mechanics we solve this problem by introducing
The number of Pauli-forbidden states can be predicted fronddequate long-distance Darboux transformations.
a microscopic description of the interacting partidlés The The paper is organized as follows. In the subsection A of
app"ca’[ion of the Supersymmet[(iSUSY) quantum mechan- the next section we introduce the Darboux transformation
ics [2] to the inverse scattering problem provides an eleganthethod and briefly review thé-fixed transformations. In
and powerful algebraic way to understand the relation besubsection B we introduce the long-distance transformations.
tween such phase equivalent potentid@s 6]. A supersym- Section Il is devoted to results and applications to the
metric transformation can be seen as a specific DarbouR€utron-proton scattering. Details are worked out for the
transformation. In the following, we shall use Darboux and=1 and{=2 partial waves. Conclusions are drawn in the
SUSY transformations as synonyms. last section.

The above procedures cannot directly provide a correct
behavior of the phase shift at energies small relative to the Il. THEORY
potential strength, i.e., a correct effective range expansion for
€>0. In our opinion, the reason is that the role of the angu-
lar momentum for a given central potential was not properly We recall that the Darboux transformation method con-
understood so far. In the framework of SUSY quantum mesists in getting solutiong of one Schrdinger equation,
chanics, the problem has been raised by Sukur@hiand
Sparenberg and Bayd] but not solved in principle. How-
ever, it has been tackled pragmatically in Ref]. For ex-
ample, in the case of thé=4 partial wave, it led to ars
matrix containing powers df restricted ton=10. How one  \hen solutionsy of another equation
arrives at such a restriction is neither explained, nor the
power 10 is justified. d2

The basic idea of this study is to associate the angular hoy=E, ho=——+V(X), (3
momentum with the long-distance asymptotic behavior of dx
the potential, irrespective of its singularity at the origin. This
is in the spirit of Ref[8] where these asymptotic limits are
independent of each other. This starting point will provide
new possibility for getting a cqrrect effecti_ve range expan- e=Ly, L=—d/dx+w(x), (4
sion of the phase shift, which is the following Taylor series

where the real functionv(x), called superpotentialis de-
fined as the logarithmic derivative of a known solution of Eq.
*On leave from Physics Department, Tomsk State University,3) denoted byu in the following. One has
Tomsk, Russia. Email address: samsonov@phys.tsu.ru
TEmail address: fstancu@ulg.ac.be w=u’'(x)/u(x), hou=au, (5)
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A. €-fixed Darboux transformations

d2
hi¢=Ee, h1=__2 +V1(x), (2
dx

are known. This is achieved by acting gnwith a differen-
atial operatorL of the form
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with a<E,, whereE, is the ground state energy bf if it v
has a discrete spectrum or the lower bound of the continuous Fn(k)=Fq( H
spectrum otherwise. The functianis calledtransformation =
or factorization functionand « its factorization constanor ] ) ) ) o
factorization energyThe potentiaV; is defined in terms of For v=0, the first product is unity. Since a Jost function is

n .
k_laj 13)
k+|bJJ v+1 K+iby (

the superpotential as analytic in the upper half of the compléxplane(see, e.g.,
Ref.[11]), all b’s must be positive whereas tlaés can have
V1(X) = Vo(X) — 2w/’ (X). (6)  any sign, so that every positivag corresponds to a discrete

level E= —a? of hy
Equation(4) defines a first order Darboux transformation. In  The corre]spondmg phase shif (k) can be written as
the following, we shall deal with chains dfl successive
transformations of this type. oY (k)= 62(k)+AY(K), (14)
Let us start by first considering-fixedtransformations as
in Ref. [6]. This means that we use a special chainNof whereb‘o(k) is the initial phase shift due to the potenfia,

generated by the following system of transformatmn func- -Darboux transformations,

tions:
n n
v1(X), « o0 (X) Uy 1 (X), 01 (X), ,un(X),vn(X),(7) AM(k)=— > arctarik/a;)— >, arctarik/b;). (15)
j=v+1 =1
hou;(X) = —ajzuj(x), hov(X) = — bjzvj(x), (8)  This is consistent with the asymptotic form of the scattering

solution sifikx—(7¢/2)+ &)']. In the limit k—, one has
where v; are regular[v;(0)=0] and u; irregular [u;(0) 5?—>(€—y)1-r/2, in agreement with Ref8] for a singular
#0] ones, the latter being expressed in terms of the Jogiotential of parameter. More detailed discussion of prop-
solutions as erties of¢-fixed transformations may be found in RES].
_ _ In the casef =0, by expandings?(k) and the arctangent
ui()=Ajf(x,—ia;) +Bjf(x.ia;). (9 functions in Eq.(15) in power series, one obtains the effec-
) ) 5 ) ) tive range expansiolil). For >0 the situation is more
They have arbitrary eigenvaluesaj and— by, respectively, g ptle, since the first term in power series of arctangent func-
but always belovE,. If we are interested in the final action tjgns is proportional tok. Therefore in the usual practice
of the_ chain only, the _solu'_tiorz’/xN(x,k) of the transformed 55ed on the SUSY approach, Whégek) is fixed, it would
equation with the Hamiltonian be difficult to cancel the undesired powerskoin order to
o= — d2/dx2+ V (10 comply with Eq.(2). As mentipned above, we believe th_at
N N the reason is that one deals with the Darboux transformations
that do not affect the long-distance behavior of the resulting

corresponding to the enerdy=k? is given[10] by potential, as it was pointed out in Ré6.

wN(er):W[ull L 1uN1l//O(X1k)]W71(ul1 AL 1uN)v . .
(12) B. Long-distance Darboux transformations
) ) ) To change the long-distance behavior of a potential by
whereW are Wronskians expressed in termsupf denoting  sysy transformations, we use transformation functions with
symbolically any function of Eq(7), and ofo(x,k) which  zero eigenvalueTo cancel undesired powers in the series

is a solution of the original Schdinger equation corre-  eypansion of arctangent functions, we derive a prdyzak-
sponding to the same enerdy In Hamiltonian (10), the  4r5und phase shifas shown below.

transformed potential is Consider the potentialy(x) that forx—o behaves as
d? 0(€+1) L,
Vi=Vo— 2 SInW(us, - ). (12) Vy(X) = +O(X" 2 (y>0, £=0). (16)
X

ForN=1, one hasV(u;)=u, and one recovers E¢) with  As it is known[11], the Schrdinger equation containing a
u=u,. If Vq is finite at the origin,Vy behaves as/(v  potential satisfying Eq(16) has zero-eigenvalue solutions
+1)x 2 whenx—0. Therefore the parameteris called the  with the following asymptotic behavior &t o:
singularity strength Formulas(11) and (12) result from the
replacement of a chain & first-order transformations by a v(x)=Cx Y1+ 0(x )], (17)
single Nth-order transformation, which happens to be more
efficient in practical calculations. D

In Ref.[6], we obtained that the transformed Jost function u(x)= —[1+0(x™ ")]. (18)
Fy is related to the initial Jost functioR, by x¢
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Functions(17) are regular at the origin but singular at infin- ll. APPLICATIONS
ity, and functions(18) are just the other way round. When

these functions are taken as transformation functions, the
change in the potential for sufficiently largehas one of the We start with the potentia¥,=0 in Eq. (3). Let us take

A. The casel{=1

following forms: Up1=X+Xo as the transformation function with zero eigen-
value, wherex=0 is a free parameter. Then the first-order
2(0+1) transformation operatg#) takes the form
AV(x)=—2[Inv(x)]"= ;—+to(x"?77), (19
X L= d + ! 23
7 dx ' x+xo 23
” 2¢ —-2— cAal i
AV(x)=—=2[Inu(x)]"=—-—+o(x"“77), (200  The transformed potential is
X
. . . 2
where AV(x)=Vyn—V, with N=1 in Eq. (12). It is clear Xo=0, (24)

from here that functiorf16) increases the value df by one ' (X+Xg)?

unit and function(18) decreases it by one unit. Moreover, a ) ) )

linear combination of Eqg17) and(18) is a function of type ~@nd its Jost solutior; (x,k) may be found by applying op-

(17). They form a one-parameter family, while functictg) ~ €rator(23) on the Jost solutiofig(x, k) =exp(kx) of the free

is uniquely definedup to an inessential constant fagtan particle equation. After dividing by the factok, one finds

this family there is only one function regular at the origin.

This function, used as transformation function in the Dar- f,(x k)=(1

boux algorithm, changes both and ¢, but all the other '

members of the singular family chandgewithout affecting

v. In the following, we shall use the singular functions of the FOrXo# 0, potential(24) hasy=r;=0, and its Jost function

one-parameter family defined above to derive phase shift§1(K) coincides withf,(0k). If one now applies operator

leading to a correct effective range expansion. We shalf23) on an oscillating solution of the free particle equation

therefore show that the parameters appearing in the linedsin(x+ay)], one obtains

combination of Egqs(17) and (18) can be chosen such that

the resulting phase shift provides the general effective range

expansion(1). Hence, starting with a giveN, with ¢=0,

we first perform a numbeN=¢ of transformations which

give the correct long-distance behavior of the poterial  This solution is regular at the origin, provided

and introducef parameters in the phase shift. Next, an

{-fixed chain is performed, producing the final phase shift 5}=arctarkxo, (27)

(14) for which the potentiaV, plays the role of the initial

potential. The latter transformation does not affect theand has the asymptotic behavior efsikx+ &—(/2)] at

asymptotic form of the potentia¥, at largex. Hence, the x—, it describes thé =1 scattering state of potenticd4).

resulting potentialVy has an asymptotic behavior corre- Thus we have switched from the partial wage=0 of V,,

sponding to thefth partial wave. The addition of zero- =0 to{=1 of potential(24). Now we can perfornt -fixed

energy eigenfunctions to the=2n— v first-order transfor- transformations. The free paramexgmwill be chosen so that

mation functions used in thé-fixed chain increaseN by ¢ the final phase shif22) will have the correct effective range

units. This means that in theth-order transformation to be expansion. Replacing! by the result in Eq(27) and ex-

used below, the total number of transformation functions is panding all arctangent functions in power series, one can see
that the coefficient of the term proportional koin tan&’II

explikx). (25

B ik(x+Xg)

L Sin(kx+ 87)
e1(x,K) = —k cogkx+ 8 +————2  (26)
X+Xg

N=2n—v+¢. (21 vanishes for
If we start with the zero initial potential,=0, formula n n
(14) for the phase shift has to be modified as follows: Xo= > ) aj '+ _El b, *. (28)
J=v+ 1=

N _ N—¢
Sk =84k + A7 (k). (22 Both the regular and irregular solutions corresponding to po-

) ) . tential (24) can be found with the help of the Jost solution,
Hereéﬁ(k)_ is produc;ed by th_e Iong—dlstgnce transformatlonsEq_ (25). But following Ref.[10], we can avoid this step,
that give rise to an intermediate potentigl. In the follow-  thys considerably reducing the amount of numerical work.
ing, 8¢ (k) will play the role of abackground phase shiffhe  This means that in formula&1) and (12), we can directly
additional phase shithy' (k) corresponding to thé-fixed  use appropriate solutions of the free particle equation, which
subchain of N—¢=2n—v transformations has the same are simple linear combinations of exponentials,
form as that of Eq(15). We shall illustrate this procedure by
applications given in the following section. i(x,k) = Ajexpik;x) + Bjexp( —ik;x), Rek;=0,
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TABLE I. The P, phase shift. The theoretical value is calcu-
lated from Eg.(14) with N=7 transformation functionsg,y,
=[(My+mp)/my]Ec ., Ecm=%?k?/2 where u is the reduced

massm,=938.27 MeV andn,=939.36 MeV(c.m. being the cen-
ter of mass The experimental values are from REE2] .
Ejan (MeV) 87" (deg) 51 (deg)
14 —4.1944 —4.27887
42 —9.01021 —8.91287
70 —11.99126 —11.9844
98 —14.42546 —14.5092
126 —16.60093 —16.7024
154 —18.59407 —18.6533
182 —20.42528 —20.4137
210 —22.09942 —22.0187
238 —23.61771 —23.4936
266 —24.9813 —24.8577
294 —26.19215 —26.1263
322 —27.25323 —27.3113
350 —28.16843 —28.4228

where we have to find the correct ratiy/A;. Since the
regular solutions of potential24), consisting of functions
vj(X)=L1¢;(x,—ibj), satisfy the conditionv;(0)=0,
which fixes the ratid; /A;, we have free particle solutions
of the form

Ui (X,—ibj)=(bjxo+ 1)exp(b;x) + (b;xo— 1)exp( —b;x).
(29

The irregular solutions for the same potential, definedi;as
=L1¢;(x,—ia;), should be obtained from the functions

l/fj(X,_iaj):AjEXF(an)'i‘Bjexq_an), (30)

which for Bj/A;# (ajxo—1)/(ajxe+1), Aj#0, anda;>0
have an increasing asymptotic behavior; buijt=0, they

PHYSICAL REVIEW @7, 054005 (2003

TABLE II. Theoretical values of the scattering length and the
effective range.

ao; o1 ap I o2 Reference
3.143 — 6.302 — 2.224 21.976 Present work
3.023 — 6.895 [13]

2.736 —6.449 — 1.377 15.027 Reid98Ref.[14])
24+13 -—12.6+2.2 [15]

a;=—0.7290, a,=—0.7295, a;—1.0368,

b,=0.4403, b,=0.4408, b;=3.3818, (31

in fm~* units. The superscript 7 carried by the phase shift is
consistent with formulag1) and(22), and it implies that we
used a seventh-order transformation according to ELfs.
and(12). Then from Eq.28) one getsx,=3.0578 fm. Now

we can expand all seven arctangent functions appearing in
Eqg. (14) in power series. This leads to a correct effective
range expansion given by

k3cot&](k)=—0.3182-3.151k>+ - - -, (32

from which one can extract the scattering lenggh and the
effective range y; defined according to Eq1). In Table I
these values are compared with another theoretical model
[13]. They are surprisingly close to each other. The phenom-
enological Reid93 potentidll2] also gives similar values
[14]. Moreover, the scattering length is located in the interval
deduced from a partial wave analy$§ib].

In order to construct potentials giving rise to the phase
shift 8!, the poles in Eq(31) have to be associated with
transformation functions defined by Eq29) and(30). The
polesb; correspond to regular solutions ®f(x) resulting
from Eq. (29). The polesa; and a,, which are negative,
correspond to decreasing functions of the fo{@d), with
B;=0 (j=1,2). It remains the polas, which is positive. If
we takeB;/A;# (azxo—1)/(asXy+1) in Eq. (30), we ob-
tain from Eq.(12) a one-parameteB;/A3) family of one-
level isophase deep potentials with the discrete levél-at

decrease asymptotically. To stress the difference between so-a3. But if we chooseB;/A;=(agzxo—1)/(agxe+1), the
lutions with different asymptotic behavior, we choose in theinitially irregular function moves into the regular family,

latter case@;<<0 andA;# 0 butB;=0 (for more details, see
Ref.[6]). Herea,, b;, andx, are parameters of the model to
be found below. Then in th&lth-order transformation, we
use the functionsig ;= X+ Xq, and Eqs(29) and(30) to cal-

culate Eq(11). Note, nevertheless, that in the resulting phase

shift [given by (22)], &/ has to be replaced b§; of Eq. (27)

since the initial potential for the subchain 6ffixed trans-
formations is nowV; of Eq. (24). For theNth-order trans-
formation, the potentialV/, and the phase shif&} play an
auxiliary role.

As an application, we look for neutron-proton-f) po-
tentials that reproduce the “pruned” phase shift of Ha2]
for the 1P, partial wave. This phase shift together with the
theoretical values obtained from expressi®8) and denoted
by 6] are exhibited in Table I. The six fitteBmatrix poles
are

0 0.2 0.4 0.6 0.8 x (fm)

FIG. 1. 'P, n-p shallow potentialsV, (solid line) together with
the Reid68 potentidl16] (dashed ling
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they are both extremely close to the asymptotic form of the

0.1 updated Reid93 potentifl4]. Thus our potentials are in the
excellent agreement with expectations from Yukawa's OPE
0 theory. We remind that we subtracted the centrifugal barrier

% from our potentials in order to make this comparison fea-
9 -0.1 sible. In solving the Schdinger equation, this should be
N added back to the nucleon-nucleon interaction in each case.
The fact that the shallow and deep potentials are asymptoti-
cally the same is physically correct. As mentioned in the
Introduction, deep potentials reflect the compositeness
—0.3 (quark structurg of the interacting particles in the overlap
0 05 1 15 2 (fm) region, but, once the particles are well sepa_rated, they could
be treated as point particles as in OPE theories, which means
FIG. 2. 1P, n-p deep potentials. The full line corresponds to the that beyond some distance the deep and shallow potentials

potential that gives the correct effective range expanéi@h and ~ should coincide.
the dots represent the Reid93 potentiEd].

B. The caset(=2

the level disappears and one gets the uniquely defined shal- Now we have to apply two subsequent transformations
low representative of the family of isophase potentials, deassociated with functions correspondingite 0 and then, as
noted byV-. Figure 1 shows this potential from which the apove, a subchain df-fixed transformations. After the first
centrifugal term has been subtracted. The potenfialis  transformation with the functiomiy ;=x+xo, the potential
quite c_Iose to _the Reid68 potentigl6], represgnted in the V, of Eq. (24) hasu=1/(x+xo) andu=(x+x)? as linearly
same figure. Figure 2 shows one of the deep isophase pOtefPfdependent solutions &E=0. Their linear combination
tials corresponding tB5/A;=0.351. This constant has been ~ L . .
adjusted to get a potential as close as possible to REIH3 Ug=cu+u, which is the trans_formatlon function for the
in the interval 0.4 freex<2 fm. This deep potential pos- S€cond transformation step defined by the operator
sesses a Pauli-forbidden state of enerdy=—a3 L= —d/dx+uj A x)/Ug AX) (33
=—44.46 MeV. Contrary to the Reid93 potential that is 2 o AT
deep but finite, our potential behaves at origina2/x>. If  contains two free parametexs andc. These can be chosen
necessary, it can be regularized as, for example, in[R&f.  sych that the series expansion for &(k) starts ak®. The

It would be interesting to analyze the asymptotic behaviolintermediate(or backgroun potential
of our calculated potential to see if it is compatible with
modern phenomenological potentials constructed in the spirit 6(X+Xo)[(X+Xg)3—2c]
of meson theory, i.e., which include one-pion-exchange V,=—2[InugoX)Ugy(X)]"= 33
(OPB contributions. This is precisely the case of the Reid93 [c+(X+X0)"]
potential, which includes OPE with neutral and charged (34)

Elionss(;ct)]rosvest?rl]l; %zesﬁ:r%v%]).o-lt—gr?t};lfgr?;riltzogeglvegrltrj obtained from theL=L,L; Darboux transformationfor
negr.are ractically identical intﬁe asymptotic re ionpapnd tha{m’re details, see Ref6]) now plays the role of the initial
P y ymp gron, potential for an{-fixed subchain of transformations. The

background phase shifinodulo 77) corresponding td/, is

4
) 3kx3
. o5= arctaR———————. (35
> 3Xg—k“(xgtc)
é) 2
N Note that the functionp,(x,k)=L,Lsinfkx+ &) is regular
0 at the origin and describes an un-normalized scattering state
% for £=2. In formula(22), we have to identifys}(k) with
“_2 85(k) of Eq. (35). After expanding in power series all arc-
tangent functions, we find that the coefficient of the term
linear ink vanishes fox, given by Eq.(28) and
—4 2
0 2 4 6  x(fm) 1|
c=z| X (a7 %+ bﬁ)} (36)
FIG. 3. Asymptotic behavior in natural logarithmic scale of the 3=

value of the'P; n-p potentials. The full line represents our shallow . o )
potential of Fig. 1, the dashed line our deep potential of Fig. 2, an€hsures the cancellation of the coefficienkdfin the series

the dotted line the updatdd4] phenomenological Reid9a2] po-  expansion of tad . Now, to find solutions of the free par-
tential, including one-pion exchange. ticle equations, giving rise to the regular family of potential
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(34), to be used in Eq(12), we need eigenfunctions d¢f, the effective range, defined in Eq.(1). These values are

= —d?/dx? satisfying the conditiorL,L;(x,—ib;)=0 at  shown in Table II. They are comparable to those obtained for
x=0. They are given by the following linear combination of the potential Reid9814].

exponentials:

Yi(x, —ib;) =[3xo+ 3bG+b2(c+x3) Jexpbyx) V. CONCLUSIONS

P 3 By working out these two particular cases, we have
~[3x0—3bjxg+bj(c+xp) Jexp(—b;x). shown that a new insight emerges into the role of the angular
(37) momentum of a central potential. If associated with the long-
distance behavior of the potential, it allows us to introduce
The irregular family still results from Eq30) subject to the  transformations that bring free parameters in the back-
condition that the rati®; /A, is different from that presented ground phase shiftEgs. (27) and(35)]. When a correct ef-
in Eq. (37). fective range expansion is required, each extra unit of angu-
With a fit of a similar quality to that performed fotP;  |ar momentum imposes a new constraint on the whole
we could reproduce théD, partial wave phase shift of Ref. system of parameters of the model, such that the number of
[12] with the following four poles of thes matrix: constraints coincides with the number of parameters in the
background phase shift. For the particular caseé-el and
a,;=—0.2047, a,=—1.9800, € =2, explicit solutions of the constraint equations are given.
_ _ Thus, the extension of the method#éo- 2 is straightforward.
b;=1.2305, b,=4.9631, (38) Before ending we should mention that the generalized

in fm~! units. From Egs.(28) and (36), we getx, Levinson theoreni8]is always satisfied in our approach.
= —4.375 fm andc=116.08 fnf. This leads to the follow-
ing effective range expansion: ACKNOWLEDGMENTS
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