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An improvement of the recently developed effective interaction method for the hyperspherical formalism is
presented. The method is extended to include contributions of three-body effective forces and of the nonadia-
batic kinetic energy term. The role of these two additional contributions is tested on the binding en8irgy of
and SLi using semirealistic and more realistéN potential models. The rate of convergence is improved
considerably, opening up the possibility to use the method with realistic two- and three-body potentials for the
a-particle and for few-body nuclei with more than four nucleons.
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[. INTRODUCTION radial kinetic energy is described. The incorporation of the
three-body effective interaction is discussed in Sec. IV. Re-
In the last decade quite some progress was made in msults with the two improvements of the EIHH method are
croscopic calculations of few-body nuclei. In fact severalgiven in Sec. V. A detailed Appendix describes how the ma-
theoretical approaches were deve|oped and a few of theﬁﬁiX elements of the three-body effective interaction are actu-
such as the Green function Monte Caf@FMC) [1], the  ally calculated for arA-body wave function.
stochastic variational metho@®&VM) [2], the no core shell
model methodNCSM) [3], and the effective interaction in Il. OUTLINE OF THE EIHH METHOD
the hyperspherical harmonics basBIHH) [4] were even
applied to systems with more than four nucleons. Very re-
cently, several of these methods were tested in a benchmal
calculation for thex-particle ground state with a realisttN HIAZH . +V 1)
0
force [5]. A very good agreement among the results of the
different calculations was found. This shows the high stanss treated in the following way. The Hilbert spacetéf is

dard of present days few-body physics calculations angjivided into a model space and a residual space, through the

opens up the possibility to tackle even more complicateq,se of the eigenprojecto” andQ of H,, which satisfy the
microscopicab initio calculations in the near future. relations

In particular, the effective interaction approach is a very
promising new tool in few-bpdy physics. In this field it has  [H,,P]=[H,,Q]=0, QH,P=PH,Q=0, P+Q=1.
been first introduced by Nawiband Barrett[6]. They have 2)
performed a NCSM calculation in an harmonic oscillator ba-
sis constructing a two-body effective interaction for a spe-The HamiltonianH*! is then replaced by the effective
cific model space and for a given baX interaction. It is model space Hamiltonian
important to note that in this approach the model space is not (AJeft (AJeff
kept fixed, but is increased up to the point that for a given H =PHoP+PV P ©)
observable(e.g., ground state energy, matter ragiascon-
stant, model space independent value is reached; this val
should coincide with thérue result obtained with the bare
NN interaction.

Recently, a similar effective interaction approach has bee

carried out in the hyperspherical harmonietH) formalism . ) e o
[4]. The use of the HH basis leads to various advantage@PProximate effective potential in such a way that it coin-
ides with the bare one fd?— 1, so that an enlargement of

e.g., one can define a two-body effective interaction, whicrfh del leads t f the ei .
contains information on the residuah{2)-body system; € model space leads 1o a convergence ol e eigenenergies

therefore the result converges faster to the asymptotic valu%) th?truz v?lues.hThe INCSM and the EIHH methods are
The aim of this paper is to work out extensions of the e\I/e ohpechf)ng ¢ Igse m:_a's. iitoni

EIHH method which should lead to an even faster conver- " the ormalism a Hamiltonian

gence of the HH expansion. These extensions consié} of A2 A

an inclusion of the hyper-radial kinetic energy afiid the HW:Z i +E v )

In the effective interaction approadld,4,7] the lowest
jgenvalues of am\-body Hamiltonian

L?gat by construction has the same energy levels as the low-
ying states oH!". In general, the effective interaction ap-
pearing in Eq(3) is anA-body interaction. Its construction is
s difficult as finding the full-space solutions. Therefore, one
as to approximat&/!A1¢ff. However, one must build the

incorporation of a three-body effective interaction. =12m S
The paper is organized as follows. In Sec. Il the EIHH
method is outlined. In Sec. lll the inclusion of the hyper-is written as
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HA =T +Tx(p)+VIA(p,Qn), 5 A -
pTTk(p) (P, Q) ) (vimtey [ S et A(A 1)<v[2]eff y (12
where =il 5 \UA(A-1)/-
A
V[A](p’QA)EE vij (6) Be{l/ck)]ve}/f,f |t_ will become cIe_ar why _the choice to express
i<i (V ) in terms of the pair potential between the last two
denotes the bare two-body potential and particlesA qnd @_l). IS [g]aerftflcu!arly convgnlent. The two-
s body effective potentiab (4~ is determined as follows.
1 A q 1 Ka First, for each valug of the hyper-radial coordinate one
T,==558 and  Tklp)=5- 2 (") defines aquasi-two-bodyadiabatic Hamiltonian containing

the hypercentrifugal kinetic energy and the bare potential
are the hyper-radial and hypercentrifugal kinetic energieshetween the last two particles
respectively. In the preceding equatiak, is the Laplace

operator with respect to the hyper-radial coordinate HP(p; GN,;]N)ZTK(p)-i-UA‘(A,l)(\/Ep sinfy- 7n),
N (
2
= y 8 ~ . . . . .
P 121 7 ® where 7y is the unit vector associated with the last Jacobi

- , A vector
where »; denote theN=A—1 Jacobi vectors, whilé&, is

the hyperspherical grand angular momentum operator and . 1 . .
INT E(rA—l_rA)

Q, the (3A—4)-dimensional hyperangle. The hyper-radial (14
kinetic energyT, and the residual Hamiltonian
HA () =T (p)+ VI (p,00) 9 and 6y is the hyperangle defined through the relation
— 'K 1R EA
are often considered separately. The Hamiltorftat!(p), IN=p SNy . (15

often used as a starting point in atomic and molecular calc
lations, is called adiabati®] as the hyper-radial coordinate
p is aslow coordinate with respect to the hyperangles.

In Ref.[4], the effective interaction method is applied to A / 1 A
this adiabatic Hamiltonian. The unperturbed Hamiltortign 7=\ Ar-— > Fj). (16)
is chosen to beTk(p) with the hyperspherical harmonics A+1_'\ A=T ST

Nk, as eigenfunctions[,] stands for a set of quantum The Hamiltonian of Eq.(13) is then diagonalized on the

numbers, see Ref4]). The mod_el spagé’ Is defingd as the A-body HH basis. Such a diagonalization is easily performed
complete set of HH basis functions with generalized angulagincep is only a parameter ift{ (2 (there are no derivatives

momentum quantum numb&,<Kp, and theQ space as i respect top), and for each value g the Hamiltonian
the complete set of HH basis functions with,>Kp. The

- _ H 2 (p; 6y, 7y) depends only on three variables. This is just
zgiz ;vr:g|3>e qdfgoieldnbim.’?_ r%yi,fb.r.tr?g}éfgga?ee. gf due to our choice of thA.—(A—l) pair. The obtqined eigen-
course, in principalpone ’F]a%qoo' %ut for actual caloula-  States will be denoted by(p)) as they are continuous func-

. : e : . tions of p.
tlpns one has to consider a fini@ space but with a suffi One proceeds applying the Lee-Suz{@i10] similarity
ciently largeng .

For each valug of the hyper-radius, an effective adia- transformation ta#?)(p; 6y, 7y) in order to get the corre-
batic Hamiltonian is constructed as sponding Hermitian effective Hamiltonian

Yve emphasize here that we are using reversed @xdmdy
Jacobi coordinates

HINE(p, Q) =PTi(p)P+PVIAET (5 0P, (10 HIZEM( ooy, ) =UT(p)H P (p; 05, m) U (p), (17)

However, as already pointed out, the effective potentialvhere
would be a complicated-body interaction, thereforg[Aleff
is approximated by a sum tfvo-bodyterms as

U(p)=(P+aw(p)) . (19
A VP[1+w(p)w(p)]P
V[A]effzz Ui[zj]eff_ (11)
i<j The operatomw(p) is obtained using the following property
In the following, it will be shown howv!3*" is derived

ensuring that the effective potential satisfies the above men- w(p)=Quw(p)P. (19
tioned condition, i.e.p[3®'" tends to the bare;; for P—1 .

Due to the use of antisymmetric wave functions one onlyThe matrixw(p) is calculated for each value pf taking the
needs to calculate the effective interaction operator relative, states|j(p)) with the lowest eigenvalues. Each of these

to one pair, since states leads to the following system @ig—np) equations:
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H[2]effzu1' TU +H[2]eff
(@liten== (@o@Ip@lie). @0 Tt )
P =T, + AT+ H[21ef( ). (24)

The np(no—np) Matrix elements q|w(p)|p) are obtained A new effective interaction is then obtained by subtracting
by solving this equation syster0). Once the effective the full kinetic energy

quasi-two-bodyHamiltonian 7 (218" is constructed, the ef- ~[2]eff _ y[2]eff _[2lef ot
fective potential is obtained by a subtraction of the hypercen- vaa-1=H ~Tk(p)=Tp,=vaa-1+t AT, (29
trifugal kinetic energy Here, it is worth noticing that likd(p), alsoT, satisfies
the relation(2). The new effective potentiﬂ[zle,ff differs
(2eff _ o [2]eff, \_ AA-1
VA (a-1)= H*20(p) = Tk(p)- @) trom the previous 1" by the termATS™, which is given
[2]eff [2]eff by

In the following we will denotev 5 (x_) simply by v
Using this p-dependent effective potential and taking into off 1 .
account Eqs(10)—(12), one solves thé-body problem with AT, ==55U(p)
the effective Hamiltonian

U U
(2p) o (p) J,
ap ap

3A—4 dU(p)
+ .
H[A]eff:TP+H[A]eff:Tp+TK+z pl2leff (22) p ap

i<j

(26)

One can also interprek TS as aneffective kinetic energy
in the P space. One repeats the procedure enlargingPthe contribution.
space up to a convergence of the low-lying energies of the The matrix elements oAT¢" have to be evaluated be-

A-body system. tween the HH and hyper-radial basis functicngp),L(p):
We would like to emphasize the following points.

(i) The hyper-radius is a parameter rather than a coordi- eff; \_ L 3A-4 ﬂ [
nate, andv[%/]F‘fo is determiné)d for various fixeg values; (LalAT, ||'m>_2mj dp dp dp Lalp)Lmlp)
therefore, while being a two-body interaction, it depends on
the wholeA-body system via this collective coordinate. i Tﬂ % L (9_|-n) 27)
(i) There is an additional dependencewdf!®’f on the ap\ "ap "apl|

quantum numbeK 4 _, of the residual systerfsee Eqs(19)
and (20) of Ref.[4]].

(ii) It is evident thatJ(p)—1 for P—1 and thusy[?1e’f
converges to the barea a-1); therefore the energy spec-
trum converges to the exact one.

(iv) Via the operatolU(p) the effective potentiah?1eff ¢ Uy, [ aL,
contains information about a large part of th@-space in- < UMAW nw_ m%
teraction, hence the convergence to the exact eigenvalues of
HIAl is accelerated with respect to the normal HH expansion.

The first term on the right hand side is manifestly symmetric
in the hyper-radial indicegas well as in the HH basis indi-
ces. As to the second term, denoting Jayv,\ the HH basis
functions, one finds

*
In the present work, we would like to present two exten- — E > ( x %_UM&) ( Ln%_ Lma_l‘”)_
sions of the scheme outlined aboyg:the application of the 2 ®oap ap ap ap
Lee-Suzuki transformation also to the hyper-radial part of the (28)

kinetic energy(Sec. Il)) and (i) the incorporation of three- | is eyident that this second term is an antisymmetric opera-
body effective forcegSec. V). The aim is to furtherincrease tor for interchange of both HH and hyper-radial indices.
the rate of convergence of the HH expansion. Thus, Eq.(27) gives a decomposition & T into its sym-
metric and antisymmetric parts\TS''=AgTe " +A LTS,
l1l. BEYOND THE ADIABATIC APPROXIMATION Enlarging the model spac¥, approaches and the contribu-
tion of AT§” diminishes more and more. Therefore, we can

In the EIHH approach outlined in the preceding section, - ) o . .
the Lee-Suzuki unitary transformation is applied to the adia &stimate its contribution using first order perturbation theory.

. ff . .
batic quasi-two-bodyHamiltonian of Eq.(13). The effective  We find that the effect of\ ,T™" is much smaller in com-

potential is obtained by subtraction of the hypercentrifugalParison toAsT" (about 1% or less So we conclude that

term from the effective Hamiltonian of E¢L7). One can go

beyond this adiabatic approach by applyldgf Eq. (18) to ATe o i E ﬂ (29)
the nonadiabatiquasi-two-bodyHamiltonian P2m dp dp’
2] )= [2]
H*=(p) TP+H (p)- 23 IV. THE THREE-BODY EFFECTIVE INTERACTION
This leads to a nonadiabatic effectigaasi-two-bodyHamil- The natural way to construct the three-body effective in-
tonian teraction is the generalization of the procedure in Sec. .
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(i) Approximate the matrix element of th&ebody effec-
tive interaction by

A
vireti= =, olIeM(i k). (30)

(ii) Calculate its matrix element via

A
[Aleffy_( _— [3leff ;s
(V=122 2, Y (I,J,k)>
AA-1

= ¥<u[~°’leff(A,A— 1A-2)). (31

6

(iii) Replace the adiabatiuasi-two-bodyHamiltonian of
Eq. (13) with the adiabatiqquasi-three-bodyHamiltonian

PHYSICAL REVIEW C 67, 054003 (2003

Qa=(0, .. a1, 71, - - 7A-1) (39
into a new set of hyperangles
Q3p-3=(0,, ... 16A731®[3’A_3110i[§g s A1)
(36)

The new hyperangles reflect the splitting of thévody sys-
tem into a three- and amA(-3)-body subsystems. The hy-
perangleQ); o3 can be written as

Q3p-3=(0BA S QB ol2-3]),

res 37
where
QBl= (63, a_2.ma-1) (39

are the hyperangles of thieteractingthree-body subsystem,

B1(p) 1 K3 and

HY (p)=5—=—tvan-1tvm-1,na-2tvn-2Aa _ - -

2m p? A= (0,, .. 0a—3. 71 - ad) (39
1 Ri (3] are the hyperangles of thesidual (A—3)-body subsystem.
Eﬁ?*’” (ALA-1A-2). (32 The two new angles®3A-31 13 replacing 6,_, and
fa_1, are given through the relations

iv) Diagonalize it in theP + ace of theA-bod - . -
o, GORBIZE TN (EPEQ 5P Y sys Pl =t = psin@lATS,  (a0)
(v) Calculate the new(p) [Eq. (19)] and apply the Lee- pa_z=p cos@BA3 (41

Suzuki similarity transformation to obtain!®!®'"; add the

nonadiabatic effective kinetic energy contribution as outlinec@nd

in Sec. Ill, to obtainy 31eff, _ ma_1=pRlsingl3l (42)
(vi) Solve theA-body problem with

7a-2=phaicosoiil. (43

1 -
HIMEH=T ¢ HINM=T 4 Tt 2= > BT j k)

—2 54 The new coordinatespf=] ,Q131) form a complete set for the

(33  three-body problem ang ®! can be written as
2
considering poinii). H[3](p)=i&+v[3](p eBA-31 3]y, (44)
A closer look, however, reveals that solvitf®! is more 2m ;2 ' it

complicated than solving the three-body problem. This point
will become clearer in the following. While for the two-body
effective interaction one needs to consider only the hyperorder to do so we follow Ref{11] and construc
spherical coordinates connected to féA— 1) pair explic-  through a sequence of steps as follows. ,
itly, for the three-body effective interaction one has to take St€P 1 We solve the Schdinger equation with the
into account additional coordinates. In order to clarify thisHamiltonian of Eq/(13) for the A-body system and construct
point, we present the general transformation from the rethe “nonadiabatic’two-bodyeffective interaction?1¢"( p).
versed ordeA-body Jacobi coordinatd&q. (16)] to hyper-  We label withK ! the top of theP, space and wit# 2! the

spherical coordinates. Each Jacobi vecﬁ?rconsists of a top of theQ, space.

radial coordinaten; and a pair of angular coordinatég. Step 2 We solve the Schuiinger equation with the

The radial coordinates are transformed into the hypersphert'f"‘m'lton'an of Eq.(44), replacmg the bare |nte(actlor{ .
cal coordinate®, 6, . . . 0,1 through the relations with the sum of the effective two-body interactions

(R + 01219, +0l218™) and construct the effective in-
teraction v1¥1¢"(p). We label with KE! and Kp (KE!
=Kp) the top of theP; andP, spaces, respectively, and we
take K{'=K¥! as top of theQs space.

The main advantage of the proposed scheme lays in the
respect to the permutation of particles \1,2. ,n. The first step, where excitations of the two-body subsystem into
A-body hyper-radial coordinate=pa_; is symmetric with  the Q;-space part of th&, space are taken care of, thus
respect to any particle permutation. In order to focus on theccelerating the convergence of E44). For a better under-
interacting three-body subsystem, we transform theA(3 standing of the effective interaction, we show in Figs. 1 and
—4) hyperangular coordinates 2 the various Hilbert spaces of the two-, three-, Zabody

Now we can proceed to poiritv) of the list above. In
pl3left

n

Sin0n=? and pﬁ=pﬁ71+nﬁ=; n'. (34

n

Note that the hyper-radial coordinatesare symmetric with
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TABLE 1. Convergence of the HH expansion for tttHe
ground state energfin MeV) with the AV8' potential. HereH ¢
stands for the effective Hamiltonian in the adiabatic approximation,
andHe+AsTS " is the effective Hamiltonian including the nona-
diabatic correctionAST,‘j”. The reference energy is taken to be
E..=—25.934(MeV) (see text

Kmax <Heff> |E_Ew| (Heff+AST§H> |E_E°0| (ASTi”>

2 —27.522 1.588 —25.464 0.470 2.058

4 —28.135 2.201 —27.052 1.118 1.083

6 —27.004 1.070 —26.498 0.564 0.506

8 —26.672 0.738 —26.421 0.487 0.250

10 —26.081 0.147 —25.949 0.015 0.131

FIG. 1. The variou® andQ spaces relevant for the construction 1o —26.135 0.201 —26.064 0.130 0.070

of the two-body effective interactiofsee texkt 14 —26.004 0.070 925063 0.029 0.040

16 —25.977 0.043 —25.953 0.019 0.024

systems. In Fig. 1, we illustrate the construction of two-bodyg —25.944 0.010 —25.929 0.005 0.015
effective interaction. The hyperangular part of thébody 59  _25944

Hilbert space is divided into a two-body and a residual Hil-

bert space. The Lee-Suzuki procedure guarantees tHAt" _ _ _ _

takes into account besid@s, also the shaded ar&, of the ~ €evident from the above discussion that using two-, three-,
Q, space. In Fig. 2, the construction of the three-body effecand if possible more-body effective interactions, the conver-
tive interaction is illustrated. It depicts the spades Q,,  9ence of the spectrum of thebody system should become
P,, and Q; of the three-body HH space. The information faster and faster since the information on large parts ofthe
aboutQ, is contained via[21¢1" (step 1, while the informa- space are already taken into account via those effective op-

. : . . erators.

tion t the horizontally sh r is taken int . L

0 ab(t)u i ~?3] e?f (Ot a ;’ S_”?dEd a ea(?§ St g[ge]e” _ 0 The actual calculation of the three-body effective interac-
account viav step 2. The so constructe is

) , . tion is quite complicated and technically rather challenging.

used in theA-body system as a bare three-body interactionhg gitficulty has its origin in the separation of tebody

One should note that, in the limit in which thebody P gystem into two subsystenithe interacting three- and the

space mc!udes. all the horizontally shgdeq are@gfspace, residual @— 3)-body systenis Expressing thed-body ma-

one remains with the two-body effective interaction. trix elements of the interaction in terms of the matrix ele-
It should be noticed that there are thresergy scalesn  ments for the three-body subsystems, one has to pay the

the scheme. The first scale is that (_jetermlne(;Kg\}. This  price of evaluating the overlap between the antisymmetric

should be fixed so that the lower eigenenergiestdf! for  a.hody basis functions and basis functions constructed in the

the “three-body” problem are in convergence. In accor-(3 A—3) scheme. In the Appendix, it is described in detail

dance, the three-body scale determined K§'=KE!  how such matrix elements are calculated.

<K& has to be high enough, so that the lower eigenenergies

of HE3! for the “three-body” problem are also in conver- V. RESULTS AND DISCUSSION

gence. The third scakép=KE! <K should be varied until

the spectra of thé-body system is established. It should be Results for the nonadiabiatic kinetic energy contribution
and the three-body effective interaction are studied for the

binding energies of*He and SLi using semirealistic and
more realisticNN interactions. First, we discuss the impor-
tance of the effective kinetic energysT.¢. We choose a
case that has been considered in a recent benchmark paper
[5] presenting in Table | results for théHe ground state
energy with the Argonne AVBNN force[12]. The result for
the calculation with the effective Hamiltonian in the adia-
batic approximation aK,,,,=20 is our EIHH result pub-
lished in Ref[5]. It was obtained in a rather time consuming
calculation which we were not able to repeat this time and
thus other results are only shown upKg,,,=18. From the
table it is evident thalAgT.¢s has a rather regular conver-
gence pattern. This enables us to estimatd.;; also for
Kmax=20 leading to the value of about 10 keV. With this
result we estimate a binding energy of 25.934 MeV for the
FIG. 2. The variou® andQ spaces relevant for the construction nonadiabatic calculation &t,,,=20. This value is used as a
of the three-body effective interactideee text reference energy in Table I. One sees that the rates of con-
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23

4,
He AV8
24
> EIHH <
B 350 [ 8 3
=3 s 2
S =
T 355 (—— 8 § .
5 S 2 F x Tt e e —
=] i} N T
5 o o0
S 360 [ 8 g L
£ c T
m T 27 b »
/ £
365 / °Li Minnesota 7 @ S //
/ 28 S
370 / L L L L L L
0 2 4 6 8 10 12 14
K, 29

0 2 4 6 8 10 12 14 16 18 20

FIG. 3. Convergence of the HH expansion for tHa ground K
state energy with the MinnesotéN potential. The soliddasheg
line connects the results of the adiabatimnadiabatip effective
two-body interaction calculation. The dashed area corresponds
the energy rang&..= —34.86+0.02 (MeV) (see text Also given
the SVM [2] (dot-dashed lineand NCSM[14] (shaded argare-
sults.

P
FIG. 4. Convergence of the HH expansion for thde ground

state energy with the AVBNN potential. The dot-dashe@dotted

l’ﬁ)ne connects the results of the adiabdionadiabatig two-body

effective calculation and the solid line the results of the nonadia-

batic three-body effective interaction.

o o . Sec. IV, both spaces enter in the construction/6#¢'". In
vergence for adiabatic and nonadiabatic calculations arghe calculation, one encounters computational difficulties due
quite similar, but it is also evident that the inclusion of {g the fact that one has to solve many different “three-body”
AsTett improves the results considerably. It reduces the difsystems. Taking into account each hyper-radial grid point,
ference to the reference energy for any valueKgfax bY  each value oK »_ 5 and the possible values &, T, T the
about a factor of 2. o number of “three-body” systems one has to consider

In Fig. 3, we present the effect of the nonadiabatic term, 4 nts to a few thousand. FoKg! of about 20 the aver-
on the convergence of the binding energy %ii with the age number of basis states is about 1500. Thus one faces the
MinnesotaNN force[13]. The effect ofAgT+¢ is very simi- problem of diagonalizing a matrix of 15601500 a few

lar to the just discussefHe case again leading to a consid- y,sand times, The computational effort can be reduced if
erable improvement of the convergence of the ground state tricts th St val ; hichy[2leff j
energy. In order to estimate the converged binding energ tr:ﬁcrteesélnc s the range d§ values for whic IS con-

(Kp—), we fit the results of the nonadiabatic calculation . Hisd
with the formulaE(K)=E..+Ce “X. Using all the points In Fig. 4, the convergence of tH#de ground state energy

; : is shown for the AV8 NN potential as function oKp with
from K=4 to K=12 we obtainE..= —34.836 MeV, while 'S 3 " : P
KB1=24 and and limiting value ad;=3/2. With respect to
E.=—34.881 MeV. With these results we estimate a Ccm_the last two quantum numbers one finds an excellent conver-

verged value ofE .= —34.86+0.02 [MeV]. A comparison gence of the three-body effective interaction. In fact with
gs . . .

with available results of other methodSVM [2], NCSM Kg!=20 andJ;=1/2 one has essentially the same results as
[14]) is shown in Table II. There is a difference of about those shown Ir[lglFlg.[?]. We would like to emphasize once
200-400 keV between the different methods. In order tcgain that forKp"=Kq" one gets the identical results with
improve the comparison further convergence checks shoul@ivo- and three-body effective interactions. Therefore the ad-
be made in the various calculations. vantage of the three-body effective interaction can only be a
Next we discuss the effect of the three-body effective in-faster convergence for the lowkt! values. In fact the re-
teraction. The convergence of the calculation watfe!’ sults of Fig. 4 show that this is the case. This is particularly

depends, of course, on the size of the model SEacEKp), important for systems with more than four particles, where

but also on the size of th@; space K1)). As described in ©N€ cannot easily work with large?, spaces. In order to
Qs sp Ko study this point better, we have considered with also a

six-body system. Different from theLi case abovésee dis-
cussion of Fig. 3 where we use the semirealistic central
Minnesota potential, we take the more realistic A&ten-
tial. Such a more realistic potential model leads @ space,

using only the three higher valueX€8,10,12) we find

TABLE |l. Results for the®Li ground state energyin MeV)
with the Minnesota potential.

Method Bqs (MeV) which grows very fast withK . At present we can consider
EIHH —34.86+0.02 only Kp=<6. The results of our calculation are shown in Fig.
NCSM [14] —34.48+0.26 5. One sees that in contrast to the discussed four-body cases,
SVM [2] —34.59 the six-body binding energy depends very much on the lim-

iting value ofJ;. Though we are restricted to relatively small
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25 ‘ ‘ ‘ functions antisymmetric with respect to three-body permuta-
- | °LiAve ] tions and with good three-body amdbody quantum num-
bers 03,35,T3,T5,Ja,Ja,Ta,Ta). The construction of such
2 basis functions and the evaluation of the Hamiltonian matrix
3 3 elements are given below.
= The antisymmetricA-body hyperspherical-spin-isospin
3 basis functions with total angular momentuir, Ji and
% 35 isospinTAT4 can be written as
@ 37
§ 39 [KaJAJATATAL aaBa)
" 2 AFA'YA—l I
i T" | | = A [[KALAM AL AY o~ 1 ca)
0 2 4 6 8 ~ - z
Kep X|SASATATAL' A, Ya-1Ba)]"4A, (Al)

FIG. 5. Convergence of the HH expansion for tha ground

state energy with the AV8NN potential. The dotted, dashed, and where
the thick solid line connect the results for the nonadiabatic three-
body effective interaction with different limiting values df as
illustrated in the figure. The dash-dotted line connects the results for (QA|KALAMAFAYA_la,QE)){(A]L MY, o (82)
the nonadiabatic two-body effective interaction. The thin solid lines RATATATATA (A2)
stand for GFMC[20] and NCSM[14] results as marked in the
figure.

are HH functions with hyperspherical angular momentum
values ofKp, it can be seen that the obtained energy is inK=K,, and orbital angular momentum quantum numbers
reasonable agreement with those of other methods. La,M, that belong to well defined irreducible representa-

We summarize our results as follows. We have extendedons (irrepg I';eI',e - -- eI's of the permutation group-

the HH effective interaction method in two different direc- subgroup chairS;CS,C---CS,, denoted by the Yaman-
tions. On one hand we include a nonadiabatic correction fopuchi symbol [Ta,Ya_1]=[Ta.Ta-1,....[1]. The
the hyper-radial kinetic energy and on the other hand welimension of the irref", is denoted byT'y| andAr, v, |
introduce a three-body HH effective interaction. Both exten- 4 phase factdil5]. Similarly, the functions
sions accelerate the convergence of the HH expansion for the
binding energy as explicitly shown for the cases*sfe and _
®Li, where for both nuclei we used semirealistic, but also (st Sh, 15 tAlSaASATATA A, YA 18a)
more realisticNN interactions. The nonadiabatic correction (Al
leads to better converged energies for all grandangular mo- =Xs, 2T, 721, Y, 1B (s]--
mentum valuesK, while for the three-body HH effective ATATATATATTATIEA
interaction one obtains particularly strong improvements for

lower K values. Our results show that the improved HH ef-5re the symmetrized spin-isospin basis functions. The quan-
fective interaction facilitates more realistic calculations fory;m numberse,, B, are used to remove the degeneracy of
p-shell nuclei. With an increase of computational effortSihe HH and spin-isospin states, respectively.

(parallelization of the codes, more powerful computéts In analogy to Eq(A1), we can construct antisymmetric

will be possible to bring our calculations to a better converyree-pody basis functions that correspond to the particles
gence in the near future. We would also like to point out that A—1A—2 and to the Jacobi vector,_;,7_, as
’ —1:7/A-2

the three-body effective interaction opens up the way for
incorporating genuine three-body forces in the EIHH

sa,tio-ta)  (A3)

method. Ar,y,
|K3333§T3T§F3a333>:; WHKaLsMstYzas)
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and the antisymmetricA— 3)- body basis functions that cor-
respond to the particles 1,2. . ,A—3 and to the Jacobi vec-
tors 7y, ...,ma_3 [Note that these A—3) Jacobi vectors

A meaningful effective interaction can be derived from contain also the relative orientation of the three- and the (
HBI, only if we employ a physical basis set consisting of —3)-body subsystemsis

APPENDIX: MATRIX ELEMENTS FOR THREE-BODY
INTERACTION
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|Ka-3Ja-3JA-3Ta-3TA sl'a-3ca-3Ba-3) (QIK3LsMaT'3Y a5y =V aLgMgl (QFD, (Ae)

3Yaa3

FA 3. YA 4 <Q£es_3 |Ka-sla-—sMa-sl'a-3Ya-saa-3)
= E |KA—SLA—SMA—SFA—SYA—4aA—3>

Ya-4 \/|FA 3 =yt~ Qe (A7)

Ka—sba-3Ma-3la-3Ya-s2a-3

~ ~ z
X |Sa-3Sh-3Ta-3Ta sl a-3, Ya—aBa—3)]A-3"a-3. and equivalent expressions for the spin-isospin part. These
(A5) two sets of basis functions, Eq#4) and(A5), can be com-
bined into anA-body HH basis function with quantum num-
The corresponding HH functions are given by bersKaJaJaTaTa through the relation

|
| (K333l 3a3B85:Ka-3Ja-3Ta-3l'a-3@a-3BA-3) KAJA‘]i\TATi\>
= N2P(sin@BA=31)Ks(cos@3A~3l)Ka-sp(@b) (o5 29 [3A-3I)

X[|K333d5T3T5l 33B3) | Ka—3da—3dA_3Ta—3TA—al a—3a—3Ba—3)] A PATATA, (A8)

Here P(*") are the Jacobi polynomials, with the arguments and

a=Ks+2, (A9) [KaA]=KaJpJaTaTal acaBa -
3A—-11 i . .
b=Ks_3+ 5 (A10) With the help of these notations E@\8) can be rewritten as
KamK g Ks |([KsTiKa-s] KaJAJATATR)
n=————: (A11) — N2D(sin@BA-3))Ks
The numerical factor X (cos@3A3)Ka-sp(ab)(cos 29 [3A~3])
| z z
Aab_ \/2(2n+a+ b)n!IT(n+a+b+1) (A1) X[|[KsD)[Ka_3])] A "ATATA, (A13)
n I'n+a+1)I'(n+b+1)

The basis of Eq(A13) is the desired one for the calculation
of the three-body effective interaction, as the residual (
—3)-body subsystem is factorized out.

is a normalization constant.
For the sake of brevity we use the following notations:

[K3]=K3J3J5ToT3 3583, Using these basis functions one can easily reduce the
, , A-body matrix elements of a scalar-isoscalar three-body op-
[Ka-3]=Ka-3Ja-3Ja 3Ta-3Ta sl a-30a-3Ba-3. erator into the matrix elements of the three-body subsystem,
|
([KAllBI(AA-1LA=2)[[KA])= > ([KAI([K3L;[Ka-3])KaJaJATATA)

[Kal. (K3 [Ka—gl.[Kp_3]
X (LKAJI([K 3 TKA- s KAJAIATATA) *(([K3]: [Ka-3])

X KaJpJATATA B (oL OB | ([KAL[KA-sDKAJAIATATA).  (A4)

The matrix element$§[ KA]|([K3];[Ka_3])KaJaJaTaTa) are the overlaps between tebody functions, Eq(A1), and the
(3,A—3)-body functions, Eq(A13). The potential matrix element can be conveniently written as

(([K3]i[Ka—a]) K adadiTaTalv Bl (ol QBN | (KT [Ka_ s KAJaJa TATS)

_ LS Ka-sl
_5JA,JA5TA,TA5[KA73],[K"A73]5J3,J35T3,Té5JZ A 5Tz VK] 'K 3]K/&(p)' (A15)

with
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1

[3 Ka-3l P

e (P)= EAFFAFFAFFAFF —_—

[K3]KAv[K3]KA FZ ; 32 2 |F3||F3|
x X X IIHSCFP, IHSCFR X X NTSCFR NTSCFRV,'A . (0,

2001, age Tty Sy, Bab; e
(A16)
|
where the products of the three-body coefficients of frac- Wik,,1k (Pl = ([K 31wl (pf Q1B |[K5])

tional parentagéCFPs[17,18)) are given by ’ (A20)

HHSCFF’3=<K3L3F2a2|K3L3F3a3> . .
of either a genuine or a pseudo-three-body force
X<(€1Fl;62)K3L3|K3L3F2a2>, (Al?)

- - vB(pl OB =vA a1yt a2t va 2
NTSCFR=(S;S, TaT2 2B,/ S3 T3l 3B3)

An alternative way for calculating matrix elements of the

X(Sy Sy Ty T1T 181/ S0 Tor T285), (A1g) latter case can be realized by
[BKa—3]
and the notgtiqrﬁKﬂu stands for the unsymmetrized three- V[K3]nKA,[Ké]nK/’_\(p)
body HH-spin-isospin state,
[Kalu)=[[(€1:€2)KsL3;S1S2:S:135T1 T2 Ta). =33 TRailaiKasria 2K
Kno, R3:Ka-2 K3.Ka—2

Here S, (T,) stands for the spifisospin of particleA—2,

while S; (T3) stands for the total spifisospin of the three- XV
body subsystem. It should be noted however thdtkig],,
€, stands for the relative angular momentum of partidles : . KaKpKe g )
andA—1 butS, (T,) is the coupled spirfisospi quan- where the HH transformation coefﬁmen‘[éab’Kbc first de

tum number of particled—1 andA—2 (and therefore the rived by Kil'dyushov [19] are the HH analogs of thej6

[2 Ka-2l

(€,55)35,ToK ,(€éSé)J2T2KA(p)’ (A21)

notation 2). symbol. The two-body matrix elements can now be reduced
Using standard angular momentum technique it is easy t& an one-dimensional integral as
evaluate the matrix elements [2Ka_o] (p)
([(£1:€2)L 351851951 T2 T (12992724 (5522 T2
, 2 ,
X|[(€1;S1)31(€2;52)3,195T1 ToTs), =Nﬁ’b/\/ﬁ,’bfo dfa_q(sSinfs_q) 2t t2*2
whereS, (T,) is the spin(isospin quantum number of par- oK 3A—7m(ab
ticlesA andA—1. The basis X (COSB, 1) *Ka-2"3A~Tp(ED)
I[K3]n) =([(€1:S1)31(€2:S5,) 351K 33T T, Tg) X (cos 26A,1)P§3"b)(cos 205_1)
is the most convenient one for evaluating matrix elements of X {(£ 1,Tlv! (V20 sing AN
two-body and three-body forces. Let us start by considering (€253 Tl (V2p a-1)l(€259)3.T2)
the case of three-body forces. We can use E46) and (A22)
(A13) to get with
e ()
[K3lnKa [K31K, 1
SmATA a=l,+=, (A23)
w2 2
_ prabpra’.b A=3]/ o A ,
_Nﬁ Ni, jo d®[3A 3](Sm®[3A 3])K3+K3+5 3A-8
b:KA,ZJF 2 y (A24)
><(COS®[3'A_3])ZKA*3+3A_10P%a'b)
: ~ Ka=Ka =0,
X (cos 20[3A=31)p@ D) (o5 ap[3A-3]) n=—;—: (A25)
n’ 2
X W n(plh, A19
(3 g1 (Pint) (A19) It should be noted tha\lf[3 KA 3 (p) are the matrix ele-

RICALA
whereW[Ks],[Ké] stands for the three-body matrix elements ments that appear When evaluating the adiatwpiasi-three-
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bodyHamiltonian of Eq.(32). Recalling thaf K] is a com-  the potential matrix elements by the matrix elements of the
plete set of quantum numbers for the three-body system ongvo-body effective interaction. This simplifies the construc-

understands why Ed32) is more complicated than a three- tion of the three-body effective potential.

body bound state problem, where quantum numbers for total In order to complete our discussion, we evaluate the prod-
angular momentum and isospin are fixed. As pointed outict

above, for a genuine three-body force one has to consider the . z 2

matrix elementsiy (k;j, they are exactly those that are ([KAII([Ka]TKa-aDKAIAJATATR)-

needed in the three-body problem. Therefore, our formulaThis matrix element is evaluated with the help gf &d 9
tion is very convenient for such a case. If one considers onlgymbols, the hyperspherical CFPs and the spin-isospin CFPs
genuine two-body forces, one can use E421) replacing [16],

S; Sa-z Sa
([KAII([K3Li[Ka-3) KaJAJATATA) = V(2Ja_s+ 1)(203+1)(2S4+ 1)(2La+1){ L La-s La
Js Ja-z Ja

A A A A A e
X E
I p T T Pala 1 Ta 1 Ta 2 Ta2 Pa g g T 0.1 ITAlIT 3

X <KA|—AYAa’A| (Ksl3Yzas; KA—3|-A—3YA—36YA—3)KA|—A>
X(SATAYABAl(S3T5Y3B3:Sa-3Ta-3Ya—3Ba-3)SaTa)- (A26)

The hyperspherical matrix elements are then written as
(KaLaYaca| (KalaYsasKa_sla-sYa-saa a)Kala)= > > >, > TIHSCFPR, TTHSCFRY{((Ka_ala_3;¢1)

ap—1 Ka—ola—sap—p €oly agap

XKa-2la-2:€2)Kalal(Ka-sba-3:(€1:€2)K3Lg)KaL a), (A27)
where the CFPs products are given by El7), and
ITHSCFPy=(KaLal a-1@a-1|KaLAT a@a)((Ka-2La- 2l a-2aa-2;€2) KaL Al KALAT A-1@a-1)

X((Ka—sba—sla—zaa—3;€1)Ka—ola—o|Ka—ola— oA 2aa_2). (A28)

The spin-isospin term is evaluated in a similar way as follows:

(SATAYABAl(S3T5Y3B3:Sa—3Ta—3Ya—3B8a—3)SaTA) > > [ITSCFR,

Spa-1Ta-1B8a-1 Sa-2Ta-2Ba-2

stTEB IITSCFR(Sa-3Sa-2Sa-1Sal(Sa-3:52S3) Sa)(Ta-3Ta—2Ta-1Tal(Ta—3; T2 T3)Ta)  (A29)
riarp2

with CFPs products
ITSCFR=(SpSa-1TaATa- 1T a-18Ba-1/SATAI ABAY(Sa-1Sa-2Ta-1Ta- 2l a-2B8a-2lSa-1Ta- 1T A-18a-1)
X(Sa-2Sa-3Ta-2Ta-3l a—3Ba-3/Sa—2Ta-2l A 2B8a-2) (A30)

and Eq.(A17). The remaining HH and spin-isospin matrix elements can then be easily evaluated using standard hyperspherical
and angular momentum techniques,

([(Ka—sba—3;€1)Ka—sla—2; €2 1KALAI[Ka—3la—3;(€1;€2)K3L3]KaLl o)

(A31)

€ 14 L
2 1 3 TKA C2l1Ka—3
K3 Ka-2

=V(2La-2T1)(2Ls+ 1)(—)LA+LA3+€1+€2[
La-z La La-2

and
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(Ta—aTa—2TaA—1TAl(Ta—3: T2 T3) Ta) = TE (—)Ta-2tTa-3*Tot Ta+2Ta*3(2T, + 1)
2

X\(2Ta_1+1)(2Ta_»+1)(2T3+1) (2T, +1)

Tao t Tag
t Ta T,

X .
T, Ta T3 t Tz To ( )

Heret= % stands for the isospin of a single nucleon. The spin matrix element can be obtained by simply replacifé82Eq.
the isospin quantum numbers by corresponding spin quantum numbers.

[1] J. Carlson, Phys. Rev. 86, 2026(1987); 38, 1879(1988. [13] D.R. Thomson, M. LeMere, and Y.C. Tang, Nucl. Ph#286,

[2] K. Varga and Y. Suzuki, Phys. Rev. &2, 2885(1995. 53(1977; I. Reichstein and Y.C. Tangpid. A158, 529(1970.

[3] P. Navrdil and B.R. Barrett, Phys. Rev. &7, 562(1998; 59, [14] P. Navratil, J.P. Vary, W.E. Ormand, and B.R. Barrett, Phys.
1906(1999. Rev. Lett.87, 172502(2001); P. Navratil and W.E. Ormand,

[4] N. Barnea, W. Leidemann, and G. Orlandini, Phys. Re&1C ibid. 88, 152502(2002).
054001(2000; N. Barnea, W. Leidemann, and G. Orlandini, [15] A, Novoselsky, J. Katriel, and R. Gilmore, J. Math. Phgs,
Nucl. Phys.A693, 565 (2000. 1368(1988.

(5] H. Kamadaet al, Phys. Rev. G4, 044001(2003). [16] N. Barnea, W. Leidemann, and G. Orlandini, Nucl. Phys.

[6] P. Navrdil and B.R. Barrett, Phys. Rev. &4, 2986(1996. AB50, 427 (1999.

[7] M. Hjorth-Jensen, T. Engeland, A. Holt, and E. Osnes, Phys
Rep.242, 37 (1994).

[8] C.D. Lin, Phys. Rep257, 1 (1995.

[9] K. Suzuki and S.Y. Lee, Prog. Theor. Phgd, 2091(1980.

[10] K. Suzuki, Prog. Theor. Phy$8, 246 (1982; K. Suzuki and
R. Okamoto,ibid. 70, 439 (1983.

[11] P. Navratil, G.P. Kamuntavicius, and B.R. Barrett, Phys. Rev.

[17] N. Barnea and A. Novoselsky, Ann. Phy@\.Y.) 256, 192
(1997; Phys. Rev. A57, 48 (1998.

[18] A. Novoselsky and J. Katriel, Phys. Rev.48, 833(1994; A.
Novoselsky and N. Barnedyid. 51, 2777(1999; N. Barnea,
ibid. 59, 1135(1999.

[19] M.S. Kil'dyushov, Yad. Fiz.15, 197 (1972 [Sov. J. Nucl.

C 61, 044001(2000). Phys.15, 113(1972].
[12] B.S. Pudliner, V.R. Pandharipande, J. Carlson, Steven d.20] S-C.Pieper, V.R. Pandharipande, R.B. Wiringa, and J. Carlson,
Pieper, and R.B. Wiringa, Phys. Rev.56, 1720(1997). Phys. Rev. (64, 014001(2002); and see also Ref14].

054003-11



