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Improved effective interaction for the hyperspherical formalism
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An improvement of the recently developed effective interaction method for the hyperspherical formalism is
presented. The method is extended to include contributions of three-body effective forces and of the nonadia-
batic kinetic energy term. The role of these two additional contributions is tested on the binding energy of4He
and 6Li using semirealistic and more realisticNN potential models. The rate of convergence is improved
considerably, opening up the possibility to use the method with realistic two- and three-body potentials for the
a-particle and for few-body nuclei with more than four nucleons.
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I. INTRODUCTION

In the last decade quite some progress was made in
croscopic calculations of few-body nuclei. In fact seve
theoretical approaches were developed and a few of t
such as the Green function Monte Carlo~GFMC! @1#, the
stochastic variational method~SVM! @2#, the no core shell
model method~NCSM! @3#, and the effective interaction in
the hyperspherical harmonics basis~EIHH! @4# were even
applied to systems with more than four nucleons. Very
cently, several of these methods were tested in a benchm
calculation for thea-particle ground state with a realisticNN
force @5#. A very good agreement among the results of
different calculations was found. This shows the high st
dard of present days few-body physics calculations
opens up the possibility to tackle even more complica
microscopicab initio calculations in the near future.

In particular, the effective interaction approach is a ve
promising new tool in few-body physics. In this field it ha
been first introduced by Navra´til and Barrett@6#. They have
performed a NCSM calculation in an harmonic oscillator b
sis constructing a two-body effective interaction for a sp
cific model space and for a given bareNN interaction. It is
important to note that in this approach the model space is
kept fixed, but is increased up to the point that for a giv
observable~e.g., ground state energy, matter radius! a con-
stant, model space independent value is reached; this v
should coincide with thetrue result obtained with the bar
NN interaction.

Recently, a similar effective interaction approach has b
carried out in the hyperspherical harmonics~HH! formalism
@4#. The use of the HH basis leads to various advanta
e.g., one can define a two-body effective interaction, wh
contains information on the residual (A22)-body system;
therefore the result converges faster to the asymptotic va

The aim of this paper is to work out extensions of t
EIHH method which should lead to an even faster conv
gence of the HH expansion. These extensions consist o~i!
an inclusion of the hyper-radial kinetic energy and~ii ! the
incorporation of a three-body effective interaction.

The paper is organized as follows. In Sec. II the EIH
method is outlined. In Sec. III the inclusion of the hype
0556-2813/2003/67~5!/054003~11!/$20.00 67 0540
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radial kinetic energy is described. The incorporation of t
three-body effective interaction is discussed in Sec. IV. R
sults with the two improvements of the EIHH method a
given in Sec. V. A detailed Appendix describes how the m
trix elements of the three-body effective interaction are ac
ally calculated for anA-body wave function.

II. OUTLINE OF THE EIHH METHOD

In the effective interaction approach@3,4,7# the lowest
eigenvalues of anA-body Hamiltonian

H [A]5H01V ~1!

is treated in the following way. The Hilbert space ofH [A] is
divided into a model space and a residual space, through
use of the eigenprojectorsP andQ of H0, which satisfy the
relations

@H0 ,P#5@H0 ,Q#50, QH0P5PH0Q50, P1Q51.
~2!

The Hamiltonian H [A] is then replaced by the effectiv
model space Hamiltonian

H [A]e f f5PH0P1PV[A]e f fP ~3!

that by construction has the same energy levels as the
lying states ofH [A] . In general, the effective interaction ap
pearing in Eq.~3! is anA-body interaction. Its construction i
as difficult as finding the full-space solutions. Therefore, o
has to approximateV[A]e f f. However, one must build the
approximate effective potential in such a way that it co
cides with the bare one forP→1, so that an enlargement o
the model space leads to a convergence of the eigenene
to the true values. The NCSM and the EIHH methods a
developed along these lines.

In the HH formalism a Hamiltonian

H [A]5(
i 51

A pW i
2

2m
1(

i , j

A

v i j ~4!

is written as
©2003 The American Physical Society03-1
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H [A]5Tr1TK~r!1V[A]~r,VA!, ~5!

where

V[A]~r,VA![(
i , j

A

v i j ~6!

denotes the bare two-body potential and

Tr52
1

2m
Dr and TK~r!5

1

2m

K̂A
2

r2
~7!

are the hyper-radial and hypercentrifugal kinetic energ
respectively. In the preceding equation,Dr is the Laplace
operator with respect to the hyper-radial coordinate

r5A(
j 51

N

h j
2, ~8!

wherehW j denote theN5A21 Jacobi vectors, whileK̂A is
the hyperspherical grand angular momentum operator
VA the (3A24)-dimensional hyperangle. The hyper-rad
kinetic energyTr and the residual Hamiltonian

H [A]~r![TK~r!1V[A]~r,VA! ~9!

are often considered separately. The HamiltonianH [A] (r),
often used as a starting point in atomic and molecular ca
lations, is called adiabatic@8# as the hyper-radial coordinat
r is a slow coordinate with respect to the hyperangles.

In Ref. @4#, the effective interaction method is applied
this adiabatic Hamiltonian. The unperturbed HamiltonianH0
is chosen to beTK(r) with the hyperspherical harmonic
Y[KA] as eigenfunctions (@KA# stands for a set of quantum
numbers, see Ref.@4#!. The model spaceP is defined as the
complete set of HH basis functions with generalized angu
momentum quantum numberKA<KP , and theQ space as
the complete set of HH basis functions withKA.KP . The
states will be denoted by$up&,p51,2, . . . ,nP% for the P
space and$uq&,q5np11 ,np12 , . . . ,nQ% for the Q space. Of
course, in principal one hasnQ→`, but for actual calcula-
tions one has to consider a finiteQ space but with a suffi-
ciently largenQ .

For each valuer of the hyper-radius, an effective adia
batic Hamiltonian is constructed as

H [A]e f f~r,VA!5PTK~r!P1PV[A]e f f~r,VA!P. ~10!

However, as already pointed out, the effective poten
would be a complicatedA-body interaction, thereforeV[A]e f f

is approximated by a sum oftwo-bodyterms as

V[A]e f f.(
i , j

A

v i , j
[2]e f f . ~11!

In the following, it will be shown howv i , j
[2]e f f is derived

ensuring that the effective potential satisfies the above m
tioned condition, i.e.,v i , j

[2]e f f tends to the barev i j for P→1 .
Due to the use of antisymmetric wave functions one o
needs to calculate the effective interaction operator rela
to one pair, since
05400
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^V[A]e f f&.K (
i , j

A

v i , j
[2]e f fL 5

A~A21!

2
^vA,(A21)

[2]e f f &. ~12!

Below, it will become clear why the choice to expre
^V[A]e f f& in terms of the pair potential between the last tw
particlesA and (A21) is particularly convenient. The two
body effective potentialvA,(A21)

[2]e f f is determined as follows
First, for each valuer of the hyper-radial coordinate on
defines aquasi-two-bodyadiabatic Hamiltonian containing
the hypercentrifugal kinetic energy and the bare poten
between the last two particles

H [2]~r;uN ,ĥN!5TK~r!1vA,(A21)~A2r sinuN•ĥN!,
~13!

where ĥN is the unit vector associated with the last Jaco
vector

hW N5A1

2
~rWA212rWA! ~14!

anduN is the hyperangle defined through the relation

hN5r sinuN . ~15!

We emphasize here that we are using reversed orderA-body
Jacobi coordinates

hW i5A A2 i

A112 i S rW i2
1

A2 i (
j 5 i 11

A

rW j D . ~16!

The Hamiltonian of Eq.~13! is then diagonalized on the
A-body HH basis. Such a diagonalization is easily perform
sincer is only a parameter inH [2] ~there are no derivatives
with respect tor), and for each value ofr the Hamiltonian
H [2] (r;uN ,ĥN) depends only on three variables. This is ju
due to our choice of theA–(A21) pair. The obtained eigen
states will be denoted byu j (r)& as they are continuous func
tions of r.

One proceeds applying the Lee-Suzuki@9,10# similarity
transformation toH [2] (r;uN ,ĥN) in order to get the corre-
sponding Hermitian effective Hamiltonian

H [2]e f f~r;uN ,ĥN!5U†~r!H [2]~r;uN ,ĥN!U~r!, ~17!

where

U~r!5~P1v~r!!
1

AP@11v~r!†v~r!#P
. ~18!

The operatorv(r) is obtained using the following propert
@9#:

v~r!5Qv~r!P. ~19!

The matrixv(r) is calculated for each value ofr, taking the
nP statesu j (r)& with the lowest eigenvalues. Each of the
states leads to the following system of (nQ2nP) equations:
3-2
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^qu j ~r!&5(
p

^quv~r!up&^pu j ~r!&. ~20!

The nP(nQ2nP) matrix elementŝ quv(r)up& are obtained
by solving this equation system~20!. Once the effective
quasi-two-bodyHamiltonianH [2]e f f is constructed, the ef
fective potential is obtained by a subtraction of the hyperc
trifugal kinetic energy

vA,(A21)
[2]e f f 5H [2]e f f~r!2TK~r!. ~21!

In the following we will denotevA,(A21)
[2]e f f simply by v [2]e f f.

Using this r-dependent effective potential and taking in
account Eqs.~10!–~12!, one solves theA-body problem with
the effective Hamiltonian

H [A]e f f5Tr1H [A]e f f5Tr1TK1(
i , j

v [2]e f f ~22!

in the P space. One repeats the procedure enlarging thP
space up to a convergence of the low-lying energies of
A-body system.

We would like to emphasize the following points.
~i! The hyper-radius is a parameter rather than a coo

nate, andv [2]e f f is determined for various fixedr values;
therefore, while being a two-body interaction, it depends
the wholeA-body system via this collective coordinate.

~ii ! There is an additional dependence ofv [2]e f f on the
quantum numberKA22 of the residual system@see Eqs.~19!
and ~20! of Ref. @4##.

~iii ! It is evident thatU(r)→1 for P→1 and thusv [2]e f f

converges to the barevA,(A21) ; therefore the energy spec
trum converges to the exact one.

~iv! Via the operatorU(r) the effective potentialv [2]e f f

contains information about a large part of thePQ-space in-
teraction, hence the convergence to the exact eigenvalu
H [A] is accelerated with respect to the normal HH expans

In the present work, we would like to present two exte
sions of the scheme outlined above:~i! the application of the
Lee-Suzuki transformation also to the hyper-radial part of
kinetic energy~Sec. III! and ~ii ! the incorporation of three
body effective forces~Sec. IV!. The aim is to further increas
the rate of convergence of the HH expansion.

III. BEYOND THE ADIABATIC APPROXIMATION

In the EIHH approach outlined in the preceding sectio
the Lee-Suzuki unitary transformation is applied to the ad
batic quasi-two-bodyHamiltonian of Eq.~13!. The effective
potential is obtained by subtraction of the hypercentrifu
term from the effective Hamiltonian of Eq.~17!. One can go
beyond this adiabatic approach by applyingU of Eq. ~18! to
the nonadiabaticquasi-two-bodyHamiltonian

H [2]~r!5Tr1H [2]~r!. ~23!

This leads to a nonadiabatic effectivequasi-two-bodyHamil-
tonian
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H [2]e f f5U†~r!TrU~r!1H [2]e f f~r!

5Tr1DTr
e f f1H [2]e f f~r!. ~24!

A new effective interaction is then obtained by subtracti
the full kinetic energy

ṽA,A21
[2]e f f 5H [2]e f f2TK~r!2Tr5vA,A21

[2]e f f 1DTr
e f f . ~25!

Here, it is worth noticing that likeTK(r), alsoTr satisfies
the relation~2!. The new effective potentialṽA,A21

[2]e f f differs
from the previousvA,A21

[2]e f f by the termDTr
e f f , which is given

by

DTr
e f f52

1

2m
U†~r!F ]2U~r!

]r2
12

]U~r!

]r
]r

1
3A24

r

]U~r!

]r G . ~26!

One can also interpretDTr
e f f as aneffective kinetic energy

contribution.
The matrix elements ofDTr

e f f have to be evaluated be
tween the HH and hyper-radial basis functionsLm(r),Ln(r):

^LnuDTr
e f fuLm&5

1

2mE dr3A24F]U†

]r

]U

]r
Ln~r!Lm~r!

1U†
]U

]r S Ln

]Lm

]r
2Lm

]Ln

]r D G . ~27!

The first term on the right hand side is manifestly symme
in the hyper-radial indices~as well as in the HH basis indi
ces!. As to the second term, denoting bym,n,l the HH basis
functions, one finds

(
l

Uml
† ]Uln

]r S Ln

]Lm

]r
2Lm

]Ln

]r D
5

1

2 (
l

S Ulm*
]Uln

]r
2Uln

]Ulm*

]r D S Ln

]Lm

]r
2Lm

]Ln

]r D .

~28!

It is evident that this second term is an antisymmetric ope
tor for interchange of both HH and hyper-radial indice
Thus, Eq.~27! gives a decomposition ofDTr

e f f into its sym-
metric and antisymmetric parts,DTr

e f f5DSTr
e f f1DATr

e f f .
Enlarging the model space,U approachesI and the contribu-
tion of DTr

e f f diminishes more and more. Therefore, we c
estimate its contribution using first order perturbation theo
We find that the effect ofDATr

e f f is much smaller in com-
parison toDSTr

e f f ~about 1% or less!. So we conclude that

DTr
e f f'

1

2m

]U†

]r

]U

]r
. ~29!

IV. THE THREE-BODY EFFECTIVE INTERACTION

The natural way to construct the three-body effective
teraction is the generalization of the procedure in Sec. II
3-3
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~i! Approximate the matrix element of theA-body effec-
tive interaction by

V[A]e f f.
1

A22 (
i , j ,k

A

v [3]e f f~ i , j ,k!. ~30!

~ii ! Calculate its matrix element via

^V[A]e f f&.K 1

A22 (
i , j ,k

A

v [3]e f f~ i , j ,k!L
5

A~A21!

6
^v [3]e f f~A,A21,A22!&. ~31!

~iii ! Replace the adiabaticquasi-two-bodyHamiltonian of
Eq. ~13! with the adiabaticquasi-three-bodyHamiltonian

H [3]~r!5
1

2m

K̂A
2

r2
1vA,(A21)1v (A21),(A22)1v (A22),A

[
1

2m

K̂A
2

r2
1v [3]~A,A21,A22!. ~32!

~iv! Diagonalize it in theP1Q space of theA-body sys-
tem.

~v! Calculate the newv(r) @Eq. ~19!# and apply the Lee-
Suzuki similarity transformation to obtainv [3]e f f; add the
nonadiabatic effective kinetic energy contribution as outlin
in Sec. III, to obtainṽ [3]e f f.

~vi! Solve theA-body problem with

H [A]e f f5Tr1H [A]e f f5Tr1TK1
1

A22 (
i , j ,k

ṽ [3]e f f~ i , j ,k!

~33!

considering point~ii !.
A closer look, however, reveals that solvingH [3] is more

complicated than solving the three-body problem. This po
will become clearer in the following. While for the two-bod
effective interaction one needs to consider only the hyp
spherical coordinates connected to theA-(A21) pair explic-
itly, for the three-body effective interaction one has to ta
into account additional coordinates. In order to clarify th
point, we present the general transformation from the
versed orderA-body Jacobi coordinates@Eq. ~16!# to hyper-
spherical coordinates. Each Jacobi vectorhW j consists of a
radial coordinateh j and a pair of angular coordinatesĥ j .
The radial coordinates are transformed into the hypersph
cal coordinatesr,u2 , . . . ,uA21 through the relations

sinun5
hn

rn
and rn

25rn21
2 1hn

25(
j 51

n

h j
2 . ~34!

Note that the hyper-radial coordinatesrn are symmetric with
respect to the permutation of particles 1,2, . . . ,n. The
A-body hyper-radial coordinater[rA21 is symmetric with
respect to any particle permutation. In order to focus on
interacting three-body subsystem, we transform the (3A
24) hyperangular coordinates
05400
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VA5~u2 , . . . ,uA21 ,ĥ1 , . . . ,ĥA21! ~35!

into a new set of hyperangles

V3,A235~u2 , . . . ,uA23 ,Q [3,A23],u int
[3] ,ĥ1 , . . . ,ĥA21!.

~36!

The new hyperangles reflect the splitting of theA-body sys-
tem into a three- and an (A23)-body subsystems. The hy
perangleV3,A23 can be written as

V3,A235~Q [3,A23],V int
[3] ,V res

[A23]!, ~37!

where

V int
[3]5~u int

[3] ,ĥA22 ,ĥA21! ~38!

are the hyperangles of theinteractingthree-body subsystem
and

V res
[A23]5~u2 , . . . ,uA23 ,ĥ1 , . . . ,ĥA23! ~39!

are the hyperangles of theresidual (A23)-body subsystem
The two new anglesQ [3,A23],u int

[3] , replacing uA22 and
uA21, are given through the relations

r int
[3][AhA21

2 1hA22
2 5r sinQ [3,A23], ~40!

rA235r cosQ [3,A23] ~41!

and

hA215r int
[3]sinu int

[3] , ~42!

hA225r int
[3]cosu int

[3] . ~43!

The new coordinates (r int
[3] ,V int

[3] ) form a complete set for the
three-body problem andH [3] can be written as

H [3]~r!5
1

2m

K̂A
2

r2
1v [3]~r,Q [3,A23],V int

[3] !. ~44!

Now we can proceed to point~iv! of the list above. In
order to do so we follow Ref.@11# and constructv [3]e f f

through a sequence of steps as follows.
Step 1. We solve the Schro¨dinger equation with the

Hamiltonian of Eq.~13! for theA-body system and construc
the ‘‘nonadiabatic’’two-bodyeffective interactionṽ [2]e f f(r).
We label withKP

[2] the top of theP2 space and withKQ
[2] the

top of theQ2 space.
Step 2. We solve the Schro¨dinger equation with the

Hamiltonian of Eq.~44!, replacing the bare interactionv [3]

with the sum of the effective two-body interaction
( ṽA,A21

[2]e f f 1 ṽA21,A22
[2]e f f 1 ṽA22,A

[2]e f f ) and construct the effective in

teraction ṽ [3]e f f(r). We label with KP
[3] and KP (KP

[3]

5KP) the top of theP3 andPA spaces, respectively, and w
takeKQ

[3][KP
[2] as top of theQ3 space.

The main advantage of the proposed scheme lays in
first step, where excitations of the two-body subsystem i
the Q3-space part of theQA space are taken care of, thu
accelerating the convergence of Eq.~44!. For a better under-
standing of the effective interaction, we show in Figs. 1 a
2 the various Hilbert spaces of the two-, three-, andA-body
3-4
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systems. In Fig. 1, we illustrate the construction of two-bo
effective interaction. The hyperangular part of theA-body
Hilbert space is divided into a two-body and a residual H
bert space. The Lee-Suzuki procedure guarantees thatṽ [2]e f f

takes into account besidesPA also the shaded areaQ2 of the
QA space. In Fig. 2, the construction of the three-body eff
tive interaction is illustrated. It depicts the spacesP2 , Q2 ,
P3, and Q3 of the three-body HH space. The informatio
aboutQ2 is contained viaṽ [2]e f f ~step 1!, while the informa-
tion about the horizontally shaded area ofQ3 is taken into
account viaṽ [3]e f f ~step 2!. The so constructedṽ [3]e f f is
used in theA-body system as a bare three-body interacti
One should note that, in the limit in which theA-body P
space includes all the horizontally shaded area ofQ3 space,
one remains with the two-body effective interaction.

It should be noticed that there are threeenergy scalesin
the scheme. The first scale is that determined byKQ

[2] . This
should be fixed so that the lower eigenenergies ofH [2] for
the ‘‘three-body’’ problem are in convergence. In acco
dance, the three-body scale determined byKQ

[3][KP
[2]

,KQ
[2] has to be high enough, so that the lower eigenener

of H [3] for the ‘‘three-body’’ problem are also in conve
gence. The third scaleKP[KP

[3],KQ
[3] should be varied until

the spectra of theA-body system is established. It should

K

A

PP

Q
2

2

AK
[2]

K
PP

A

Q

FIG. 1. The variousP andQ spaces relevant for the constructio
of the two-body effective interaction~see text!.

K

A

Q
2

P P

Q

2

3

3

K
[3]

Q
[2]

K
P

PK
[3]

FIG. 2. The variousP andQ spaces relevant for the constructio
of the three-body effective interaction~see text!.
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evident from the above discussion that using two-, thre
and if possible more-body effective interactions, the conv
gence of the spectrum of theA-body system should becom
faster and faster since the information on large parts of thQ
space are already taken into account via those effective
erators.

The actual calculation of the three-body effective intera
tion is quite complicated and technically rather challengin
The difficulty has its origin in the separation of theA-body
system into two subsystems@the interacting three- and th
residual (A23)-body systems#. Expressing theA-body ma-
trix elements of the interaction in terms of the matrix e
ments for the three-body subsystems, one has to pay
price of evaluating the overlap between the antisymme
A-body basis functions and basis functions constructed in
(3,A23) scheme. In the Appendix, it is described in det
how such matrix elements are calculated.

V. RESULTS AND DISCUSSION

Results for the nonadiabiatic kinetic energy contributi
and the three-body effective interaction are studied for
binding energies of4He and 6Li using semirealistic and
more realisticNN interactions. First, we discuss the impo
tance of the effective kinetic energyDSTe f f . We choose a
case that has been considered in a recent benchmark p
@5# presenting in Table I results for the4He ground state
energy with the Argonne AV88 NN force @12#. The result for
the calculation with the effective Hamiltonian in the adi
batic approximation atKmax520 is our EIHH result pub-
lished in Ref.@5#. It was obtained in a rather time consumin
calculation which we were not able to repeat this time a
thus other results are only shown up toKmax518. From the
table it is evident thatDSTe f f has a rather regular conve
gence pattern. This enables us to estimateDSTe f f also for
Kmax520 leading to the value of about 10 keV. With th
result we estimate a binding energy of 25.934 MeV for t
nonadiabatic calculation atKmax520. This value is used as
reference energy in Table I. One sees that the rates of

TABLE I. Convergence of the HH expansion for the4He
ground state energy~in MeV! with the AV88 potential. HereHe f f

stands for the effective Hamiltonian in the adiabatic approximati
andHe f f1DSTr

e f f is the effective Hamiltonian including the nona
diabatic correctionDSTr

e f f . The reference energy is taken to b
E`5225.934~MeV! ~see text!.

Kmax ^He f f& uE2E`u ^He f f1DSTr
e f f& uE2E`u ^DSTr

e f f&

2 227.522 1.588 225.464 0.470 2.058
4 228.135 2.201 227.052 1.118 1.083
6 227.004 1.070 226.498 0.564 0.506
8 226.672 0.738 226.421 0.487 0.250
10 226.081 0.147 225.949 0.015 0.131
12 226.135 0.201 226.064 0.130 0.070
14 226.004 0.070 225.963 0.029 0.040
16 225.977 0.043 225.953 0.019 0.024
18 225.944 0.010 225.929 0.005 0.015
20 225.944
3-5
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vergence for adiabatic and nonadiabatic calculations
quite similar, but it is also evident that the inclusion
DSTe f f improves the results considerably. It reduces the
ference to the reference energy for any value ofKmax by
about a factor of 2.

In Fig. 3, we present the effect of the nonadiabatic te
on the convergence of the binding energy of6Li with the
MinnesotaNN force @13#. The effect ofDSTe f f is very simi-
lar to the just discussed4He case again leading to a consi
erable improvement of the convergence of the ground s
energy. In order to estimate the converged binding ene
(KP→`), we fit the results of the nonadiabatic calculati
with the formulaE(K)5E`1Ce2aK. Using all the points
from K54 to K512 we obtainE`5234.836 MeV, while
using only the three higher values (K58,10,12) we find
E`5234.881 MeV. With these results we estimate a co
verged value ofEgs5234.8660.02 @MeV#. A comparison
with available results of other methods~SVM @2#, NCSM
@14#! is shown in Table II. There is a difference of abo
200–400 keV between the different methods. In order
improve the comparison further convergence checks sh
be made in the various calculations.

Next we discuss the effect of the three-body effective
teraction. The convergence of the calculation withṽ [3]e f f

depends, of course, on the size of the model spacePA (KP),
but also on the size of theQ3 space (KQ

[3] ). As described in

TABLE II. Results for the6Li ground state energy~in MeV!
with the Minnesota potential.

Method Egs ~MeV!

EIHH 234.8660.02
NCSM @14# 234.4860.26
SVM @2# 234.59

0 2 4 6 8 10 12 14
 KP

37.0

36.5

36.0

35.5

35.0

34.5

34.0
B

in
di

ng
 e

ne
rg

y 
[M

eV
]

Heff+∆Teff

Heff

NCSM
SVM

EIHH

6
Li  Minnesota

FIG. 3. Convergence of the HH expansion for the6Li ground
state energy with the MinnesotaNN potential. The solid~dashed!
line connects the results of the adiabatic~nonadiabatic! effective
two-body interaction calculation. The dashed area correspond
the energy rangeE`5234.8660.02 (MeV) ~see text!. Also given
the SVM @2# ~dot-dashed line! and NCSM@14# ~shaded area! re-
sults.
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Sec. IV, both spaces enter in the construction ofṽ [3]e f f. In
the calculation, one encounters computational difficulties d
to the fact that one has to solve many different ‘‘three-bod
systems. Taking into account each hyper-radial grid po
each value ofKA23 and the possible values ofJ3 , T3 , T3

z the
number of ‘‘three-body’’ systems one has to consid
amounts to a few thousand. For aKQ

[3] of about 20 the aver-
age number of basis states is about 1500. Thus one face
problem of diagonalizing a matrix of 150031500 a few
thousand times. The computational effort can be reduce
one restricts the range ofJ3 values for whichṽ [3]e f f is con-
structed.

In Fig. 4, the convergence of the4He ground state energ
is shown for the AV88 NN potential as function ofKP with
KQ

[3]524 and and limiting value ofJ353/2. With respect to
the last two quantum numbers one finds an excellent con
gence of the three-body effective interaction. In fact w
KQ

[3]520 andJ351/2 one has essentially the same results
those shown in Fig. 4. We would like to emphasize on
again that forKP

[3]5KQ
[3] one gets the identical results wit

two- and three-body effective interactions. Therefore the
vantage of the three-body effective interaction can only b
faster convergence for the lowerKP

[3] values. In fact the re-
sults of Fig. 4 show that this is the case. This is particula
important for systems with more than four particles, whe
one cannot easily work with largerPA spaces. In order to
study this point better, we have considered with6Li also a
six-body system. Different from the6Li case above~see dis-
cussion of Fig. 3!, where we use the semirealistic centr
Minnesota potential, we take the more realistic AV88 poten-
tial. Such a more realistic potential model leads to aP space,
which grows very fast withKP . At present we can conside
only KP<6. The results of our calculation are shown in F
5. One sees that in contrast to the discussed four-body ca
the six-body binding energy depends very much on the l
iting value ofJ3. Though we are restricted to relatively sma

to

0 2 4 6 8 10 12 14 16 18 20
KP

29

28

27

26

25

24

23

B
in

di
ng

 E
ne

rg
y 

[M
eV

]

4
He  AV8’

FIG. 4. Convergence of the HH expansion for the4He ground
state energy with the AV88 NN potential. The dot-dashed~dotted!
line connects the results of the adiabatic~nonadiabatic! two-body
effective calculation and the solid line the results of the nonad
batic three-body effective interaction.
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values ofKP , it can be seen that the obtained energy is
reasonable agreement with those of other methods.

We summarize our results as follows. We have exten
the HH effective interaction method in two different dire
tions. On one hand we include a nonadiabatic correction
the hyper-radial kinetic energy and on the other hand
introduce a three-body HH effective interaction. Both exte
sions accelerate the convergence of the HH expansion fo
binding energy as explicitly shown for the cases of4He and
6Li, where for both nuclei we used semirealistic, but a
more realisticNN interactions. The nonadiabatic correctio
leads to better converged energies for all grandangular
mentum valuesK, while for the three-body HH effective
interaction one obtains particularly strong improvements
lower K values. Our results show that the improved HH
fective interaction facilitates more realistic calculations
p-shell nuclei. With an increase of computational effo
~parallelization of the codes, more powerful computers! it
will be possible to bring our calculations to a better conv
gence in the near future. We would also like to point out t
the three-body effective interaction opens up the way
incorporating genuine three-body forces in the EIH
method.
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APPENDIX: MATRIX ELEMENTS FOR THREE-BODY
INTERACTION

A meaningful effective interaction can be derived fro
H [3] , only if we employ a physical basis set consisting

0 2 4 6 8
 K P

45

43

41

39

37

35

33

31

29

27

25
 B

in
di

ng
 e

ne
rg

y 
[M

eV
]

J3=1/2
J3=3/2
J3=5/2
J3=7/2

6 
Li  AV8’

GFMC

NCSM

V[2]eff

FIG. 5. Convergence of the HH expansion for the6Li ground
state energy with the AV88 NN potential. The dotted, dashed, an
the thick solid line connect the results for the nonadiabatic thr
body effective interaction with different limiting values ofJ3 as
illustrated in the figure. The dash-dotted line connects the result
the nonadiabatic two-body effective interaction. The thin solid lin
stand for GFMC@20# and NCSM @14# results as marked in the
figure.
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functions antisymmetric with respect to three-body permu
tions and with good three-body andA-body quantum num-
bers (J3 ,J3

z ,T3 ,T3
z ,JA ,JA

z ,TA ,TA
z ). The construction of such

basis functions and the evaluation of the Hamiltonian ma
elements are given below.

The antisymmetricA-body hyperspherical-spin-isospi
basis functions with total angular momentumJA , JA

z and
isospinTATA

z can be written as

uKAJAJA
z TATA

z GAaAbA&

5 (
YA21

LGA ,YA21

AuGAu
@ uKALAMAGAYA21aA&

3uSASA
z TATA

z G̃A ,ỸA21bA&] JAJA
z
, ~A1!

where

^VAuKALAMAGAYA21aA&[Y KALAMAGAYA21aA

[A] ~VA!

~A2!

are HH functions with hyperspherical angular momentu
K5KA , and orbital angular momentum quantum numb
LA ,MA that belong to well defined irreducible represen
tions ~irreps! G1PG2P•••PGA of the permutation group-
subgroup chainS1,S2,•••,SA , denoted by the Yaman
ouchi symbol @GA ,YA21#[@GA ,GA21 , . . . ,G1#. The
dimension of the irrepGm is denoted byuGmu andLGA ,YA21

is a phase factor@15#. Similarly, the functions

^s1
z
•••sA

z ,t1
z
•••tA

z uSASA
z TATA

z G̃A ,ỸA21bA&

[x
SAS

A
z TAT

A
z G̃A ,ỸA21bA

[A]
~s1

z
•••sA

z ,t1
z
•••tA

z ! ~A3!

are the symmetrized spin-isospin basis functions. The qu
tum numbersaA , bA are used to remove the degeneracy
the HH and spin-isospin states, respectively.

In analogy to Eq.~A1!, we can construct antisymmetri
three-body basis functions that correspond to the parti
A,A21,A22 and to the Jacobi vectorshW A21 ,hW A22 as

uK3J3J3
zT3T3

zG3a3b3&5(
Y2

LG3 ,Y2

AuG3u
@ uK3L3M3G3Y2a3&

3uS3S3
zT3T3

zG̃3 ,Ỹ2b3&]
J3J3

z
~A4!

and the antisymmetric (A23)- body basis functions that cor
respond to the particles 1,2, . . . ,A23 and to the Jacobi vec
tors hW 1 , . . . ,hW A23 @note that these (A23) Jacobi vectors
contain also the relative orientation of the three- and theA
23)-body subsystems# as

-

or
s
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uKA23JA23JA23
z TA23TA23

z GA23aA23bA23&

5 (
YA24

LGA23 ,YA24

AuGA23u
@ uKA23LA23MA23GA23YA24aA23&

3uSA23SA23
z TA23TA23

z G̃A23 ,ỸA24bA23&]
JA23JA23

z
.

~A5!

The corresponding HH functions are given by
ts

:

05400
^V int
[3] uK3L3M3G3Y2a3&[Y K3L3M3G3Y2a3

[3] ~V int
[3] !, ~A6!

^V res
[A23]uKA23LA23MA23GA23YA24aA23&

[Y KA23LA23MA23GA23YA24aA23

[A23] ~V res
[A23]!, ~A7!

and equivalent expressions for the spin-isospin part. Th
two sets of basis functions, Eqs.~A4! and~A5!, can be com-
bined into anA-body HH basis function with quantum num
bersKAJAJA

z TATA
z through the relation
u~K3J3T3G3a3b3;KA23JA23TA23GA23aA23bA23!KAJAJA
z TATA

z &

5N n
a,b~sinQ [3,A23]!K3~cosQ [3,A23]!KA23Pn

(a,b)~cos 2Q [3,A23]!

3@ uK3J3J3
zT3T3

zG3a3b3&uKA23JA23JA23
z TA23TA23

z GA23aA23bA23&]
JAJA

z TATA
z
. ~A8!
n
(

the
op-
em,
HerePn
(a,b) are the Jacobi polynomials, with the argumen

a5K312, ~A9!

b5KA231
3A211

2
, ~A10!

n5
KA2KA232K3

2
. ~A11!

The numerical factor

N n
a,b5A2~2n1a1b!n!G~n1a1b11!

G~n1a11!G~n1b11!
~A12!

is a normalization constant.
For the sake of brevity we use the following notations

@K3#[K3J3J3
zT3T3

zG3a3b3 ,

@KA23#[KA23JA23JA23
z TA23TA23

z GA23aA23bA23 ,
and

@KA#[KAJAJA
z TATA

z GAaAbA .

With the help of these notations Eq.~A8! can be rewritten as

u~@K3#;@KA23# !KAJAJA
z TATA

z &

5N n
a,b~sinQ [3,A23]!K3

3~cosQ [3,A23]!KA23Pn
(a,b)~cos 2Q [3,A23]!

3@ u@K3#&u@KA23#&] JAJA
z TATA

z
. ~A13!

The basis of Eq.~A13! is the desired one for the calculatio
of the three-body effective interaction, as the residualA
23)-body subsystem is factorized out.

Using these basis functions one can easily reduce
A-body matrix elements of a scalar-isoscalar three-body
erator into the matrix elements of the three-body subsyst
^@KA#uv [3]~A,A21,A22!u@KA8 #&5 (
[K3],[ K38],[ KA23],[ KA238 ]

^@KA#u~@K3#;@KA23# !KAJAJA
z TATA

z &

3^@KA8 #u~@K38#;@KA238 # !KA8JA8JA8
zTA8TA8

z&* ^~@K3#;@KA23# !

3KAJAJA
z TATA

z uv [3]~r [3] ,V [3] !u~@K38#;@KA238 # !KA8JA8JA
z8TA8TA

z8&. ~A14!

The matrix elementŝ@KA#u(@K3#;@KA23#)KAJAJA
z TATA

z & are the overlaps between theA-body functions, Eq.~A1!, and the
(3,A23)-body functions, Eq.~A13!. The potential matrix element can be conveniently written as

^~@K3#;@KA23# !KAJAJA
z TATA

z uv [3]~r [3] ,V [3] !u~@K38#;@KA238 # !KA8JA8JA
z8TA8TA

z8&

5dJA ,J
A8
dTA ,T

A8
d [KA23],[ K

A238 ]dJ3 ,J
38
dT3 ,T

38
dJ

A
z ,J

A
z8dT

A
z ,T

A
z8V

[K3]KA ,[K
38]K

A8

[3 KA23]
~r!, ~A15!

with
3-8
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V
[K3]KA ,[K

38]K
A8

[3 KA23]
~r!5 (

G2G28
LG3G2

LG2G1
LG

38G
28
LG

28G1

1

AuG3uuG38u

3 (
,2,28,1,18

(
a2a28

PHSCFP3 PHSCFP38 (
T28T

28
8 S28S

28
8

(
b2b28

PTSCFP3 PTSCFP38V[K3] uKA ,[K
38] uK

A8

[3 KA23]
~r!,

~A16!
ac

e-

y

-

s o
in

ts

e

ced
where the products of the three-body coefficients of fr
tional parentage~CFPs@17,18#! are given by

PHSCFP35^K3L3G2a2uK3L3G3a3&

3^~,1G1 ;,2!K3L3uK3L3G2a2&, ~A17!

PTSCFP35^S3S28T3T28G̃2b2uS3T3G̃3b3&

3^S28S1T28T1G̃1b1uS28T28G̃2b2&, ~A18!

and the notation@K3#u stands for the unsymmetrized thre
body HH-spin-isospin state,

u@K3#u&[u@~,1 ;,2!K3L3 ;S1S28S3#J3T1T28T3&.

HereS1 (T1) stands for the spin~isospin! of particleA22,
while S3 (T3) stands for the total spin~isospin! of the three-
body subsystem. It should be noted however that in@K3#u ,
,2 stands for the relative angular momentum of particlesA
andA21 but S28 (T28) is the coupled spin~isospin! quan-
tum number of particlesA21 andA22 ~and therefore the
notation 28).

Using standard angular momentum technique it is eas
evaluate the matrix elements

^@~,1 ;,2!L3 ;S1S28S3#J3T1T28T3

3u@~,1 ;S1!J1~,2 ;S2!J2#J3T1T2T3&,

whereS2 (T2) is the spin~isospin! quantum number of par
ticles A andA21. The basis

u@K3#n&[u@~,1 ;S1!J1~,2 ;S2!J2#K3J3T1T2T3&

is the most convenient one for evaluating matrix element
two-body and three-body forces. Let us start by consider
the case of three-body forces. We can use Eqs.~40! and
~A13! to get

V
[K3] nKA ,[K

38] nK
A8

[3 KA23]
~r!

5N n
a,bN n8

a8,bE
0

p/2

dQ [3,A23]~sinQ [3,A23]!K31K3815

3~cosQ [3,A23]!2KA2313A210Pn
(a,b)

3~cos 2Q [3,A23]!Pn8
(a8,b)

~cos 2Q [3,A23]!

3W[K3],[ K
38]~r int

[3] !, ~A19!

whereW[K3],[ K
38] stands for the three-body matrix elemen
05400
-

to

f
g

W[K3],[ K
38]~r int

[3] !5^@K3#uv [3]~r int
[3] ,V [3] !u@K38#&

~A20!

of either a genuine or a pseudo-three-body force

v [3]~r int
[3] ,V [3] !5vA,(A21)1v (A21),(A22)1v (A22),A .

An alternative way for calculating matrix elements of th
latter case can be realized by

V
[K3] nKA ,[K

38] nK
A8

[3KA23]
~r!

53 (
KA22

TK3 ,KA22

KA ;,2,1KA23T
K

38 ,KA22

KA8 ;,28,1KA23

3V
(,2S2)J2T2KA ,(,

28S
28)J2T2K

A8

[2 KA22]
~r!, ~A21!

where the HH transformation coefficientsTKab ,Kbc

K;KaKbKc first de-

rived by Kil’dyushov @19# are the HH analogs of the 6j
symbol. The two-body matrix elements can now be redu
to an one-dimensional integral as

V
(,2S2)J2T2KA ,(,

28S
28)J2T2K

A8

@2 KA22]
~r!

5N n
a,bN n8

a8,bE
0

p/2

duA21~sinuA21!,21,2812

3~cosuA21!2KA2213A27Pn
(a,b)

3~cos 2uA21!Pn8
(a8,b)

~cos 2uA21!

3^~,2S2!J2T2uv [2]~A2r sinuA21!u~,28S28!J2T2&

~A22!

with

a5,21
1

2
, ~A23!

b5KA221
3A28

2
, ~A24!

n5
KA2KA222,2

2
. ~A25!

It should be noted thatV
[K3]KA ,[K

38]K
A8

[3 KA23]
(r) are the matrix ele-

ments that appear when evaluating the adiabaticquasi-three-
3-9
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bodyHamiltonian of Eq.~32!. Recalling that@K3# is a com-
plete set of quantum numbers for the three-body system
understands why Eq.~32! is more complicated than a three
body bound state problem, where quantum numbers for t
angular momentum and isospin are fixed. As pointed
above, for a genuine three-body force one has to conside
matrix elementsW[K3],[ K

38] , they are exactly those that ar

needed in the three-body problem. Therefore, our formu
tion is very convenient for such a case. If one considers o
genuine two-body forces, one can use Eq.~A21! replacing
05400
ne

al
t

he

-
ly

the potential matrix elements by the matrix elements of
two-body effective interaction. This simplifies the constru
tion of the three-body effective potential.

In order to complete our discussion, we evaluate the pr
uct

^@KA#u~@K3#;@KA23# !KAJAJA
z TATA

z &.

This matrix element is evaluated with the help of 6j and 9j
symbols, the hyperspherical CFPs and the spin-isospin C
@16#,
pherical
^@KA#u~@K3#;@KA23# !KAJAJA
z TATA

z &5A~2JA2311!~2J311!~2SA11!~2LA11!H S3 SA23 SA

L3 LA23 LA

J3 JA23 JA

J
3 (

GA21GA22G2

LGA ,GA21
LGA21 ,GA22

LGA22 ,GA23
LG3 ,G2

LG2 ,G1
A uGA23u

uGAuuG3u

3^KALAYAaAu~K3L3Y3a3;KA23LA23YA23aA23!KALA&

3^SATAỸAbAu~S3T3Ỹ3b3;SA23TA23ỸA23bA23!SATA&. ~A26!

The hyperspherical matrix elements are then written as

^KALAYAaAu~K3L3Y3a3;KA23LA23YA23aA23!KALA&5 (
aA21

(
KA22LA22aA22

(
,2,1

(
a3a2

PHSCFPA PHSCFP3^~~KA23LA23;,1!

3KA22LA22;,2!KALAu~KA23LA23;~,1;,2!K3L3!KALA&, ~A27!

where the CFPs products are given by Eq.~A17!, and

PHSCFPA5^KALAGA21aA21uKALAGAaA&^~KA22LA22GA22aA22 ;,2!KALAuKALAGA21aA21&

3^~KA23LA23GA23aA23 ;,1!KA22LA22uKA22LA22GA22aA22&. ~A28!

The spin-isospin term is evaluated in a similar way as follows:

^SATAỸAbAu~S3T3Ỹ3b3;SA23TA23ỸA23bA23!SATA& (
SA21TA21bA21

(
SA22TA22bA22

PTSCFPA

3 (
S28T28b2

PTSCFP3^SA23SA22SA21SAu~SA23 ;S28S3!SA&^TA23TA22TA21TAu~TA23 ;T28T3!TA& ~A29!

with CFPs products

PTSCFPA5^SASA21TATA21G̃A21bA21uSATAG̃AbA&^SA21SA22TA21TA22G̃A22bA22uSA21TA21G̃A21bA21&

3^SA22SA23TA22TA23G̃A23bA23uSA22TA22G̃A22bA22& ~A30!

and Eq.~A17!. The remaining HH and spin-isospin matrix elements can then be easily evaluated using standard hypers
and angular momentum techniques,

^@~KA23LA23 ;,1!KA22LA22 ;,2#KALAu@KA23LA23 ;~,1 ;,2!K3L3#KALA&

5A~2LA2211!~2L311!~2 !LA1LA231,11,2H ,2 ,1 L3

LA23 LA LA22
J TK3 ,KA22

KA ;,2,1KA23 ~A31!

and
3-10
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^TA23TA22TA21TAu~TA23 ;T28T3!TA&5(
T2

~2 !TA221TA231T21T312TA13~2T211!

3A~2TA2111!~2TA2211!~2T311!~2T2811!H TA22 t TA21

t TA T2
J

3H TA23 t TA22

T2 TA T3
J H t t T2

t T3 T28
J . ~A32!

Heret5 1
2 stands for the isospin of a single nucleon. The spin matrix element can be obtained by simply replacing in Eq~A32!

the isospin quantum numbers by corresponding spin quantum numbers.
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