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We propose a simple method to evaluate the lowest energy levels of a given angular momentum using exact
Monte Carlo methods. The method relies on an efficient evaluation of quantities such as
(yNZ|PS)He PHyNZ) where the wave functions are particle number projected Hartree-Fock-Bogoliubov
wave functions an(f’ﬁ? is the angular momentum projector wilh=J. The method has been applied to the
evaluation of 0, 2%, 4, 6" levels of 1%Er within the pairing- quadrupole model and we show that energy
eigenvalues can be obtained for smaialues.
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The exact evaluation of energy levels in nuclei so far hag-ock-Bogoliubov (HFB) wave function.N and Z are the
relied on the nuclear shell model, where few valence nuclenumber of valence neutrons and valence protons, respec-
ons are assumed to contribute to the low-energy part of thavely.
spectrum. The two-body shell model Hamiltonian as well as For B=0, E(B,N,Z,J) gives the Hartree-Fock-
the single-particle states are fixed by reproducing selecteBogoliubov approximation for the lowest energy level of an-
experimental informationRef. [1]). The shell model ap- gular momentund and it decreases gis increased leading
proach, which is based on the exact diagonalization of théo the exact lowest energy eigenstate having angular momen-
many-body Hamiltonian, has the fundamental limitation thattum J. This quantity is ideal to improve and to test the va-
the dimension of the Hamiltonian matrix grows extremelylidity of the projected HFB approximation, which is very
fast with the number of valence nucleons and with the size ofuccessful when applied to problems where the shell model
the single-particle basis. In particular, rare earth nuclei are@iagonalization method is applicablRef. [5]).
outside of the reach of the exact shell model approach. For If the HFB approximation is accurate, only small values
example, in the case of°®Er, if we consider the single- of 3 are necessary in order to converge to the yrast levels.
particle states between 8N<126 and 56<Z=82 neutron  However, using the functional integral expression of'8,
and proton major shells, the dimension of the Hamiltoniangq (1) becomes a formidable numerical problem with stan-
matrix is about 18 for the angular momentum and parity qarg angular momentum projectors.

J7=07, and it increases with the angular momentum. The purpose of this Rapid Communication is to point out
Clearly a description of these nuclei, even with simplifiedthat a reasonably simple and efficient Monte Carlo method
many-body Hamiltonians, has to rely on Monte Carlo meth-can pe devised which still gives the exact Monte Carlo esti-
ods, which are not based on the diagonalization of the manymnate for the yrast level and it converges at sngalalues. To
body Hamiltonian matrix and therefore are independent ofyyr knowledge, calculations of this type are presented for the
the dimension of the shell model space. So far, Monte Carlgirst time. Since all calculations discussed in this Rapid Com-
methods have been applied only to the determination Ofyynijcation have been performed with XR600 and XP
ground state properties and to thermal properties of nuclei 1800 personal computeteach level takes about a couple
but not to levels other than the ground state. The methodss \veeks of CPY we decided to evaluate only=0,2,4,6
which have been used are based on the evaluation in thgsitive parity levels. Instead of E(L) we consider the fol-

large B limit of quantities such as(y/He #|y) or  lowing quantity:
Tr{He #"], H being the many-body Hamiltonian, and on

the evaluation with Monte Carlo methods of the functional B[ a— BH—wl,— Ny N,

. " . NZ|PyjHe # # NZ
integrals of these quantiti¢Refs.[2,3]). In the past, in order  E(g,N,Zz,J)= (¥NZIP5 B ’ n " p P1yNZ) '
to remove this limitation, quantities likeyJ|He™ #H|4J), J (YNZ|Pye AH= @k = kool N Z)
being the angular momentum, have been considéRed. 2

[4]), but were applied only to the lowest Gstate or to over-
simplified schematic models. The application of the tech+hich contains the same physical information as @g. In
nique of Ref.[4] to J# 0 levels presents numerical accuracy Eq. (2) w is the cranking frequencys,, and u, are the neu-
problems and it seems reasonable only for low angular Mogqn and proton chemical potentials, aNg , are the neutron
mentum. Ideally we would like to evaluate quantities like . P
(proton particle number operators, is thez component of

(UNZIM|Fe PR yNZIM) the angular momentum operator aRf) is the angular mo-
E(B.N,Z,J)= y ; (1) mentum projector to angular momentuhand z component
(YNZIMe P [yNZIM) J,=J. In the above equation, we selégNZ) with the fol-
where the wave function is the neutron number, proton numlOWing prescription: it is a HFB particle number projected
ber, and angular momentum projected variational Hartreewave function and it is such that, if we cdl(J,=M) the
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projector operator to a definite value of theomponent of 0 = @ eHy— VRS 40anQa— (€BT2AdnP+ dnP 1] )
the angular momentum),=M, it minimizes the energy A '
functional and ¢, = (yntidyn). In Eq.(7), Hj=Ho—»,— u'N and
. . pn' = pu+G/2 and() is one-half of the number of single par-
(YNZ|P(I,=HH|yNZ) 3 ticle states\is the normalization constant
(yNZ|P(3,=3)[yN2Z) 1| 7N
N=

In the case of the ground state, the first we performed, in the 2m

energy functiﬁng(3)fwe did not a;lijyP(Jﬁ=0). hat mini. The operator€), are the Cartesian components of the quad-
A be:‘ter ¢ 0|cef of ‘/_’NZ>| would be the one that mini- ;5|6 tensor operataN, is the number of intervals in which
mizes the energy functiona the interval[0, 8] is divided, ande= B/N,. Schematically

we write the functional integral as
(szZ|P H|¢//NZ>

(yNZ|PG)|yNZ) e AR—ul=0) _ J 43G(x)0, @®

which is theg=0 limit of Eq.. (2). Since the determination of \yith the obvious meaning of the symbols. Using the expres-
these last wave functions is computationally expensive, wgjgn

preferred to minimize the energy functior@).

We shall give the formulas for one type of particles for 503 2J+1
brevity of the equations and since the generalization to two Py = dQeDY* (Qe)R(Qp), €)
types of particles is straightforward. The Hamiltonian is
pairing+ quadrupole Hamiltonian, for the angular momentum projection operator, whéxg

=(6,6,03) is the collection of the three Euler angleX) ¢

2 =d6, sin6,dd,de,, DY) is the Wigner function, and

H=Ho—ki2 X, (-1)*Q?Q2-GP'P, (4 R
a2 R(Qp) = &g 02Iyg 013 (10)
whereQ® is the quadrupole operatd?, is the pair destruc-

tion operatork andG are the coupling constants, ahi is
the independent particle Hamiltonian. The functional integral fd)zG()z)fdQEDgJ;*wMQ(QE)HU|,/,N>

is the rotation operator, we have

expression for @f(H~#N=eJJ) s given by(Ref. [4 E(BN,J)=—" - - :
P given by(Ref.[4) JAXG(X) [dQeDH* (YN|R(Qe) O] yN)
e BH—uN=03) _ o= BGOI2\ (11
N, Rather than evaluating(8,N,J) by sampling the distribu-
H (d¢xnd¢yn H doan tion
e VIO, 609 [ d0D@* (uNIRO0IN)

using the Metropolis methotRef. [6]), we first rewrite Eq.

0=0y0p-1...01, ©®  (11) as

R JdQeDPY* (uN|R(Qg)HU| N
FAZG(R)|(¥N|T| )| WNIR(OROJYN)
[{yN|O|yN)|

E(B,N,J)= (12

. DY* (yN|R(Qg)U| N
A5G0 (o] 0] gy 22D NIR Gl
[(¥N|T[yN))|

and then we evaluate both functional integrals with the Metropolis method by sampling the unprojected distribution
G(R(yNIT[yN)]. (13

The energie€(B,N,J) are then evaluated and we assign a statistical error to the ratio of1Bq.which we write
schematically ag=a/b, with the formula
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1 (@) \2 Although less interesting, we could substitute the angular

E=—— < (a— Tb) > , (14 momentum projector with thé&, projector in Eq(2) and then

(b) \/N_s (b) check whether the expectation valuesJéfhave the desid-

, ered value. Since the evaluation of thg projected matrix
whereN; is the number of decorrelated samples. elements is inexpensive, we have also performed calcula-

The reason why we select the distributid®) which does  jons of J, projected energies.

not contain the angular momentum projectout does con- Having discussed the essential elements of the method we

tain the particle number projecfois because it is prohibi- 4\ discuss the actual calculation fSET.
tively expensive to sgmple the angular momentum.projected The single-particle space consists of the9®, 1f7/2,
matrix elements. Incidentally an appropriate selection of the ¢5/» 203/2, 2p1/2, 0113/2 neutron levels and of they@/2

cranking frequencyy, does precisely this, although approxi- 1 45/> 143/2, 251/2, 1h11/2 proton levels. The matrix ele-
mately. In prlr.10|p'le there are several thmgs which could presents of the quadrupole operator are the same as[REf.
vent the application (_)f this _scheme. First of all both the NU-yithout renormalizing the quadrupole matrix elements of
merator and denominator in E@12) could become Very 5 13/2 and the b11/2 statesas well as the strengths of
small because of strong sign oscillations in both functionale jnteractions and the single-particle levels. The calcula-
integrals, that is tions have been performed wi=1 andB8=2. The results

| ) R are summarized in the table, where we also repalf pro-

5 JAQeD* (YNIR(Qg) U] yN) 15 jected calculation foM =12 at 8=2. In the table we also
- - show the overlaps
[{yN[U[yN)|

could strongly oscillate in sign as the sampling proceeds. Or

(yNZ|PSe PHyNZ)

each value of the above ratio could be very small, and there- ’ (yNZ|e PR yNZ) ’ (18
fore it would be very sensitive to the numerical accuracy

achievable in the computation of the matrix elements. More- - _ B

over for some angular momenta, the cranking recipe might 0, = (YNZ|P(J,=M)e ""[yNZ|) (17)

not work. In fact, selectings so thatJ,=J is lowest in
energy might give predominance to other valuesJothis
could be, for example, the case of thé 8tate(no calcula-  depending on the type of projection. The above quantities
tion has actually been performed for this lgysince the first give an indication of the depletion of excited states caused
4% state could dominate the unprojected distributih8). by projecting the wave vector*€;'|¢NZ>. That is, the
In practiqe we found for th_e angular momenta we considymaier the overlap the larger the depletion.

ered, thaP increases as we increageand that the smallest v performed the integration over the Euler angles using
values ofP are obtained for small values @gffor which the a mesh of 25 10x 25, with a ten-point Gauss-Legendre in-
evaluation of the various matrix elements is ”umerica”ytegration formula ovér the angke, and with 25 equidistant

rather stable. As shown below, for the cases considered i oints for thed, and 65 integrals. Only in the case d¥l
=12 we used a mesh of 35 points. In the calculation we took

’ (NZle PHyNZ)

this paper, the angular momentum projection gives an ave
age value ofP of about 0.1. The reason for this behavior atNt=16 andN,=32 time intervals for3=1 and 8=2, re-

nonzero angular momentum is the presence of the Crankmg:ectively. The values of the cranking frequemcgind of the

emical potentials were adjusted only by considering the
mean field of the functional integral associated with the
bropagator of Eq(8) (as done in Ref[4]). The value ofw

term that moves at higher energies the components havin
the value ofJ, different from the desired one.

We found that the terms inside the square root of the erro
formula in Eq.(14) are not small, bu.t gancel out each Ot.herwas determined by fixing the desired value of the mean-field
almost completely, giving small statistical errors. To achieve

. o expectation value ofl,. The statistical errors are rather
good separation of the energy levels above the statistical grg—ma”, especially fo= 1. Parity was fixed by selecting par-

certainty we need statistical errors at the most of 100 KeV, in conserving HFB wave functions of the tydes,N,Z)
the applications discussed below we achieve errors smallei|y| yN)|Z), each term being the parity conservin,g r'1eutron
or of about this amount with only about 100 samples. and proton part. The particular form of the functional integral

If good wave functions are used, we need to evaluate E _ :
(12) at smallB values and therefore we expect sign oscillaf]?ljni(t]iz'n@ (7) does not change the parity of the HFB wave

tions, if there are any, to be caused only by the angular mo- In Table I, we also show the residual autocorrelation of

mentum projection. However, sindé is not very large, We the decorrelated energy samplése energy sample is the
do not expect a large effect in the statistical error. In fact the,5)ye of the fraction in the numerator of E(.2)] and the
statistical error becomes 0 #—0. Up to now, in order to  nymperN, of the decorrelated samples. The Monte Carlo
obtain the ground-state energy, large valuegdfad to be  cgjculation was performed by discarding the first few thou-
used. With this method instead, we rely more on the angulagang samples to ensure independence from the initial start
momentum projection and on the optimal character of thgthe “thermalization” step and then collecting the data once
HFB wave function since both aspects deplete excited statqSery 120250 samples to have statistically independent val-

from the wave functiorP{)e #"|yNZ). ues (the “decorrelation” step. Only in the case of the &
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TABLE |. Monte Carlo results for selected yrast states'@Er. The column labele® identifies the type of projection. If only the
component of the angular momentum is projected, the expectation valuésua given with the statistical error. J¢, J, are projectedJ?)
is the nominal valueNs is the number of samples, and “ac” is the autocorrelation of the energy samples, which gives an indication of the
statistical independence of the sampl®sis given by Eq.(16) or Eq. (17).

B state (3% P N ac o E(MeV)

1 o* 0 3, 97 0.02 0.088:0.009 —112.860-0.052
2 0" 0 3, 108 -0.028 0.270.1 —112.876-0.119
1 2" 6 %, 93 0.12 0.1180.009 —112.532-0.033
2 2" 6 %, 93 —0.05 0.16-0.02 —112.643-0.061
1 2" 10.4+1.3 3z 83 0.07 0.1%0.02 —112.399-0.064
2 2" 6.7+2.4 J; 102 —0.009 0.22-0.03 —112.602+0.140
1 4* 20 RERNE 104 0.14 0.1320.009 —112.165-0.052
2 4* 20 NEENE 98 0.0008 0.12.0.02 —112.146-0.121
1 4* 25+ 1 J; 120 0.03 0.16:0.01 —112.014-0.059
2 4* 22+4 J; 91 -0.03 0.18-0.02 —112.132-0.086
1 6" 42 3, 89 0.25 0.114:0.007 —111.626-0.041
2 6" 42 3, 97 -0.07 0.14-0.01 —111.656-0.040
1 6" 44+1 J; 89 —0.02 0.1110.006 —111.655-0.057
2 6" 40.1+2.4 J; 102 0.03 0.130.01 —111.701-0.076
2 12" 157+ 4 J; 107 0.06 0.0970.010 —110.283-0.097

state, forB=2, we had to take one sample every 300. In thewith the ones evaluated aB=0. For the states con-
case of the 6 evaluated a3=1 there seems to be a strong sidered in this work, the angular momentum projected
residual correlation; in this case we took one sample evergnergies areE(8=0,0")=-112.309 Mev, E(8=0,2")
180. The size of the decorrelation steps were estimated frons —112.133, E(8=0,4")=—111.726 Mev, E(8=0,6")
the J,-projected samples and then verified in the case of the= —111.264 Mev, andE(8=0,12")=—109.832 Mev. To
fully projected calculations. some extent, the discrepancy between the Monte Carlo re-
The determination of the energies was done using Egsults and the angular momentum projected energies is
(12) rather than the method used in Rgf], which consists roughly the same for different states. The size of the discrep-
of taking the derivative with respect t6 of the effective ancy could be due to the fact that the HFB wave functions
action, since statistical errors are much smaller especially fowere not determined by varying the angular momentum pro-
small values of3. As can be seen from the table, the energiegected energy functional.
at B=1 andB=2 are consistent with each other within the  Although for a comparison with the experimental level
statistical error implying that these values @fare suffi- spacings it would be more appropriate to increase the num-
ciently large to give the yrast energies. Also theprojected  ber of time intervals, the indication that emerges from these
energies and the corresponding values of the expectation vatalculations is that the model, with the parameters and the
ues ofJ? imply that convergency has been reached. A reli-single-particle space employed in these calculations, overes-
able criterion for convergency to the yrast level is that thetimates the experimental level spacings. The experimental
energy does not change Ass increased. From the table we value for the excitation energy of the first Xtate is 0.081
see that convergency is reached already8atl, and it is  MeV, for the first 4™ state is 0.265 MeV, for the first'6state
conceivable that smaller values gfare sufficient for con- is 0.545 MeV, and for the first 12state is 1.847 Me\(Ref.
vergency, if better HFB wave functiorithat is angular mo- [8]). The corresponding Monte Carlo values, evaluateg at
mentum projected before variatipare used. This could po- =2, are insteadE*(2")=(0.233+0.134) MeV, E*(4™")
tentially mitigate the sign problem in the evaluation of =(0.730+0.170) MeV, E*(6%)=(1.220-0.126) MeV,
functional integrals with the Monte Carlo methods, in theandE* (12")=(2.593+0.154) MeV. The theoretical excita-
case of more complicated Hamiltonians. tion energies are too large compared to the experimental
In the table, we omitted the calculation 8§ projected ones.
energy for the ground state, because of the contamination of It should be mentioned that in the past few years other
the nearby 2 state. methods have been developed to evaluate low-lying energy
The calculation forJ,=12 was carried out for the pur- levels of fermionic systems. Most notably the methods of
poses of testing the statistical error at large angular momerRef. [9]. The major differences between the method of Ref.
tum. Although only thez component of the angular momen- [9] and the method proposed in this paper, can be summa-
tum has been projected, the expectation valu#¥avaluated rized as follows. In Ref[9], a many-body basis is con-
at B=2 indicates convergency td=12 levels within the structed stochastically with the requirement that the energies
statistical error. obtained by diagonalizing the Hamiltonian matrix are the
It is instructive to compare the energies shown in the tablédowest. Hence this method lacks a central limit theorem
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which gives the statistical uncertainty of the energy levels. In conclusion, we have evaluated for the first time the

Moreover it considers a limited, although optimized, many-energies of excited states entirely with Monte Carlo methods
body basis, while the approach proposed in this paper iwith very reasonable statistical uncertainties, that allow us to
entirely independent on the many-body basis necessary feerform spectroscopic studies on many-body Hamiltonians
reach reasonable convergency and its uncertainty is soleip mass regions unaccessible with standard shell model tech-

given by the statistical error. nigues.
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