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Monte Carlo spectroscopy with Hartree-Fock-Bogoliubov wave functions
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We propose a simple method to evaluate the lowest energy levels of a given angular momentum using exact
Monte Carlo methods. The method relies on an efficient evaluation of quantities such as

^cNZuP̂JJ
(J)Ĥe2bĤucNZ& where the wave functions are particle number projected Hartree-Fock-Bogoliubov

wave functions andP̂JJ
(J) is the angular momentum projector withJz5J. The method has been applied to the

evaluation of 01, 21, 41, 61 levels of166Er within the pairing1quadrupole model and we show that energy
eigenvalues can be obtained for smallb values.

DOI: 10.1103/PhysRevC.67.051304 PACS number~s!: 02.70.Ss, 21.60.Ka, 21.10.Re
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The exact evaluation of energy levels in nuclei so far h
relied on the nuclear shell model, where few valence nu
ons are assumed to contribute to the low-energy part of
spectrum. The two-body shell model Hamiltonian as well
the single-particle states are fixed by reproducing sele
experimental information~Ref. @1#!. The shell model ap-
proach, which is based on the exact diagonalization of
many-body Hamiltonian, has the fundamental limitation th
the dimension of the Hamiltonian matrix grows extreme
fast with the number of valence nucleons and with the size
the single-particle basis. In particular, rare earth nuclei
outside of the reach of the exact shell model approach.
example, in the case of166Er, if we consider the single
particle states between 82<N<126 and 50<Z<82 neutron
and proton major shells, the dimension of the Hamilton
matrix is about 1016 for the angular momentum and pari
Jp501, and it increases with the angular momentu
Clearly a description of these nuclei, even with simplifi
many-body Hamiltonians, has to rely on Monte Carlo me
ods, which are not based on the diagonalization of the ma
body Hamiltonian matrix and therefore are independent
the dimension of the shell model space. So far, Monte C
methods have been applied only to the determination
ground state properties and to thermal properties of nu
but not to levels other than the ground state. The meth
which have been used are based on the evaluation in

large b limit of quantities such as^cuĤe2bĤuc& or

Tr@Ĥe2bĤ#, Ĥ being the many-body Hamiltonian, and o
the evaluation with Monte Carlo methods of the function
integrals of these quantities~Refs.@2,3#!. In the past, in order

to remove this limitation, quantities likêcJuĤe2bĤucJ&, J
being the angular momentum, have been considered~Ref.
@4#!, but were applied only to the lowest 01 state or to over-
simplified schematic models. The application of the te
nique of Ref.@4# to JÞ0 levels presents numerical accura
problems and it seems reasonable only for low angular
mentum. Ideally we would like to evaluate quantities like

E~b,N,Z,J!5
^cNZJMuĤe2bĤucNZJM&

^cNZJMue2bĤucNZJM&
, ~1!

where the wave function is the neutron number, proton nu
ber, and angular momentum projected variational Hartr
0556-2813/2003/67~5!/051304~5!/$20.00 67 0513
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Fock-Bogoliubov ~HFB! wave function.N and Z are the
number of valence neutrons and valence protons, res
tively.

For b50, E(b,N,Z,J) gives the Hartree-Fock
Bogoliubov approximation for the lowest energy level of a
gular momentumJ and it decreases asb is increased leading
to the exact lowest energy eigenstate having angular mom
tum J. This quantity is ideal to improve and to test the v
lidity of the projected HFB approximation, which is ver
successful when applied to problems where the shell mo
diagonalization method is applicable~Ref. @5#!.

If the HFB approximation is accurate, only small valu
of b are necessary in order to converge to the yrast lev

However, using the functional integral expression of e2bĤ,
Eq. ~1! becomes a formidable numerical problem with sta
dard angular momentum projectors.

The purpose of this Rapid Communication is to point o
that a reasonably simple and efficient Monte Carlo meth
can be devised which still gives the exact Monte Carlo e
mate for the yrast level and it converges at smallb values. To
our knowledge, calculations of this type are presented for
first time. Since all calculations discussed in this Rapid Co
munication have been performed with XP11600 and XP
11800 personal computers~each level takes about a coup
of weeks of CPU! we decided to evaluate onlyJ50,2,4,6
positive parity levels. Instead of Eq.~1! we consider the fol-
lowing quantity:

E~b,N,Z,J!5
^cNZuP̂JJ

~J!Ĥe2b~Ĥ2v Ĵz2mnN̂n2mpN̂p!ucNZ&

^cNZuP̂JJ
~J!e2b~Ĥ2v Ĵz2mnN̂n2mpN̂p!ucNZ&

,

~2!

which contains the same physical information as Eq.~1!. In
Eq. ~2! v is the cranking frequency,mn andmp are the neu-
tron and proton chemical potentials, andN̂n,p are the neutron
~proton! particle number operators,Ĵz is thez component of
the angular momentum operator andP̂JJ

(J) is the angular mo-
mentum projector to angular momentumJ andz component
Jz5J. In the above equation, we selectucNZ& with the fol-
lowing prescription: it is a HFB particle number projecte
wave function and it is such that, if we callP̂(Jz5M ) the
©2003 The American Physical Society04-1
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projector operator to a definite value of thez component of
the angular momentum,Jz5M , it minimizes the energy
functional

^cNZuP̂~Jz5J!ĤucNZ&

^cNZuP̂~Jz5J!ucNZ&
. ~3!

In the case of the ground state, the first we performed, in
energy functional~3! we did not applyP̂(Jz50).

A better choice forucNZ& would be the one that mini
mizes the energy functional

^cNZuP̂JJ
~J!ĤucNZ&

^cNZuP̂JJ
~J!ucNZ&

,

which is theb50 limit of Eq. ~2!. Since the determination o
these last wave functions is computationally expensive,
preferred to minimize the energy functional~3!.

We shall give the formulas for one type of particles f
brevity of the equations and since the generalization to
types of particles is straightforward. The Hamiltonian
pairing1quadrupole Hamiltonian,

Ĥ5Ĥ02k/2 (
a522

2

~21!aQ̂2a
~2!Q̂a

~2!2GP̂†P̂, ~4!

whereQ̂a
(2) is the quadrupole operator,P̂ is the pair destruc-

tion operator,k andG are the coupling constants, andĤ0 is
the independent particle Hamiltonian. The functional integ

expression for e2b(Ĥ2mN̂2v Ĵz) is given by~Ref. @4#!

e2b~Ĥ2mN̂2v Ĵz!5e2bGV/2N

3E )
n51

Nt S dfxndfyn )
a522

2

dsanD
3e21/2(ansan

2
21/2(n~fxn

2
1fyn

2
!Û, ~5!

Û5ÛNt
ÛNt21 ...Û1 , ~6!
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Ûn5e2eĤ082Aek(asanQ̂a2AeG/2~fnP̂1fn
!P̂†!] , ~7!

andfn5(fxn1 ifyn). In Eq. ~7!, Ĥ085Ĥ02v Ĵz2m8N̂ and
m85m1G/2 andV is one-half of the number of single pa
ticle states.N is the normalization constant

N5S 1

2p D 7Nt/2

.

The operatorsQ̂a are the Cartesian components of the qua
rupole tensor operator,Nt is the number of intervals in which
the interval@0, b# is divided, ande5b/Nt . Schematically
we write the functional integral as

e2b~Ĥ2mN̂2v Ĵz!5E dxWG~xW !Û, ~8!

with the obvious meaning of the symbols. Using the expr
sion

P̂JJ
~J!5

2J11

8p2 E dVEDJJ
~J!* ~VE!R̂~VE!, ~9!

for the angular momentum projection operator, whereVE
5(u1u2u3) is the collection of the three Euler angles,dVE

5du1 sinu2 du2du3, DJJ
(J) is the Wigner function, and

R̂~VE!5eiu3Ĵzeiu2Ĵyeiu1Ĵz ~10!

is the rotation operator, we have

E~b,N,J!5
*dxWG~xW !*dVEDJJ

~J!* ^cNuR̂~VE!ĤÛucN&

*dxWG~xW !*dVEDJJ
~J!* ^cNuR̂~VE!ÛucN&

.

~11!

Rather than evaluatingE(b,N,J) by sampling the distribu-
tion

G~xW !U E dVEDJJ
~J!* ^cNuR̂~VE!ÛucN&U,

using the Metropolis method~Ref. @6#!, we first rewrite Eq.
~11! as
E~b,N,J!5

*dxWG~xW !u^cNuÛucN&u
*dVEDJJ

~J!* ^cNuR̂~VE!ĤÛucN&

u^cNuÛucN&u

*dxWG~xW !u^cNuÛucN&u
*dVEDJJ

~J!* ^cNuR̂~VE!ÛucN&

u^cNuÛucN&u

, ~12!

and then we evaluate both functional integrals with the Metropolis method by sampling the unprojected distribution

G~xW !u^cNuÛucN&u. ~13!

The energiesE(b,N,J) are then evaluated and we assign a statistical error to the ratio of Eq.~12!, which we write
schematically asE5a/b, with the formula
4-2
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DE5
1

^b&ANs

AK S a2
^a&

^b&
bD 2L , ~14!

whereNs is the number of decorrelated samples.
The reason why we select the distribution~13! which does

not contain the angular momentum projector~but does con-
tain the particle number projector! is because it is prohibi-
tively expensive to sample the angular momentum projec
matrix elements. Incidentally an appropriate selection of
cranking frequencyv, does precisely this, although approx
mately. In principle there are several things which could p
vent the application of this scheme. First of all both the n
merator and denominator in Eq.~12! could become very
small because of strong sign oscillations in both functio
integrals, that is

P5
*dVEDJJ

~J!* ^cNuR̂~VE!ÛucN&

u^cNuÛucN&u
~15!

could strongly oscillate in sign as the sampling proceeds
each value of the above ratio could be very small, and th
fore it would be very sensitive to the numerical accura
achievable in the computation of the matrix elements. Mo
over for some angular momenta, the cranking recipe m
not work. In fact, selectingv so that Jz5J is lowest in
energy might give predominance to other values ofJ; this
could be, for example, the case of the 31 state~no calcula-
tion has actually been performed for this level!, since the first
41 state could dominate the unprojected distribution~13!.

In practice we found for the angular momenta we cons
ered, thatP increases as we increaseb and that the smalles
values ofP are obtained for small values ofb for which the
evaluation of the various matrix elements is numerica
rather stable. As shown below, for the cases considere
this paper, the angular momentum projection gives an a
age value ofP of about 0.1. The reason for this behavior
nonzero angular momentum is the presence of the cran
term that moves at higher energies the components ha
the value ofJz different from the desired one.

We found that the terms inside the square root of the e
formula in Eq.~14! are not small, but cancel out each oth
almost completely, giving small statistical errors. To achie
good separation of the energy levels above the statistica
certainty we need statistical errors at the most of 100 KeV
the applications discussed below we achieve errors sm
or of about this amount with only about 100 samples.

If good wave functions are used, we need to evaluate
~12! at smallb values and therefore we expect sign oscil
tions, if there are any, to be caused only by the angular
mentum projection. However, sinceÛ is not very large, we
do not expect a large effect in the statistical error. In fact
statistical error becomes 0 asb→0. Up to now, in order to
obtain the ground-state energy, large values ofb had to be
used. With this method instead, we rely more on the ang
momentum projection and on the optimal character of
HFB wave function since both aspects deplete excited st

from the wave functionP̂JJ
(J)e2bĤucNZ&.
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Although less interesting, we could substitute the angu
momentum projector with theJz projector in Eq.~2! and then
check whether the expectation values ofJ2 have the desid-
ered value. Since the evaluation of theJz projected matrix
elements is inexpensive, we have also performed calc
tions of Jz projected energies.

Having discussed the essential elements of the method
now discuss the actual calculation for166Er.

The single-particle space consists of the 0h9/2, 1f 7/2,
1 f 5/2, 2p3/2, 2p1/2, 0i13/2 neutron levels and of the 0g7/2,
1d5/2, 1d3/2, 2s1/2, 1h11/2 proton levels. The matrix ele
ments of the quadrupole operator are the same as Ref@7#
~without renormalizing the quadrupole matrix elements
the 0i13/2 and the 1h11/2 states! as well as the strengths o
the interactions and the single-particle levels. The calcu
tions have been performed withb51 andb52. The results
are summarized in the table, where we also report aJz pro-
jected calculation forM512 at b52. In the table we also
show the overlaps

OJ5
^cNZuP̂JJ

~J!e2bĤucNZ&

^cNZue2bĤucNZ&
, ~16!

OJz
5

^cNZuP̂~Jz5M !e2bĤucNZu&

^cNZue2bĤucNZ&
, ~17!

depending on the type of projection. The above quanti
give an indication of the depletion of excited states cau

by projecting the wave vector e2bĤucNZ&. That is, the
smaller the overlap the larger the depletion.

We performed the integration over the Euler angles us
a mesh of 25310325, with a ten-point Gauss-Legendre in
tegration formula over the angleu2 and with 25 equidistant
points for theu1 and u3 integrals. Only in the case ofM
512 we used a mesh of 35 points. In the calculation we to
Nt516 andNt532 time intervals forb51 and b52, re-
spectively. The values of the cranking frequencyv and of the
chemical potentials were adjusted only by considering
mean field of the functional integral associated with t
propagator of Eq.~8! ~as done in Ref.@4#!. The value ofv
was determined by fixing the desired value of the mean-fi
expectation value ofJz . The statistical errors are rathe
small, especially forb51. Parity was fixed by selecting pa
ity conserving HFB wave functions of the typeuc,N,Z&
5ucN&ucZ&, each term being the parity conserving neutr
and proton part. The particular form of the functional integ
of Eqs.~5!–~7! does not change the parity of the HFB wa
function.

In Table I, we also show the residual autocorrelation
the decorrelated energy samples@the energy sample is th
value of the fraction in the numerator of Eq.~12!# and the
numberNs of the decorrelated samples. The Monte Ca
calculation was performed by discarding the first few tho
sand samples to ensure independence from the initial
~the ‘‘thermalization’’ step! and then collecting the data onc
every 120–250 samples to have statistically independent
ues ~the ‘‘decorrelation’’ step!. Only in the case of the 61
4-3
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TABLE I. Monte Carlo results for selected yrast states of166Er. The column labeledP̂ identifies the type of projection. If only thez
component of the angular momentum is projected, the expectation values ofJ2 are given with the statistical error. IfJ2, Jz are projected̂J2&
is the nominal value.Ns is the number of samples, and ‘‘ac’’ is the autocorrelation of the energy samples, which gives an indication
statistical independence of the samples.O is given by Eq.~16! or Eq. ~17!.

b state ^J2& P̂ Ns ac O E~MeV!

1 01 0 J2, Jz 97 0.02 0.08060.009 2112.86060.052
2 01 0 J2, Jz 108 20.028 0.2760.1 2112.87660.119
1 21 6 J2, Jz 93 0.12 0.11960.009 2112.53260.033
2 21 6 J2, Jz 93 20.05 0.1660.02 2112.64360.061
1 21 10.461.3 Jz 83 0.07 0.1760.02 2112.39960.064
2 21 6.762.4 Jz 102 20.009 0.2260.03 2112.60260.140
1 41 20 J2, Jz 104 0.14 0.13360.009 2112.16560.052
2 41 20 J2, Jz 98 0.0008 0.1260.02 2112.14660.121
1 41 2561 Jz 120 0.03 0.1660.01 2112.01460.059
2 41 2264 Jz 91 20.03 0.1860.02 2112.13260.086
1 61 42 J2, Jz 89 0.25 0.11460.007 2111.62660.041
2 61 42 J2, Jz 97 20.07 0.1460.01 2111.65660.040
1 61 4461 Jz 89 20.02 0.11160.006 2111.65560.057
2 61 40.162.4 Jz 102 0.03 0.1360.01 2111.70160.076
2 121 15764 Jz 107 0.06 0.09760.010 2110.28360.097
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state, forb52, we had to take one sample every 300. In
case of the 61 evaluated atb51 there seems to be a stron
residual correlation; in this case we took one sample ev
180. The size of the decorrelation steps were estimated f
the Jz-projected samples and then verified in the case of
fully projected calculations.

The determination of the energies was done using
~12! rather than the method used in Ref.@4#, which consists
of taking the derivative with respect tob of the effective
action, since statistical errors are much smaller especially
small values ofb. As can be seen from the table, the energ
at b51 andb52 are consistent with each other within th
statistical error implying that these values ofb are suffi-
ciently large to give the yrast energies. Also theJz projected
energies and the corresponding values of the expectation
ues ofJ2 imply that convergency has been reached. A re
able criterion for convergency to the yrast level is that
energy does not change asb is increased. From the table w
see that convergency is reached already atb51, and it is
conceivable that smaller values ofb are sufficient for con-
vergency, if better HFB wave functions~that is angular mo-
mentum projected before variation! are used. This could po
tentially mitigate the sign problem in the evaluation
functional integrals with the Monte Carlo methods, in t
case of more complicated Hamiltonians.

In the table, we omitted the calculation ofJz projected
energy for the ground state, because of the contaminatio
the nearby 21 state.

The calculation forJz512 was carried out for the pur
poses of testing the statistical error at large angular mom
tum. Although only thez component of the angular momen
tum has been projected, the expectation value ofJ2 evaluated
at b52 indicates convergency toJ512 levels within the
statistical error.

It is instructive to compare the energies shown in the ta
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with the ones evaluated atb50. For the states con
sidered in this work, the angular momentum project
energies areE(b50,01)52112.309 Mev, E(b50,21)
52112.133, E(b50,41)52111.726 Mev, E(b50,61)
52111.264 Mev, andE(b50,121)52109.832 Mev. To
some extent, the discrepancy between the Monte Carlo
sults and the angular momentum projected energies
roughly the same for different states. The size of the discr
ancy could be due to the fact that the HFB wave functio
were not determined by varying the angular momentum p
jected energy functional.

Although for a comparison with the experimental lev
spacings it would be more appropriate to increase the n
ber of time intervals, the indication that emerges from the
calculations is that the model, with the parameters and
single-particle space employed in these calculations, ove
timates the experimental level spacings. The experime
value for the excitation energy of the first 21 state is 0.081
MeV, for the first 41 state is 0.265 MeV, for the first 61 state
is 0.545 MeV, and for the first 121 state is 1.847 MeV~Ref.
@8#!. The corresponding Monte Carlo values, evaluated ab
52, are instead,E* (21)5(0.23360.134) MeV, E* (41)
5(0.73060.170) MeV, E* (61)5(1.22060.126) MeV,
andE* (121)5(2.59360.154) MeV. The theoretical excita
tion energies are too large compared to the experime
ones.

It should be mentioned that in the past few years ot
methods have been developed to evaluate low-lying ene
levels of fermionic systems. Most notably the methods
Ref. @9#. The major differences between the method of R
@9# and the method proposed in this paper, can be sum
rized as follows. In Ref.@9#, a many-body basis is con
structed stochastically with the requirement that the ener
obtained by diagonalizing the Hamiltonian matrix are t
lowest. Hence this method lacks a central limit theore
4-4
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which gives the statistical uncertainty of the energy leve
Moreover it considers a limited, although optimized, man
body basis, while the approach proposed in this pape
entirely independent on the many-body basis necessar
reach reasonable convergency and its uncertainty is so
given by the statistical error.
ys
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In conclusion, we have evaluated for the first time t
energies of excited states entirely with Monte Carlo meth
with very reasonable statistical uncertainties, that allow us
perform spectroscopic studies on many-body Hamiltoni
in mass regions unaccessible with standard shell model t
niques.
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