Erratum: ⁶Be and ⁸C level widths [Phys. Rev. C 66, 047603 (2002)]

F. C. Barker

(Received 26 November 2002; published 25 April 2003)

DOI: 10.1103/PhysRevC.67.049902

PACS number(s): 23.50.+z, 27.20.+n, 99.10.Cd

It has been found that the computer program used in Ref. [1] to calculate the sequential-decay contributions to the widths of the ⁶Be and ⁸C levels was in error, leading to values of \overline{P}_s that were much too large and of \overline{S}'_s that were somewhat wrong. For example, for the case leading to Eq. (11) of Ref. [1], the corrected values are $\overline{P}_s = 0.000666$ and $\overline{S}'_s = 0.193$ MeV⁻¹. These lead to $\Gamma_{tot}^0 = 64$ keV for the ground state of ⁶Be, considerably less than the experimental value of 92±6 keV. Inclusion of the contributions from sequential decay of ⁶Be(0⁺) is now causing a reduction in the calculated value of Γ_{tot}^0 —if the sequential decay is neglected altogether, one has $\Gamma_{tot}^0 = 85$ keV.

The calculated value is insensitive to changed values of many parameters. One change leading to slightly larger values of Γ_{tot}^0 comes from the diproton contribution. In Ref. [1], the upper limit of the integrals involving $\rho(U)$ for diproton decay was taken as 50 MeV; however, $\rho(U)$ vanishes at $U \approx 35$ MeV and increases above this energy, so that we now cut off the integrals at 35 MeV. For ⁶Be(0⁺) decay, this gives $\bar{P}_d = 0.0372$ and $\bar{S}'_d = 0.324$ MeV⁻¹.

It seems reasonable to assume $S_{41}=1.25$, even though smaller values lead to larger values of Γ_{tot}^0 for ${}^6\text{Be}(0^+)$. Then, for conventional values of the channel radii ($a_1=3.93$ fm, $a_2=3.75$ fm), one finds $\Gamma_{tot}^0 \approx 66$ keV, more or less independent of the assumed energy of the ${}^5\text{Li}$ ground state.

It has been found that data involving the ground states of ⁵Li and ⁵He are best fitted with *R*-matrix formulas for a channel radius $a_2 = 5.5 \pm 1.0$ fm [2]. Because of the extended nature of ⁵Li(g.s.), one might expect $a_1 \ge a_2$. If we take $a_1 = a_2 = 5.5$ fm, we find $\Gamma_{\text{tot}}^0 = 80$ keV, again insensitive to the value of Q_{1ps} . The increased value of Γ_{tot}^0 is due mainly to the increased value of a_1 .

For the 2⁺ excited state of ⁶Be, we now get $\overline{P}_d = 0.280$ and $\overline{S}'_d = 0.263 \text{ MeV}^{-1}$. For $S_{41} = 1.25$ and conventional values of a_1 and a_2 , with $Q_{1ps} = 1.86$ MeV as in Eq. (12) of Ref. [1], we find $\overline{P}_s = 0.098$ and $\overline{S}'_s = 0.243 \text{ MeV}^{-1}$, giving $\Gamma_{\text{tot}}^0 = 0.56$ MeV. The value of Γ_{0t}^0 now depends on the assumed value of Q_{1ps} , increasing from about 0.48 MeV for $Q_{1ps} = 2.08$ MeV to 0.84 MeV for $Q_{1ps} = 1.40$ MeV. At the same time, the branching ratio for ²He emission decreases from 38% to 22%. From experiment, $\Gamma_{0t}^0 = 1.16 \pm 0.06$ MeV and the branching ratio is about 20%. For $a_1 = a_2 = 5.5$ fm, for the same range of Q_{1ps} values, one finds Γ_{tot}^0 increasing from 0.53 MeV to 1.03 MeV and the branching ratio decreasing from 42% to 23%.

For the ground state of ⁸C, the corrected values are $\overline{P}_s = 0.00370$ and $\overline{S}'_s = 0.255$ MeV⁻¹. The contribution to Γ_{tot}^0 from the two channels considered is now about 26 keV, much less than the experimental FWHM values of order 200 keV. Changes in the assumed energy and width of ⁷B ground state within the experimental uncertainties do not change the calculated contribution appreciably, nor do reasonable changes in the channel radii.

In summary, the *R*-matrix formulas used in Ref. [1] have difficulty in getting calculated widths for the ground state and first-excited state of ⁶Be as large as the experimental values, and the calculated ²He branching ratio as low as the experimental value, the best agreement being obtained with large values of the channel radii and a low energy for the ⁵Li ground state. For the ground state of ⁸C, the calculated contribution to the width from two decay channels is small compared with the experimental value.

I am grateful to D. J. Millener for pointing out my error.

^[1] F. C. Barker, Phys. Rev. C 66, 047603 (2002).

^[2] C. L. Woods, F. C. Barker, W. N. Catford, L. K. Fifield, and N. A. Orr, Aust. J. Phys. 41, 525 (1988).