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Importance of isovector effects in reproducing neutron total cross section differences
in the W isotopes
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Cross section differences among the isotoff#s®+18\ have been measured as a part of a study of total
cross sections in the 5-560 MeV energy range. These difference measurements show oscillations up to 150 mb
between 5 and 100 MeV. Calculations with spherical and deformed phenomenological optical potentials em-
ploying standard radial and isospin dependences show much smaller oscillations than the experimental data. In
a simple Ramsauer model, this discrepancy can be traced to a cancellation between radial and isospin effects.
Understanding this problem requires a more detailed model that incorporates a realistic description of the
neutron and proton density distributions. This has been done with the results of Hartree-Fock-Bogoliubov
calculations using the Gogny force, together with a microscopic folding model employing a modification of the
Jeukenne, Lejeune, and Mahaux potential as an effective interaction. This treatment yields a satisfactory
interpretation of the observed total cross section differences up to 200 MeV. The calculations have been
extended above that energy with a folding model based on an empirical effective interaction.
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I. INTRODUCTION To gain insight into this problem, we have employed a
simple Ramsauer model that has proven successful in repro-

Differences of neutron total cross sections among neighducing the energy dependence of total cross secfiong].
boring nuclei provide unusually stringent tests of opticalVhereas this model successfully reproduces cross section

models. In many cases, standard optical potentials Witﬁimerencgs in the Ce region, it fg|ls to reproduce the ob-
nuclear radii proportional t&X3 and with typical strengths served differences among the W isotopes. However, extend-

. . ing this model by adding the excess neutrons to the nuclear
for isovector componenfdJ, /Uy=~0.5 in the usual expres- surface in calculating the differences betwesiiw-183y
sionU=U,=U,(N—Z)/A] have yielded a reasonably good q 188,184y improves the agreement with the experiment.
agreement with measured cross section differences. Exrhis suggests that the origin of the observed differences lies
amples may be found in the Ce regid] and in the Nd-Sm  in the surface behavior of the nucleus, and points to the need
region[2], as well as®3®J-2*?Th [3]. The results in the Ce for including a realistic description of the nuclear surface in
region have also been reproduced with a microscopic foldingnore detailed physical models.
model[4]. The W isotopes are known to be reasonably well de-

In this WOfk, we report on the new measurements of thécribed as deformed rotors, and such deformations give rise

total cross sections of the tungsten isotopE<e4184y in the to surface effects. We have used coupled-channel calcula-

energy range 5-560 MeV, and we show that the standargons to investigate the role of deformation in the cross sec-

i ] _tlon differences. These calculations were made with a phe-
?ptlcal mo?el treatmept fails to reptrr?duce_z ﬂ}[e Obse_mEd Ollf'nomenological optical potential incorporating the dispersion
erences of cross sections among these I1SOtopes. 1€ €SSEiyion relating the real and imaginary potentials. As is the

tial problem is that the effects of change of radius andcase with spherical potentials, we find that these calculations,

change in the isospin terms approximately cancel, leading t@hich employ standard radial and isospin dependences on

weakly energy-dependent values for the cross section differandN, do not adequately explain the observed cross section

ences, whereas the measurements show distinct oscillatiogifferences.

in the range 5-100 MeV. Hartree-Fock calculations describe neutron and proton
density distributions separately, and they predict larger rms
radii for neutrons than for protons in heavy nuclei. Thus they

*Present address: National Institute of Standards and Technologgnay also provide the surface effects required to address the
Gaithersburg, MD 20899. experimental data. We have used such density distribu-
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tions from a Hartree-Fock-Bogoliubov calculatif®9] in a  data reported in Refi14]. Sufficient information was not
microscopic folding model. This model uses an effective in-available to make these corrections for the separated-isotope
teraction[10] based on the JLMJeukenne, Lejeune, and data. Accordingly, we have restricted the upper limit of the
Mahauy optical potential[11,12 that has been adjusted to energy range to 500 MeV, since the veto corrections signifi-
yield a Lane-consistent descripti¢h3] of nucleon scatter- cantly affect the data only above that energy.

ing; that is, it adequately describes neutron and proton elastic The neutron beam was defined by iron collimators up-
scattering as well agy(n) reactions to isobaric analog states stream and downstream of the samples. These collimators
over a wide mass and energy range. We have performed boifere of such sufficiently small diameter that neutrons could
spherical and coupled-channel calculations using this treahot reach the detector without passing through the samples.
ment. No additional parameter adjustment has been madgg ensure that this condition was satisfied for the isotopic
Both of these c_alculgtions adequately describe the observqgngsten samples, it was necessary to replace the approxi-
total cross section differences. _ mately 1.9-cm inside-diameter collimators used for the ma-

The results of this work show that understanding tOtanority of the measurements with a new set having an inside
cross section differences between nearby nuclei requir€§iameter of 1.27 cnil4,16].
careful attention to details of the nuclear density distribu- The samples were mounted on a rotating wheel that al-
tions. Simple models that do not take these details into aqpwed data to be taken in successive 20 sec intervals for each
count may fail, as in the case presented here. We have showj the three tungsten samples and a sample-out position. As a
that a folding model based on realistic nuclear densities anggntrol on systematic errors, the data were taken in three
an isospin-consistent effective interaction provide the necesyatches. The samples were interchanged between each batch.
sary ingredients for addressing total cross section differThere was no indication of differing results among the three
ences. _ . _ _ batches that exceeded statistical errors. Final results were

The paper is organized as follows. Section Il describes thgptained by averaging the partial results from each of the
cross section difference measurements. Section Il shows thgree batches.
analysis of the results using the Ramsauer and spherical phe- The isotopic samples were cylinders of pressed sintered
nomenological optical models; this is followed in Sec. IV by material approximately 2.1 cm in diameter and of approxi-
a description of the most complete phenomenological trealmately the same lengtt1.95—-1.99 cri These samples were
ment available using dispersive optical potentials in dapparently the same as used in previous measurements of
coup_led—channel context. Section V de_scribes the folding Ca}rotal cross sectiongl8] and angular distributiong9]. Table
culations, and the paper concludes with a short summary inshows the isotopic composition for each sample as quoted
Sec. VL. by the supplier, the Isotope Distribution Office at Oak Ridge
National Laboratory. The maximum contamination of tung-
sten isotopes other than the principal one is approximately
6%. We have not made corrections for these impurities.

The neutron total cross sections 8418 in the en- The densities were determined by hand measurements
ergy range 5-500 MeV were measured at the LANSCE(length, diameter, and weightby a water immersion tech-
WNR facility at the Los Alamos National Laboratory as part nique, and by measuring the attenuationyofays incident
of an extensive survey of total cross sections spanning thalong the axis of the cylindefd 6]. The hand measurements
periodic table from A =1 to 238. Nearly all of the results of were difficult because the samples were not perfect right-
these measurements have been publi$héd 5, and details circular cylinders and the surfaces had irregularities. Results
of the experiment and the uncertainties are contained in theder the bulk and areal densities from the water immersion
references and in a reporl6]. The techniques employed technique are indicated in Table |. The inverse areal densities
were a refinement of those in an earlier sury&y| carried (1/nl) shown in this table were used in the analysis of the
out at LANSCE/WNR. The measurements were made by thélata. The extracted cross sections are directly proportional to
transmission method in which a well-collimated neutronthis quantity.
beam is incident along the sample axis and the count rates in The densities determined by attenuation were lower
plastic-scintillator counters downstream of the samples weréhan those from the water immersion method by approxi-
compared with the samples in and out of the beam. We notmately 2—4 %. We attribute part of this discrepancy to insuf-
here only the experimental details that are specific to théicient knowledge of they attenuation coefficient, since a
measurements on the isotopic samples®fe+18¢y. well-characterized tantalum sample showed a deficiency of

The data in the main part of the experiment, which in-1.8%. The important result is that the differences of the den-
cluded a natural tungsten sample, were reported in 1% widsities among the tungsten isotopes determined by the two
energy bins, with a statistical accuracy of 1% or better inmethods are inconsistent. This suggests that the samples
each bin. To exhibit the cross section differences among thkave internal voids or density gradients that may have arisen
separated isotopes adequately, we have binned the data in 8¥%ring the manufacturing process. This possibility is sup-
wide intervals, with a statistical accuracy of approximatelyported by the fact that the average density as measured by
0.2% in each bin. water immersion is approximately 6% lower than that for the

In principle, the data should be corrected for accidentahatural tungsten sample used in the main part of the experi-
coincidences in the charged-particle veto paddles placed iment[14].
front of the main neutron detectors. This was done for the The dots in Fig. 1 show an isotopically weighted average

II. EXPERIMENT
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TABLE |. Sintered tungsten isotopes. We believe that the same sample materials were used 18]Ref.
in the measurement of neutron total and scattering cross sections, and that th#%sHte samples were
used in Ref[19] in the measurement of direct neutron scattering cross sections. The isotopic abundances for
183N and 184 listed in Ref.[18] are slightly different from the ones quoted to us by the supglstope
Distribution Office, Oak Ridge National Laboratgrynamely, 94.9% instead of 93.86% fdfAW, and
98.88% instead of 94.00% fdfw.

Sample Mass Length Diamefer  Density 1hl at. %

name (9) (cm) (cm) (g/cnt) (b/atom (%)

By 124.36 1.949 2.108/2.129 18.282 8.480 '®AN: 93.86,183\: 2.37
184N\ 2.49, 189N 1.28

184y 124.07 1.991 2.040/2.109 18.465 8.309 8Aw: 1.46, 18 1.62
1B4\: 94.00, 188W: 2.92

188y 123.11 1.984 2.023/2.099 18.655 8.343 8Ay: 0.58, 18w 0.41

184\ 1.34, 18V 97.66

AMinimum/maximum diameter of the sample.

of the three cross sectiohseglecting the smalll4.4%9 con-  ing the sample-in and sample-out count rates. In the second
tributions of 134 and 3], after an upward normalization method, the cross section difference’f = o — o were de-

by 2.2%. The energy dependence of the cross section is i@rmined directly by comparing the count rates for the two
excellent agreement with that measured for natural W, showgamples. Corrections were made for the small differences in
by the solid line in the figure. This upward normalization is the areal densities of the samples using the individual values
another indication of the uncertainties in the sample densipf .. The second method has the advantage of eliminating
ties. From this result and the inconsistencies in the density,o statistical error associated with the sample-out measure-

measurements, it appears that the areal densities in the pags, anq it also minimizes possible systematic errors due to
of the separated isotopic samples illuminated by the neutro

beam are uncertain by approximately 2%. This is the princi_@ount—rate—erendent effepts. Th_e data from both qnal_y3|s

pal systematic error in the experiment. ' methods V\_/|II be made available via the database maintained

The data were analyzed in two ways. In the first method,f.)y thle LN{;tlonal Ne:ltlror; [r)]ata Cent?r at tlrl] € Blr ogkhiven N_a-
the individual cross sections, were determined by compar- lonal La orator'y. of these results will Inclu € the nor

malization required for agreement between the isotopically

— ————rrr — weighted cross sections and the results from the natural W

6.0 [ ] sample.

natural W ] The cross section difference data are presented as the ratio
. « weighted average ] of the measured difference to the average of the individual

cross sections; i.e., & _;=20{"[/(o;+0;). This has the
advantage that the important systematic error due to the den-
50 . sities takes a very simple form. FB<1, a condition that is

2 well satisfied for these measurements, it is easily shown that
3 i ]
= 45 .
§ I ] | |
g | ] o' Al A(nl);  A(nD)
3 40 L ] Ri -j= 2 * * * . (1)
s R ] 0'i+0'j O'i+0'j (nl)i (nl)l
g
(8] L 4
T 35F . .
5 r ] In this expressionA o'l is the statistical uncertainty in the
i 1 direct measurement of the cross section difference. The sta-
sor ] tistical uncertainty inR, which is represented by the second
i ] term, is shown explicitly in the figures. The last two terms
25L ] are the fractional uncertainties in the areal densities of the
C ] two samples. They correspond to a shift in the vertical scale
7 v in the figures, but are not shown explicitly. Because these

terms may be as large as 0.02, we allow the theoretical cal-
culations to be shifted by an amount that does not exceed this

FIG. 1. Comparison of an isotopically weighted combination of Value, and indicate the size of the shift. In short, the energy
the cross sections for the separated tungsten isotopes with the croggriation of the ratios is well determined, but the zero of the
section measured for natural tungsfé#]. vertical scale is not.

Neutron energy (MeV)
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ll. RAMSAUER AND CONVENTIONAL SPHERICAL between the wave that passes through the nucleus and the
OPTICAL MODELS wave that goes around it. The parameteis a measure of
the effect of absorption in the nucleus and of the averaging

. The nuclear Ramsauer moc[éDZZJJ utilizes the assump- of waves of different orbital angular momenta. A value of O
tion that neutron total cross sections can be represented B o represents the “black nucleus” limit, for which the

:ﬁ;msugrgﬂs ggsrzﬁ;eszcsvﬁiwesnaﬁivne ds ,{"%’2'%8232 ”Jﬁﬁgbave striking the nucleus is completely absorbed. Reduction
the atomic Ramsauer effect V\?here the low ener résults iglc a from 1 occurs not only because of absorption but also
' ay Because the contributions from various angular momentum

only one angular momentum value entering in the scattering%lIueS are not precisely in phase. The phase adgk ex-
the model as applied to the nucleus invokes the assumption P yinp ' P 9

that the waves which pass through and go around the nuclelﬁ)sressed as
can represent in an average way the partial waves with a B=cAY¥(\a+DbE-E), ©)

large range of angular momentum values. Application of the
Ramsauer model to total neutron cross sections has resultéerea, which is closely related to the real part of the opti-
in rather good characterizations of their behavior with mas$al potential, may be decomposed into isoscalar and isovec-
and energy. This finding is particularly important since thetor parts as

other possible explanation for the structure found in total

neutron cross sections would be single-particle resonances. a=ag—
Peaks produced by single-particle resonances have a differ- A

ent dependence on the mass numhehan those produced  comharing the total neutron cross sections of adjacent

by Ramsauer interference. isotopes involves changin® and the neutron numbeN.

Early analyses of total neutron cross sectif$-23 Clearly, the form of Eq(2) shows that an increase Riwill

gave results that unambiguously support the Ramsauer inteéhhance the cross section via the geometric facRr (

pretation rather than the single-particle interpretation. More, X)2. The two remaining parameteis,and 3, also depend
recently, a very extensive set of total neutron cross sectiongn R. but involve the imaginary opiical F;otential in the

Ep to |560bMer has (f,begotm% avallalilli4 '1tﬂ' ;h't‘er’] datasae;t damping factora and the real optical potential in the phase
as also been fourkb—7] to be consistent wi € predic- @gleﬂ. An increase irN for fixed Z increases the parameter

a. (4)

tions of the Ramsauer model. A particularly impressive resul st e
) . —2Z)IA; this will decrease botlv and W. The empirical
0,
of these analyses is the fact that a fit to better than 3% could, =i Refs[5—7] of the parameters in Eq2) show very

be obtained over a wide range of mass and energy with thIgmall (less than approximately S5Ptariations ofa over the

model. entire periodic table. We therefore neglect changes iim

9 ) : : €19 9 opes. This conclusion is confirmed by explicit calculation of
near-neighboring nuclei. A study of neighboring nuclei near,

" . . . the derivatives ofa with respect toR and (N—2). This
A=140[24] has been made with the purpose of inferring thecalculation shows that should vary by less than 1% over

isospin portion of the optical potential. This effort was not the W isotopes, using guidance from phenomenological op-
completely successful. Although the Ramsauer model gav: . ; . ;
- . - ) ical potentials for the isovector component of the imaginary
good fits to the cross sections, two complications interfere .. : . X
: . . . part. Explicit calculation of the cross section differences us-
with the effort to determine the isovector potential. : L .
.ing Eq. (2) shows that effects of such small variationsan

The first complication is that the proximity of these nuclei ; . -
to a closed shell causes changes in the isoscalar portion gte indeed neghglblle. We conclude that th'e vquatlonss?of
ndR are the most important factors in estimating the cross

the imaginary potential from nucleus to nucleus. The second .0 differences
complication, which is particularly relevant to the present . _ .
b P y n The changes i3 arise from variations in botlR and

case, is that the change in total cross section produced )b&)N—Z)/A. Taking as independent variables the quanties

adding neutrons to the nucleus is smaller than might be e ndA we easilv find from the above exoressions the follow-
pected from a change in radius using the usual mass depeﬁi{g rélz\:ll\;ion' y Ve Exp : w

denceA'3, This radius change produces an increase in tota
cross section, but the increaseNn-Z results in a change in Aot sinp 2R TAR
the potential that reduce; the cross section. Both of th_ese . a 1-acosg  R+iA| R
results are also present in calculations using the spherical

optical model when conventional geometries are used, as sing a,(ZIA) AA
will be shown later. Y ——— -
The Ramsauer moddb,21-23 predicts that the total @ 0SB (\Ja+bE~ JE)a+bE
neutron cross section has the form (5)
or=2m(R+X)%(1— a cosp), (2)  Expressed in this form, the changes caused by variations in

the radius and the potential strength have been grouped into
where o1 is the total neutron cross sectioR,the nuclear terms multiplying AR/R and AA/A. Since a is small
radius, X the reduced neutron wavelength, a parameter (0.095, the factor - « cosg is approximately 1. The sec-
between 0 and 1, angl an angle that gives the relative phase ond term in square brackets varies slowly with energy and is
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TABLE Il. Parameters used in the Ramsauer model calculations 0.040 ————

shown in Fig. 2. The neutron energyis in MeV. - 186 182
0.035 F W -""W 4

Nuclear radiuR 1.38AY3 fm EN 1

Absorption parameted 0.095 0030 |/ % /fixed symmetry terms .

Phase angle parametar 35.0 MeV FoT ]

Phase angle parameter 0.80 0.025

Phase angle parameter 0.61 MeVv %2 0020 i

Isoscalar potential parametag 39.0 MeV :

Isovector potential parametey 19.5 MeV 0.015 |

0.010 |

Re)
just the quantity corresponding to the increase of the nuclear X F } N 3
area with increasinqR. The important terms in the cross 0.005 | H standard Ohio 3
section difference are then the two terms that depend on % S

sinB, which are out of phase with the cgsbehavior of the 0.000 | ST global A B
cross section. Note that these two terms are opposite in sign. _, ,05 F ]

Parameters in the calculations based on the above equa- C i ]
tions are shown in Table Il. We have assumed a radius pro- 10 £ 3
portional to A¥® and an isovector-to-isoscalar ratig /a, \ ]
=0.5, which is frequently obtained in phenomenological op- 0015 F 7 no radius change ]
tical model analyses. Most of the parameters were taken Fo 1
from Refs.[6,24]. The cancellation of the radius increase by -0.020 L ! . s
the isospin term i\ o1/ o1 is dramatic, yielding a result that 10 100
is far too low in amplitude and out of phase with the experi- Neutron energy (MeV)

mental results, as shown by the solid curve in Fig. 2. How-

. . . 18
ever, if we were to assume no isospin dependenceai.e. FIG. 3. Spherical optical model calculations for tH&w-83yN

Otf.)tal cross section difference divided by the average value, com-

=0, then we actually obtain a rather good representation ; ;
the data(apart from a small phase mismaltchs shown by par_ed with the prese_nt measur_ements. The calculations employ the
. Ohio globalA potential[25] (solid curve. The dashed and dotted

the dotted curve in Fig. 2, even though the neglect of ISOSPMY rves show the effect of omitting the symmetry terms or change in

is physically incorrect. . radius, respectively; see text for details. No shifts in the vertical
The above results are corroborated by calculations eMs.ge for the calculations have been made.

ploying a spherical optical model, as shown in Fig. 3. These

calculations are based on a standard global parametrizatiog,e “global A” set from the work of Rapaport, Kulkarni, and
Finlay [25]. In this figure, the solid curve, calculated with the
0.085 F—r—r——ry ——— ——— unaltered globaR potential, yields a very poor reproduction
' ] of the experimental data. Fixing the symmetry terms in the
optical potential at their value fo®W results in oscillations
that resemble the experimental behavior, as shown by the
] dashed line. On the other hand, using a constant radius
]  (taken as the value fol®\W) in all of the calculations yields
] a result that is large and opposite in phase from that with
E constant symmetry terms, as shown by the dotted curve.
Since the simplest application of well-known global sys-
tematics fails for both the Ramsauer and spherical optical
models, we need to consider additional physical ingredients.
Specifically, we can investigate the effect of surface modifi-

0.030 [
0.025 |
0.020 [

0.015 |

Ratio

0.010 |

0.005

0.000 | Ramsauer model calculations - cations of the potential, such as would result from a “neutron
: ] skin.” A generalization of the Ramsauer model that allows
e —r — —_ for this possibility has been given in R¢R6]. The expres-

Neutron energy (MeV) sion that replaces Ed@2) is

i i 20R 20R
FIG. 2. Results of Ramsauer model calculations compared W'tho-T=27r(R+)()2 1+ "o cosB+ nalcosﬁ/ ’

measurements for th&W-184W total cross section difference di- R+ X R+X

vided by the average value. The solid line is the full calculation, and (6)

the dotted line neglects isospin dependence. The dashed line is a

calculation in which the effect of adding neutrons preferentially onwhere 6R, is the surface thickness. This version of the
the surface has been simulated. No shifts in the vertical scale for th@odel is the equivalent of two square wells and can be used
calculations have been made. to approximate a neutron skin. Note that the sign of the terms

1—
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involving SR, is opposite from that in Ref26], which used  work, in which the W isotopes are treated as deformed nu-
a convention that a positive value féR, resulted in a de- clei. This dispersive CC formalism has proved very success-
crease in radius. To simulate the effect of adding neutrongul in recent analyses performed separately for neutrons and
preferentially to the surface, we taléR,=0 for ¥aV and  protons incident ort®*Ta up to 200 MeV[30].

85R,=0.28 fm for 84W. For the present calculations we use  Since the present calculations for W isotopes are closely
a common value for the absorption parameter, e . a’, related to this earlier work of®'Ta, we describe the main
but decrease the real potential parametessed to calculate features of then-'®Ta potential. Briefly, this CC OMP is

B’ to 27 MeV from the value 35 MeV resulting from the local in coordinate space. Its real central component displays
parameters, anda, shown in Table II. This difference is in two terms. The first one, usually referred to as the Hartree-
the direction we would expect for a neutron interacting withFock (HF) potential Vg, is strongest in strength at low

a neutron excess. The result of the calculation is shown bincident energy and decreases smoothly with increasing en-
the dashed curve in Fig. 2. Although the agreement is reaergy. In contrast, the second piece, named as the dispersive
sonable, it is probably fortuitous because we have added aderm AV, is strongly energy dependent. The dispersive term
ditional parameters. However, it does provide an intuitiveis inferred from those of the surfac®/g) and volume W)
argument for expecting that a difference in neutron and proeomponents of the imaginary central potential by using dis-
ton densities at the surface may be the origin of the observepersion relations. The complete OMP also includes a com-

cross section differences in the W isotopes. plex, deformed, and energy-dependent spin-di®® com-
Hartree-Fock calculations give results that do not supporponent.
the simple assumption that the radius scaleA%% This is In contrast to most phenomenological dispersive OMPs

true for relativistic mean-field calculatiof27] as well as the that ignore the basic nonlocal character of the underlying
Hartree-Fock-Bogoliubov calculations used in Sec. V belowN-A effective interaction, here the local dispersive OMP is
The proton radius tends to stay constant over the tungstepuilt following the method outlined by Perey and Bu]
isotopes, while the neutron radius increases fr6iW to  to obtain an equivalent local potential from a nonlocal one.
185y, The different behavior of the two radii causes someThis method is based on the assumption that nonlocality in
problems with both of the assumptions mentioned previ-coordinate space may be approximated by a Gaussian profile.
ously. The average of the two radii increases more slowlyThis approximation is quite successful in spherical OMP
than A over this range. This same feature would tend toanalyses as shown by Perey and B[&k] and more recently
change the form factor of the isovector potential over thesdy Mahaux and Sartdi29] for extrapolation of the nucleon-
isotopes. Equivalently, the change can be viewed as a surfaceicleus potential from continuum to bound states energies.
layer being added as one moves frdfffw to . This  In our work, the Perey and Buck approximation is used to
changes the constant from that expected if one makes tHauild the HF potential and calculate the dispersive terms
usual constant-density assumption. [30]. For then-81Ta system, the effective ranges of nonlo-
cality were found to be 128,<1.4 fm andBy~1.2 fm
for the HF and absorptive potentials, respectively. For more
details, see Ref30].

The full local deformed OMP in the body-fixed system of
In this section we show the results of phenomenologicaFoordinates has the same functional form for the W isotopes

coupled-channel calculations, which take into account thé@s adopted previously for T&0]. It is

static deformation of the tungsten nuclei. These calculations .

also incorporate the effects of the dispersion relation con- ~UrE)=[Vhe(B) + AVy(E) +HIWV(E) ITue(r)

necting the real and imaginary parts of the potential. Even 9

though this treatment is the most detailed of the phenomeno- —4ap[AVp(E)+ iWD(E)]ﬁfD(r)

logical optical models considered here, we will see that the

W cross section difference data are still poorly reproduced. +2iX2[Vgo(E)+iWgo(E)]VFfso(r) X V-5,
As frequently done in conventional, phenomenological

optical model potentialOMP) analyses, each component of (7)

the complex, energy-dependent nucleon-nucléisAf po- o - .
tential is described by radial shapes of the Woods-Saxon ({[?Ir: |rlem%?né(r)]e?;rgnc;séflonrr;h:ds%viézrse_sss;?(fgﬁrl,h;vgee rers
derivative Woods-Saxon forms, or by a sum of these two ' ' ' '
forms. Furthermore, it is assumed that the parameters de- r—R(QH]) 7t
scribing the shapes of these radial functions are independent fi(r)= 1+9XF{T” : (8)
of energy; only the strength of each term is allowed to vary !
with energy. This behavior contrasts with that of the semi-ytn
microscopic OMHA 10,28 where the radial shapes are con-
structed as energy-dependent functi¢sse Sec. Y. R(Q)=rAY1+BLY0( Q)+ BLY ()], (9

To incorporate the dispersion-relation effects, we adopt _ _
the formalism as described by Mahaux and Saf&9] for ~ whereg, and g}, are quadrupole and hexadecapole deforma-
the central component of the optical potential for spherications, respectively. These deformations are taken in such a
nuclei, and extend it to the coupled-chanf€lC) frame-  way that the deformation lengths

IV. PHENOMENOLOGICAL DISPERSIVE OPTICAL
MODEL

044606-6



IMPORTANCE OF ISOVECTOR EFFECTS IN . .. PHYSICAL REVIEW €7, 044606 (2003

0.035 ———rr — T lated curves are shifted slightly to optimize the match to the
- o 182 1 datasets. As can be seen, the magnitude of the oscillations
0.030 - W- "W . observed in the data whénincreases to 200 MeV are rather
calculations: +0.002 well reproduced, with only a slight phase mismatch in the
0.025 } case of the'®W-18Ay difference. This behavior is very simi-
lar to that shown for the Ramsauer modeashed curve in
0.020 g~ Fig. 2 using the same assumptions: the radius varies'&s
and the isovector component of the potential is neglected.
0.015 Thus, as in the Ramsauer calculation, the good agreement is
= obtained at the expense of an incorrect physical picture.
- 0.010 In a further extension of the coupled-channel analysis
= with a dispersive optical potential, we have explored the con-
o 0.005 sequences of neglecting isospin. For this purpose we have
n employed the method suggested by Mahaux and SE3fgr
o 0000 . for making an isoscalar/isovector decomposition of the po-
tential. As a first step we performed a coupled-channel analy-
-0.005 sis of scattering and reaction data for proton scattering on
" 181Ta using the same dispersive approach as described above
-0.010 ) } for incident neutrons. This deformed proton OMP was then
H} 180\ - 1By 1 tested and validated for protons incident on W isotopes by
-0.015 |- calculations: -0.01 | comparison of the predictions with scattering measurements
i 1 from Refs. [36—39. Finally, after making the isovector/
-0.020 F——— '1'0 —_— '1(')0 isoscalar decomposition as in REB5], new neutron poten-
tials were built for the W isotopes and used to calculate the
Neutron energy (MeV) total cross section differences. These results are shown as

. . . solid curves in Fig. 4. As can be seen, the results are in
FIG. 4. Results of coupled-channel calculations incorporating_.” ... . . . .

: : . . “significant disagreement with the data, both in the magnitude
dispersion effects compared with measured total cross section dif- L .
f the oscillations and the phasing, even though a reasonable

ferences, plotted as the ratio of the difference to the average of th fi in h b included. Th f
cross sections. The solid curves include an isovector potentiaf,re""t'ﬁnent of Isospin has now been Included. These features

while the dashed curves do not. The calculations have been shiftédf © similar to those shown in Sec. II.
by the indicated amounts.
_ . V. FOLDING OPTICAL MODEL CALCULATIONS
5 =rAYB  (\=24 (10
We have performed calculations of the total cross section

are identical for all the OMP components. For more detailsdifferences among the W isotopes in the energy range 5—-200
on energy dependences, geometrical parameters, and deféMeV using a deformed, semimicroscopic optical model po-
mations, see Ref30]. All the CC OMP calculations were tential (SMOMP) obtained by folding an OMP in nuclear
performed with theecisoscode[32,33 using a rigid rotator matter(NM) that is energy and density dependent with de-
model with relativistic kinematics. Fot®'Ta, the coupling formed nuclear densities. This SMOMP is a coupled-channel
scheme (7/2,9/2",11/2",13/2",15/2") was adopted. extension of the spherical, Lane-consistent SMOMP of Ref.

The neutron OMP thus defined and tailored to achieve th¢10], which is based on the pioneering work of JLM who
best overall fit to the available tantalum data includes nacalculated the optical potential in nuclear matter using a
explicit separation of the potential into isoscalar and isovecG-matrix formalism[11,12. We have supplemented these
tor components. The only mass dependence shows up in thlculations by carrying out folding-model calculations in
potential radiiR;, which we assumed to scale #” in  the range 100—500 MeV using an empirical effective inter-
applying the results to the W isotopes. The deformation paaction devised by Kelly and Walladé0]. The two sets of
rameters for theé®218418Qy isotopes were selected by adjust- calculations allow the entire energy range where the total
ing the deformationg, and 3, so that good fits to published cross section differences have been measured to be compared
experimental §,n’) scattering datd19,34] are obtained. with calculations based on a realistic description of the neu-
Within a few percent, these deformations are identical taron and proton density distributions.
those published earli¢9,34. All the CC calculations for W The important feature of the Lane-consistent SMOMP of
were performed using the coupling basis' (9" ,4%), which ~ Ref. [10] is the determination of significant energy-
is equivalent to that adopted previously f8i'Ta. dependent renormalizations of the JLM isovector potential

The CC calculations as described above agree with thdepths that allow for the fitting ofg,p), (n,n), and (,n)
measured W total cross sections to within approximately 2%scattering using the same NM interaction. These isovector
in the range 5—-200 MeV, which is reasonable given the unnormalizations along with their isoscalar counterparts have
certainties in sample densities. The total cross section diffebeen obtained by fittinfL0] a large amount of scattering and
ence calculations, shown by the dashed line, are comparedaction data for 486 A<209 andE=<200 MeV. The NM
with the present measurements in Fig. 4, where the calcU@MP has the form
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Unm(p,a,E)=N,(E)[Vo(p,E) + N1 (E)a7Vi(p,E)] o O 7 T
£ L _
+iN(E)[Wo(p,E) + N (E)amWi(p,E)], L gl w
1w 3 ‘
g o .
whereUyu(p,a,E) is the OMP in NM,p is the density of S
NM, a=(pr—pp)/(pntpp) is the asymmetry of NMyz is g 4 |
the isospin of the projectileyy, V,, Wy, andW, are the S

real isoscalar, real isovector, imaginary isoscalar, and imagi- neutrons
nary isovector un-renormalized components of the OMP in [ 777 protons

nuclear mattef11,12,28, respectively, and\,, N 1, Ay, I
and \,; their respective energy-dependent normalization —t——t——t——f—t—
factors[10]. The transition from the NM optical potential to .~ 0.003 1= .

a finite nucleus deformed optical model is performed through g
a local density approximatiofiDA) in a way that is identi-

0.002

Q
cal to the treatment described in R¢41], and includes a % 0.001
downward renormalization of the imaginary potential depths @ '
to avoid double counting the inelastic channels explicitly < 0.000
taken into account in the adopted coupling scheme. The fol- & *
lowing equations show the LDA used in the present folding S
i -0.001 | " 186 182 -
calculations: | W - "W
-0.002 . 1 . 1 . 1 . 1 . 1 .
Unm(p(r’),a(r’),E) 0 2 4 6 8 10 12
— -3 ’
Upr(rB)=(tVm) f e p(r') Radius (fm)
Xexrx—|r—r’|2/t2)d3r', (12 FIG. 5. Monopole component of the HFB densities used in the
folding-model calculations. The upper panel shows the neutron and
Un(p(r).a(r),E) proton densities for'®W, normalized to a single nucleon. The
Ur(faE):(t\/;)_g'f NmiPL), et (r') lower panel shows the differences in densities ¥fWw-83w, for
p(r) both neutrons and protons.
xexp(—|r—r'|2t3)d3’, (13

that for the proton$5.452 fm and 5.339 fm for neutrons and
protons in AW, respectively.
U(r,E)=0.5U./(r,E)+U.(r,E)]. (14 Comparisons of the calculated rms radii as well as the
Mo andM 4, moments of the charge densities of the W iso-
In Egs.(12)—(14), p(r) is the deformed nuclear density dis- topes with measurement84,42,43 are presented in Fig. 6.
tribution, andt is the range of a Gaussian form factor. The These comparisons show that the rms charge radii as well as
parametert is taken as 1.25 and 1.35 fm for the real andthe chargeM,, moments are well described by the HFB
imaginary OMP components, respectively(r,E) is then calculations. Both the experimental and the calculated radii
expressed in a partial wave decomposition suitable foexhibit anA dependence that is weaker than the us\iél
use in coupled-channel calculations:(r,E)=3,U,(r,E) dependencésolid line) and is close to a6 dependence
Y,0(6,®). The present SMOMP also includes a complex de<{dotted ling. The M,, charge moments are not as well re-
formed spin-orbit potential identical to that described in Ref.produced for'®3w and ¥4V. However, the comparisoisee
[41]. As in Ref.[41], the deformed LDA used in the present below) between the multipole moments of the different
study implies a static description of the nuclear deformation(SMOMP and dispersive phenomenologjcaptical model
This is appropriate for the deformed W isotopes studied herepotentials seems to argue in favor of the HFB calculations
The deformed density distributions used in the presensince the phenomenologically fine tuned hexadecapole mo-
work are calculated in the axially symmetric Hartree-Fock—ments of the DOMP exhibit the same trend as those calcu-
Bogolyubov framework using the Gogny D1S interactionlated from the SMOMP using HFB densities.
[8,9]. Salient features of the radial behavior of the monopole By inserting the deformed SMOMP into the coupled
components of the HFB densities used in the present calciequations for scattering off the first levels of the ground state
lations are shown in Fig. 5. The rms radius of the neutromotational band(coupling scheme: 0, 2%, 47, 6), and
distribution is well characterized by 0.98%3 and that for  solving them usingscis [32,33 we can accurately account
the protons by 2.098°8 The significant deviation of th&  for the differential fi,n’) scattering cross sections offAV
dependence of the proton density from #¥> behavior as- [44]. The total cross sections are also reasonably well ac-
sumed in global phenomenological optical potentials maycounted for; the difference between calculated and measured
explain the success of the calculations described here, in ae~ stay mostly below the 5% level over the range 5-200
cord with the suggestion based on the Ramsauer analysis. WWéeV, as can be seen in Fig. 7 for the case'®Ww. These
also note that the rms radius of the neutrons extends beyorgalculations yield a quite reasonable reproduction of the W
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5-6 [ T T T T “ L L L B i
F W isotopes 1
~55 J
£ C 1
N—
~— = 4
o 5.4 [ 7
53 Lo v vt e 1 | L]
180 181 182 183 184 185 186 187 188
3 L L L L L L L L R L L L B L L L
[ i FIG. 6. Comparison between measured and
= L 1 calculated charge rms radii, and quadrupole and
o r — 1 hexadecapole moments for W isotopes. The sym-
NI ° - . X
2 L PY | bols with error bars are the measurements taken
= H 1 from Refs.[34,42,43. The horizontal bars are re-
i ] sults of the HFB calculations used in the present
Lag ‘15{ — ‘1;32‘ — ‘1;33‘ — ‘1;34‘ - ‘1;35‘ — ‘1;36‘ — ‘1;37‘ —Tag work. The solid and dotted lines in the top panel
0 represenA® andAY® dependences, respectively.
T T T T T T
~ 1
0
NQ) [ 7
Q05 —
e L i
= L i
_1 [ NS S S S S S S S S A S S S S [T S S S S NS T ST S S S ST S ST ST SO ]
180 181 182 183 184 185 186 187 188
A

isotope total cross section differences, as shown by the soligtring to the easily excited states of the ground state rota-
curves in Fig. 8. The general behavior of both the amplituddional band.

and the phase of the energy variations is rather well repro- The spin-orbit component of the SMOMP can also be

duced by the calculations. This is a significant improvementliminated as the reason for the improved agreement of the
over the models described earlier that do not utilize a realis-
tic description of the variation in neutron and proton densi-

L | T T T L |
ties over the isotopic chain. The calculated amplitude of the ror B
energy variations is slightly lower than observed experimen- r 184
tally. This feature is most probably associated with the be- 651 W 7]
havior of the total cross section as seen in Fig. 7, since here [ ]
also the oscillations in the calculated cross sections are lower 6.0 f\ .

than seen in the measurements. Such behavior is not specific
to the W region, since it is a systematic feature of all JLM
calculations in heavy nucl¢il0,14,28§.

The improvement shown by the SMOMP calculations
raises the following question: can this improvement be
traced to one of the features of the SMOMP, or put in another
way, which one of the differences between the SMOMP and
the other models leads to the improvement observed here?
We will first assess the importance of solving the neutron
scattering problem in the coupled-channel framework, versus
a spherical OMP approach. This was achieved by comparing
the result of the SMOMP calculation as described above with [
the result of using the SMOMP potential in a spherical [ —— JLM calculation, coupled channels
framework. This comparison, shown by the short-dashed 30T . "™, this experiment
lines in Fig. 8, indicates that the W total cross section differ- '

55 f
50 F
45 f

40|

Total cross section (barns)

35 |

ences studied here do not exhibit a strong sensitivity to the 25F, . . s .
treatment(spherical or coupled channgsbove a few MeV. 10 100

At the lowest energies the coupled-channel treatment is su- Neutron energy (MeV)

perior. However, one must remember that tH&18418y

isotopes, since they have a quadrupole deformain FIG. 7. Total cross section for+ 4. The dots represent our

~0.26, ought to be treated in the coupled-channel framemeasurement, and the line shows the results of the semimicroscopic
work in order to account for the non-negligible inelastic scat-folding-model calculation described in Sec. V.
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0.03

performed with the energy-independent normalization fac-
tors seems to overpredict the amplitude of the variations of
W o differences compared to that of the experimental data
or that of the energy-dependent calculation results. Thus, al-
though it does not explain the quality of the SMOMP predic-

: tion over the full 5-200 MeV energy range, the energy de-

'}iﬁ calculations: +0.005 1 pendence of the SMOMP plays an important role, especially

- ] ——i—t at higher energies.

002 |

0.01 -

'y By To extend the folding-model treatment of the cross section
differences to high energies, we have also performed calcu
lations in the 100—-500 MeV range using the empirical effec-
tive interaction(EEI) developed by Kelly and Walladel0].
. This interaction, originally developed at six discrete energies
in the 135-650 MeV range, was interpolated in energy and
used in Ref[14] to interpret neutron total cross section data.
The reproduction of the experimental results was very good,
and it was also found that proton reaction cross sections were
well reproduced. As is the case for the JLM-based calcula-
] tions described above, the EEI is density dependent and is
applied in finite nuclei using a local density approximation.
Details of the calculations may be found in REf4]. The
calculations: +0.014 densities employed in the EEI calculations were the same
S — HFB densities used in the JLM calculations. The results are
shown by the long-dashed lines in Fig. 8. These calculations
exhibit very little energy dependence, in agreement with ex-
FIG. 8. Comparison between folding optical model calculationsP€riment. There is reasonable agreement between the JLM

based on HFB densities and measured W total cross section difieR"d EEI calculations in the region of overlap between 100
ences, represented as the ratio of the difference to the average cré¥ad 200 MeV.
section. The solid curves are JLM coupled-channel calculations,
and the short-dashed curves are corresponding spherical calcula-
tions. The long-dashed curves above 100 MeV are EEI calculations.
The calculations are shifted by the specified amounts, which are The total cross sections of the tungsten isotopes are per-
smaller than the uncertainties associated with sample densges plexing. Whereas other isotopic data, such4%Ce!*Ce
Sec. 1. can be more easily fit with spherical optical model calcula-
tions that include reasonable strengths for the isospin poten-
SMOMP with the W total cross section differences. Wetial, the tungsten data are not amenable to such simple cal-
checked that changes of the spin-orbit terms do not affect theulations. We have demonstrated using the simple Ramsauer
total cross section in a significant way. model that the most likely source of the cross section differ-
Similarly, the detailed structure of the nuclear density dis-ences is the nuclear surface. We have shown that the ex-
tribution does not seem to play an essential role in accountended(deformed optical model gives essentially the same
ing for the total cross section differences among the W isoresults as the Ramsauer and spherical models when isospin is
topes. A SMOMP calculation performed using a Woods-properly incorporated, and thus cannot explain the measured
Saxon density fitted to the monopole component of the HFBsotopic differences. We have also shown that a folding
results (preservingA, Z, and the neutron and proton rms model based on Hartree-Fock wave functions, when used
radii) gives very similar results to the full SMOMP calcula- with a Lane-consistent effective interaction, can reasonably
tion using HFB densities. This result strongly indicates thataccurately fit the results of the measurements. An examina-
the change in the behavior of the neutron and proton rm#ion of the proton and neutron densities from the Hartree-
radii across the isotopic chain is the principal ingredient inFock calculation indeed shows a neutron distribution that
the HFB calculations, which yields favorable results for theextends somewhat beyond that of the protons, in qualitative
cross section differences. agreement with the conclusions drawn from the Ramsauer
In order to evaluate the influence of the energy depenmodel.
dence of the potential depths, a SMOMP calculation was In summary, we have shown for the first time that al-
performed using energy-independent potential depth normathough standard phenomenological optical models are ca-
ization factors fixed at the average values of the energypable of predicting neutron total cross sections at the few
dependent ones. Below 60 MeV, this calculation does nopercent level, the more complicated folding model is re-
exhibit significant differences with the full-fledged SMOMP quired to achieve a detailed explanation of total cross section
calculation showing that the success of the SMOMP cannadiifferences among neighboring nuclei. This result is a con-
be fully attributed to the detailed energy dependence of theequence of the realistic treatment of the separate proton and
potential depths. However, above 60 MeV, the calculatiomeutron densities, which is possible in such a model.

0.00

0.01 |

L)

2 (c-0)/ (O'i+0'j)

calculations: -0.01
| L L A | L

} ———
184 182,
0.03 |- W - "W .

0.02 -

001 L

10 100
Neutron energy (MeV)
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