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Nuclear liquid-drop model and surface-curvature effects
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Nuclear liquid-drop model is revisited and an explicit introduction of the surface-curvature terms is pre-
sented. The corresponding parameters of the extended classical energy formula are adjusted to the contempo-
rarily known nuclear binding energies and fission-barrier heights. Using 2766 binding energies of nuclei with
Z=8 andN=8 it is shown that the performance of the new approach is improved by a factor of about 6,
compared to the previously published liquid-drop model results, in terms of the masvesms deviation
(6M)=0.698 MeV) and the fission barriers by a factor of about(8&~ rms deviation of the fission barriers
of isotopes withiz>70 is(5Vg)=0.88 MeV). The role of the nuclear surface-curvature terms and their effects
on the description of the experimental quantities are discussed in detail. For comparison, the parameters of the
more “traditional” classical energy expressions are refitted, taking into account the nuclear masses known
today and the performances of several variants of the model are compared. The isospin dependence in the new
description of the barriers is in a good agreement with the extended Thomas-Fermi approach. It also demon-
strates a good qualitative agreement with the fission lifetime systematics tested on the long chain of Fermium
isotopes known experimentally. The new approach offers a very high stability in terms of the extrapolation
from the narrower range of nuclides to a more extended one—a property of particular interest for the contem-
porary exotic beam projects: the corresponding properties are illustrated and discussed. The new description of
the fission barriers being significantly improved, in particular, the new calculated barriers being lower, flatter,
but stiffer against high-multipolarity deformations. The chances for “extra” stabilization of the hyperdeformed
minima at high spin increase, thus calling for the new total energy Strutinsky-type calculations.
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[. INTRODUCTION limited to 2. As it has been discussed already by other au-
thors, in a more careful approach the nuclear surface energy
It is more than 60 years now since the first successfutan be seen as contributed two different but related geo-
application of the charged liquid-drop model to describe thenetrical elements: the numerical value of the surface area
nuclear binding energieEl,2]. Brilliant extensions of the and the surface’s average curvature. Such a formulation im-
Bethe-Weizseker nuclear drop concept by Meitner and plies a different form of the surface energy expression,
Frisch[3] and by Bohr and Wheelgd] have been obtained E(Z,N:{a})=f,(Z,N)g,({a})+f(Z,N)g.({a}), where
in 1939 and used to explain the nuclear fission phenomenoimdicesa andc refer to area and curvature, respectively, and
Since then many papers have been devoted to the nucleghere the deformation dependenciegjnandg; are differ-
liquid-drop model formalism and its improvements. Variousent. Moreover, in the spirit of the classical nuclear energy
new terms in the correspo_nding energy expressions ha‘,’r%odels, the corresponding factdi(Z,N) andf.(Z,N) are
been proposed but the basic concept of the charged liquig 1o aqjysted separately. By refitting all the adjustable pa-

\(/jvrc?rpt)hvrglri?ngi?l uldatdteggmoﬁr;dﬂ:;s;?rneggmﬁ:nfgsgami zlafnlds rameters of the classical energy expression to the experimen-
9 P . y n | masses of over two thousand nuclei as well as on the
Wheeler concluded on the basis of the Fermi gas model, Re ission barriers we are going to look for the most performant
[5], that a curvature dependent term proportional At going P

should exist in the liquid-drop energy functional. The curva-Parametrization - to l_ae used in conjunction with the
ture term was later studied in RéB], where its magnitude _Strutlnsky-type formalism. In such an approach, all the terms
was adjusted to the experimental fission-barrier heightdicluding the surface energy term will be represented as op-
known at that time. timally as possible in a global fit. One may expect that the
Deformation-dependent classical energy expressions cafirface area contribution f,g, should be a dominating fac-
be seen as functions of two groups of variables that describ&dr since the traditional liquid-drop model without explicit
respectively, the nucleus itselZ(N) and its shape repre- Uuse of the curvature-energy term performed quite well al-
sented by an ensemble of the deformation parameters, heféady. The surface-curvature term is expected to be smaller
denoted{«a}. Typically, the surface energy is written as a and play a role of correction. We will demonstrate that such
productE¢(Z,N;{a})=f(Z,N)g({a}), where the first factor afitis possible and corresponds to a significant improvement
is usually parametrized by introducing a few adjustable conof performance of the liquid-drop model formula. In particu-
stants e.g.f(N,Z)=po+ p[(N—2Z)/(N+2Z)]? or any other lar, the new rms deviation will be shown to beSM)
expression of this type that is found performami.and p, =0.698 MeV compared tdSM)=0.732 MeV within the
are adjustable constants, whose number does not need to traditional approach, and the new fission-barrier rms
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deviatiort for nuclei with Z>70, (6Vg)=0.88 MeV, com- role of such elements and mechanisms as the order of expan-
pared to{ 8Vg)=5.58 MeV. sion in the extended Thomas-Fermi model, type of the

Several studies performed in the past, of the contributionSkyrme forces, comparison between the semiclassical and
coming from the surface curvature to the total energy, aimedhe quantum calculation results, as well as the possible influ-
at estimating its value using a more elementémyicro- ence of the relativistic effects. All these studies point coher-
scopig concepts of the nuclear interactions, both for the fi-ently to the result that the first-order curvature coefficient
nite nuclei and for the semi-infinite nuclear matter media.should be of the order of, typically, 5 to 15 MeV. At the same
Some of the corresponding papers are mentioned belowime, many phenomenological approaches based directly on
much more details about that evolution can be found in thehe global fitsto the experimental data pointed to the value
articles quoted therein. In particular, using the energy-densityery close to zero. In fact, in several studies the correspond-
formalism of Ref[7] combined with the macroscopic formu- ing term was often altogether neglected and the discrepancy

lation of the curvature-energy expressions of Myers anéd S mentioned turned into a kind of a “curvature anomaly”
atecki, [8], Stocker, Ref[9], pointed to the compatibility of proplem?

the curvature-energy estimates coming from the two ap- There is also another group of studies that were focused
proaches. Grammaticos, RéfL0], using the Skyrme-type more specifically on the calculations of the nuclear masses

fuznctional, but limiting himself to the terms of the order of 54/or the deformation dependence in the classical energy
h*, Was_able to obtain what could be con5|de_red as a reaso@S(pressions that supplemented with the Strutinsky and pair-
able estimate for the curvature energy; stressing however th g quantum energy terms, could be used for studying such

the results are sensitive to the details of the energy function roblems as nuclear fission, super and hyperdeformations

?.E?Spﬁégt'gggﬁ ?gngefésfég%:;égcgﬁdégﬁ'gxﬁggd;l;ct)e;msand more generally the shape coexistence phenomena. A few
comparison of the results of various calc’ulations and est c&'> 890, a realistic Thomas-FerfiiF) model has been
P developed by Myers andw&atecki [18], which describes

mates known at the time of publication can be found. How- T
: : masses of known nuclei with high accuracy. The correspond-
ever, the main results obtained by the authors, were compat-

ible with the earlier theoretical predictions. A more distinct |19 MS deviation between the experimerik9] and theo-

: . : ; retical binding energies for 1654 isotopes amounts to 0.655
link between microscopic and macroscopic models was pro:

osed in Ref[12], where various terms of the droplet model MeV only. In the last decade, more than one thousand
P . ’ ; A P masses of new isotopes have been measured and in the new
were derived from the Skyrme interaction, in the framework

edition of the Strasbourg Chart of Nuclided], one can find
of the ext_ended Thomas-Fer(vETl_:) modgl. The problem of 2766 binding energies of the isotopes with the proton and
self-consistency, when approaching the issue of the curvature bers | hat= N = f Fi h
energy, has been addressed in R&8]; no major influence neutron numbers larger that=N=8 (cf. Fig. 1). The rms
el ) P deviation of the TF estimates for these 2766 masses is 0.758
of this aspect of the formalism on the final result has bee

S ' L . : eV and shows a high numerical precision of the model as
found. Relativistic mean-field theory within semiclassical AP~ el as a aood accuracy of the shell and paifing eneraies
proach has been applied, Rdfl4], to the semi-infinite 9 Y pairing g

. S obtained in Ref[21] that the TF model adopts. Fission-
nuclear matter concluding that the relativistic and the mor . . X .
. s : arrier heights evaluated on the basis of the Thomas-Fermi
traditional methods give in essence compatible results. EXx:

tension to the relativistic but quantum approaches has beerHOdel [18,2 are also in a rather good agreement with the

studied in Ref[15], with the conclusion that also within the experimental data.

relativistic approaches the semiclassical and fully quantum A S|gn|f|ca_nt progress in the self-consistent methOdS has
taken place in the recent years as well. For instance, the

apprpaches give cqn;istent,_ _comparable results._ Sim"‘%—ﬁartree-Fock mass formula of Tondeetral, Ref.[23], that
physical goals but within relativistic Hartree approximation employs the effectivé Sk7 Skyrme interaé:tion was 'able to

have been approached in R¢L6], and sensitivity of the . L : .
final result topi?[he related phéysigzal quantities S)l/JCh as thereprOduce the 1888 experimental binding energies with the

. . - . : rms deviation of 0.738 MeV. This rms deviation increases to

(in)compressibility coefficient and nucleonic effective-mass

has been discussed. A detailed, recent analysis of the prob-_

lem of the surface and curvature energies using Skyrme-type, L

. : L - : The curvature-energy contribution is not the only term propor-

|nFergctlons, but aiming prlnCIpaIIy at the astrophysical ap_tional to A3 the nuchZr matter compression mecrz/anism Ipeags to

Frlllec):?etilr?ns can be found in Ref17], see also references the sameéd—but a different deformation dependence. We have veri-

) . fied by two independent fitéhe one that contains the first-order

Let us stress that the above mentioned developments a@

d d fi f all th bl f . f relati urvature effects but ignores the compression energy contribution
ressed first of all the problem of an existence of re atlon'and another one that takes simultaneously into account both of these

sh|p§ between the_ nuclear curvature energy and a _m'chEérms) that the final results for the mass and fission-barrier fits are
scopic representation of the nuclear forces; together with thgery similar in both cases. More precisely, in the latter case the
curvature coefficient turns out to be nearly twice as large as in the
former, but its increase is compensated by an opposite sign contri-
Throughout the paper, we use the following definition of the rmsbution from the compression. We conclude that the model does not
deviation, y= \/1/(n—1)2j”:1(fj—fje"pt)2, where ff"pt denotes  provide enough sensitivity at present to distinguish between these
the experimental value at the data pgirindf; is the correspond- two mechanisms. In the present analysis, the compression effects
ing calculated value. are not taken explicitly into account.
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~ Antony [20] respect to this cutoff, we have performed additional test
Greona B Sabilty e <-—te- | minimizations using the Trentalange-Koonin-SiefkKKS)

114

g family of shapes defined in R€27]. The multipole and the
- TKS parametrizations clearly differ, yet the resulting fission
barriers almost coincide when number of {ig parameters
is sufficiently large. Going beyonx,,,,= 14 does not change
the final fission-barrier results in the studied cases by more
than a couple of 100 keV for the highest barriers calculated
here, i.e., in theA~80 mass range, while for the heavier
nuclei the modifications are of the order of 12 keV, an accu-
racy totally sufficient in the present context.

It turns out that, to obtain a given accuracy one needs
typically twice as many multipoles as TKS deformation pa-
2 o rameters. However, we found out that {Bg parametrization

28 2028 50 82 126 184 is easier to handle than the TKS one, when performing the

N numerical minimization of the potential energy surfaces.
More precisely, in constructing automatic algorithms of
minimization over the nuclear shapes, it is important to as-
"Bure its stable behavior when moving in the deformation
space. As it happens, various parametrizations lead to differ-
ent behavior in this respect. In particular, when approaching
the limits of applicability of the shape parametrizati@ng.,
only 0.828 MeV when one makes the comparison with 2766he deformation-parameter values for which the distance
experimental masses taken from the tdi28). from the origin of the reference frame to the points on the

At present, the self-consistent and the macroscopic-surfac_e approaches ze¢mlso some derivatives |nvoIV|_ng de-
microscopic methods play both their important roles in theformation parameters have a tendency to vary rapidly, thus
nuclear structure calculations. While the latter are very wel€stabilizing the minimization algorithm. Direct calculations
suited, for, e.g., the “automatic” large scale calculations ofShow that the tragj|t|onal multipole parametrization offers
the total nuclear energy surfaces, fission barriers, high spif'ore Stable behavior as compared to the one by Trentalange-
properties, shape-isomerism studies, and/or numerous e&o0nin-Sierk of Ref.[27] and thus faster algorithms. This
cited particle-hole configurations; the former are extremely?€COMes important in the detailed Strutinsky calculations,
useful in the detailed theoretical description of the nucleafVhere 20—30 deformation degrees of freedom are treated at
states whose global features are already known. The simpli¢h® same t|mé.NeedIes§ to say, no result of this paper de-
ity of the macroscopic nuclear drop formalism together withP€nds on any of those “technical” details.
the clear physical meaning of its parameters add definitely to Diréct calculations show that the Yukawa-folded-
its attractiveness. It is easy to apply and thus frequently usedfiteraction model, which gives rather reasonable estimates of
in particular, in estimating the fusion and fission cross sect€ fission barriers, is too soft in directions orthogonal to the
tions in heavy ions reactions. fission path _espemally gt the large r_luclear eIonganon. It will

A particular motivation for the present work is to obtain a P Of great interest, trying to combirtand we will demon-

new set of parameters of the liquid-drop model adjusted t$trate that it is possibjean improved description of the fis-
the up-to-date experimental masses and fission barrier§iOn barriers together with a better description of the above
while taking a particular care of the surface-curvature aspect&€ntioned stifiness behavior within one single approach.
of the model. This is of special importance when studying 1€ Paper is organized as follows. The actual version of
the exotic nuclear shapes, such as the nuclear hyperdeformia® liquid-drop model used is described in Sec. II. In Sec. Il
tion and/or the nuclear path to fissi¢e.g., the bimodal or W& SPecify the way in which the parameters were deter-
more complex fission phenomena mlr!ed, and we present the best sets of parameters for various
A starting point of our analysis is the well known tradi- Variants of the LD models. _ _
tional liquid-drop nuclear mass expression of Myers and Our results concerning the f.ISSIOIj barriers are presented in
Swiatecki (MS-LD) [24]. This expression was quite success->€C- V. The paper is summarized in Sec. V.
ful in reproducing the nuclear masses, but it is known that in
the light nuclei it overestimates the fission-barrier heights by
up to about 10 MeV[25]. The MS-LD barriers are also
higher than those evaluated by Si¢#6] within the Yukawa- We are going to recapitulate briefly the main ideas of the

folded-interaction macroscopic model. leptodermous expansiof28] of the energy-density func-
It is obviously important to assure the stability of the final

result with respect to the cutoff in terms of the number of

multipoles used. All the fission-barrier heights presented in 3modern versions of the Strutinsky method depart more and more
this paper were obtained by minimizing with respect to thefrom the deformation-mesh technique by using the explicit
deformation parameters, of even\ up to Apo=14. In deformation-minimization technique in which case their functioning
order to test the stability of our minimization procedure with becomes more similar to the constrained Hartree-Fock methods.

82

50

FIG. 1. The chart of isotopes for which the experimental binding
energies are known. The crosses correspond to data from the co
pilation of Antony[20], while black squares to the data from Ref.
[19] on which the analysis of Myers andvitecki [18] has been
based.

II. LIQUID-DROP MODEL AND MICROSCOPIC
ENERGY FUNCTIONAL
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tional, in order to introduce the presentation of the role of the 20 i i i 1.4
nuclear surface-curvature terms. Within this model the
nuclear part of the total energy of a nucleus can thus be given
by the well known expression
10 | 113
E=Dbyy A+ bsurfA2/3+ bcurA1/3+ bcurGAo+ S 1) = —_
T £
the Coulomb part will be introduced later. % °
It is instructive to study the properties of expressiahin
. . i 0t 112
the case of spherical nuclei for which the leptodermous es-
pansion of the energy functional can be written as follows:
E=b A+f —byop)d3r 2 -10 : - L 1.1
vol V( 7= byap) (2a 0 10 20 30
) beyr [MeV]
o r
=bygA+ L R*dQ fo (ﬂ_bvolp)ﬁdr: (2b) FIG. 2. Interplay between the first-order curvatutg,(, hori-

zontal axi3, the surface lf,,), and the second-ordéGaus$ cur-
vature Q..o terms evaluated in the leptodermous expansion
aroundR=r A of the ETF energy functional obtained with the
Skyrme forces (SkKI) for 10%Sn  (thick lines, by

whereR (usually represented @&=r,A) is the radius of
the spherical surface, is the one-body density of the nuclear

matter _in nucleus, a”‘?” is the energy density. =—15.387 MeV) and®**Sn (thin lines,b,,= —14.289 MeV). The
Making use of the identity, corresponding values of, refer to the right-hand side ordinate axis.

- 1+ 2 R)+ ! R)? (3 ”

—=1+=(r— —(r—R)%,

r TR re! To= [ (r-bupiar, (6a)
one can rewrite the remaining surface-related integral and "
transform the energy expression as follows: Ilzf (7—bygp)rdr, (6b)

0
E=b,,A (43
B T =f (p—bygp)radr (60)
+ f R2d0) f (7= bygp)dr (4b) 2o T
) 0

- are radial moments associated with the nuclear surface layer.
+f 2Rdﬂf (n—Dbygp)(r—R)dr (4c)  Relation(5) allows to find, among others, a dependence be-
= 0 tween the curvature, surface, and Gauss-curvature terms that
" follow from the ETF method. To staryy andp [see Eq(2)]
+J dQJ (p—bygp)(r—R)2dr. (4d)  are calculated using ETF method with Skyrme (SWM
3 0 forces of Ref[29], wherefrom the integralg,, Z;, andZ,

i , ) are obtained. Next we proceed as follows: from Ejj, for
Above, expressiongib)—(4d), contain terms proportional to g5 predefined value ob,, we write down equality

R?, R, andR?, respectively, thus at the same time, propor-p  a2%—gnR(Z,—Z,R) and, givenZ, andZ,, we deduce

i 2/3 1/3 0 ! !

tional to A", A™, and A" In the present context, they the jmpliedR value. The latter quantity known was inserted
should be interpreted as representing the surface, curvaturggq b AP=47R2Z, and bg,A'=4m(Z,— 2RI,
and Gauss-curvature contributions, correspondingly. The. R27y and deduce,,; and b, . Results of these opera-

nuclear part of the total energy of a spherical nucleus Calions are presented in Fig. 2 f87%Sn (thick lines and 13%Sn
thus be written down as (thin lines tin isotopes. It is seen from the figure that the
E=b,y A+47R>Ty+87R(T,— TyR) surface energy becomes smaller when the curvature constant
grows. The radius constant corresponding to the leptoder-
mous expansion and evaluated via relatiBreroAYS is

2/3 1/3 . . .
bousd bouA marked on the right-hand sideaxis.
Finally, let us observe the following interesting property.
+47(Z,— 2RI, +R*Ty), If we choose radius paramet& in such a way that the
Gauss-curvature terfief. the last term in Eq(5)] is minimal
ie.,
bcurGAO (5)
where the above mentioned correspondence relations are Rzﬁ’ )
marked explicitly, and where Iy
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then the first-order curvature tefte third one in Eq(5)] is 30 : : : 1
equal to zero. Even though we are not going to impose this
condition in what follows, it is instructive and helpful in | , =zzoo- sl —=
analyzing the related description of the nuclear masses to 15 |
know about the existence of the above correlation, especially AT —
when examining the role of the second-ord@aus$ curva-
ture term.

The above observations confirm and illustrate the fact that
the curvature terms in the nuclear energy are strictly related

.
o
o1

b [MeV]
o
o
<03B(Z,A) > [MeV]

to the surface term as suggested in Sec. Il, within a general 15 | . 05

introduction and that one cannot discuss them separately. An T

increase of the first-order curvature energy causes a decrease |

of the surface tension and vice versa. These observations will 34 . . . 1

have consequences for the fitting procedures applied below. 1.18 1.2 1h.22 1.24 1.26
roo [fm]

IIl. FITTING THE LIQUID-DROP MODEL PARAMETERS
L i o FIG. 3. Dependence of various liquid-drop model terms ob-
Our aim is to find the parameters of the liquid-drop modelsineq by the least square fits to the experimental masses as func-
which correspond to the leptodermous expansion of th@ons of the Coulomb radius constarff’. The corresponding rms
nuclear energysee Eq.(1)] and the Coulomb energy of a deviation of the differences between the theoretical and experimen-
charged nuclear drop with a diffused surface. We are goingal binding energie¢sB) refers to the right-hand side ordinate axis.
to consider separately four variants of the liquid-drop model:

(&) The one of Myers andWdiatecki, Ref.[24], with its origi- We begin by presenting the main features of the liquid-

nal fit of parameters, referred to as MS-L() similar to the d d d h ¢
above but with the newly fitted constants, the fit using the?"OP €nergy dependence on the surface-curvature terms.

contemporary experimental dataset and the microscopic en-
ergy corrections—this variant referred to as LDM(c) the
modernized version of the liquid-drop model that contains
the Gauss-curvature term, in the following referred to as
“new,” NLD; and (d) similar to the above but containing the ~ We assume, in accordance with the usual rules of the
deformation-dependent first-order curvature term—this variliquid-drop model approaches, that the mass of an atom with
ant referred to as Lublin-Strasbourg version of the nucleaZ protons,Z electrons, andN neutrons is described by the
drop energy formula, abbreviated to LSD. following relation(cf. Refs.[18,24):

A. Liquid-drop masses with curvature terms:
Characteristic features

M(Z,N;def)=ZMy+NM,—0.000 014 32%3%+ b5 (1 — kyo | D) A+ byl 1 — kel 2) AZ B def)

2\ A 1/3, 2\ A0 3 2 22 22
T beud 1= Keur VAT Byl def) +beyra(1— Ko DA™+ ge rgh—AlBBCOU'(def)_C“K
+Emicr(Z:N;def)"'Econg(ZrN)r (8)
|
where Econg= — 10 MeV exgg —421//10). (10)
Emicr= E pairt Eshel (99  The term proportional t&?3° describes the binding energy

of electrons. The surface diffuseness of the charge distribu-
is the microscopic energy containing the contributions fromtion reduces the Coulomb energy proportionallyZfgA.

pairing and shell effects coming from the protons and from In order to investigate the interplay between the Coulomb
the neutrons. The congruence energy according to [R8F. a!’ld .nuclear energies when trying to reprodl_Jce the nucler_;tr
is equal to binding energies, we have performed a test fit to the experi-

mental data from Ref.20] for various choices of the charge
radius constanrgh. The results are presented in Fig. 3,
“To be able to compare our results with those of the quoted auvhere several terms of the liquid-drop model are plotted as
thors, the microscopic energy corrections for the lightest nucleifunctions of r§". The root-mean-square deviation of the
more precisely, those with< 29 andN< 29, were taken from Ref. binding energieg B) is shown referring to the right-hand
[18]; those for all heavier nuclei from Reff21]. side vertical axis. Surprisingly, the quality of the fit depends
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only slightly on the choice ofgh but the magnitudes of the son, the old values of the parameters taken from the above
first- and of the second-order curvature terms change draeference are given in parentheses,
matically withr§". It is seen that for$"~1.2 fm both cur-

vature terms are small since they both change sign near the byoy =—15.8484 (—-15.667 MeV, (129
abover§" value.

The results in Fig. 3 show that it is rather difficult to fix by~ 19.3859 (18.56 MeV, (12b
the Coulomb radius parameter from the binding energies
since the corresponding dependence is a flat function. Trying Ko = 1.8475 (1.79), (120

to deduce the related curvature contributions when varying
both curvature terms is not very easy either, since the em-

pirical rgh value is expected not to differ very much from the Ksur=1.9830 (1.79), (12d
mentioned special value of about 1.2 fm for which,, and ch

beurs are small(pass both through zerounder these condi- ro =1.18995(1.2049 fm, (129
tions the fit to the fission-barrier heights could give a valu-

able additional criterion. In the next sections, we are going to C,=1.19949 (1.21129 MeV. (12f)

present the results of the fit of the parameters of the tradi-

tional (i.e., without the curvature termsiquid-drop model  The rms mass deviation corresponding to the new set of pa-
energy expression to the experimental masses and the liquiggmeters and the microscopic corrections from Ret] is
drop model with the curvature terms, where the parameter§5M>:o_732 MeV; an analogous quantity for the old set of
are adjusted either to both the measured ground-state massgg |iquid-drop parameters and the same microscopic correc-
and fission-barrier heights, or to the measured ground-staigyns is (6M)=4.477 MeV. The rms mass deviation ob-
masses only. tained with the new parameter set is comparable with that of
the Thomas-Fermi modek §M)=0.757 MeV) and proves
that the liquid-drop approximation can reproduce the nuclear
masses with a comparably high accuracy.

Let us observe that neither the old set of the liquid-drop

Exactly the same mass expression as that of the MS-LIparameter§MS-LD) nor the new onéLDM) is able to re-
of Ref.[24] but with the microscopic corrections for defor- produce correctly the magnitudes of the experimental fission
mation, pairing and shell effects treated as in R2l] and  barriers. The discrepancies between theoretical and experi-
the new estimate of the congruence energy,{y, Ref.[18]) mental fission-barrier heights of 40 nuclei that can be found
was used to obtain the best fit to the 2766 empirical bindingn the published literatureare presented in Fig. &or the
energies from Refl20] of the isotopes with the proton and sources, cf. Ref§18,22,3(Q and references quoted theréo
neutrons numbers larger or equal to eight. Following a pracextract the barrier heights from the experimental, we have
tical recipe used in Ref18], when adjusting the parameters used a similar prescription as that in REZ2], namely, we

B. New parameters of the traditional Myers-éNiatecki
liquid-drop energy expression

of the macroscopic model energy expression define the barrier heighVg as a difference between the

‘ 539 liquid-drop saddle-point energy and the ground-state energy
M(Z,N;def)=ZMy+NM,—0.000014 32~ deduced from the ground-state masses. It is seen in Fig. 4

2 2\ p2/3 that the traditional MS-LD model overestimates the barrier

T Buol(1= Kyat DA+ Dourf( 1~ sl A heights of the lighter nuclei by about 10 MeV and by about

3 @272 72 3—-4 MeV those of the heavier ones. Our new fit of param-

gch—llg—Cﬂ,KﬂLEdef(Z,N) eters of this traditional LDM overestimates the barrier

ro A heights even more significantljFig. 4). Does it mean that
+ Epai( Z,N) + Egnef( Z,N) + Econd Z,N), the liquid-drop model is unable to reproduce with a more

respectable accuracy the positions of the fission saddle-point
(12) energies? In order to answer this question, we have per-
formed additional tests in which we have made either a si-

. . , multaneous fit of the liquid-drop model parameters to the
we take into account the nuclear deformations. In particular,

the macroscopic part of the total energye; is taken from

tables of Ref[Z;] (Egeris defined as the dlfferencg .be.tween SIn this paper, we use only those experimental barrier heights that
the macroscopic energy of a nucleus at the eqL_JIIIbrlum dec':an be found in the published sources; they correspond to 40 nuclei
formation and the energy of the Sf'i_me but Spherlcal nUCIeu§\7ith 75<A=<252. This information concerns four relatively light
plus the sum of the shell and pairing energies taken at thg,qej, viz., 52Br and °*%* Mo and the whole rest of nuclei clearly
actual equilibrium deformatignThe same approximation is separated in terms a (z>70). The barriers of these four lightest
used when fitting the parameter sets of other variants of thgyclei present the same type of difficulties for all the variants of the
model presented in this paper. model, including that introduced in this papg&SD). As far as the

The new set of parameters obtained by fitting the nucleaparriers ofzZ> 70 nuclei are concerned, some variants of the model
massegbut not using any information about the fission bar-describe them very well, some variants are clearly less satisfactory
riers, similarly as in Ref{24]), is given below. For compari- (for details see below
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"MS-LD <ovy> - 430 Mev o8> = 4477 Mev = TABLE I. The parameters of the liquid-drop model fitted to the
16 | o <8Vg>=7.08MeV <3B>=0.732MeV O measured atomic masses ofilpM and LSD) and to experimental
3 barriers heights and mass@éLD).
— 12
g Term Units  LDM NLD LSD
s 81 Byol MeV —15.8484 —15.4721 —15.4920
°’>m Kyol 1.8475 1.6411 1.8601
£ 47 [ MeV  19.3859 17.0603 16.9707
> Ksurf 1.9830 0.7546 2.2938
0 Beur MeV 3.8602
Keur —2.3764
41 . . . . ] beurs MeV 10.3574
15 20 25 30 35 40 Keurg 13.4235
72 o fm 1.18995 1.21610 1.21725
C, MeV 1.1995 0.7952 0.9181
FIG. 4. The differences between the theoretical and experimery sg) MeV 0.732 0.814 0.698
tal fissiqn-barriers heigth obtained With the traditional MS-LD 8Vg) MeV 7.08 1.90 3.56
[24], solid symbols, and its modern version LDM, open symbols,<5VB>(Z>70) MeV 5.58 1.56 0.88

obtained by the new fit to the presently known masses, and micro-
scopic corrections from Ref21]. No information on the barrier
heights has been used in the fitting procedure in this case.

petition between the surface and Coulomb contributions

experimental masses and fission-barrier heights, or the fi@nly, very much like in the traditional liquid-drop model ap-
limited to the nuclear masses. The results are presented in tigoaches. When discussing the particular case of spherical
next sections. nuclei(but the conclusions drawn apply to some extent to the
moderately deformed nuclei as welit was shown, cf. Egs.
(4)—(6), that if one setd,=0 then necessarilp.,c# 0.

. . L . To fit the parameters of the model in this case, we use the
The purpose of the following discussion is to examine thefact that only some of them influence the fission barriers and
influence of the two curvature terms introduced earlier y

through relationsg(1) and (8). We would like to adjust the we proceed as follows. First, for each value of the charge

parameters of the curvature-extended liquid-drop model botfdius (5", we fix the surface coefficients,andrsuf, by
to the huge body of the experimental nuclear binding enermf?k'”g the Iea_st square fit to all experimental f|_SS|on-barr|er
gies known today and, if necessary, to the experimentdieights listed in Ref[18]. Then the charge radius and all
fission-barrier heights. The nuclear mass expression of E@ther than the surface-tension LDM parameters in 4.
(8), compared to that by Myers andvtecki in Eq. (11), including the Gauss-curvature term, are adjusted by the least
contains the curvature terms of the first and of the secondquare fit to the experimental binding energies of 2766 iso-
orders. The fit to the experimental masses and fission-barriéopes withZ,N=8 taken from Ref[20].
heights will be performed in three different ways: the one The parameters of such an NLD formula are listed in
where only the second-order curvature term was includedlable I. The mean-square deviation of the theoretical and
another one with the first- and the second-order curvaturexperimental binding energie&sB)=0.814 MeV is only
terms, and finally, the one with the first-order curvature termslightly larger than that of 6B)=0.732 MeV, obtained with
only. In particular, it will be shown that taking into account the refitted parameters of the traditional LDM model as de-
the Gauss-curvaturesecond-ordgrterm, which isA and de-  scribed in Sec. Il B. However, the fission-barrier heights are
formation independent but may possibly introduce a strong,o\w much better reproduced. The rms deviation of the bar-
dependence on the isospin factor (N—Z)/(N+Z), im-  yier heights for all treated nuclei {$Vg) =1.90 MeV, while
proves the quality of the mass fit provided the surface tensg, the LDM we found(8Vg)=7.08 MeV (see in Fig. 4
sion and related coefficients were fitted to the fission bamerﬁncluding the isospin-dependent Gauss-curvature term im-
It influences indirectly the.fission-barrier heights throug.h aNproves the agreement with the experimental barrier heights,
extra (Z,N) dependence in all other simultaneously fittednevertheless the corresponding new set of parameters does
parameters. _ _ not reproduce perfectly the barriers. It is seen in Fig. 5, open
We _proceed to discuss the results of the three variants ngmbols, that the barriers of the light isotopes<(100) are
the fitting procedure separately. overestimated by about 4 MeV and the barriers of nuclei
with A~ 180 are underestimated by about 3 MeV, while the
barrier heights of the heaviest nuclei are overestimated by, on
In order to study the effect of the Gauss-curvature ternthe average, 1.5 MeV. Thus our procedure provides, on the
alone on the liquid-drop energy expression we set the firstaverage, an improved fit to the experimental fission-barrier
order curvature term to zerbg,=0, thus assuming for the heights, but it does not reproduce very well neitd&tA nor
moment that the barrier heights can be described by the con# dependence of them.

C. Liquid-drop model with curvature terms

1. Gauss-curvature term
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LSD <tvg>=0.88Mev <oB>=0698Mev = The next attempt, according to the procedure that employs
16 ¢ NLD <&vg>=156Mev <eB>=0.814MeV & | both curvature terms was to fit all ten parameters of the
model, Eq.(8), to the experimental binding energiesly.
=~ 12 1 This lead to the rms deviation from the experimental masses
2 equal to 0.693 MeV, but the fission barriers obtained in this
- 8¢ 1 way were up to 20 MeV, too high for the light nuclei with
S, A<100, while for the heaviest nuclei they were by about 2
= o4t 1 MeV, too small. These unsatisfactory results lead us to ex-
o amine more thoroughly the use of the first-order curvature
> o TR : . o
0 s BET‘ l‘mﬁ'ﬁ ] term only i.e., by setting by definition the Gau;s—curvature
m%l S term to zero, as discussed in the following section.
4L " " L " 3. First-order curvature term and the LSD parameter set
15 20 25 30 35 40

It turns out that the liquid-drop model, which in addition
to the volume, surface, and Coulomb terms contains only the

FIG. 5. Differences between the theoretical and eXloelrimema]‘irst-order curvature term gives the most satisfactory results,

fission-barrier heights obtained with an NLD model containing no@S Presented below. The parameters of this LSD variant of
first-order curvature terrfopen symbolsand with the LSD model the macroscopic model are fitted to the nuclear masses and

that contains the first-order curvature tefsolid symbols. The  hotto the fission barriers. The LSD parameters obtained by
LSD parameters were adjusted to the experimental binding energiditing to the 2766 experimental masses of R20] are listed
only, while the NLD ones were fitted to the measured fission-barriein Table I. The differences between the theoretical and ex-
heights and to the masses. The rms deviation for the LSD barriers erimental barrier heights are presented in Fig. 5, full sym-
3.56 MeV, but reduces to 0.88 MeV when the lightest four nucleibols. Now the mean-square deviation of the binding energies
are disregardedFor these four nuclei the congruence effects, thatamounts to( 6B)=0.698 MeV, while the mean-square de-
are not a part of the traditional liquid-drop model considerations,iation of the barrier heightésVg)=3.56 MeV; but it de-
are most likely important. creases to only 0.88 MeV when the four lightest nuclei are
disregarded i.e., when only the nuclei with>70 are con-
Below we show that a possible remedy is to include thesidered.
first-order curvature term. As it is seen the parametrization of the barrier heights for
heavier nuclei withz>70 is improved considerably. The fis-
sion barriers obtained with the LSD model are closer to the
experimental ones as compared to analogous results obtained
It is known that the light nuclei have saddle points at veryin Ref.[18] with the Thomas-Fermi modéMS-TF); this is
elongated shapes, whereas the saddle points in the actinigRistrated in Fig. 6, top. The difference between the MS-TF
and trans-actinide nuclei correspond to rather compactand the measured barriers are plotted in the bottom part of
shapes. The surface and curvature terms depend on deformi@g. 6. It is seen that for heavier nuclei the agreement be-
tion in a very similar way for small and even moderate de-tween the experimental data and the LSD fission barriers
formations[31], while at large deformations the differences (Fig. 5) is even better than that for the MS-TF model, while
become pronounced. This feature will be used to improve theor the light isotopesA< 100) both models give comparable
description of the barriers. fission barriers, but higher than the experimental ones by
Performing the least square fit to the experimental fission~ 10 MeV. This large discrepancy between the theoretically
barrier heights for a fixed charge radiug) we have ob- predicted fission-barrier heights and the measured values for
tained the surfacdyg,and«g,s, and the curvaturdy.,,and  light nuclei could originate from the fact that their fission
koyr cOefficients, all other parameters being insensitive to théarriers are very broad and the saddle points are very close to
barriers. The charge radius constant as well as the rest of thRe scission points. At such configurations it could happen
parameters of the deformation independent terms in(&q. that the negative congruence enetggarly doubles, as sug-
were obtained as before by the least square fit to the knowgested in Ref[18], and as a consequence the fission-barrier
experimental masses of RgR0]. The rms deviation from heights calculated within such an approach could get much
the experimental data obtained with such a procedure isloser the experimental ones. Here we do not examine this
0.844 MeV for 2766 masses and only 1.06 MeV for thetype of effects because the microscopic origin of the congru-
fission barriers. The parameters obtained through this procence effects exceeds the framework of the classical model.
dure give a very strong dependence of both curvature terms The role of the curvature term together with its depen-
on the reduced isospin, i.e., the correspondingpefficients  dence on isospin needs to be still analyzed in more detail. We
are large. We findb.,=—8.219 MeV, «.,=38.92, and shall examine the above questions in the following section.
beurc=21.82 MeV, kq,,c=25.0. This dependence leads to  The calculated LSD masses of 2766 nuclei are compared
the negative first-order curvature contribution for the lightwith the measured ones in Fig. 7. The lines join the points
nuclei (A<130) [recall that the corresponding contribution corresponding to the common-isotope chains. A part of the
is beu(1— keud?), and thus forl? small, the total contribu- observed local discrepancies may originate from the micro-
tion of this term is negativie scopic corrections to the macroscopic energies that were

Z2IA

2. Both curvature terms
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TABLE Il. Root-mean-square deviatiori;n MeV) of the theo-

60 r lsD o retical and the experimental binding energies of isotopes ¥vihd
50 b o g 0 exp. X N greater or equal to 8. The experimental masses are taken from the
0, Audi-Wapstra table$1654 isotopesand from Antony[20] compi-
40 | * lation (2766 isotopeks In the first column, the numbers of experi-
% * mental masses are indicated as used when fitting the parameters for
= 30}t go the LSD variant of the present article as well as for the Thomas-
o %%g Digum Fermi and Hartree-Fock with Skyrme parameter set MSk7. The
20 + °© &0 ﬁé second and third columns contain the performance test and the “ex-
t trapolation test” for the fits with the numbers of masses given in the
10 r
gmﬁm head of those columns.
0 . . . . Model rms(2766 rms (1654
15 20 25 30 35 40 Lsp(2766 0.698 0.610
Z%In LSD(1654 0.711 0.600
. TF-MS(16549 0.757 0.655
16 | <0Ve>=170Mev 4 MSk7(1888 0.828 0.738
<8B> = 0.757 MeV MS-TF
— 12t .
% ergy by ~+0.5 MeV. The effect of deformations that are
=) g L i different for the proton and neutron distributions can be in-
g corporated to the macroscopic-microscopic models by intro-
< al | ducing an additional term; this aspect is not going to be
E'm developed in the present paper. The form and magnitude of
> HHH Hﬂ; — the term responsible for the change of the macroscopic en-
0 o L db) ] . . .
ergy due to the deformation difference of both kinds of par-
ticles was estimated in Refl35] within the extended
4 . . . . ] Thomas-Fermi model with the Skyrme forces.
15 20 25 30 35 40 To estimate the "performance stability” of a given param-
Z2IA eter fit it is instructive to examine, among others, how a
given mass formula fitted to a certain “narrow” mass range
FIG. 6. Experimental fission-barrier heightésee Refs. performs in an extended mass range and vice versa. For in-

[18,22,3Q and references cited thergirasterisks, compared to the stance, with the LSD parameter set fitted to 1654 isotopes
theoretical ones obtained with the LSBircles, and the Thomas- from the Audi-Wapstra tables we may predict the 2776
Fermi models of Ref[18], open squaresitop). The differences masses corresponding to the compilation of Antf2g] and
between the Thomas-Fermi and experimental fission-barrier heigh1§y taking the corresponding differences we may calculate the
are plotted in the bottom diagram. implied rms deviations that illustrates the “predictive

power” of the model and its parametrization. Such a com-

evaluated in Ref[21], assuming the same deformations for parison is presented in Table Il for the LSD parameter set as
the proton and neutron distributions. The self-consistent cawell as for two other models indicated. For comparison, also

culations made in Ref$32,33 show that in the ground state, an inverse test has been examined i.e., estimating the perfor-
the proton and the neutron distributions are not equally demance quality when going from a broader mass range to a
formed. A rough estimate made in Rdf34] within the  narrower one. Results in Table Il indicate among others a

Hartree-Fock-Bogoliubov approximation with the Gogny remarkable stability or “predictive power” of the LSD ap-

force shows that this effect can change the ground-state efroach. By fitting the parameters to the 1654 masses and
predicting the result for the 2776 masses, we obtain the rms

deviation of 0.711 MeV, i.e., only 13 keV worse than the

% 4t ] direct fit to the 2776 masses, the latter giving the rms of
= 0.698 MeV.

o
253 ot _

N IV. FISSION BARRIERS AND PROPERTIES

a a4l ] OF THE POTENTIAL ENERGY SURFACES
= : : : AROUND THE SADDLE POINTS

0 40 80 120 160

It is interesting to compare the fission-barrier profiles ob-
tained with different parameter sets of the liquid-drop model.
In Fig. 8 the fission barriers obtained with the traditional
Myers-Swviagtecki (MS-LD), with the new Gauss-curvature
dependent(NLD), and that with the first-order curvature

FIG. 7. Difference between calculatgtiSD) and measured
(expt) masses for 2766 nuclei from the tables of Antgag). Lines
connect the isotopes of each given element.
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40
8 L T Yb N=110
30 +
4t - . = N=90
% ™ MS-LD %
= Z 20t
> of . b A >
10 +
-4t LSD MS-LD
O -
-8 L L L L L L L L L L L
0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 3
R12/Ro R;5/R,
8 r E 40 |
4 r b 30 r
% 3
2 0 1 S 20t
> >
4t 10
-8 E 0F
0.5 1 15 2 25 0.5 1 1.5 2 2.5 3
Ry,/Ro R12/Ro
FIG. 8. Liquid-drop fission barriers fof*2Th (top) and 2*°Pu FIG. 9. Liquid-drop fission barriers for Ytterbium nuclei accord-
(bottom) obtained with the LSD, NLD, and MS-LD sets of param- ing to the traditional(MS-LD) approach(top) and the curvature
eters. dependent formulation of the liquid-drop model with the LSD pa-

rametrization(bottom. According to earlier predictions the Ytter-

term (LSD) liquid-drop models are plotted fof*?Th (top) biL_lm range nuclei are likely to be s_ufficie_ntly stable at the high
and 2%y (bottom. It is seen that in spite of the differences spins to form the hyperdeformed configurations and the correspond-
in the barrier heights the slopes from the saddle to scissiol?9 rotational bands.
points are similar in all three approaches. The barriers are
plotted as functions of distané®,, (in R, units) between the
fission fragments. Each barrier point was minimized withexamples the stiffness of the potential energy surface with
respect to all everB, deformations withh <14. respect to higher-multipolarity deformations for the elonga-
The neutron number dependence of the fission barriers dfons that are close to the saddle and/or scission configura-
Yb isotopes evaluated with the MS-LD and LSD parametetions.
sets are presented in Fig. 9. This nuclear range is of particu- This latter aspect is very important in the studies of, for
lar interest for the hyperdeformation studies and several, se.g., multipath fission mechanisms, where the shell energies
far unsuccessful experimental tests have been already aterresponding to the relatively exotic(e.g., high-
tempted. Each curve is drawn up to the deformation poinmultipolarity) deformations may provide competitive fission
close to the scission point. It is seen that the LSD barriemechanisms. Such a problem arises also at high spins and
heights are a few MeV smaller than those of MS-LD modeltherefore will also become important for the new generation
and that they grow slower with neutron number. Also, theof the calculations aiming at the hyperdeformation effect. In
MS-LD barriers are “shorter” than the LSD ones. The Fig. 10, the cross sections of the potential energy surfaces
fission-barrier profiles and their correct description togethepbtained with the MS-LD and LSD approaches on one hand,
with the saddle-to-scission path length are important whemnd with the Yukawa-Folded energy expression with param-
studying the properties of, for e.g., super or hyperdeformedters from[36] on the other hand, are plotted fdf?Yb at
nuclei. In this paper, we are not going to go into more detailsg3=2 as functions of3, (top), B¢ (middle), and3g (bottom).
leaving the corresponding discussion to a forthcoming papeit is seen that the stiffness properties with respect to these
Instead, we would like to examine and illustrate on somedeformations are almost the same in the case of the first two
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e | 6  Voceresy . ,;l:.., Vg (NLD) + Epyer |
e ’,B-_q 2
40 r 1 \"--e“d‘, Vg (NLD)
~ g’
2 >
S 35+ I = Ve (LSD) + Epier
> N N
30 ¢ i % Vg (LSD)
25 | ] Or
140 150 160 170 180
N
FIG. 11. Fission-barrier heightég of Fermium isotopes evalu-
45 + E ated as the difference between the liquid-drop saddle-point energy
and the ground-state energy containing the microscopic corrections.
The solid lines with the full dots correspond to the barriers calcu-
40 lated with the curvature dependdhiSD) model, while the dashed
= lines with open circles represent the barriers calculated with the
g 35 | i liquid-drop model without curvature terfNLD). The difference
: between the full and the dotted lines is equal to the ground-state
microscopic correction taken from the tabl@4]. The fission bar-
30 : riers obtained within the extended Thomas-Fermi model with the
Skyrme interactiofETFSI) [38] are drawn for comparison.
25 .
proachep and varies only weakly in terms of the higher-
order multipoles. This very strong indifference of the YF
approach with respect to significant variations of the nuclear
surface at strong elongation was considered for some time
already as a weakness of the latter approach, cf. [3&f.
45 . In Fig. 11 the fission-barrier heights of several Fm iso-
topes calculated with the LSD and NLD sets of parameters
20 - i are compared with the fission-barrier heights obtained in Ref.
[23] within the extended Thomas-Fermi model with the
% Skyrme interactiofETFSI). It is seen that the barrier heights
2 3571 ] obtained with the NLD and LSD parameters are close to each
> other for the light Fm isotopes, while for the heaviest ones
30 | i one may notice a significai8 MeV) difference between the
two families of the barrier heights. This decrease of the bar-
rier heights with increasing neutron numhérobtained in
25t 1 the LSD model for heavy Fm isotopes is confirmed by the
- - - ETFSI resultd 23].
-0.4 -0.2 0 0.2 The logarithms of the experimental lifetime$g;, are
Bs plotted for comparison, in Fig. 12. It is known from the

macroscopic-microscopic type of calculations that it was al-
FIG. 10. Traditional(MS-LD) and curvature depende(itSD)  most impossible to reproduce the spontaneous fission life-

liquid-drop energy of'’?Yb around the saddle poin3,=2.0, 8,  time T systematics for the chain of Fm isotopes. For the
=0.582, 8= —0.058, 8= —0.108,810= —0.001,3,,=0.020) as  majority of the theoretical calculations, the spontaneous fis-
a function of the deformatiof, (top), Bs (middie), and Bg (bot-  sjon lifetimes of heavier Fm isotopes are too long, while for
tom). For comparison the Yukawa-Fold€dF) macroscopic model e light and medium-heavy isotopes they are relatively well
results are shown. reproduced. An attempt in Rdf39], within the macroscopic

model that contained no curvature terms confirmed the exis-
compared models. The YF approach cannot distinguish itence of the same deficiency. Such a discrepancy in the sys-
any significant manner between, s#;,=0.5 andB,=1.0 tematics originates probably from too stroNgdependence
(the corresponding energy difference is smaller than 1 Me\of the macroscopic fission-barrier heights; a new parametri-
compared to about 5 MeV in the case of the other two apzation can be seen as a step into a right direction.
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The LSD variant of the liquid-drop model contains the
al i term proportional toA*? (first-order curvature terinrand no
Gauss-curvature term. It can reproduce the experimental
binding energies and the fission-barrier heights with an ac-

= or | curacy comparable to or better than the Thomas-Fermi model
< of Ref.[18], or the HF-BCS model with Skyrme forces of
g 4 1 Ref.[23]. Perhaps surprisingly, its parameters are adjusted to
§ Fm the experimental binding energies only—no information
T -8 exp. | about the fission barriers has been used to fit the LSD variant
' parameters. Yet, it gives a correct description of the masses
12 f . and the fission barriers, with the performance comparable to

or better than that of other models. It gives simultaneously
the right systematic of the barrier heights for the isotopes
with Z>70. The most important information about these re-
sults is contained in Tables | and Il of the paper.

Similarly, as in the Thomas-Fermi model of REE8], the
LSD fission barriers of the lighter nucleA& 100) are over-

140 145 150 155 160
N

FIG. 12. Logarithm of the spontaneous fission lifetifmeyearg
of Fm isotopes. The full dots represent the experimental valaoes.

theoretical estimates in Fig. 11 estimated by about 10 MeV. Here our conclusions coincide
with those of Ref[22], where the concept of the congruence
V. SUMMARY mechanism has been discussed to remedy this problem. The

isospin dependence of the surface and curvature terms in the
We have shown that it is possible to reproduce simultai Sp energy expression is qualitatively confirmed by the sys-
neously and with a reasonable precision the ground-stat@matic of the spontaneous fission lifetimes of Fermium iso-
binding energies and fission-barrier heights of nuclei withintopes and quantitatively by the results of the ETFSI model.
the quuid—drop model containing the first- and/or the second- In para||e| with Comp|eting this study, an extension of the
order curvature terms. Out of three variants of the modepresent considerations to the case of the nuclear rotation has
discussed in detail in this paper, the one abbreviated LSeen examined and a number of independent tests of perfor-
(Lublin-Strasbourg dropoffers the highest precision in the mance of the LSD variant of the model through comparison
description of masses and fission barriers; it also has a rgo the measured barrier heights at high angular momenta has
markable stability property with respect to extrapolationpeen advanced. An agreement with the results on fission bar-
from narrower to the broader range of nuclei. riers for a few rotating nuclei has been found comparable to

The traditional(i.e., without the curvature termdiquid- that discussed in this paper for the static ciakd.
drop model energy expression, abbreviated LDM, with the

parameters adjusted to the experimental masses only, repro-

ducgs remarkably well the experimental masses _but gives the ACKNOWLEDGMENTS
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