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Tests of the random phase approximation for transition strengths
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We investigate the reliability of transition strengths computed in the random-phase approxitRRin
comparing with exact results from diagonalization in full ® shell-model spaces. The RPA and shell-model
results are in reasonable agreement for most transitions; however, some very low lying collective transitions,
such as isoscalar quadrupole ones, are in serious disagreement. We suggest that the failure lies with incomplete
restoration of broken symmetries in the RPA. Furthermore, we prove, analytically and numerically, that stan-
dard statements regarding the energy-weighted sum rule in the RPA do not hold if an exact symmetry is
broken.
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[. INTRODUCTION tion of the TDA, which takes into account the residual inter-
action by adding B-2h correlations in the ground statén
Electromagnetic and weak transitions provide importanimportant extension is the quasiparticle RPA or QRPA; be-
probes of nuclear wave functions. Exact numerical solutiongause it accounts for nonperturbative pairing effects, it is
of the many-body Schringer equation are very difficult, so often considered a superior approach. In this paper we re-
theorists have devised a number of approximations. Transktrict ourselves to number-conserving RPAhe excited
tions offer a serious test of the model wave functions, nostates, as in the TDA, remainpilh mixtures. Is this the
only in comparison to experiment but also between approxicase? That is, are the excited stataainly mixtures of
mations. 1p-1h correlations? The answer is no: one knows from SM
One of the most successful approximations is the interactealculations that, for example, the first excited state'50
ing shell model (SM), which diagonalizes an effective has a predominant pt4h character[2], outside the RPA
Hamiltonian in a restricted space, providing good descriptiormodel space. It is therefore not surprising that RPA fails in
of the observed low-lying states for a wide range of masshese situations.
numbers. The SM wave functions successfully describe elec- Despite known limitations, the RPf@r QRPA has been
tromagnetic and weak transitions, in good agreentaliieit ~ widely applied for decades to evaluate spectra and transition
sometimes requiring effective couplingsiith the experi- strengths in nuclei. The reason, aside from computational
mental data; for this reason, in this paper we consider SMimplicity, is that it is frequently, although not alwa},4],
results to be exact. Due to the computational burden thah close agreement with experiment. Thus, RPA was the
increases with mass number, however, fulléd SM calcu-  method of choice for description of negative parity states in
lations are presently limited to light and medium nuclai ( closed shell nucldi3,5—7 and in open shell nuclg¢B]. RPA
<80). and QRPA calculationgsometimes including continuum
Another approximation, which works surprisingly well state$ using phenomenological interactions have been suc-
considering its simplicity, is mean-field theory, e.g., Hartree-cessful in describing the experimental position of giant reso-
Fock (HF) theory. In this approach, the particles are uncor-nanceg9], particularlyE1 [8,10] andM 1 [11] from electron
related and move in an average potential that replaces th& proton scattering, or Gamow-Teller resonanf&g|. In
two-body interaction; the ground state is determined by engeneral, however, the description of low-lying transitions is
ergy minimization. Starting from the HF solution, the Tamm- poor [12,13. Other studies have used QRPA to compute
Dancoff approximationNTDA) constructs excited states by transitions of interest for astrophysics, but did not directly
assuming them to be mixtures of one particle, one holeeompare to experimeiii4,15.
(1p-1h) configurations. The HFTDA is the simplest model What about tests of RPA against exact models? Until re-
for ground- and excited state wave functions. There are alsoently there was no thorough test of the HRPA against an
limitations of this model: the ground-state wave function is aexact nontrivial model for binding energies. We performed
single Slater determinant that can break symmetries of theuch a test for a large number of nuclei and found that, in
Hamiltonian and neglects particle-hole correlations arisinggeneral, HR-RPA is a good approximation to the exact
from the residual interactioft]. shell-model binding energyi6], although with some signifi-
The random-phase approximatigRPA) is a generaliza- cant failures. Tests of transitions have been also mainly
against “toy” models[17-19, although the QRPA has been
tested against exact diagonalization in the full SM space for
*On leave from National Institute for Physics and Nuclear Engi-B~ or double 8 decays[20-23, with mixed success.
neering Horia Hulubei, Bucharest, Romania. Broader tests of RPA transition strengths against an exact
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model, e.g., SM, have not been done. To address this issu€he transition strength from an excited to the ground state is
this paper tests the RPA against fulk @ calculation for given by the square of the matrix element,
several nuclei in thesd and pf shells for electromagnetic
transitions. Unlike previous tests, however, we consider S(0—v)=|(¥|F|0)|?,
mean-field solutions that break the rotational symmetry.

We find that, in general, the RPA produces a reasonabl@hile the quantity
approximation to the exadSM) transitions. The most sig-
nificant failures are for certain low-lying collective states. _ N 2
We understand these failures through the incomplete restora- S= EV: (E,~Eo){{#|F|0)| @
tion of broken symmetries and the nature of collective giant
resonances. is the(energy-weightedsum rule of ordek. In this equation,

The Brown-Bosterli schematic modgl,24] provides in- v runs over all states, 0 stands for the ground state Faisd
sight into giant collective resonances. It assumes the modein arbitrary transition operator. Particularly importanis
Hamiltonian to be single-particle energies plus a separabl@hich is the total transition strength from the ground state to
residual interaction. In both the TDA and the RPA, all of the excited states, and which can be rewritten as a ground-state
Brown-Bosterli transition strength is to a single state, theexpectation value,
collective state, which is a model for giant resonances. If the
residual interaction is repulsive, then the collective state will ) N
be at high energy. If the interaction is attractive, then the SOEEV |(»|F[0)*=(0[F'F[0). 3)
collective state will be low in energy. In more realistic mod-
els, of course, the residual interaction includes more compliyy st realistic applications the transition operator is a
cated two-body forces, causing the giant resonance to Spre@gherical tensor of rank, Fyy, which has the property

over many states. The important lesson of the Brown—t _,_ .\m ;
Bosterli model, however, is that an attractive in'[eraction,FK"’I (= 1)"F - [26]. Then properly the total strength in
OFrg. (3) should be

such as isoscalar quadrupole-quadrupole, leads to large ¢

lective transitions low in the spectrum, while repulsive inter-

actions, such a- o, produce collective transitions lying So=2>, (—1)M(0|F«_uFkml0), (4)
higher in the spectrum. M

Breaking of symmetries can result in low-lying collectiv- o ]
ity being subsumed into the ground state. For example, th@nd similarly for the double commutator in the energy-
strongly attractive isoscalar quadrupole-quadrupole interacveighted sum rule, etc. To avoid clutter we drop the sum
tion leads to a quadrupole deformation in the HF state. Whil@VerM and it should be assumed to be implicit.
the RPA identifies broken symmetries, those symmetries are N fact, one can write all the sum rules of orderas
not fully restored by RPA. Rowé25] notes that the RPA €xpectation values, most famously the linear energy-
models only small-amplitude intrinsic vibrations, and notWeighted sum rule,
global rotational motion. Our calculations illustrate this in 1
some detail, as discussed in Sec. Ill B: we model well tran- _ _ 2_
sitions to intrinsic vibrations, but completely miss transitions 81_2,, (E,~Eo)[{0[F|)] _2<O|[F’[H’F]]|O>' ®
within the ground-state rotational band.

The paper is organized as follows. Section Il presents We will often characterize our results in terms of the cen-
briefly the interacting SM and the RPA formalisms, with M- 4iq 'S and the widthA S of the transition strengths, defined
phasis on their application to transn_pn strengths. In Seg. Il_ﬁn terms ofS, andS,,
we compare the SM and RPA transition strengths and distri-
bution properties for several nuclides, while in Sec. IV we _ s S, _
summarize our results. In the Appendix we consider in some S= —1, AS=/=-5S (6)
detail the effect of breaking of exact symmetries on transi- So So

tion strength sum rules. . . .
g Both the centroid and the width characterize global proper-

Il. FORMALISM ties of collective excitations.

A. General overview B. Shell model

In this section we briefly present the treatment of transi-
tions in both SM and RPA. Before giving any specific de-
tails, we review some general concepts.

A primary goal is, given the HamiltoniaH, to calculate
solutions to the eigenvalue equation

In the interacting SM, the number of possible many-body
configurations is restricted by two means: first, one assumes
that only a limited number of nucleons intergéealence par-
ticles), the rest forming an inert core, and second, the active
particles are restricted to a small number of single-particle
H|v)=E,|v). (1) states(vqlence spaOeUsuaIIy, t_he vale_nce. space is restricFed
to a major oscillator shell. Diagonalization of an effective
Suppose we have solved Ed), either in the SM or RPA. Hamiltonian provides the low-lying states by means of the
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Lanczos algorithm27]; the corresponding wave functions A B X X
are eigenstates of the parity, total angular momentum, and ( " . =Q , (8)
isospin. —BT —ATNY Y

The reduction of the available single-particle states anye(ermines the excitation energi@s and the particle-hol
active particles makes the diagonalization numerically trac, 4 hole-particle amplitude¥. A andB are matrices given
table. There is a downside though: in order to take into ac

count the restriction of the Hilbert space one has to use
modified (effective operators to describe observables or A -E(HF|[6-*(A: [|:| ot 6-]]|HF> 9)
transitions. In many cases a simple phenomenological use of n.mt JEneR T EmeE '
either enhanced or quenched couplings, most famously the
former for E2 transitions and the latter for Gamow-Teller
transitions, yields good agreement with experiment.

In order to calculate transition strengths in SM, we haveIO

d the Lanczos moment method: the transition rator | a minimum in energy surface, the corresponding RPA
used the Lanczos mome €thod. the transition operato équation(B) has only real frequencies. In addition, if the
applied on the initial state wave function. Then, the newly

: : . . Hartree-Fock state is invariant under some particle-hole
obtamgd state s used as the starting state, or pivot, for.d't'ransformation, such as rotation about an axis, this corre-
agonalization by means of the Lanczos algorithm. The siz
of the pivot vector is the total transition strendlf, and the

overlap of the pivot with the final eigenstate, which it turns
out can be read off trivially, is the transition amplitude. The

interested reader is referred to REZ8] for details.

Bnj.mi=(HFI[[H.clc;1.c].cilIHF). (10)

Thouless showef30] that if the HF solution corresponds

%ponds to a zero-frequency RPA mode. Thus, the generators
of symmetries broken by a mean-field solution are eigenvec-
tors of Eq.(8) lying at zero excitation energy. This is fre-
quently interpreted as “approximate restoration of broken
symmetries”[1]; in fact, it is more accurate to say that the
RPA respectssymmetries by separating out exactly spurious
C. RPA motion. In Sec. Ill we present evidence that significant part
Several textbook§1,29 cover the RPA, so we skip de- of the quadrupole response for even-even nuclei is still re-
tailed derivation and just review principal steps. tained in the ground state, which suggests that broken sym-
The starting point of the RPA is a self-consistent mean-metries are only partially restored by the RPA.
field solution: a Slater determinant that can break symmetries The RPA provides a model for excited states, and to cal-
and that ignores correlations. This determines a deforme@ulate the transition probability from any nonspurious state
particle-hole basis, where the occupation numbers are zef® the ground state one needs the transition matrix element

for particle states and one for hole states. (v|F|RPA). In the RPA, the latter can be written in terms of

The RPA ground state is defined as the vacuum for a set gfarticle-hole amplitude” and Y”, namely, if one has a

guasiboson operators, one-body transition operatgand a spherical tensor of rank
K), Fkm, which can be written as
,8,,|RPA>=O,

_ _ _ _ Fem= 2 [foiche+(—1)Mf Mcle,], 11
while the excited states, approximate solutions of #y.are KM % [FmiCmCit (= 1) 7 mi"Ci Cm (1)
given by

then[1]
_pt
[v)=B.|RPA). (v|Fm|RPA) = fMX 4+ (—1)Mf My, (12

And because we assume the excited states topbghlcor-  wherefX=2,if niXmi, €tc.
relations, one writes the quasiboson creation operatdrg|as With the transition matrix elemerfl2), it is possible to
calculate in the RPA any moment of the distribution strength,
and therefore the total strength, the centroid, and the width.
Bh=2, (Xhbhi=Yhbm, (7)  Section Il compares the SM and RPA predictions for these
m guantities, as well as individual transition strengths in several
nuclei. Before proceeding with our numerical results, there
whereb! ~c!c; is the approximate boson mapping of the are two points to discuss.
(deformed fermion operators. We use the conventional no-  First, the energy-weighted sum ru&. The RPA has the
tation thatm, n are unoccupiedparticle states, whild, j are  famous property1,30]
occupied(hole) states, respectively. Note that while in Eq.
(7) the first terms describe particle-hole correlations on top
of the HF state, the term¥;,,b,,; describe correlations com-
ing from 2p-2h configurations in the ground state. In the
RPA one assumes that the ground state is still very close tim the Appendix we revisit the derivation of E{.3) and find
the HF solution, so that the hole-particle amplitudésre  that it can be violated an exact symmetry such as rotational
much smaller than the particle-hole amplitudésFinally,  invariance is broken. In Sec. Ill D we confirm the violation
the eigenvalue equation numerically, and find the worse case to be where the bulk of

1
2, Q|(vIF[RPA)2=Z(HFIF.[H.FIIHF). (13

044315-3



IONEL STETCU AND CALVIN W. JOHNSON PHYSICAL REVIEW (67, 044315(2003

the transition strength lies very low in energy, such as isos- 0.4 — T
calarE2. This appears to be a new result. Because applica- - \ -
tions of RPA have usually assumed spherical symmetry they 0.3 —

I

are not invalidated, but ambitious RPA calculations that al- - A ,H 1
|
|

lowed for broken symmetries in the mean fi¢Rll] should 02 'H —
be approached with caution. Of particular interest, which we 01 B | ‘\ i
have not yet explored, is the QRPA which breaks particle L | \ Sk i
number conservation. B oob——L 1

A second point we would like to discuss involves ground- E T ! ﬂ ! .
state (g.s) to ground-state transitiongThese are nothing < 03 h GT —
more than ground-state expectation values of nonscalar op- % i I’l ]
erators. We discuss ground-state expectation valussadér & 02 ,’\ I |‘ B
operators in Ref32]; in principle, one can extend such cal- 5 01 B AL i
culations to nonscalar operators, but we have not yet done = i IV i
so. Marshalek and Wenesf83| discuss expectation values 5 0.0 ' ! Py
for electric quadrupole and magnetic moments, but their ap- o2k ! Isovelctor £
proach is not very transparent for general implementation. o2 l“ ,1 ]
Most discussions of the RPA do not give a well-defined pro- “k || ,‘ i
cedure to calculate such transitions, in part because they van- 021 l, "l " ]
ish when the Hartree-Fock state has spherical symmetry. 01 NIV —
While such g.s. to g.s. transitions are forbidden for a spheri- 01k AU .
cal (hencelJ=0) state, they are in general not forbidden for 0.0 — U/ ]
nonspherical HF states. If RPA does not fully restore broken -0 10 20 30
symmetries, a significant contribution to the total strength Ex. Energy (MeV)

could be absorbed into otherwise forbidden g.s. to g.s. tran-
sitions. We investigate in detail this point in Sec. Ill C, and
indeed we find that significant strength to excited states ca
be missing for even-even nuclides.

FIG. 1. IsovectolE2, SF, and GT transition strengths fBiNe.
ﬁoth the exact SMsolid curve and RPA(dashed curvedistribu-
tions have been smoothed with a Gaussian of width 0.7 MeV to
facilitate comparison.

ll. RPA VERSUS EXACT SHELL-MODEL STRENGTHS response, but we computed the isoscalar and isovector re-
sponses separately, that is, incoherefdiyly if the isoscalar

nd isovector responses were summed coherently would one
ﬁave pure proton response

In addition, we tested transition distributions for spin flip

(SPH and Gamow-TelledGT) which are the isoscalar and
isovector components of the spin operatorTo avoid con-
A. Model space, interactions, and transition operators fusion, note that the actual GT operator we usedris so

We work in full Oiw shell-model spaces, restricting the thatT,;=Z—N was conserved. _
single-particle states to one major shell. Most of our ex- Alarge fraction of applications of RPA calculations are to
amples were computed in tisl shell, limiting the nucleons E1 transitions. Because our shell-model valence space does
outside an inert'%0 core to the single-particle orbits NOtinclude single-particle states of opposite parity, we could
18,,-0d3,-0ds,. Additionally, we considered two nuclei, NOtinvestigateEl transitions here.
4“Ti and *®V, in the pf shell, i.e., P171p3-0f5-0f7)
single-particle states outsid®Ca core. For the interaction, ~ B. Results for isovector quadrupole, SF, and GT transition
we used the Wildenthal “USD” in thesd shell[34] and the operators

monopole-modified Kuo-Brown “KB3" in thepf shell[35]. In this section we show results for isovec®2, SF, and
We emphasize that due to our restriction to a single MajoGT transition operators. The main common feature is that
shell and limitation to mixing angular degrees of freedom,their collective transitions lie relatively high in energy. We
the mean-field solution can break only the rotational symmefing that for such transitions the RPA is in reasonably good

In order to test the RPA's reliability for computing transi-
tion strengths, we calculate both the mean-field and exa
solutions in the same model space, using the same Hami
tonian.

try. _ agreement with the SM results, especially for the total tran-
For testing purposes, we have considefegd=er’Y;, sition strength.
with J=2, that is isoscalar{=0) and isovector T=1) Figures 1-3 compare the RPA and SM transition

electric quadrupole B2). While good agreement with ex- strengths; we choose for exemplificatié™Ne (even-evehn
perimental transition strengths requires nontrivial effective?’Ne (even-odd, and ?°Na (odd-odd, but the general trend
proton and neutron charges, the main contribution of effecis the same for all the nuclides investigated. The excitation
tive charges is a rescaling of the strengths; therefore for simspectra are discrete, but to guide the eye we folded in a
plicity we took the bare chargeg,=1 ande,=0. This  Gaussian of width 0.7 MeV. In addition, Tables I-IIl sum-
might appear to suggest that we only considered the protomarize the results in both SM and RPA for several nuclei; we
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FIG. 2. Same as in Fig. 1, but fé!Ne.
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TABLE |. Total strengthS,, centroidg, and widthAS for is-

ovectorE2 transition operator. The nuclei have been grouped into

even-even, odd-odd, and odd-

So S (MeV) AS (MeV)

Nucleus SM RPA SM RPA SM RPA

2ONe 098 115 1453 1192 3.47 2.44
2Ne 237 1.86 8.15 7.70 585 4.25
2Mg 188 1.96 1440 11.86 4.09 2.46
28g; 228 196 1435 1341 4.29 1.93
36Ar 138 134 1249 11.01 424 356
44T 215  1.90 8.23 6.68 286 1.98
2Na 160 169 11.67 1044 4.37 2.61
%Na 2.07 2.09 9.82 8.21 6.26 4.14
46y 232  3.00 7.96 6.62 417 1.97
2INe 1.39 143 1052 9.41 566  4.27
Mg 228 220 11.48 9.47 6.21 441
295 252 220 1161 1021 568 4.25

prising, as higher-order particle-hole correlations are ex-
pected to further fragment the distribution. The RPA
centroids are generally shifted to lower energies than the SM.
Although the centroids are related to the energy-weighted
sum ruleS,;, we remind the reader that we do not violate Eq.

present only the total strengths, the centroids, and the width®) because the HF state is only an approximation to the

of the distributions.

ground state. Furthermore, the shift in the centroid does not

The figures show that the RPA calculations follow theappear correlated with the correctness of the RPA estimations

general features of the SM transition strength distributionsof the ground-state enerdyl6] or other observablef32]. -
Note, however, that by comparison to SM, the RPA distribu-One might expect that the correct inclusion of the pairing

tions have smaller width&see Tables I-I)l This is not sur-

20
15
10

05

Transition Strength / MeV
o o = o
o (6] o o

o
[

©
[N

0.0

FIG. 3. Same as in Fig. 1, but fé*Na.

I T
r Isovector E2
\ h

0

10 20 30
Ex. Energy (MeV)

interaction by means of HFBQRPA would improve the re-
sults. This is reasonable and worth trying, but see discussion
and caveats regarding pairing and QRPA in REt§,32.

For computational simplicity, we restrict ourselves to real
wave functions; this has no effect for even-even nuclei. But
because the rotations aboubr z axis are complex, for odd-
odd or oddA nuclei the RPA does not identify all the corre-
sponding generators as exactly zero-frequency modes. In-
stead, we obtain a “soft” mode at very low excitation energy.

TABLE Il. Same as in Table I, but for SF transition operator.

So S (MeV) AS (MeV)

Nucleus SM RPA SM RPA SM RPA

2Ne 1.05 1.23 1710 1226 4.38 1.95
2Ne 3.53 444  11.40 8.82 432 237
Mg 4.15 478 1322 1017 448 1.97
285 5.82 520 12.75 11.62 434 1.89
S6Ar 2.68 270 1453 11.17 369 2.88
44Tj 2.56 3.32 9.98 7.86 256 155
2Na 857 578 5.1 6.67 522  3.49
2Na 10.06 7.66  5.83 7.05 548  3.19
46y 5.44 7.68 8.76 6.40 251 234
2INe 4.02 3.54 7.50 7.62 592 395
Mg 6.94 6.33 9.19 8.47 573 3.36
295 8.42 8.47 9.38 7.86 5.07 4.45
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TABLE lll. Same as in Table |, but for GT transition operator. %
— =
So S (MeV) AS (MeV) =8 N
= scalar E2
Nucleus SM RPA  SM RPA SM RPA g 61 Isoscalar E2 —
L\ .
20Ne 1.05 1.33 16.32 1253 435 242 ;55 4K —
“Ne 387 485 1200 937 448 3.16 s ‘\ .
*Mg 426 485 1446 1174 424 242 2 2 i 7]
285 6.65 570 1519 1377 359 1.88 ‘% oL\ —_ 1
36Ar 274 279 1485 1209 345 299 = 0 5 10 15
44T 3.03 374 1012 842 286 243 Ex. Energy (MeV)
2Na 551 547  9.96 9.28 435 3.8 _
2Na 743 771 1032 929 487 3.48 FIG. 5. Same as Fig. 4, but fdiNe.
46y 10.60 7.85  4.93 815 437 228
2INe 4.25 3.55 7.87 8.67 597 3.98 theresultsin Sec. Ill B, we find a large discrepancy between
Mg 7.12 6.76 11.02 10.00 6.05 4.21 the total strengths in RPA and SM, especially for even-even
295 942 863 1228 1039 541 499 nhuclei.

Figure 4 shows that, if one ignores the low energy transi-
tions, one obtains again a reasonable agreement between the

Transition Streng[hs to the soft mode are in fact ground_stat(SM and RPA distributions. Similar features encountered for
to ground-state strength normally not computed in RPA.  other transitions appear: that is, a lower energy centroid and

To summarize the results in this section, we have Comsmaller width of the RPA distribution with respect to SM.
pared the SM and RPA distribution strengths for isovector As for the relatively good agreement for odd-odd and
E2, SF, and GT transition operators. We found, in general0ddA nuclei, we have to point out that most of the RPA
good agreement for the total strength in several nuclei. Whil&trength is concentrated in the lowest energy state which, as
less satisfactory, the centroids and widths of the distribution@lready noted, appears just as an artifact of our approach
are still close. As a general feature, however, the RPA distri{restriction to real numbeysA full treatment of rotations by

butions are smaller in width and lower in energy than the SMnclusion of complex numbers would shift these “soft-
results. mode” states to zero modes, that is, degenerate with respect

to the ground state, and we would expect the odd-odd and
odd-A cases to then resemble the even-even cases: missing
i _ _ the low-energy collective strengtkiNote that qualitatively
This section presents comparison between the SM ange resylts for2%Si, for which we obtain the correct number
RPA distribution strengths for the isoscalar quadrupole trangs ;ero RPA modes, are similar to the even-even nyclei.
sition operator. The main difference with respect to the Othebonversely, we can turn around these results into a hypoth-
transitions investigated in this paper is that the collectiveggis: that the missing low-lying collective strength in even-
strength lies very low in energy, for realistic Hamiltonians eyen nuclides is due to incomplete symmetry restoration, and
have a strong attractive isoscalar quadrupole-quadrupol@at the missing strength resides in the RPA ground state.
component. , , _Alternately, one can make the reasonable, and perhaps sim-
~ We considered again for comparison the same nuclidegier, interpretation that the RPA does not adequately model
investigated previously, and we plot the SM and RPA distri-otational motion, and that the missing strength resides in the
butions in Figs. 4—6_3. Characterlstlcs of the distributions forground-state rotational band; because the ground-state band
several other nuclei are given in Table IV. In contrast withjg projected out of the Hartree-Fock intrinsic state, this ap-
pears as a “ground-state to ground-state transition.” The fact

C. Results for isoscalar quadrupole response

0 5 10 15 20
Ex. Energy (MeV)

3 that the missing strength shows up in soft modes that arise as
2 00— T T artifacts of our computational methods bolsters this hypoth-
g i Isoscalar E2

g 0.05 —

c | N A i

S AYA ¥

2 0.00— e

=

FIG. 4. IsoscalarE2 transition strengths for’Ne. The SM
(solid curve and RPA (dashed curve distributions have been
smoothed with a Gaussian of width 0.7 MeV. The large collective
peak at low but nonzero excitation energy for the SM is absent in
the RPA; see text for discussion. FIG. 6. Same as Fig. 4, but féfNa.

Transition Strength / MeV
O L N w N

0O 2 4 6 8 10
Ex. Energy (MeV)
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TABLE IV. Same as in Table |, but for isoscal&? transition

operator 5 ' I ' I ' I '
— 41— [\ Spherical HF state—
So S (MeV) AS (MeV) % 3 | ]
Nucleus SM RPA SM RPA SM RPA s
=
2Ne 7.86 0.19 212 981 192 230 = 2
22Ne 9.36 0.89 201 552 219 279 g’ 1
2Mg 12.57 0.51 213 799 209 275 &5
%g;j 12.04  0.56 251 988 233 233 = 0
SSAr 7.17 023 242 957 191 274 = 4
44Tj 1087 150 173 399 173 170 Z
22Na 953 749 147 127 263 182 = 3 ]
*Na 881 633 210 1.81 285 1.88 2 -
46y 1521 1520 162 087 194 1.63 s -
2INe 8.74 1327 153 064 282 135 1 =
Mg 1071 1249 225 108 266 1.62 0' N A
295 9.70 1.38 272 466 262 4.25 0 5 10 15 20

Ex. Energy (MeV)

esis. For the interested reader, more details can be found in g1 7. 28gj: |soscalaE2 for deformed and spherical HF state.
the following section.

lying states are correctly described in the RPA, the reason
why the RPA was successful in describing low-lying collec-
In this section we provide further evidence supporting outtivity in closed shell nuclei; but note also that the high-lying
hypothesis that the low-lying collective strength is missingpart of the strength is not correctly described. In contrast,
due to incomplete symmetry restoration in the RPA, and avhen the HF state is deformed, the RPA strength distribution
significant fraction of the RPA strength gets absorbed in a&hanges dramatically, even though the SM strength distribu-
ground-state to ground-state transition. tion does not: the low-lying strength vanishes, but the high-
Our first test of incomplete symmetry restoration is thelying strength is approximately correct.
comparison of the transition strength for spherical and de- As a second test, we compare the total streiSgtand the
formed HF solutions. While the proton-neutron interactionenergy-weighted sum rul, computed in different ways.
induces deformation in the HF Slater determinant¥i, it Table V presents the total strendg®y for a transition op-
is possible nevertheless to force a transition to a spherical HF

_State (b.Oth protons and neutrons fill?ng thk _orbits) by TABLE V. Comparison of total strengtB, as computed in the
increasing the Qap betw_e-en thig, single-particle energy shell model(SM), by taking the expectation value of an observable
and the other single-particle states. The above-reported va(IRPA_X), and by summing the RPA strengths directigPA3):

ues for *®Si use the USD value oé(ds;)=—3.94 MeV,  see text for more details. The horizontal lines separate even-even
which yields a deformed HF state. In addition, we computedjeformed nuclei, even-even spherical nuclei, odd-odd nuclei, and

8Si at e(dsp)=-5.64 MeV and —574MeV. At  oddA nuclei. Notation or?®Si: T indicatese gs,= — 5.74 MeV and
—5.64 MeV the HF state is still deformed while at a spherical HF state.

—5.74 MeV the HF state is sphericdiActually, for these
values of e(ds,) there exist both spherical and deformed SF IsoscalaE2

locally stable HF solutions, but at5.64 MeV the deformed Nucleus SM  RPAX RPAY SM RPAX RPAY
state has a slightly lower HF energy while-ab.74 MeV the

D. “Missing strength” and broken symmetries

spherical state has the lowest HF energy. Thus this is a firsi0 € 1.05 1.34 1.23 786 817 0.19
order “phase transition,” as described in Sec. 4 of Raq]. , Ne 3.52 1.94 444 936 9.98 0.89
The so-called collapse or breakdown of RPA, readily seen ir]o’:Mg 415 553 478 1257 1252 051
toy models such as the Lipkin moddl], only occurs when A 268 29 270 717 766 023
one has a second order “phase transition,” when one ha&Si 582 513 520  12.04 1377  0.56
only one stable HF solution. In other words, our RPA calcu->*Si" 9.07 -522 1253 795 7.0 6.86
lations do not collapse at the transition pojnt. 0 504 -060 631 271 275 236
Figure 7 shows a small difference in the SM strength®O 517 —-1.07 6.24 1.88 1.92 1.57
distribution in contrast to a dramatic change for RPA. The*Na 857  7.64 578 953  9.92 7.49
difference between thes, single-particle energies in the two #Na 10.06  6.97 766 881 9.1 6.33
cases is small and one can follow a smooth change for af'Ne 4.02 1.77 3.54 8.74 8.69 13.27
observables in the SM; we have therefore no reason to susmg 6.94 152 6.33 10.71 12.34 1249
pect any fundamental difference in the structure of the state$9s; 8.42 5.77 8.47 970 11.67 1.38

Note, however, that, when the HF state is spherical, the low:
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TABLE VI. Comparison of energy-weighted sum rufy as =,Q,/(v|F|RPA)|?, while  the HF  value is
computed in the shell m_ode$M), taking the w_eighted sum of RPA %(HF|[F,[H F11 HF) (for technical reasons, discussed
strengths(RPA), and taking the HF expectation value of a double in the Appendix, we can only compute this for even-even

commutatorHF); see text for more details. Notation fSi, same
nuclei.
as for Table V. L . .
For nuclei with spherical HF states, that is, no zero
IsovectorE2 IsoscalaE?2 modes, the RPA&,; and the HF value are identical; this is the

Nucleus SM RPA  HF SM RPA  HF  Usual theorem regarding the energy-weighted sum rule. For
nuclei with deformed HF states, and thus with zero modes,

“Ne 1427 1374 1374 16.63 182  7.43 the RPA and HF values differ, by a small amount for isovec-
“Ne 1928 1434 1440 18.84 492 1051 tor E2 and dramatically for isoscalaE2. Interestingly
#Ne 21.89 1489 1506 20.87 842 11.99 enough, there is no discrepancy for transitions withh &
2Mg 27.09 2328 2328 26,71 4.08 14.87 =1 character, such as SF or GT. This bolsters the picture of
6ar 17.24 1472 1472 1732 221 8.64 the missing strength residing in the ground-state rotational
g 32.66 26.22 26.22 30.22 558 17.67 band, which has only=0,2,4 ... states. Overall, these re-
28gjt 40.13 3576 3576 34.31 28.26 28.26 sults are consistent with our hypothesis that low-lying
220 11.46  8.56 856 11.46 8.56 8.56 strength is subsumed into the RPA ground statbich re-
220 10.42  7.99 799 1042 7.99 7.99 tains the intrinsic-state nature of the HF sjatke difference
is larger for isoscalalE2 because of the large strength at low
energy.

eratorF, whereF is either the spin-flip operator or isoscalar
E2 operator. The columns labled “SM” are the exact shell- IV. CONCLUSIONS
model results, for whictS,=(0|F?|0)=X,|(»|F|0)[2. Of The purpose of this paper was to investigate the reliability
course, for the shell model both methods yield the same resf the RPA for calculating transition strengths in nuclei. To
sult. The columns RPA and RPA, correspond to equiva-  accomplish this we have computed the RPA and shell-model
lent methods for the RPA. RPX-is the expectation value strength distributions in the saméi® shell-model space.
(RPAFTF|RPA) as laid out in Ref[32], where we showed  The comparison between RPA and SM showed two dif-
that the RPA expectation value was often a reasonable agerent results, depending upon the nature of transitions. Thus,
proximation to the shell-model result, though not always asye found that when the strong collectivity lies at high ener-
seen for some of the spin-flip cases. REAis the sum  gies, such as isovect@2, SF, and GT transitions, the RPA
3, |(v|F|RPA)|?, where the sum is only to excited states asand SM are in reasonable agreement. When the transitions lie
g.s. to g.S.-tI’anSitiC-)nS a!‘e difficult to define in RPA. at low energies however' the agreement is poor. We pre-
The horizontal lines in Table V segregate even-even Nusented evidence that the problem arises from an incomplete
clei with deformed HF states, even-even spherical nucleigestoration of the symmetries broken by the mean field; for
odd-odd nuclei, and odé-nuclei. Keep in mind that for the |ow-lying transitions we propose that a significant part of the
latter two groups we do not get all the true zero moes  transition strength is subsumed into the RPA ground state,
cause we restricted the Slater determinant to real singleasnd should be interpreted as transitions within the ground-
particle wave functions but at least one zero mode is re- state rotational band. Future work should directly investigate
placed by a soft mode, except for the caséfi which does  ground-state to ground-state transitions in the RFhese
have all the expected zero modes. are also needed for ground-state moments, such as magnetic
What do we learn from Table V? We draw the reader'sdipole or electric quadrupole, of oddinuclides) Finally, we
attention to the isoscal&?2 strength in deformed even-even gjso have found, both analytically and numerically, that the
nuclides, and iI’\ZQSi, all of which have the expected number standard lore regarding the RPA energy-weighted sum rule,
of exact zero modes. Here the summed RPA stre(@BPA-  Eq. (13), does not hold if an exact symmetry is broken, par-
) is dramatically and consistently smaller than either thescularly if the centroid of the transition strength is very low
exact SM result, or the expectation value RRABy way of in energy.
contrast, the nuclides with spherical HF states and thus no This paper also marks a final stage within a larger project
zero modes, or those that have soft modes rather than zete test the reliability of the HFRPA for a global micro-
modes, have summed RPA strength in reasonable accogtopic theory of nuclear propertifss,37. We conclude that
with the SM total strength. Furthermore, the RPA expectatiorHF+RPA is a good starting point for such a task, but because
value of Q- Q also agrees with the SM total strength, which of occasional failures future work should investigate Hartree-
suggests to us that some of the missing RPA strength is in GBock-Bogoliubow- QRPA and extensions such as renormal-
to GS transitions. This line of reasoning is weakened by thézed RPA, self-consistent RPA, etsee Ref[1] as well as
poor reliability of the RPA expectation value, as discussed irthe bibliographies of Refd.16,32), and the second RPA,
Ref.[32] and as seen in the spin-flip values, which take onwhich has been shown to differ significantly from the stan-
unphysical negative values for spherical nuclei. dard RPA in its description oE2 giant resonances ofO
Therefore, to further dissect this issue, in Table VI we[36]. Our work suggests an important and specific test of any
consider the energy-weighted sum rufg,. The SM  such “improvement” to RPA: the description of low-lying
value is =,(E,—Eg)|(v|F|0)]2. The RPA value is collective strength, such as isoscalE®, which is sensitive
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to restoration of the rotational symmetry broken by a de- The matricesA andB can be written in terms of particle-
formed mean-field state. hole amplitudes< and Y, and the canonical momentum op-
erators associated with broken symmetries
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APPENDIX: THE ENERGY-WEIGHTED SUM RULE, Substitution and some algebra yields

REVISITED

) HF_ cRPA FMPp Mf—Mpx* |2
In Table VI we saw a discrepancy between two ways to St = 91 +§M: M(QE_O) o[ F P ()M EPLS
no I

compute the energy-weighted sum rule, (A8)

Although we do not show it, one can write the right-hand
side as a double commutator of boson operators.

As further motivation, one can start from E@.2) and
and write the contribution from a single frequency to the RPA
energy-weighted sum rule as

1
S5 > (~)M(HFIF .,y [H,FulIIHF) (D

Shis Q,|(v|Fxu|RPA) |2 A2 MG MG
1 EV % V|<V| KMl A>| ( ) S§PA(/~L):QME |fop-+(_1)Mf7Myl/-|2_ (A9)
M

. “ ” HF _ cRPA H
In textbooks]1] one finds “proof” that S;"=S;™, that is, Even if  is not a zero mode, one is free to transform to

RPA preserves the energy—welghgd sum _ruIe. In this aPPeIL | iactive coordinates and momert,
dix we revisit the proof, with special attention to zero modes

that arise from broken exact symmetries, and we find that M Q 1
insteadS{'"= S+ a term that arises from zero modes. Xt=\|—£EQ —iy/ P (A10)
Suppose we have a broken symmetry, such as rotational 2 g 2mM,Q,
invariance. The Hartree-Fock state is deformed and has a
particular orientation, but the Hartree-Fock energy is inde- M ,Q i 1
antati : - : Yh=— [~ EQ* +i\ 5oP* . (Al1)
pendent of the orientation. This shows up in the RPA matrix 2 <n oM Q ~
equation(8) as a zero-frequency mode. FOr>0 one has e
the normalizationrX?—Y2=1, but this normalization is im- Inserting into Eq.(A9) and lettingQ,—0, there is a finite
possible forQ)=0. Instead one introduces collective coordi- remainder exactly equal to the rightmost term of &). It
nates(jV and conjugate momenév [1,33], which satisfy is of course surprising to find contribution to the energy-
weighted sum rule from “zero excitation energy.” But Rowe
(in Sec. 14.5 of Ref(.25]) points out that when applying RPA
to deformed nuclei one “necessarily makes a distinction be-
i tween excitations that aratrinsic and those that areota-
R Ak 3 tional.” (ltalics in original) The missing RPA strength is
AQ,~BQ, MVP”' (A3) almost certainly associated with & 8-2* transition in the
ground-state rotational band and not described by the RPA
Here M, is a constant, interpretable as mass or moment o¥ibrations. Instead, the rotational wave functions should be

AP,—BP*=iM,020,,

inertia fixed by the normalization d?,Q, described by Wigneb functions, as in geometric collective
models[1,25,37,38. It would be illuminating to express the
Q;{ P _(_j)\’ P =is,,. (A4) remainder of Eq(A8) in terms of rotational transitions, but it

appears complicated in the RPA framework and we leave it
for future work.

We find numerically that the discrepancy in Table VI is
tgiven exactly by the last term in EGA8). Ourinterpretation
of Table VI and Eq.(A8) is missing strength that goes into
GS to GS transitions, due to incomplete symmetry restora-
tion. Undoubtedly more work remains, but we hope our re-
sults act to inspire further careful investigation. For example,
for some transition operators there is no or very small con-
tribution from the zero modes even for nuclides with de-
E 2 [Ay; MM (Mg _fM_f*_M]_ (A5) fo_rmeq HF ;tates; this seems to be ass_ociateq with transitions
Mo e menyming with high-lying giant resonances, again consistent with our

Note that if A and B are real, thenX, Y are real, but of
necessityP and Q are complex(one is real and the other
imaginary. With these zero-mode frequencies one mus
supplement the quasiboson operatgi@' in Eq. (7) with
the generalized coordinate and momentum opera@ya

Because of expansidiil) one can use definition®) and
(10), and useA andB to write Si' as
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interpretation of incomplete restoration of symmetries andhot an eigenstate, and so one cannot use the Lanczos moment
low-lying strength being subsumed into the RPA groundmethod described in Sec. Il B. Instead, we take the HF state

state. _ _ and project onto a vector in the basis of shell-model states
Finally, we wish to discuss the general rule (because shell-model basis states have ghodhe projec-
1 tion can only be done easily for even-even nucljdesth H

2;‘ (E,— EM)|<,u|F|v)|2=§<u|[F,[H.F]]|,u>- andFy, are matrices in the restricted model space and we

compute directly HF —FH)|HF) and dot that vector onto
(A12)  F|HF). One must sum over all shell-model states with inter-
Equation(A12) is true for any true eigenstatg.), and so mediateH\éalues od,, a tedious but necessary task for com-
holds for full shell-model calculations. But the HF state isPUting Sy .
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