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Tests of the random phase approximation for transition strengths
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We investigate the reliability of transition strengths computed in the random-phase approximation~RPA!,
comparing with exact results from diagonalization in full 0\v shell-model spaces. The RPA and shell-model
results are in reasonable agreement for most transitions; however, some very low lying collective transitions,
such as isoscalar quadrupole ones, are in serious disagreement. We suggest that the failure lies with incomplete
restoration of broken symmetries in the RPA. Furthermore, we prove, analytically and numerically, that stan-
dard statements regarding the energy-weighted sum rule in the RPA do not hold if an exact symmetry is
broken.
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I. INTRODUCTION

Electromagnetic and weak transitions provide import
probes of nuclear wave functions. Exact numerical soluti
of the many-body Schro¨dinger equation are very difficult, s
theorists have devised a number of approximations. Tra
tions offer a serious test of the model wave functions,
only in comparison to experiment but also between appro
mations.

One of the most successful approximations is the inter
ing shell model ~SM!, which diagonalizes an effectiv
Hamiltonian in a restricted space, providing good descript
of the observed low-lying states for a wide range of m
numbers. The SM wave functions successfully describe e
tromagnetic and weak transitions, in good agreement~albeit
sometimes requiring effective couplings! with the experi-
mental data; for this reason, in this paper we consider
results to be exact. Due to the computational burden
increases with mass number, however, full 0\v SM calcu-
lations are presently limited to light and medium nucleiA
,80).

Another approximation, which works surprisingly we
considering its simplicity, is mean-field theory, e.g., Hartre
Fock ~HF! theory. In this approach, the particles are unc
related and move in an average potential that replaces
two-body interaction; the ground state is determined by
ergy minimization. Starting from the HF solution, the Tamm
Dancoff approximation~TDA! constructs excited states b
assuming them to be mixtures of one particle, one h
(1p-1h) configurations. The HF1TDA is the simplest mode
for ground- and excited state wave functions. There are
limitations of this model: the ground-state wave function i
single Slater determinant that can break symmetries of
Hamiltonian and neglects particle-hole correlations aris
from the residual interaction@1#.

The random-phase approximation~RPA! is a generaliza-
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tion of the TDA, which takes into account the residual inte
action by adding 2p-2h correlations in the ground state.~An
important extension is the quasiparticle RPA or QRPA; b
cause it accounts for nonperturbative pairing effects, it
often considered a superior approach. In this paper we
strict ourselves to number-conserving RPA.! The excited
states, as in the TDA, remain 1p-1h mixtures. Is this the
case? That is, are the excited statesmainly mixtures of
1p-1h correlations? The answer is no: one knows from S
calculations that, for example, the first excited state in16O
has a predominant 4p-4h character@2#, outside the RPA
model space. It is therefore not surprising that RPA fails
these situations.

Despite known limitations, the RPA~or QRPA! has been
widely applied for decades to evaluate spectra and trans
strengths in nuclei. The reason, aside from computatio
simplicity, is that it is frequently, although not always@3,4#,
in close agreement with experiment. Thus, RPA was
method of choice for description of negative parity states
closed shell nuclei@3,5–7# and in open shell nuclei@8#. RPA
and QRPA calculations~sometimes including continuum
states! using phenomenological interactions have been s
cessful in describing the experimental position of giant re
nances@9#, particularlyE1 @8,10# andM1 @11# from electron
or proton scattering, or Gamow-Teller resonances@12#. In
general, however, the description of low-lying transitions
poor @12,13#. Other studies have used QRPA to compu
transitions of interest for astrophysics, but did not direc
compare to experiment@14,15#.

What about tests of RPA against exact models? Until
cently there was no thorough test of the HF1RPA against an
exact nontrivial model for binding energies. We perform
such a test for a large number of nuclei and found that
general, HF1RPA is a good approximation to the exa
shell-model binding energy@16#, although with some signifi-
cant failures. Tests of transitions have been also ma
against ‘‘toy’’ models@17–19#, although the QRPA has bee
tested against exact diagonalization in the full SM space
b6 or double b decays @20–23#, with mixed success
Broader tests of RPA transition strengths against an e

-
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model, e.g., SM, have not been done. To address this is
this paper tests the RPA against full 0\v calculation for
several nuclei in thesd and pf shells for electromagnetic
transitions. Unlike previous tests, however, we consi
mean-field solutions that break the rotational symmetry.

We find that, in general, the RPA produces a reasona
approximation to the exact~SM! transitions. The most sig
nificant failures are for certain low-lying collective state
We understand these failures through the incomplete res
tion of broken symmetries and the nature of collective gi
resonances.

The Brown-Bosterli schematic model@1,24# provides in-
sight into giant collective resonances. It assumes the m
Hamiltonian to be single-particle energies plus a separa
residual interaction. In both the TDA and the RPA, all of t
Brown-Bosterli transition strength is to a single state,
collective state, which is a model for giant resonances. If
residual interaction is repulsive, then the collective state w
be at high energy. If the interaction is attractive, then
collective state will be low in energy. In more realistic mo
els, of course, the residual interaction includes more com
cated two-body forces, causing the giant resonance to sp
over many states. The important lesson of the Brow
Bosterli model, however, is that an attractive interactio
such as isoscalar quadrupole-quadrupole, leads to large
lective transitions low in the spectrum, while repulsive int
actions, such assW •sW , produce collective transitions lying
higher in the spectrum.

Breaking of symmetries can result in low-lying collecti
ity being subsumed into the ground state. For example,
strongly attractive isoscalar quadrupole-quadrupole inte
tion leads to a quadrupole deformation in the HF state. W
the RPA identifies broken symmetries, those symmetries
not fully restored by RPA. Rowe@25# notes that the RPA
models only small-amplitude intrinsic vibrations, and n
global rotational motion. Our calculations illustrate this
some detail, as discussed in Sec. III B: we model well tr
sitions to intrinsic vibrations, but completely miss transitio
within the ground-state rotational band.

The paper is organized as follows. Section II prese
briefly the interacting SM and the RPA formalisms, with em
phasis on their application to transition strengths. In Sec
we compare the SM and RPA transition strengths and di
bution properties for several nuclides, while in Sec. IV w
summarize our results. In the Appendix we consider in so
detail the effect of breaking of exact symmetries on tran
tion strength sum rules.

II. FORMALISM

A. General overview

In this section we briefly present the treatment of tran
tions in both SM and RPA. Before giving any specific d
tails, we review some general concepts.

A primary goal is, given the HamiltonianH, to calculate
solutions to the eigenvalue equation

Hun&5Enun&. ~1!

Suppose we have solved Eq.~1!, either in the SM or RPA.
04431
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The transition strength from an excited to the ground stat
given by the square of the matrix element,

S~0→n!5u^nuFu0&u2,

while the quantity

Sk5(
n

~En2E0!ku^nuFu0&u2 ~2!

is the~energy-weighted! sum rule of orderk. In this equation,
n runs over all states, 0 stands for the ground state, andF is
an arbitrary transition operator. Particularly important isS0,
which is the total transition strength from the ground state
excited states, and which can be rewritten as a ground-s
expectation value,

S0[(
n

u^nuFu0&u25^0uF†Fu0&. ~3!

~In most realistic applications the transition operator is
spherical tensor of rankK, FKM , which has the property
FKM

† 5(21)MFK2M @26#. Then properly the total strength i
Eq. ~3! should be

S05(
M

~21!M^0uFK2MFKMu0&, ~4!

and similarly for the double commutator in the energ
weighted sum rule, etc. To avoid clutter we drop the s
over M and it should be assumed to be implicit.!

In fact, one can write all the sum rules of orderk as
expectation values, most famously the linear ener
weighted sum rule,

S15(
n

~En2E0!u^0uFun&u25
1

2
^0u†F,@H,F#‡u0&. ~5!

We will often characterize our results in terms of the ce
troid S̄ and the widthDS of the transition strengths, define
in terms ofS1 andS2,

S̄5
S1

S0
, DS5AS2

S0
2S̄2. ~6!

Both the centroid and the width characterize global prop
ties of collective excitations.

B. Shell model

In the interacting SM, the number of possible many-bo
configurations is restricted by two means: first, one assu
that only a limited number of nucleons interact~valence par-
ticles!, the rest forming an inert core, and second, the ac
particles are restricted to a small number of single-part
states~valence space!. Usually, the valence space is restrict
to a major oscillator shell. Diagonalization of an effectiv
Hamiltonian provides the low-lying states by means of t
5-2
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TESTS OF THE RANDOM PHASE APPROXIMATION FOR . . . PHYSICAL REVIEW C 67, 044315 ~2003!
Lanczos algorithm@27#; the corresponding wave function
are eigenstates of the parity, total angular momentum,
isospin.

The reduction of the available single-particle states a
active particles makes the diagonalization numerically tr
table. There is a downside though: in order to take into
count the restriction of the Hilbert space one has to
modified ~effective! operators to describe observables
transitions. In many cases a simple phenomenological us
either enhanced or quenched couplings, most famously
former for E2 transitions and the latter for Gamow-Tell
transitions, yields good agreement with experiment.

In order to calculate transition strengths in SM, we ha
used the Lanczos moment method: the transition operat
applied on the initial state wave function. Then, the new
obtained state is used as the starting state, or pivot, for
agonalization by means of the Lanczos algorithm. The s
of the pivot vector is the total transition strengthS0, and the
overlap of the pivot with the final eigenstate, which it tur
out can be read off trivially, is the transition amplitude. T
interested reader is referred to Ref.@28# for details.

C. RPA

Several textbooks@1,29# cover the RPA, so we skip de
tailed derivation and just review principal steps.

The starting point of the RPA is a self-consistent me
field solution: a Slater determinant that can break symmet
and that ignores correlations. This determines a deform
particle-hole basis, where the occupation numbers are
for particle states and one for hole states.

The RPA ground state is defined as the vacuum for a se
quasiboson operators,

bnuRPA&50,

while the excited states, approximate solutions of Eq.~1!, are
given by

un&5bn
†uRPA&.

And because we assume the excited states to be 1p-1h cor-
relations, one writes the quasiboson creation operators a@1#

bn
†5(

mi
~Xmi

n bmi
† 2Ymi

n bmi!, ~7!

wherebmi
† 'cm

† ci is the approximate boson mapping of th
~deformed! fermion operators. We use the conventional n
tation thatm, n are unoccupied~particle! states, whilei, j are
occupied~hole! states, respectively. Note that while in E
~7! the first terms describe particle-hole correlations on
of the HF state, the termsYmi

n bmi describe correlations com
ing from 2p-2h configurations in the ground state. In th
RPA one assumes that the ground state is still very clos
the HF solution, so that the hole-particle amplitudesY are
much smaller than the particle-hole amplitudesX. Finally,
the eigenvalue equation
04431
d

d
-
-
e
r
of

he

e
is

i-
e

-
s
d
ro

of

-

p

to

S A B

2B* 2A* D S X

YD 5VS X

YD , ~8!

determines the excitation energiesVn and the particle-holeX
and hole-particle amplitudesY. A and B are matrices given
by

An j ,mi[^HFu†ĉ j
†ĉn ,@Ĥ,ĉm

† ĉi #‡uHF&, ~9!

Bn j ,mi[^HFu†@Ĥ,ĉn
†ĉ j #,ĉm

† ĉi‡uHF&. ~10!

Thouless showed@30# that if the HF solution correspond
to a minimum in energy surface, the corresponding R
equation~8! has only real frequencies. In addition, if th
Hartree-Fock state is invariant under some particle-h
transformation, such as rotation about an axis, this co
sponds to a zero-frequency RPA mode. Thus, the genera
of symmetries broken by a mean-field solution are eigenv
tors of Eq. ~8! lying at zero excitation energy. This is fre
quently interpreted as ‘‘approximate restoration of brok
symmetries’’@1#; in fact, it is more accurate to say that th
RPA respectssymmetries by separating out exactly spurio
motion. In Sec. III we present evidence that significant p
of the quadrupole response for even-even nuclei is still
tained in the ground state, which suggests that broken s
metries are only partially restored by the RPA.

The RPA provides a model for excited states, and to c
culate the transition probability from any nonspurious st
to the ground state one needs the transition matrix elem
^nuFuRPA&. In the RPA, the latter can be written in terms
particle-hole amplitudesXn and Yn, namely, if one has a
one-body transition operator~and a spherical tensor of ran
K), FKM , which can be written as

FKM5(
mi

@ f mi
M cm

† ci1~21!M f mi
2Mci

†cm#, ~11!

then @1#

^nuFKMuRPA&5 f MXn1~21!M f 2MYn, ~12!

where f X5(mif miXmi , etc.
With the transition matrix element~12!, it is possible to

calculate in the RPA any moment of the distribution streng
and therefore the total strength, the centroid, and the wi
Section III compares the SM and RPA predictions for the
quantities, as well as individual transition strengths in seve
nuclei. Before proceeding with our numerical results, th
are two points to discuss.

First, the energy-weighted sum ruleS1. The RPA has the
famous property@1,30#

(
n

Vnu^nuFuRPA&u25
1

2
^HFu†F,@H,F#‡uHF&. ~13!

In the Appendix we revisit the derivation of Eq.~13! and find
that it can be violatedif an exact symmetry such as rotation
invariance is broken. In Sec. III D we confirm the violatio
numerically, and find the worse case to be where the bulk
5-3
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IONEL STETCU AND CALVIN W. JOHNSON PHYSICAL REVIEW C67, 044315 ~2003!
the transition strength lies very low in energy, such as is
calarE2. This appears to be a new result. Because app
tions of RPA have usually assumed spherical symmetry t
are not invalidated, but ambitious RPA calculations that
lowed for broken symmetries in the mean field@31# should
be approached with caution. Of particular interest, which
have not yet explored, is the QRPA which breaks parti
number conservation.

A second point we would like to discuss involves groun
state ~g.s.! to ground-state transitions.~These are nothing
more than ground-state expectation values of nonscalar
erators. We discuss ground-state expectation values ofscalar
operators in Ref.@32#; in principle, one can extend such ca
culations to nonscalar operators, but we have not yet d
so. Marshalek and Weneser@33# discuss expectation value
for electric quadrupole and magnetic moments, but their
proach is not very transparent for general implementatio!
Most discussions of the RPA do not give a well-defined p
cedure to calculate such transitions, in part because they
ish when the Hartree-Fock state has spherical symme
While such g.s. to g.s. transitions are forbidden for a sph
cal ~henceJ50) state, they are in general not forbidden f
nonspherical HF states. If RPA does not fully restore brok
symmetries, a significant contribution to the total stren
could be absorbed into otherwise forbidden g.s. to g.s. t
sitions. We investigate in detail this point in Sec. III C, a
indeed we find that significant strength to excited states
be missing for even-even nuclides.

III. RPA VERSUS EXACT SHELL-MODEL STRENGTHS

In order to test the RPA’s reliability for computing trans
tion strengths, we calculate both the mean-field and ex
solutions in the same model space, using the same Ha
tonian.

A. Model space, interactions, and transition operators

We work in full 0\v shell-model spaces, restricting th
single-particle states to one major shell. Most of our e
amples were computed in thesd shell, limiting the nucleons
outside an inert 16O core to the single-particle orbit
1s1/2-0d3/2-0d5/2. Additionally, we considered two nucle
44Ti and 46V, in the p f shell, i.e., 1p1/2-1p3/2-0 f 5/2-0 f 7/2
single-particle states outside40Ca core. For the interaction
we used the Wildenthal ‘‘USD’’ in thesd shell @34# and the
monopole-modified Kuo-Brown ‘‘KB3’’ in thep f shell @35#.
We emphasize that due to our restriction to a single ma
shell and limitation to mixing angular degrees of freedo
the mean-field solution can break only the rotational symm
try.

For testing purposes, we have consideredFJT5ẽTr JYJ ,
with J52, that is isoscalar (T50) and isovector (T51)
electric quadrupole (E2). While good agreement with ex
perimental transition strengths requires nontrivial effect
proton and neutron charges, the main contribution of eff
tive charges is a rescaling of the strengths; therefore for s
plicity we took the bare charges,ep51 and en50. This
might appear to suggest that we only considered the pro
04431
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response, but we computed the isoscalar and isovecto
sponses separately, that is, incoherently~only if the isoscalar
and isovector responses were summed coherently would
have pure proton response!.

In addition, we tested transition distributions for spin fl
~SF! and Gamow-Teller~GT! which are the isoscalar an
isovector components of the spin operators. To avoid con-
fusion, note that the actual GT operator we used isstz so
that Tz5Z2N was conserved.

A large fraction of applications of RPA calculations are
E1 transitions. Because our shell-model valence space d
not include single-particle states of opposite parity, we co
not investigateE1 transitions here.

B. Results for isovector quadrupole, SF, and GT transition
operators

In this section we show results for isovectorE2, SF, and
GT transition operators. The main common feature is t
their collective transitions lie relatively high in energy. W
find that for such transitions the RPA is in reasonably go
agreement with the SM results, especially for the total tr
sition strength.

Figures 1–3 compare the RPA and SM transiti
strengths; we choose for exemplification20Ne ~even-even!,
21Ne ~even-odd!, and 22Na ~odd-odd!, but the general trend
is the same for all the nuclides investigated. The excitat
spectra are discrete, but to guide the eye we folded i
Gaussian of width 0.7 MeV. In addition, Tables I–III sum
marize the results in both SM and RPA for several nuclei;
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FIG. 1. IsovectorE2, SF, and GT transition strengths for20Ne.
Both the exact SM~solid curve! and RPA~dashed curve! distribu-
tions have been smoothed with a Gaussian of width 0.7 MeV
facilitate comparison.
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present only the total strengths, the centroids, and the wi
of the distributions.

The figures show that the RPA calculations follow t
general features of the SM transition strength distributio
Note, however, that by comparison to SM, the RPA distrib
tions have smaller widths~see Tables I–III!. This is not sur-

0.0

0.2

0.4

0.6

0.0

0.2

0.4

T
ra

ns
iti

on
 S

tr
en

gt
h 

/ M
eV

0 10 20 30
Ex. Energy (MeV)

0.00

0.05

0.10

0.15 Isovector E2

GT

SF

FIG. 2. Same as in Fig. 1, but for21Ne.
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FIG. 3. Same as in Fig. 1, but for22Na.
04431
hs

s.
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prising, as higher-order particle-hole correlations are
pected to further fragment the distribution. The RP
centroids are generally shifted to lower energies than the S
Although the centroids are related to the energy-weigh
sum ruleS1, we remind the reader that we do not violate E
~5! because the HF state is only an approximation to
ground state. Furthermore, the shift in the centroid does
appear correlated with the correctness of the RPA estimat
of the ground-state energy@16# or other observables@32#.
One might expect that the correct inclusion of the pairi
interaction by means of HFB1QRPA would improve the re-
sults. This is reasonable and worth trying, but see discus
and caveats regarding pairing and QRPA in Refs.@16,32#.

For computational simplicity, we restrict ourselves to re
wave functions; this has no effect for even-even nuclei. B
because the rotations aboutx or z axis are complex, for odd-
odd or odd-A nuclei the RPA does not identify all the corre
sponding generators as exactly zero-frequency modes.
stead, we obtain a ‘‘soft’’ mode at very low excitation energ

TABLE I. Total strengthS0, centroidS̄, and widthDS for is-
ovectorE2 transition operator. The nuclei have been grouped i
even-even, odd-odd, and odd-A.

S0 S̄ ~MeV! DS ~MeV!

Nucleus SM RPA SM RPA SM RPA

20Ne 0.98 1.15 14.53 11.92 3.47 2.44
22Ne 2.37 1.86 8.15 7.70 5.85 4.25
24Mg 1.88 1.96 14.40 11.86 4.09 2.46
28Si 2.28 1.96 14.35 13.41 4.29 1.93
36Ar 1.38 1.34 12.49 11.01 4.24 3.56
44Ti 2.15 1.90 8.23 6.68 2.86 1.98
22Na 1.60 1.69 11.67 10.44 4.37 2.61
24Na 2.07 2.09 9.82 8.21 6.26 4.14
46V 2.32 3.00 7.96 6.62 4.17 1.97
21Ne 1.39 1.43 10.52 9.41 5.66 4.27
25Mg 2.28 2.20 11.48 9.47 6.21 4.41
29Si 2.52 2.20 11.61 10.21 5.68 4.25

TABLE II. Same as in Table I, but for SF transition operator

S0 S̄ ~MeV! DS ~MeV!

Nucleus SM RPA SM RPA SM RPA

20Ne 1.05 1.23 17.10 12.26 4.38 1.95
22Ne 3.53 4.44 11.40 8.82 4.32 2.37
24Mg 4.15 4.78 13.22 10.17 4.48 1.97
28Si 5.82 5.20 12.75 11.62 4.34 1.89
36Ar 2.68 2.70 14.53 11.17 3.69 2.88
44Ti 2.56 3.32 9.98 7.86 2.56 1.55
22Na 8.57 5.78 5.01 6.67 5.22 3.49
24Na 10.06 7.66 5.83 7.05 5.48 3.19
46V 5.44 7.68 8.76 6.40 2.51 2.34
21Ne 4.02 3.54 7.50 7.62 5.92 3.95
25Mg 6.94 6.33 9.19 8.47 5.73 3.36
29Si 8.42 8.47 9.38 7.86 5.07 4.45
5-5
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Transition strengths to the soft mode are in fact ground-s
to ground-state strength normally not computed in RPA.

To summarize the results in this section, we have co
pared the SM and RPA distribution strengths for isovec
E2, SF, and GT transition operators. We found, in gene
good agreement for the total strength in several nuclei. W
less satisfactory, the centroids and widths of the distributi
are still close. As a general feature, however, the RPA dis
butions are smaller in width and lower in energy than the S
results.

C. Results for isoscalar quadrupole response

This section presents comparison between the SM
RPA distribution strengths for the isoscalar quadrupole tr
sition operator. The main difference with respect to the ot
transitions investigated in this paper is that the collect
strength lies very low in energy, for realistic Hamiltonia
have a strong attractive isoscalar quadrupole-quadru
component.

We considered again for comparison the same nucl
investigated previously, and we plot the SM and RPA dis
butions in Figs. 4–6. Characteristics of the distributions
several other nuclei are given in Table IV. In contrast w

TABLE III. Same as in Table I, but for GT transition operato

S0 S̄ ~MeV! DS ~MeV!

Nucleus SM RPA SM RPA SM RPA

20Ne 1.05 1.33 16.32 12.53 4.35 2.42
22Ne 3.87 4.85 12.00 9.37 4.48 3.16
24Mg 4.26 4.85 14.46 11.74 4.24 2.42
28Si 6.65 5.70 15.19 13.77 3.59 1.88
36Ar 2.74 2.79 14.85 12.09 3.45 2.99
44Ti 3.03 3.74 10.12 8.42 2.86 2.43
22Na 5.51 5.47 9.96 9.28 4.35 3.18
24Na 7.43 7.71 10.32 9.29 4.87 3.48
46V 10.60 7.85 4.93 8.15 4.37 2.28
21Ne 4.25 3.55 7.87 8.67 5.97 3.98
25Mg 7.12 6.76 11.02 10.00 6.05 4.21
29Si 9.42 8.63 12.28 10.39 5.41 4.99
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Ex. Energy (MeV)

0.00

0.05

0.10

T
ra

ns
iti

on
 S

tr
en

gt
h 

/ M
eV

Isoscalar E2

FIG. 4. IsoscalarE2 transition strengths for20Ne. The SM
~solid curve! and RPA ~dashed curve! distributions have been
smoothed with a Gaussian of width 0.7 MeV. The large collect
peak at low but nonzero excitation energy for the SM is absen
the RPA; see text for discussion.
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the results in Sec. III B, we find a large discrepancy betwe
the total strengths in RPA and SM, especially for even-ev
nuclei.

Figure 4 shows that, if one ignores the low energy tran
tions, one obtains again a reasonable agreement betwee
SM and RPA distributions. Similar features encountered
other transitions appear: that is, a lower energy centroid
smaller width of the RPA distribution with respect to SM.

As for the relatively good agreement for odd-odd a
odd-A nuclei, we have to point out that most of the RP
strength is concentrated in the lowest energy state which
already noted, appears just as an artifact of our appro
~restriction to real numbers!. A full treatment of rotations by
inclusion of complex numbers would shift these ‘‘sof
mode’’ states to zero modes, that is, degenerate with res
to the ground state, and we would expect the odd-odd
odd-A cases to then resemble the even-even cases: mis
the low-energy collective strength.~Note that qualitatively
the results for29Si, for which we obtain the correct numbe
of zero RPA modes, are similar to the even-even nucl!
Conversely, we can turn around these results into a hyp
esis: that the missing low-lying collective strength in eve
even nuclides is due to incomplete symmetry restoration,
that the missing strength resides in the RPA ground st
Alternately, one can make the reasonable, and perhaps
pler, interpretation that the RPA does not adequately mo
rotational motion, and that the missing strength resides in
ground-state rotational band; because the ground-state
is projected out of the Hartree-Fock intrinsic state, this a
pears as a ‘‘ground-state to ground-state transition.’’ The f
that the missing strength shows up in soft modes that aris
artifacts of our computational methods bolsters this hypo

e
in

0 5 10 15
Ex. Energy (MeV)

0

2

4

6

8

T
ra

ns
iti

on
 S

tr
en

gt
h 

/ M
eV

Isoscalar E2

FIG. 5. Same as Fig. 4, but for21Ne.
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FIG. 6. Same as Fig. 4, but for22Na.
5-6



d

u
ng
d
n

he
de
on

l H

v

te

t

ed

fir

n

ha
u

th
h
o
r a
su
te
ow

son
c-
g
st,
ion
ibu-
h-

e.

le

ven
and

TESTS OF THE RANDOM PHASE APPROXIMATION FOR . . . PHYSICAL REVIEW C 67, 044315 ~2003!
esis. For the interested reader, more details can be foun
the following section.

D. ‘‘Missing strength’’ and broken symmetries

In this section we provide further evidence supporting o
hypothesis that the low-lying collective strength is missi
due to incomplete symmetry restoration in the RPA, an
significant fraction of the RPA strength gets absorbed i
ground-state to ground-state transition.

Our first test of incomplete symmetry restoration is t
comparison of the transition strength for spherical and
formed HF solutions. While the proton-neutron interacti
induces deformation in the HF Slater determinant for28Si, it
is possible nevertheless to force a transition to a spherica
state ~both protons and neutrons filling thed5/2 orbits! by
increasing the gap between thed5/2 single-particle energy
and the other single-particle states. The above-reported
ues for 28Si use the USD value ofe(d5/2)523.94 MeV,
which yields a deformed HF state. In addition, we compu
28Si at e(d5/2)525.64 MeV and 25.74 MeV. At
25.64 MeV the HF state is still deformed while a
25.74 MeV the HF state is spherical.@Actually, for these
values of e(d5/2) there exist both spherical and deform
locally stable HF solutions, but at25.64 MeV the deformed
state has a slightly lower HF energy while at25.74 MeV the
spherical state has the lowest HF energy. Thus this is a
order ‘‘phase transition,’’ as described in Sec. 4 of Ref.@30#.
The so-called collapse or breakdown of RPA, readily see
toy models such as the Lipkin model@1#, only occurs when
one has a second order ‘‘phase transition,’’ when one
only one stable HF solution. In other words, our RPA calc
lations do not collapse at the transition point.#

Figure 7 shows a small difference in the SM streng
distribution in contrast to a dramatic change for RPA. T
difference between thed5/2 single-particle energies in the tw
cases is small and one can follow a smooth change fo
observables in the SM; we have therefore no reason to
pect any fundamental difference in the structure of the sta
Note, however, that, when the HF state is spherical, the l

TABLE IV. Same as in Table I, but for isoscalarE2 transition
operator.

S0 S̄ ~MeV! DS ~MeV!

Nucleus SM RPA SM RPA SM RPA

20Ne 7.86 0.19 2.12 9.81 1.92 2.30
22Ne 9.36 0.89 2.01 5.52 2.19 2.79
24Mg 12.57 0.51 2.13 7.99 2.09 2.75
28Si 12.04 0.56 2.51 9.88 2.33 2.33
36Ar 7.17 0.23 2.42 9.57 1.91 2.74
44Ti 10.87 1.50 1.73 3.99 1.73 1.70
22Na 9.53 7.49 1.47 1.27 2.63 1.82
24Na 8.81 6.33 2.10 1.81 2.85 1.88
46V 15.21 15.20 1.62 0.87 1.94 1.63
21Ne 8.74 13.27 1.53 0.64 2.82 1.35
25Mg 10.71 12.49 2.25 1.08 2.66 1.62
29Si 9.70 1.38 2.72 4.66 2.62 4.25
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lying states are correctly described in the RPA, the rea
why the RPA was successful in describing low-lying colle
tivity in closed shell nuclei; but note also that the high-lyin
part of the strength is not correctly described. In contra
when the HF state is deformed, the RPA strength distribut
changes dramatically, even though the SM strength distr
tion does not: the low-lying strength vanishes, but the hig
lying strength is approximately correct.

As a second test, we compare the total strengthS0 and the
energy-weighted sum ruleS1 computed in different ways.

Table V presents the total strengthS0 for a transition op-
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FIG. 7. 28Si: IsoscalarE2 for deformed and spherical HF stat

TABLE V. Comparison of total strengthS0 as computed in the
shell model~SM!, by taking the expectation value of an observab
~RPA-X), and by summing the RPA strengths directly~RPA-S);
see text for more details. The horizontal lines separate even-e
deformed nuclei, even-even spherical nuclei, odd-odd nuclei,
odd-A nuclei. Notation on28Si: † indicates«d5/2525.74 MeV and
a spherical HF state.

SF IsoscalarE2
Nucleus SM RPA-X RPA-S SM RPA-X RPA-S

20Ne 1.05 1.34 1.23 7.86 8.17 0.19
22Ne 3.52 1.94 4.44 9.36 9.98 0.89
24Mg 4.15 5.53 4.78 12.57 12.52 0.51
36Ar 2.68 2.90 2.70 7.17 7.66 0.23
28Si 5.82 5.13 5.20 12.04 13.77 0.56
28Si† 9.07 25.22 12.53 7.95 7.50 6.86
22O 5.04 20.60 6.31 2.71 2.75 2.36
24O 5.17 21.07 6.24 1.88 1.92 1.57
22Na 8.57 7.64 5.78 9.53 9.92 7.49
24Na 10.06 6.97 7.66 8.81 9.61 6.33
21Ne 4.02 1.77 3.54 8.74 8.69 13.27
25Mg 6.94 1.52 6.33 10.71 12.34 12.49
29Si 8.42 5.77 8.47 9.70 11.67 1.38
5-7



ar
ll

r
-

a
a

a

nu
le

gl
e-

r’s
n
er

th

n
ze
co
io
ch
G

th
i

o

e

d
en

ro
e
For
es,
c-

e of
nal
-
ng

w

lity
To
del

if-
hus,
er-
A
s lie
re-
lete
for
he
ate,
nd-
ate

netic

the
ule,
ar-
w

ect

use
ee-
al-

,
n-

ny

le

IONEL STETCU AND CALVIN W. JOHNSON PHYSICAL REVIEW C67, 044315 ~2003!
eratorF, whereF is either the spin-flip operator or isoscal
E2 operator. The columns labled ‘‘SM’’ are the exact she
model results, for whichS05^0uF2u0&5(nu^nuFu0&u2. Of
course, for the shell model both methods yield the same
sult. The columns RPA-X and RPA-S correspond to equiva
lent methods for the RPA. RPA-X is the expectation value
^RPAuF†FuRPA& as laid out in Ref.@32#, where we showed
that the RPA expectation value was often a reasonable
proximation to the shell-model result, though not always
seen for some of the spin-flip cases. RPA-S is the sum
(nu^nuFuRPA&u2, where the sum is only to excited states
g.s. to g.s. transitions are difficult to define in RPA.

The horizontal lines in Table V segregate even-even
clei with deformed HF states, even-even spherical nuc
odd-odd nuclei, and odd-A nuclei. Keep in mind that for the
latter two groups we do not get all the true zero modes~be-
cause we restricted the Slater determinant to real sin
particle wave functions!, but at least one zero mode is r
placed by a soft mode, except for the case of29Si which does
have all the expected zero modes.

What do we learn from Table V? We draw the reade
attention to the isoscalarE2 strength in deformed even-eve
nuclides, and in29Si, all of which have the expected numb
of exact zero modes. Here the summed RPA strength~RPA-
S) is dramatically and consistently smaller than either
exact SM result, or the expectation value RPA-X. By way of
contrast, the nuclides with spherical HF states and thus
zero modes, or those that have soft modes rather than
modes, have summed RPA strength in reasonable ac
with the SM total strength. Furthermore, the RPA expectat
value ofQW •QW also agrees with the SM total strength, whi
suggests to us that some of the missing RPA strength is in
to GS transitions. This line of reasoning is weakened by
poor reliability of the RPA expectation value, as discussed
Ref. @32# and as seen in the spin-flip values, which take
unphysical negative values for spherical nuclei.

Therefore, to further dissect this issue, in Table VI w
consider the energy-weighted sum ruleS1. The SM
value is (n(En2E0)u^nuFu0&u2. The RPA value is

TABLE VI. Comparison of energy-weighted sum ruleS1 as
computed in the shell model~SM!, taking the weighted sum of RPA
strengths~RPA!, and taking the HF expectation value of a doub
commutator~HF!; see text for more details. Notation on28Si, same
as for Table V.

IsovectorE2 IsoscalarE2
Nucleus SM RPA HF SM RPA HF

20Ne 14.27 13.74 13.74 16.63 1.82 7.43
22Ne 19.28 14.34 14.40 18.84 4.92 10.51
24Ne 21.89 14.89 15.06 20.87 8.42 11.99
24Mg 27.09 23.28 23.28 26.71 4.08 14.87
36Ar 17.24 14.72 14.72 17.32 2.21 8.64
28Si 32.66 26.22 26.22 30.22 5.58 17.67
28Si† 40.13 35.76 35.76 34.31 28.26 28.26
22O 11.46 8.56 8.56 11.46 8.56 8.56
22O 10.42 7.99 7.99 10.42 7.99 7.99
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(nVnu^nuFuRPA&u2, while the HF value is
1
2 ^HFu†F,@H,F#‡uHF& ~for technical reasons, discusse
in the Appendix, we can only compute this for even-ev
nuclei!.

For nuclei with spherical HF states, that is, no ze
modes, the RPAS1 and the HF value are identical; this is th
usual theorem regarding the energy-weighted sum rule.
nuclei with deformed HF states, and thus with zero mod
the RPA and HF values differ, by a small amount for isove
tor E2 and dramatically for isoscalarE2. Interestingly
enough, there is no discrepancy for transitions with aDJ
51 character, such as SF or GT. This bolsters the pictur
the missing strength residing in the ground-state rotatio
band, which has onlyJ50,2,4, . . . states. Overall, these re
sults are consistent with our hypothesis that low-lyi
strength is subsumed into the RPA ground state~which re-
tains the intrinsic-state nature of the HF state!; the difference
is larger for isoscalarE2 because of the large strength at lo
energy.

IV. CONCLUSIONS

The purpose of this paper was to investigate the reliabi
of the RPA for calculating transition strengths in nuclei.
accomplish this we have computed the RPA and shell-mo
strength distributions in the same 0\v shell-model space.

The comparison between RPA and SM showed two d
ferent results, depending upon the nature of transitions. T
we found that when the strong collectivity lies at high en
gies, such as isovectorE2, SF, and GT transitions, the RP
and SM are in reasonable agreement. When the transition
at low energies however, the agreement is poor. We p
sented evidence that the problem arises from an incomp
restoration of the symmetries broken by the mean field;
low-lying transitions we propose that a significant part of t
transition strength is subsumed into the RPA ground st
and should be interpreted as transitions within the grou
state rotational band. Future work should directly investig
ground-state to ground-state transitions in the RPA.~These
are also needed for ground-state moments, such as mag
dipole or electric quadrupole, of odd-A nuclides.! Finally, we
also have found, both analytically and numerically, that
standard lore regarding the RPA energy-weighted sum r
Eq. ~13!, does not hold if an exact symmetry is broken, p
ticularly if the centroid of the transition strength is very lo
in energy.

This paper also marks a final stage within a larger proj
to test the reliability of the HF1RPA for a global micro-
scopic theory of nuclear properties@16,32#. We conclude that
HF1RPA is a good starting point for such a task, but beca
of occasional failures future work should investigate Hartr
Fock-Bogoliubov1QRPA and extensions such as renorm
ized RPA, self-consistent RPA, etc.~see Ref.@1# as well as
the bibliographies of Refs.@16,32#!, and the second RPA
which has been shown to differ significantly from the sta
dard RPA in its description ofE2 giant resonances of16O
@36#. Our work suggests an important and specific test of a
such ‘‘improvement’’ to RPA: the description of low-lying
collective strength, such as isoscalarE2, which is sensitive
5-8



e

ga

t

e
e
h

on
s

de
tri

i-

t

r
us

-
-

nd

A

to

y-
e

be-

PA
be

e

t
e it

is

o
ra-

re-
le,

on-
e-
ions
ur

TESTS OF THE RANDOM PHASE APPROXIMATION FOR . . . PHYSICAL REVIEW C 67, 044315 ~2003!
to restoration of the rotational symmetry broken by a d
formed mean-field state.
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APPENDIX: THE ENERGY-WEIGHTED SUM RULE,
REVISITED

In Table VI we saw a discrepancy between two ways
compute the energy-weighted sum rule,

S1
HF5

1

2 (
M

~21!M^HFu†FK,2M ,@H,FKM#‡uHF& ~A1!

and

S1
RPA5(

n
(
M

Vnu^nuFKMuRPA&u2. ~A2!

In textbooks@1# one finds ‘‘proof’’ that S1
HF5S1

RPA, that is,
RPA preserves the energy-weighed sum rule. In this app
dix we revisit the proof, with special attention to zero mod
that arise from broken exact symmetries, and we find t
insteadS1

HF5S1
RPA1a term that arises from zero modes.

Suppose we have a broken symmetry, such as rotati
invariance. The Hartree-Fock state is deformed and ha
particular orientation, but the Hartree-Fock energy is in
pendent of the orientation. This shows up in the RPA ma
equation~8! as a zero-frequency mode. ForV.0 one has
the normalizationXW 22YW 251, but this normalization is im-
possible forV50. Instead one introduces collective coord
natesQW n and conjugate momentaPW n @1,33#, which satisfy

APW n2BPW n* 5 iM nVn
2QW n ,

AQW n2BQW n* 52
i

M n
PW n . ~A3!

Here M n is a constant, interpretable as mass or momen
inertia fixed by the normalization ofP,Q,

QW l* •PW n2QW l•PW n* 5 idln . ~A4!

Note that if A and B are real, thenX, Y are real, but of
necessityP and Q are complex~one is real and the othe
imaginary!. With these zero-mode frequencies one m
supplement the quasiboson operatorsb,b† in Eq. ~7! with
the generalized coordinate and momentum operatorsQ,P.

Because of expansion~11! one can use definitions~9! and
~10!, and useA andB to write S1

HF as

(
M

(
mi,n j

@Ami,n j f mi
M f n j

M 2~2 !MBmi,n j f mi
M f n j

2M#. ~A5!
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The matricesA andB can be written in terms of particle
hole amplitudesX andY, and the canonical momentum op
erators associated with broken symmetries

A5XVX†1Y* VYT1PM21P†, ~A6!

2B5XVY†1Y* VXT2PM21PT. ~A7!

Substitution and some algebra yields

S1
HF5S1

RPA1(
M

(
m(Vm50)

1

2Mm
u fWMPW m2~2 !M fW2MPW m* u2.

~A8!

Although we do not show it, one can write the right-ha
side as a double commutator of boson operators.

As further motivation, one can start from Eq.~12! and
write the contribution from a single frequency to the RP
energy-weighted sum rule as

S1
RPA~m!5Vm(

M
u fWMXW m1~21!M fW2MYW mu2. ~A9!

Even if m is not a zero mode, one is free to transform
collective coordinates and momenta@1#,

Xm5AMmVm

2
Qm2 iA 1

2MmVm
Pm , ~A10!

Ym52AMmVm

2
Qm* 1 iA 1

2MmVm
Pm* . ~A11!

Inserting into Eq.~A9! and lettingVm→0, there is a finite
remainder exactly equal to the rightmost term of Eq.~A8!. It
is of course surprising to find contribution to the energ
weighted sum rule from ‘‘zero excitation energy.’’ But Row
~in Sec. 14.5 of Ref.@25#! points out that when applying RPA
to deformed nuclei one ‘‘necessarily makes a distinction
tween excitations that areintrinsic and those that arerota-
tional.’’ ~Italics in original.! The missing RPA strength is
almost certainly associated with a 01→21 transition in the
ground-state rotational band and not described by the R
vibrations. Instead, the rotational wave functions should
described by WignerD functions, as in geometric collectiv
models@1,25,37,38#. It would be illuminating to express the
remainder of Eq.~A8! in terms of rotational transitions, but i
appears complicated in the RPA framework and we leav
for future work.

We find numerically that the discrepancy in Table VI
given exactly by the last term in Eq.~A8!. Our interpretation
of Table VI and Eq.~A8! is missing strength that goes int
GS to GS transitions, due to incomplete symmetry resto
tion. Undoubtedly more work remains, but we hope our
sults act to inspire further careful investigation. For examp
for some transition operators there is no or very small c
tribution from the zero modes even for nuclides with d
formed HF states; this seems to be associated with transit
with high-lying giant resonances, again consistent with o
5-9
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interpretation of incomplete restoration of symmetries a
low-lying strength being subsumed into the RPA grou
state.

Finally, we wish to discuss the general rule

(
n

~En2Em!u^muFun&u25
1

2
^mu†F,@H,F#‡um&.

~A12!

Equation~A12! is true for any true eigenstateum&, and so
holds for full shell-model calculations. But the HF state
B

s

-

B

.

04431
dnot an eigenstate, and so one cannot use the Lanczos mo
method described in Sec. II B. Instead, we take the HF s
and project onto a vector in the basis of shell-model sta
~because shell-model basis states have goodJz , the projec-
tion can only be done easily for even-even nuclides!; bothH
andFKM are matrices in the restricted model space and
compute directly (HF2FH)uHF& and dot that vector onto
FuHF&. One must sum over all shell-model states with int
mediate values ofJz , a tedious but necessary task for com
puting S1

HF .
ys.
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